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Colored noise 1n oscillators. Phase-amplitude
analysis and a method to avoid the Itdo-Stratonovich
dilemma

Michele Bonnin, Fabio L. Traversa, Fabrizio Bonani, Senior Member, IEEE

Abstract—We investigate the effect of time-correlated noise
on the phase fluctuations of nonlinear oscillators. The analysis
is based on a methodology that transforms a system subject
to colored noise, modeled as an Ornstein—Uhlenbeck process,
into an equivalent system subject to white Gaussian noise. A
description in terms of phase and amplitude deviation is given
for the transformed system. Using stochastic averaging technique,
the equations are reduced to a phase model that can be analyzed
to characterize phase noise. We find that phase noise is a drift-
diffusion process, with a noise-induced frequency shift related
to the variance and to the correlation time of colored noise.
The proposed approach improves the accuracy of previous phase
reduced models.

Index Terms—Oscillator noise, phase noise, colored noise,
stochastic differential equations (SDEs), Fokker-Planck equation,
stochastic averaging, phase models.

I. INTRODUCTION

Oscillators and phase locked loops (PLLs) are fundamental
components of electronic and optical systems. For instance,
in digital systems they are used to establish a reference time
to synchronize operations. In communication systems, they
are used for frequency coding and decoding, and for channel
selection.

Noise sources, both intrinsic and external, are a major
nuisance plaguing oscillator and PLL performance. They can
be classified as white (frequency independent) fluctuations,
such as thermal noise in electrical circuits with resistive
elements or shot noise in semiconductor devices, and time-
correlated (colored) noise sources. Among the latter, partic-
ularly relevant in oscillators based on bipolar transistors and
MOSFET devices used as radio frequency sources, we find
Lorentzian low-frequency noise and flicker noise. Flicker or
1/f fluctuations can be in several cases traced back to the
superposition of low-frequency Lorentzian noise sources, that
therefore are of paramount importance in assessing oscillator
random variations.

The performance and reliability of oscillators depend cru-
cially on noise sources, which deteriorate the oscillator re-
sponse and are responsible for phase noise and time jitter.
Phase noise and time jitter are strictly related concepts, defin-
ing oscillator short term frequency instabilities. In particular,
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phase noise is a frequency domain measure of the oscillator
spectral purity, while time jitter describes the time domain
accuracy of the oscillator waveforms. Phase noise spreads
the bandwidth of the fundamental frequency of oscillators
and may produce interference with neighboring channels,
thus degrading the whole system performances. Therefore,
characterizing phase noise in oscillators is a major problem
for practical applications.

Since the seminal work [1], linear time invariant models
(LTI) have been applied to high-@) resonant and quartz-
crystal oscillators. While of great practical importance, such a
technique is often too simplistic and fails to capture essential
features such as spectral dispersion. Inclusion of linear time
variant effects (LTV) can yield more accurate results [2], [3].

The most rigorous treatment of phase noise in nonlinear
oscillator perhaps dates back to [4], where the author de-
composes the oscillator response into phase and magnitude
components, and successfully derived a differential equation
for the phase deviation. In [5], the oscillator response is
decomposed into orthogonal components, and equations for
purely phase and amplitude deviations are derived. Unfortu-
nately, as shown in [6], using an orthogonal decomposition to
separate phase and amplitude deviations leads to inaccurate
results. The method proposed in [6], based on using Floquet
vectors to project the response of the noisy oscillator onto
a shifted version of the unperturbed response, exploits a
linear periodically time varying approximation of the oscillator
behavior leading, ultimately, to a nonlinear phase equation.
The idea that Floquet vectors constitute the ideal basis to
decouple phase and amplitude dynamics was confirmed in [7],
[8]. Phase domain models based on the ideas introduced in [6],
have been extensively used to derive an analytical stochastic
characterization of oscillator phase noise due to both white
and colored noise sources [9]-[16].

In [4], [6], [9], simplified scalar stochastic differential
equations for the phase variable were derived, neglecting all
contributions of noise and amplitude fluctuations, i.e small
deviations from the limit cycle, beyond the first order. This
assumption is well justified for most electronic oscillators,
that are typically subject to small noise and exhibit strongly
stable limit cycle, thus leading to very accurate phase models.
LTV techniques yield reliable and precise predictions for the
phase diffusion process, but they fail to capture the frequency
shift phenomenon [11], [17], [18]. Such a frequency shift is
usually negligibly small for strongly stable oscillators, such
as those customarily used in electronic systems, but may play



a relevant role in autonomous systems from other fields, e.g.
system biology and neuroscience [19].

This paper proposes a novel methodology to analyze phase
noise in nonlinear oscillators subject to time-correlated noise,
modeled as an Ornstein-Uhlenebeck process. Making use of
the method proposed in [20], [21] the system with colored
noise is first transformed into an equivalent system subject
to white Gaussian noise. The advantage is twofold: first the
transformation allows to use the whole machinery of stochas-
tic differential equations on a reduced dimensional system.
Second, and more important, the transformation avoids the
[t6-Stratonovich dilemma [22]. Phase and amplitude deviation
equations are derived for the transformed system, and then re-
duced to a phase model, that describes the oscillator dynamics
in terms of the phase variable only. This description is the ideal
tool for phase noise analysis, since it gives an approximate yet
very accurate description of the phase dynamics. We show that
phase noise in nonlinear oscillators is a drift-diffusion process,
that is, noise sources not only induce a spread in the oscillator
spectrum, but also a shift in the oscillation mean frequency.
The frequency shift is related to the variance of the colored
noise and to the noise correlation time. Some examples are
presented to assess the validity of the approach.

