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Event-Driven Encoding Algorithms for Synchronous
Front-End Sensors in Robotic Platforms

Paolo Motto Ros2*, Member, IEEE, Marino Laterza1*, Danilo Demarchi3, Senior Member, IEEE,
Maurizio Martina3, Senior Member, IEEE, and Chiara Bartolozzi1, Member, IEEE

Abstract—Asynchronous, event-driven, sampling techniques1

adapt the sampling rate of sensory signals to their dynamics,2

by effectively compressing the data with respect to synchronous,3

clock-driven, sampling. In robotics such techniques offer data and4

bandwidth reduction, together with high temporal resolution and5

low latency. Despite vision and auditory event-driven sensors are6

currently available, robots are still equipped with a plethora of7

other sensors that might benefit from the event-driven encoding.8

In this paper, we study five estimation algorithms that implement9

event-driven encoding for off-the-shelf clock-driven sensors. Dig-10

ital accelerometer datasets were used to validate the system in11

robotic applications; other datasets have been used to assess the12

general performance of the proposed approach. The two best13

algorithms in terms of six performance parameters have been14

implemented on a Xilinx Artix-7 FPGA platform, using 289215

LUTs and 3620 flip-flops and reducing the output bandwidth16

from -44 % to -75 %, over the considered datasets.17

Index Terms—Asynchronous sampling algorithms, Event-18

Driven, FPGA, Relative Threshold, Output Bandwidth, Robotic19

Environment.20

I. INTRODUCTION21

22

State-of-the-art sensors are mostly based on clock-driven23

sampling of the physical signal being measured. This approach24

has a trade-off between the amount of data acquired and25

the maximum detectable input frequency (Nyquist) of the26

signal variation. Tuning the clock-rate for very fast signals27

results in sampling redundant values when the signal is slowly28

changing, while decreasing the sampling frequency results in29

missing potentially important signal variations. Additionally,30

for sensors with multiple sensing sites, such as cameras or31

large area tactile devices, there is an inherent latency in data32

transmission, due to the need to synchronously sample all33

the sensing elements in the device. While the advantage of34

clock-driven sampling is the compliance of all sensors and35

acquisition devices to the clock-driven paradigm, the trade-offs36

and downsides listed above are detrimental for building effi-37

cient sensory systems for artificial devices. Specifically, data38

compression, high temporal resolution and short latency are39
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especially desirable in robotics, where the progressive appli- 40

cation in unconstrained scenarios is leading to the integration 41

of an increasing number of sensors needed to perceive both the 42

environment and the status of the robot. A viable alternative is 43

the “neuromorphic” event-driven sensing strategy inspired by 44

biological sensory systems, where the sensing element (e.g. 45

photoreceptors and retinal cells in vision, mechanoreceptors 46

in touch) gets active when it detects a variation in its own 47

input and sends action potentials to neurons in the sensing 48

areas of the brain. The output activity of each sensing neuron 49

encodes for the properties of the sensed stimulus. Similar 50

approaches (eventually sending a sample along with the event) 51

have been investigated and developed in other research areas 52

too, including (but not limited to) automation control and 53

signal processing [4] and energy metering [5]. 54

Neuromorphic event-driven sensing sends data only when 55

the amplitude of the measured signal has experimented a 56

certain change, rather than at fixed time intervals. This change 57

could be referred to the sample which generated the last 58

event [1]. The signal is assumed to stay constant until another 59

event is produced. As a consequence, the reference value could 60

be exploited as a predictor for the future values of the signal. If 61

this estimate differs from the actual sample value by more than 62

a given amount, then a new event is generated. In this encoding 63

scheme, the data is written on the output bus as soon as the 64

change is sensed. In a scenario with many sensing sites (e.g., 65

vision or tactile), this strategy decreases latency dramatically, 66

avoiding the sampling and transmission of the whole set of 67

pixels (or taxels). Information is then encoded in the relative 68

timing between generated events and the value of the sample 69

is not sent, limiting the number of bits to be sent, as opposed 70

to other asynchronous sampling transmissions, which send the 71

whole data sample whenever a threshold-crossing occurs [2]– 72

[4]. 73

This approach resulted so far in the design of event-driven 74

vision [8]–[10], [12], auditory [11] and (more recently) tactile 75

sensing [13], [18], [22], where the sensing element itself im- 76

plements the data-driven sampling. While event-driven vision 77

sensors have already been integrated on robotic platforms, 78

tactile sensors require further development [21] and other 79

sensor modalities are not yet under development. On the other 80

hand, robots are fully equipped with a plethora of sensors 81

(temperature, pressure, encoders, accelerometers, etc.) and it is 82

possible to emulate event-driven compression using traditional 83

off-the-shelf clock-driven sensors that are readily integrated 84

in robotic environments. The aim of this approach is two- 85

fold: improving efficiency in signal transmission (optimizing 86
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bandwidth, data compression, latency, etc.) and delivering87