II. MODELING

Consider the nonlinear system subject to random noise
source

&, = a(xy) + B(zy) n (D

where x; R ~— R™ denotes the state of the system,
a: R"™ — R"™ is a smooth vector field that defines the system
internal dynamics, B : R"™ — R™ is a smooth vector valued
function and 7, : R — R is a scalar function describing
random fluctuations, both internal and external.

Random fluctuations are often modeled as zero mean,
Gaussian distributed white noise. A zero mean Gaussian
white noise 7y = W, is characterized by (Wt> = 0 and
(W, W) = 6(t — s), where § is the Dirac delta function,
while ¢ and s denote two time instants. White Gaussian noise
is a reasonable approximation in the case where the typical
time scales of the underlying deterministic dynamics are much
larger than the noise correlation time (quasi-white approxima-
tion). Unfortunately, white noise is rarely an accurate model
to represent all of the noise sources that induce fluctuations in
real electronic devices and systems. As a consequence, a Dirac
delta correlation in time is more justified by mathematical
convenience than being physically plausible. Real processes
have typically finite correlation times, and often 1/f power
spectra, e.g. flicker noise.

A more realistic description of noise in electronic systems
is given by an exponentially correlated process. Better known
as colored noise, it can be modeled as an Ornstein-Uhlenbeck
process [23]. In this case the noise source is modeled accord-
ing to

The = —1 + DWy (2)

where 7 is a parameter proportional to the finite noise corre-
lation time, k—is—the-driftecoeffictient; and D is the diffusion

constant. The Ornstein-Uhlenbeck process with deterministic
initial state 7 is characterized by the expectation value

() = 10 exp (—t> 3)
T

and by the correlation function

D2 -
(nems) = o5 &P <—|ts|> 4

Thus we consider equations (1) and (2), that we rewrite adopt-
ing the standard notation of stochastic differential equations
(SDEs)

dxy = [a(xy) + B(xy)n) dt 5)
Td?]t = —M dt + D th (6)

where W; is a Wiener process, i.e. the integral of a white
noise.

The SDEs (5)-(6) describe a diffusion process with un-
modulated (additive) noise. Therefore the equations can be
interpreted using any of the two main interpretation schemes,
namely Itd or Stratonovich, obtaining the same solution. In
the full space (x,n) the system is Markovian, that is, future
states are completely determined by the current state and the
stochastic process shows no memory. Methods for analysis
of Markovian systems, based on the Fokker-Planck or Kol-
mogorov equations, are well developed. However, the practical
solution of the equations obtained using these approaches
may become unbearable because of the large number of state
variables involved.

A possible solution strategy amounts to study the system
dynamics in a reduced dimension space. However, if we
consider the (x) space only the system is non Markovian
due to the presence of multiplicative noise, as the increments
of the state variables depend on the past history of the
noise process. Problems arise even in the simpler case of a
quasi-white approximation: for 7 — 0, (6) shows that the
external fluctuations reduce to a white noise 7.dt = DdW5.
Substituting this approximation into (5) yields

dwt = a(mt)dt—l—DB(:vt)th (7)

The white noise is now modulated by the state dependent
function B(x) (multiplicative noise), therefore the question
arises whether (7) should be interpreted according to Itd or
Stratonovich.

Applying the procedure presented in [20], [21], in the next
section we shall derive a reduced description in the (x) space
of problem (5)-(6) where the SDE system is transformed into
an SDE (for the state vector « only) subject to white Gaussian
noise. The main results are the following

o The reduced system holds for small, but not necessarily
vanishing correlation time 7.

e The reduced system resolves the Itd-Stratonovich
dilemma, that is, we shall derive equivalent SDEs for the
two interpretations. By equivalent, we mean two different
SDEs, interpreted following different rules, having the
same solution. Because the solution is unique, it is just a
matter of personal preference to choose one interpretation
rather than the other.



III. WHITE NOISE APPROXIMATION
Dividing both sides of (6) by 7, substituting 7 = 2 and
introducing 1, = y;/e, equations (5)-(6) become

1
dzy = |a(x) + EB(wt)yt dt 8)

1 D
dys = T2 dt + ;th )

Usually, in electronic systems the correlation time 7 is small
compared to the characteristic time constants for the deter-
ministic part of the dynamics. Therefore, we can assume the
correlation time 7 small enough such that ¢ < 1. Under this
assumption, equations (8) and (9) show a time scale separation,
since the Ornstein-Uhlenbeck process y; is one order, in
the parameter e, faster than the state variables x;. Notice
that a straightforward application of stochastic averaging [24]
would lead to inconsistent results. In fact, since asymptotically
(y:) = 0, the averaged equation would simply coincide with
the deterministic (noiseless) system.

Now, let u(z,t) = E[f (x4, )] denote the expected value for
a generic, smooth enough function f(x¢,t). The Kolmogorov
backward equation corresponding to (8)-(9) takes the form
[22]

% — (Ao—i—im—i—;/\z)U (10)
where
Nou= 2 afa) an
Au= % B(x) 12)
Ao = y%‘ %2 gzj; (13)

and Ju/Ox is a row vector denoting the gradient of the scalar
function w with respect to the vector « (thus du/0x a(x) is
the scalar product of the two vectors). We look for a solution
of (10) in the form of a power series expansion u = ug +
euy 4+ ug + ...

Introducing this ansatz into (10) and equating the coefficients
of the same powers of ¢ yields the hierarchy of equations

g2 Asug =0 (14)
571 : A2 Uy = —A1U0 (15)
50 : A2 Uy = % - A()’LL() - A1U1 (16)

The first equation in the hierarchy implies that uy does not
depend on y, so that ug = ug(x,t).

The other equations are of the type Asu,, = b,,. According
to Fredholm alternative theorem, these equations are solvable
provided that a function ¢ exists such that: (1) A5y = 0,
where A3 is the conjugate operator of Ay, and (2) each b,
satisfies (bn,%) = 0, where (-,-) denotes the inner product
in the L? Banach space. Taking into account (13), A = 0

implies that ¢ is the stationary distribution of the Ornstein-
Uhlenbeck process (9), thus [25]

() = paly) = \/E exp (‘%2)

As a consequence, condition (by,,t) = 0 amounts to require
that each term b,, averages to zero with respect to y

(bn, ) = (bn)y = /mb” psi(y) dy =0

Taking into account that (y), = 0, it is straightforward to
verify that (Ajug), = 0. Thus equation (15) is solvable, and
direct substitution shows that

Oug(x,t
ul(wvyvt) = y%

A7)

(18)

B(z) = —A; ' A (19)

Similarly, equation (16) is solvable if

) _
<a“t°>u — (Aouo), + (MiAT Aqug), =0 (20)

The three averages on the left hand side can be expressed as

/}R%Oa(f’t)pst(y) dy = % (€25
/RAOUO pu(y) dy = %;?’t) a(x) (22)
[ A7 Ao paty) dy =~ 5| 2020 OB

+ BT (x) % B(m)} (23)

where O0B(xz)/0x is the Jacobian matrix of the vector
function B with respect to the x variables with elements
(0B(x)/0z);; = OB;(x)/0z;, while 0*ug(x,t)/0x> is the
Hessian matrix of the scalar function ug with respect to @
with elements (9%ug(zx,t)/0x?);; = O*uo(x,t)/(0x;0x;).
Furthermore, to solve the last integral we used the fact that,
from (17), (y*), = D?/2.

Substituting equations (21)-(23) into (20) yields the Kol-
mogorov backward equation

a'U'O(wa t) _ auo (137 t)

ot om a(f’””gz{aug:t) 8];?3(5”)
+ B” (x) % B(m)} (24)

The corresponding Stratonovich SDE is (we use the symbol

o to denote Stratonovich stochastic integral)
dxy = a(x:)dt + D B(x;) o dW; (25)
while the equivalent 1t6 SDE is
D% 0B(z;)

dzy = |a(x) + = o

(26)
By equivalent we mean that the SDEs (25) and (26) are
interpreted according to different rules but they have the same
solution. The Stratonovich SDE (25) can be transformed into
the Itd SDE (26) (and vice versa) by addition (respectively,



subtraction) of the Wong-Zakai drift correction term [22]. The
solution of (25) and (26) is also a weak solution for the original
system with colored noise (5)-(6). Weak means that the two
solutions for a specific realization of the the noise process dW,
are different in details, but they converge in probability, i.e.
they have the same probability density function and therefore
the same statistical properties.

Whether to use the Stratonovich SDE (25) or the equivalent
Itd SDE (26) is at this point a matter of personal taste. As
a rule of thumb, Stratonovich interpretation may be better
suited for algebraic manipulations, since traditional calculus
rules apply. By contrast, It6 interpretation requires a whole
new set of calculus rules, known as It6 calculus [22], but it is
more suitable for numerical simulations and for the calculation
of expected quantities.

IV. PHASE-AMPLITUDE EQUATIONS FOR NONLINEAR
OSCILLATORS WITH COLORED NOISE

Let us now consider the case where equations (5)-(6)
describe a nonlinear oscillator subject to colored noise. In the
absence of random fluctuations, equation (5) reduces to the
autonomous ordinary differential equation (ODE)

dx

o = al@) @7
We assume that (27) admits of an asymptotically stable 7'-
periodic solution x,(t), represented by a limit cycle in its
state space.

We shall derive an equivalent description of system (25)
(or (26)) in terms of phase and amplitude deviation variables,
analogous to the one derived in [18], [26], [27]. The phase
function used in our description coincides locally, in the
neighborhood of the limit cycle, with the asymptotic phase
defined in [6], [13], [28]. As a second step, we shall derive
a phase reduced model, that describes the oscillator dynamics
in terms of the phase variable alone.