prototype systems for the development of event-driven algo-88

rithms for perception. An example of emulation of event-89

driven sensing of clock-based data has been shown in [20],90

where the event-driven data encoding and transmission have91

been implemented on an FPGA interfaced to the capacitive92

sensors of the iCub robot skin [24]. Other applications have93

been developed in the prosthetic field [14], with the aim of94

implementing a tactile feedback control, based on the actual95

data sensed by the prosthesis.96

Algorithms proposed for the conversion of clock-sampled97

data into event-driven show the potential compression perfor-98

mance of this approach. They are based on detection of relative99

change among current and previous samples. Specifically, the100

detected change is relative to the absolute value (∆x/x), de101

facto implementing a logarithmic compression that increases102

the compression dynamic range.103

In this work, we characterize a set of more complex104

algorithms, analyzing their performance in terms of data105

compression and implementation cost. Our goal is to find an106

algorithm for event-driven encoding that can be applied to any107

sensory signal acquired by a clock-sampling strategy.108

As case study, we tested the algorithms for the encoding109

of MEMS accelerometers that are integrated in the iCub110

humanoid robotic platform [24]. As discussed in [20], the mid-111

term goal is to have a unified tactile/accelerometric sensing112

system in order to enable the development of event-driven113

applications — allowing the humanoid robot to interact with114

the surrounding environment — without requiring the devel-115

opment of new sensors. With this aim, one of the requirement116

has been to use the same hardware platform (and to respect117

the same implementation constraints) as done in [20].118

The conceived scheme is absolutely general and flexible,119

so that changing its internal parameters will produce good120

performance for very different sensors. To offer a thorough121

analysis of the encoding scheme, we frame it as an estimation122

problem and compare different solutions.123

Starting from the asynchronous algorithm called “Send-124

on-Delta" [1], where the sample is transmitted when the125

absolute value of the difference between the current input126

and the previous one is greater than a given threshold, we127

also evaluated more complex algorithms. Those algorithms128

compare the input data with a reference value, in order to129

decide if an event has to be generated or not. As such, the130

reference value could be thought of as a predictor of the value131

of the next sample. For example, in the Send-on-Delta case, the132

predictor is a zero-order one. As a result, in this alternative133

view, if the estimation error falls within a given boundary134

with respect to the measured input, no event (and hence no135

transmission) is generated. Differently from the standard Send-136

on-Delta, in the proposed implementation, as soon as the137

estimation error exceeds the boundary, an event is generated138

and transmitted. The information is encoded in the exact time139

at which the event is generated and implicitly transmitted in140

the timing between events, hence, we do not need to send the141

absolute value of the sample together with the event. In order142

to bound the maximum relative error, the change with respect143

to the predicted sample value is computed using a relative144

threshold. 145

The best-performing algorithms are then evaluated in terms 146

of accuracy, output data rate reduction and resource re- 147

quirement on a Xilinx Artix-7 FPGA (model XC7A35T-L1). 148

Specifically, the accuracy parameter (the error between the 149

original and the reconstructed signal) is used to check if and 150

how much the proposed encoding reduces the information 151

content of the signal, however, in neuromorphic perception 152

the signal is not usually reconstructed and information about 153

the sensed signal is extracted using event-driven algorithms. 154

Also, the compression rate is used to compare the different 155

proposed algorithms, rather than to find the best possible 156

compression strategy for the signal at hand. For this reason, we 157

treated agnostically the signal that we were processing, without 158

using knowledge about the physical origin of the signal 159

itself. That strategy could benefit a specific application, for 160

example by considering the non-independence among the three 161

axis of the accelerometers and the relationship between the 162

position, velocity and acceleration values. In such a case, the 163

compression would be higher, but specific to the accelerometer 164

signal only. Rather, we were looking for a more general 165

algorithm for the event-driven encoding of any sensory signal. 166

In the accelerometer case, the architecture consists in three 167

identical submodules, one per spatial axis, which implement 168