For our purpose it is more convenient to work with the Itd
SDE (26). The reason to prefer the Itd over the Stratonovich in-
terpretation is that Itd integrals are adapted processes, i.e. state
variables and the noise increment are independent. By contrast,
in the Stratonovich interpretation state variables and noise
increments are correlated, a property known as “anticipating
nature” or “look in the future property” of the Stratonovich
integral. The far reaching consequence is that when one tries to
describe the dynamics by using only a subset of state variables,
an additional piece of information is lost, represented by the
correlation between eliminated variables and noise increments
[17].

To make the paper self-contained, we introduce some
notation. We consider a set of time dependent vectors
{u1(t),...,un(t)}, forming a basis for R", for all ¢. These
basis vectors can be conveniently constructed as follows: the
vector uq(t) is chosen as the unit vector tangent to the limit
cycle at any ¢

(28)

The remaining n—1 vectors us(t), . . ., u, (¢) can be chosen as
the Floquet vectors (apart from the limit cycle tangent wy(t))
of the linearized variational equation [18], [26], [27]

(29)

where J4(t) = 0a/O0x is the Jacobian matrix of the vector
function a(x(t)) evaluated on the limit cycle x4(t). Thus

the vectors {ui(t),...,u,(t)} are independent, although in
general they are not orthogonal. We construct the matrix
U() = [ui(t),...,u,(t)], and we define the reciprocal

vectors v7(t),...,vL(t) to be the rows of the inverse matrix
V() = U Yt). Thus {vy(t),...,v,(t)} also span R"
and the bi-orthogonality condition v u; = ulv; = &;
for all ¢, holds. Finally we introduce matrices Y (t) =
[ua(t), ..., un(t)], Z(t) = [v2(t),...,v,(t)], and the mag-
nitude (in the L? norm) of the vector field evaluated on the
limit cycle, r(t) = |a(zs(t))].

Following [18], [26], [27], we decompose the solution of
(26) into two components

Ly = ws(et) + Y(Gt)Rt (30)

The first component x,(6;) represents the projection of the
stochastic process ax; onto the limit cycle, evaluated at an
unknown time instant 6;. The second component Y (6;)R;
represents the distance between the solution and the limit
cycle, measured along the directions spanned by the vectors
Vs, ..., U, at the random time 6;. Because x; is a stochastic
process, both 6 R — Rad R : R — R” ! are
stochastic processes as well. Itd equations defining the time
evolution of these stochastic processes can be found following
the procedure given in [18, Theorem 3.1] and [27, Theorem
1], obtaining

d9t = [1 —+ ag(Qt,Rt) + &Q(Gt, Rt) + b@(et, Rt)] dt

+ By(6s, Ry) AW, 31)
dR, = [L(0,)R, + ar(6,, R))+

+ar(0y, Ry) + br(6:, Ry)] di+

+ Br(6;, R)) dW, 32)

where (the ’ sign denotes the derivative with respect to 6)

ag(0, R) =k v [a(zs + YR) — a(z,) — Y'R] (33)
a9(0, R) = — kvl |Y'Br(0, R)Bys (0, R)
+ %Bg(e, R)(z! +Y"R) (34)
2
bo(0, R) =2 T B@ YR g yR) (35)
2 ox
By(0, R) =D kv B(z, + YR) (36)



LO)=-Z"Y' (37

ar(0,R) =Z" [a(z; + YR) — Y'Ray(0, R)| (38)

ar(0,R)=—Z"|Y'Ray(6,R) + Y'Br(0, R)By(6, R)

1
+5B3(0, R)(z{ + Y"R)

5 (39)

br(0,R)=— Z"Y'Rby(0, R)

2
D* 9Bz, +YR)

+ (xs +YR) (40

2 ox
Br(0,R)=—Z"Y'RBy(),R) + D Z"B(z, + YR)
(41)
and .
k= (r+v{Y'R) (42)

The SDEs (31)-(32) describe phase noise in nonlinear
oscillators with colored noise as a drift-diffusion process.
The responsibility of random fluctuations to phase diffusion
does not come as a surprise, since, contrary to the amplitude,
phase deviation does not have a self-limiting mechanism.
Phase deviations are not damped, and may eventually grow
unbounded as time passes. However, noise is also responsible
for phase drift, that is, it produces a shift in the position of
the peaks of the oscillator frequency spectrum. Because of the
nonlinear response of the oscillator, random forces applied at
a certain angle are amplified, while other are reduced. This
results in a net, non null contribution to the expected angular
frequency. Noise induced frequency shift is also observed in
nonlinear oscillators subject to white Gaussian noise [17], [18],
[27], but in presence of colored noise there is an additional
shift contribution, represented by the term by, that can be
ascribed to the finite correlation time of the noise source.

V. PHASE EQUATION

The phase and amplitude deviation SDEs (31)-(32) have
the same solution as the Stratonovich SDE (25) or the It
SDE (26), that in turn are characterized by the same statistical
properties of the solution of the SDEs (5)-(6). Since (31)-
(32) are exact, they are not easier to solve than the white
noise approximated SDE (26). However, they can be used
to derive a phase reduced model [26], [29], [30] that in
turn can form the basis to find useful, albeit approximate,
results. The main advantage of a phase reduced model is
that methods for Markovian systems, e.g. Fokker-Planck and
Kolmogorov equations, can be (comparatively) easily applied,
and the obtained equations can be more easily solved, being
one dimensional (single variable).

To derive a simplified phase equation, we exploit a stochas-
tic averaging technique. First we observe that if the Floquet
basis is used as vectors w;, v;, then

ap(0, R) = O(R?) 43)

where (’)(Rz) denotes terms quadratic in the amplitude de-
viation components, see [27, Theorem 3] for a proof. Then
in the neighborhood of the limit cycle the “deterministic”

frequency shift ap becomes negligibly small, and all points
rotate with a uniform angular frequency. In many of the
practical applications noise perturbations are small if com-
pared to deterministic effects, that is, ag(6, R), bg(0, R) and
By(6, R) can be considered as perturbation terms. They either
include some explicit small parameter, or the condition D < 1
holds. As a consequence, the stationary distribution for the
angle is expected to remain close to the uniform distribution
p(0) = 1/(27), that describes the phase diffusion process
in a nonlinear oscillator with uniform angular frequency [18],
[27].

Similar considerations can be made for the amplitude devi-
ation SDE (32). It can be shown that (see [27, Theorem 3])

L(O)R + ar(d,R) = DR + O(R?) (44)

where D = diag[va,...,v,] is a diagonal matrix whose
entries are the Floquet characteristic exponents, with the ex-
ception of the structural one v; = 0. The amplitude deviation
dynamics is the balance of two competing forces: random
fluctuations drive the system out of the limit cycle, while the
asymptotic stability of the limit cycle implies that the system is
continuously pushed toward the periodic orbit. Electronic sys-
tems are usually strongly stable, meaning that Re{v;} < 0 for
all t =2,...,n, and as a consequence amplitude fluctuations
remain confined to a small neighborhood of the limit cycle.
Thus we can linearize the amplitude deviation SDE around the
noiseless solution R = 0, and after averaging with respect to
the phase stationary distribution pg(6) = 1/(27) we obtain
where (as usual dagp/OR, Obr/OR and OBRr/OR are the
Jacobian matrices with respect to R)

MD+<2;§>9+<88I¥;>9 (46)
m =(ar), + (br), (47)
n =(BRr), (48)
and
27 1 27
(FO)g= [ [O)pu(0)dd=— [ [f(O)dd (49

0 27 Jo

In general, the solution of the linear SDE (45) is not a Gaussian
process, but the vector of the expected values p(t) = (R;)
and the matrix of second moments P(t) = (R, R} ) can be
found solving the linear ODE [31]

dp

— =M

i u+m (50)
ap T T T T
E—MP—i—PM +mp 4+ pm +nn Sh

Finally, the first and second moment are used to obtain a
phase reduced equation. Expanding the terms of the phase



SDE (31) in Taylor series around R = 0, and averaging with
respect to the amplitude deviation, yields

0 ob
df = {1+a9+b9+z< a9+8R€->'uZ

82(19 6 dg 82b0
T3 Z (8R OR, " OR.0R, | OR,0R,

OB 1 9°B
(Be + Z 0 o

> OR;0R;
where the functions ag, ag, by, Bg and their derivatives are
evaluated at (0,0), and R; denotes the i-th component of
vector R.

We compare the phase equation (52) with the analogous
equations obtained for a nonlinear oscillator subject to white
Gaussian noise [18], [27]. Apart from 1 that represents the
oscillator’s normalized angular frequency, the terms in the first
two rows describe a frequency shift, whereas the terms in the
last row describe a diffusion. ag and its derivatives resolve
the correlation between the phase and noise increments. These
terms were already discussed for a nonlinear oscillator subject
to white Gaussian noise [18], [27]. By contrast, by and its
derivatives describe the different action that colored noise
exerts on the phase with respect to white noise only, due to
the non null noise correlation time.

It is worth noticing that in the weak noise limit, if higher or-
der contributions of amplitude fluctuations and the correlation
resolving term are neglected (implying p; = 0, P;; = 0 and
ap(0, R) = 0, respectively), then the simplified phase equation
is obtained

)i

Pij>th (52)

d = [1+ by(6,0)] dt + By(6,0)dW, (53)

Eq. (53) is the equivalent of the phase equations derived in
[4], [6] for the case of colored noise, where by(6,0) is a zero
order approximation of the frequency shift effect produced by
the finite noise correlation time.

In order to compare our results against previous literature
on phase noise in oscillators subject to colored noise sources,
we consider here the approach developed in [9] where higher
order contributions of amplitude fluctuations are neglected.
For a strongly stable limit cycle, fluctuations are expected
to keep the trajectory in a small neighborhood of the limit
cycle, so that amplitude noise plays no influence on the phase
dynamics. The noisy solution is then approximated as a time
shifted version of the noiseless limit cycle x; = xg(f;), and
a phase equation is readily derived (see [9], eq. (3)"). For our
system (5), (6) the phase model in [9] reads

T
db = 1+Mnt dt (54)
r(6)
rdn, = — n, dt + D dW, (55)

Notice that this phase equation is further approximated in [9]
to derive the noise spectra.

I'The division by (), absent in [9], is a normalization required to guarantee
that the oscillator’s free running frequency is equal to one.

Fully neglecting the amplitude fluctuations may be a reason-
able approximation for strongly stable oscillators, however a
more detailed analysis shows that in some cases the amplitude
noise impacts on the cycle frequency inducing a non-negligible
shift [11], [17], [18], especially for some autonomous systems
exploited in computational biology and neuroscience [19].

VI. EXAMPLES
A. Stuart-Landau oscillator with colored noise

As a first example we consider a Stuart-Landau oscillator
with colored noise. The reason to choose such a simple system
is twofold. First, most of the analysis can be made analyti-
cally, making the example useful to illustrate the theory and
techniques described in the previous sections. Second, because
many of the equations admit of an exact solution, the example
permits to assess the accuracy of exploited approximations.

The state equations are the following

dp = (o= Pp*+pmny) dt
dp=(p—p°+p°ne)dt
Td'l]t = - dt + D th

(56)

where « and (§ are real parameters that define the oscillator
free running frequency.

Applying the methodology described in section III we
obtain the following SDE with modulated white Gaussian
noise

D2
do = [a+<2[3)p2] dt + D pdW;
dp=[p+ (D?—1)p®| dt+ D p*dW,

We can now take advantage of the particularly simple structure
of the Stuart-Landau system. Because the SDE for the ampli-
tude is independent on the phase, the Fokker-Planck equation
for the amplitude is single variable

(57)

L o+ =)+ 5 ) o9
ot Op 2 0p?
The stationary distribution can be found analytically
_ N 1
psi(p) =Np 2(1457) exp (_ D2p2> &

where A is a constant determined through a normalization
condition f0+oo pst(p)dp = 1. Tt is worth noticing that the
same result cannot be obtained if the original problem is
considered, because in the SDE (56) the amplitude equation
and the Ornstein-Uhlenbeck process are coupled.

The theoretical prediction (59) is compared to the amplitude
stationary distribution obtained through numerical integration
of (56) in figure 1. Milstein numerical integration scheme has
been used in the simulation, and the probability to find the
amplitude in the interval p 4+ dp has been evaluated as the
fraction of time spent in that interval divided by the total
simulation length. As expected, the accuracy of the white
noise approximation increases as the noise correlation time
7 decreases.

In absence of noise the Stuart-Landau oscillator admits of
an asymptotically stable limit cycle z,(t) = [(a — B)t, 1]7.
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Figure 1. Stationary distribution for the amplitude of a Stuart-Landau
oscillator, for different values of the correlation time 7. Blue bars are obtained
from a numerical solution of the oscillator subject to colored noise (56). The
red line is the theoretical stationary distribution (59) obtained with the white
noise approximation. On the left the results for 7 = 0.25, on the right for
7 = 0.1. Other parameters are « = 4, 8 =2, D = 0.5.

The Floquet vectors are uy(t) = [1,0]T, ua(t) = [8,1]7,
while the co-vectors are vy (¢) = [1, —8]T, va(t) = [0, 1]T. It
is straightforward to derive the phase and amplitude deviation
equations

1 D?
de:{1+a_5[—ﬁR+(2—B> (1+R)?

—B(D*-1)(1+ R)S} }dt

+ a%(l + R)[1 - B(1 + R))dW, (60)

B

dR=|1+R+ (D*—1)(1+ R)S]dt + D(1+ R)*dW;
(61)
The linearized SDE for the amplitude is

dR=[(-2+3D*) R+ D*|dt + DdW;  (62)

and the stationary distribution obtained solving the associated
Fokker-Planck equation is

2
Pu(R) =N exp (31)1721}%2 + 2R> (63)
where A is the normalization constant.

Figure 2 shows the comparison between the amplitude
deviation stationary distribution for the full system (59), and
its counterpart for the linearized system (63), for different
values of D. As expected, the distribution of the linearized
system approximates well the full distribution for small values
of D. The stationary distribution for the phase, obtained using
numerical integration, is shown in figure 3 for two different
values of D. It confirms that the uniform distribution is a good
approximation even for fairly large values of D.
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Figure 2. Stationary distribution for the amplitude deviation of a Stuart-
Landau oscillator, for different values of D. Solid and dashed blue lines are
the stationary distributions (59) and (63), respectively, for D = 0.25. Solid
and dashed red lines are the stationary distributions (59) and (63), respectively,
for D = 0.5.
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Figure 3. Stationary distribution for the phase of a Stuart-Landau oscillator,
for two different values of D. Left: D = 0.2. Right D = 0.5. Parameters
are a =4, f=2.

Solving equations (50), (51), we find the first two moments

D?
(R) =5 3D° (64)
o 2D%(R) + D?
(B =—1 D2 (65)

Finally, taking stochastic expectation on both sides of the first
of (60) and neglecting O(R?) terms we obtain the expected
angular frequency

<flf> :Haiﬁ{fu_zﬁ)+p2<1—sm<R>
n {1;2(1 —38) +2ﬁ} <R2>} (66)

A comparison with [9] can be made making explicit (54)

1—
d9=<1—|—a gm> dt

(67)

and taking the stochastic expectation on both sides of (67).
Using (3) we find the expected angular frequency
do 14 _t
= e T
dt o

(69)

Therefore, according to the model in [9], noise has no influ-
ence at all on the asymptotic expected angular frequency.
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Figure 4. Expected normalized angular frequency for a Stuart-Landau
oscillator versus D. Blue lines: Numerical result for the system with colored
noise (56). Solid: 7 = 0.5. Dashed: 7 = 0.1. Red line: numerical result
for the equivalent system with white Gaussian noise (57). Black dotted line:
Asymptotic theoretical prediction (69). Black solid line: Theoretical prediction
(66). Parameters are o« = 4, = 2.

Figure 4 shows the expected normalized angular frequency
for the Stuart-Landau oscillator with colored noise (56), the
equivalent system with white noise (57), and the theoretical
predictions (69) and (66), as functions of D. Under the
hypothesis that the system is ergodic, the normalized expected
frequencies for systems (56) and (57) have been obtained
through numerical integration, using the time average

<d‘9> 1 o(ta) — o(t1)
dt - Oé—ﬁ tg —tl
for to > tq.

An analysis of the phase equation (60) provides further
information. Averaging over the amplitude, substituting (64)
and (65), and neglecting O(R?) terms, proves that the angle
variable is well approximated by a Brownian motion with
drife 9(t) = ut + oW,, where

(70)

p=1+ O:ﬁ{lf(1—2ﬂ)+p2(1—3ﬁ)<3> (71)
n [22(1 ~30)+ 25 (1)} )
o= 1 gt (- 2)(R) - AR (73)

a—p
For the sake of simplicity we assume a perfectly localized
initial condition #(0) = 0, and that § € (—o0,+00), with
boundary conditions p(foo,t) = 0. Then the phase has
a normal distribution p(#,t) ~ N(ut,o>t), and the auto-
correlation is

(74)

Figure 5 shows the PDF p(f — ¢,t) for the phase deviation
(i.e. the difference between 6(t) and the phase in absence of
noise) at three different time instants.

2This process is sometime referred to simply as Brownian motion, whereas
the case ;= 0 is called Standard Brownian motion, in accordance with the
corresponding PDFs.

g

Figure 5. PDF p(6 — ¢,t) at three different time instants. Solid lines: PDF
with (R) and (R?) given by (64) and (65), respectively. Dashed lines: PDF
obtained neglecting amplitude fluctuations, that is imposing (R) = (R2?) = 0.
Other parameters are o = 4, § =2, D = 0.4.
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Figure 6. Power spectral density for the orbital noise component x5 of the
Stuart-Landau oscillator computed using the Welch’s method. Blue line: PSD
for the full system with colored noise (56), noise intensity D = 0.4 and noise
correlation time 7 = 0.5. Black solid line: PSD for the full system without
noise. Red line: PSD obtained from the reduced phase equation. Black dashed

line: expected angular frequency <%§> given by (66). Parameters are o = 4
and 8 = 2.

The power spectral density (PSD) for the orbital noise
component, calculated using Welch’s method together with
an average over 200 realizations of the corresponding time-
domain process, is shown in figure 6. The blue line is the
PSD for the orbital noise z; = p(t) cos ¢(t) in presence of the
colored noise source as defined in (56). The noise correlation
time is 7 = 0.5 and the noise intensity is D = 0.4. The
red line is the PSD for the orbital noise component xs =
(14 p) cos[(a — B)0(t) + Bu], where 6 is the solution of the
reduced phase equation (52), again for D = 0.4. The two PSDs
show excellent agreement around the carrier frequency, while
the system with colored noise shows a significantly reduced
power content at high frequency (not shown in this figure).
The black solid line is the PSD for the system without noise,
here shown to put in evidence the frequency shift induced
by noise. PSDs were obtained considering 10* oscillations,
divided into 228 points, corresponding to a sampling rate of
5369 samples per second for the discrete Fourier transform
calculation. Finally, the black dotted line marks the theoretical
prediction for the expected angular frequency (df/dt) as given
by (66).
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Figure 7. Second order nonlinear oscillator.

B. van der Pol oscillator with colored noise

As a second example we consider the nonlinear oscillator
(van der Pol) shown in figure 7. The nonlinear resistor Np
is assumed to be noiseless, with characteristic i¢ = g(v) =
v3 /3 —v. The random source on the right models environment
and internal noise. Using Kirchhoff current law it is straight-
forward to derive the state equations

dv =udt’ (75)

1

1 N Y
du = LCv C,g (v)u Csn(t )| dt (76)

where 7 is the integral of the stochastic process s,,. With the
change of variables
1
t=—=t

VLC

and assuming that the random source s, is a colored noise
modulated by the current through the capacitor

sn(t) = \/funt

we obtain the state equations

ro =VILCu

1 =0

dry = z2dt
de = [—.’1}‘1 + « (1 - 1'%) T2 + xzﬁt] dt (77)
Td’]’]t = —Mt dt + D th

where o« = \/L/C.

Transformation to the equivalent system with white noise
yields

dxl = X2 dt

D2
-1+ (1 f:c%) To + ?xg dt + D xo dW;

(78)

Figures 8 and 9 show the PDF p(x,x9,t), at the same
time instant, for the van der Pol oscillator with colored noise
(77) and noise correlation time 7 = 0.5 and 7 = 0.1,
respectively. Figure 10 show the PDF for the equivalent system
with white Gaussian noise (78). The PDF has been computed
from numerical simulations, the same initial condition has
been used in all cases’.

Because the limit cycle and the Floquet vectors cannot be
found analytically for the van der Pol oscillator, we resort
to semi analytical techniques and numerical methods for the
analysis. In particular, we have developed a methodology
based on the following steps:

dl’g =

3We stress that values of parameters were chosen in the optic to simplify
calculations and to highlight higher order contributions of noise. We do not
pretend to describe the behavior of actual electronic circuits.
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Figure 8. Probability density function for the van der Pol oscillator with
colored noise. Parameters are o« = 0.5, D = 0.5. Noise correlation time is
7 =0.5.
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Figure 9. Probability density function for the van der Pol oscillator with
colored noise. Parameters are o = 0.5, D = 0.5. Noise correlation time is
T =0.1.

« First, the limit cycle of the noiseless system is determined
in a semi analytical form using the Harmonic Balance
technique [32], [33].

o The semi analytical expression of the limit cycle is used
to determine the Floquet vectors and co-vectors. Because
the example under investigation is a second order system,
Floquet vectors an co-vectors are computed using the
formulas given in [34]. For higher order systems, they
can be found exploiting efficient numerical techniques
[33], [35]-[37].

o The limit cycle, and the Floquet vectors and co-vectors
are used to determine the functions in equations (33)-(42).

o The functions M, m, IN and n given by (46)-(48) are
calculated, using the uniform distribution py(6) = 1/2x
for averaging. Equations (50) and (51) are solved to find
(R;) and (R;R;) for all 4, j.

o The reduced phase equation is written and can be an-
alyzed to determine the expected normalized angular
frequency, frequency shift, diffusion constant and so on.

Figure 11 shows the expected normalized angular frequency
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Figure 10. Probability density function for the van der Pol oscillator with
white Gaussian noise. Parameters are o« = 0.5, D = 0.5.

for the van der Pol system with colored noise (77), as a
function of D. The expected frequency exhibits little depen-
dence on the noise correlation time, in fact the blue curves
(the solid curve corresponds to 7 = 0.5, while the dashed
one to 7 = 0.1) are very close. The red line represents
the expected normalized angular frequency for the equivalent
system with white Gaussian noise (78). The curve has been
determined through numerical integration of the full phase-
amplitude deviation SDEs. Finally the black curves represents
the theoretical predictions. The dotted line is the expected
angular frequency determined through numerical integration
of (54), (55) [9]. The solid line is the theoretical prediction
given by our phase reduced model, obtained using the methods
described above. As a further confirmation, we have computed
the power spectral density for the numerical solution of

the SDEs (77) and (78). Figure 12 shows the—periodogram
ecomputed—uasing—thefast Fouriertransform—FFT) the power

spectral density calculated combining Welch’s method with
an averaging over 200 realizations to the numerical solution
of the van der Pol system with colored and white noise,
respectively. The discrete Fourier transform was calculated
on a signal with time length 10*Ty (Tp being the period of
the noiseless oscillator determined exploiting the harmonic
balance technique) and a sampling rate of 4207 samples per
second. The blue line is the PSD in the absence of noise,
while the red line is PSD for the system with noise (D = 0.4).
Noise clearly shifts the position of the power peak. The black
dashed line identifies the expected frequency found using our
theoretical model.

VII. CONCLUSIONS

In this paper we have investigated the effect of colored
noise on phase noise in nonlinear oscillators. We used a
general method that transforms nonlinear systems subject to
colored noise, modeled as an Ornstein-Uhlenbeck process,
into equivalent systems subject to white Gaussian noise. The
original system has unmodulated (additive) noise, and as such
it is free of the Itd-Stratonovich dilemma. The transformation
leads to two equivalent stochastic differential equations for
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Figure 11. Expected normalized frequency for a van der Pol oscillator
versus D. Blue lines: Numerical result for the system with colored noise
(77). Solid: 7 = 0.5. Dotted: 7 = 0.1. Red line: numerical result for the
equivalent system with white Gaussian noise (78). Black dotted line: expected
frequency obtained through numerical integration of (54), (55). Black solid
line: Theoretical prediction using the proposed method. Parameter ov = 0.5.
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Figure 12. Power Spectral Density for numerical solution of a van der Pol
oscillator computed using Welch’s algorithm. Left: PSD for the system with
colored noise (77), 7 = 0.5. Right: PSD for the equivalent system with white
Gaussian noise (78). The black dashed line identifies the expected frequency
obtained using our theoretical model. Parameter o« = 0.5.

the 1t6 and the Stratonovich interpretations. Since the two
equations are equivalent, they have the same solution and
therefore which one should be used is just a matter of personal
preference. An alternative description in terms of stochastic
differential equations for the phase and the amplitude deviation
is derived for the transformed system. The phase variable used
coincide locally, in the neighborhood of the unperturbed limit
cycle, with the asymptotic phase defined using the concept of
isochrons. Using stochastic averaging, a reduced phase model
is derived, where the system dynamics is described only in
terms of the phase variable.

The reduced phase model describes phase noise as a drift-
diffusion process. The shift in the expected frequency is related
to the variance of the colored noise and noise correlation time.
A numerical procedure is presented for the solution of the
phase equation, that provides more accurate results than other
previously proposed models.
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