the encoding scheme in parallel. The approach used to send the 169

data on the bus is the so-called Address Event Representation 170

(AER) [15]–[17], where the output data only includes the event 171

polarity (e.g., if the signal is increasing or decreasing with 172

respect to the previous sample) along with the corresponding 173

address of the sensor (in this specific case, of the accelerometer 174

axis). Consequently, the output bus exhibits an asynchronous 175

flow of messages containing the sender address and some 176

bits representing the event polarity information, instead of 177

the whole sample value. As specific AER protocol, we use 178

an implementation of the asynchronous serial AER [15]– 179

[17], that is specifically designed for robotic systems, where 180

minimizing wiring is a strict requirement. We first outline 181

the main differences between the traditional asynchronous 182

sampling schemes and the proposed one (Section II). After 183

setting up the main features of the implemented scheme, the 184

possible event polarities are discussed (Section III). Once 185

the communication system is set, we make a comparison 186

aimed at identifying the best predicting algorithm to embed 187

inside the defined scheme (Section IV). Then, we evaluate 188

the quantitative results of this analysis by means of several 189

performance figures (Section V) and we implement the best- 190

performing algorithms, as well as the communication system, 191

on FPGA (Section VI). The main achievements of the work 192

and future development are finally discussed (Section VII). 193

II. EVENT-GENERATION SCHEME 194

A. Pre-Algorithmic Manipulation of Data 195

The sampling rate of most commercial digital accelerome- 196

ters ranges from units to thousands of Hz. It is suitable for a 197

clock-based acquisition from this category of sensors, but an 198

event-driven transmission requires a higher temporal precision. 199

Specifically, the information in event-driven transmission is 200
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Fig. 1: Overall scheme of the proposed system: the analog signal xTX(t) is first acquired by the sensor and then resampled
at a higher 1/Ts rate to improve the timing accuracy; by comparing the state variable x∗TX with the interpolated x′TX , events
are eventually generated (EvGen); on the decoding side, a corresponding state variable x∗RX is combined with the reception
of events in order to update the output variable x′′RX .

triggered exactly by change detection, whereas in clock-based201

sampling this situation can happen between two consecutive202

samples.203

In the proposed implementation, we internally resample,204

with a constant period Ts, the data received from the trans-205

ducer x[k] that corresponds to x(kT ) (in the discrete time206

domain, regularly sampled with a period T ) using a linear in-207

terpolator and resulting in x̃[i] that corresponds to x̃(iTs) (with208

the only constraint x̃(kT ) = x(kT ), and, usually, Ts � T ).209

The resampling rate has been fixed at 5 MHz, as in [20],210

leading to a flow of produced samples every 200 ns. The denser211

input mimics an analog continuous signal and allows to timely212

detect the variation of the input signal, therefore increasing213

the timing precision of the overall acquisition system. The214

increased timing precision allows for a better reconstruction215

of the signal, limiting the loss of information that would oc-216

cur without signal interpolation. The corresponding hardware217

block will contain a resampling unit, or resampler, feeding the218

block implementing the event generation (EG).219

B. Algorithm Scheme220

Figure 1 shows the overall scheme of an event transmitter221

(TX), including the event generation, and the receiver (RX),222

including the sample reconstruction. The event generation223

block computes the estimate for the sample at the next time224

step — by using one of the algorithms detailed in Section III225

— and compares it to the sample produced by the resampler.226

When the absolute value of their difference exceeds a given227

threshold, an event is generated. Namely, for each point of228

the linear interpolation, a predicted value is computed: the229

estimation always depends on the type of the last sent event230

and it may further depend either on the last value(s) which231

produced event(s) or on the last estimate(s).232

In time-continuous asynchronous sampling algorithms [1]–233

[4], [6], sampling (and therefore event generation, EvGen)234

occurs whenever the absolute difference between the predicted235

value and the input signal (sample) crosses a given (static)236

threshold, i.e., we can define the sequence T , {ti} (with237

ti ∈ R+ and i ∈ N) as:238

T , {ti | |x∆
TX(ti)| ≥ δ(ti) ∧ |x∆

TX(t−i )| < δ(t−i )} (1)

where ∧ refers to the logical AND operation, and we define

x∆
TX(t) , xTX(t)− x̂TX(t)

δ(t) , δ∗ (2)

with x̂TX(t) the predicted value at t, δ(t) the threshold 239

set to a fixed value δ∗. Since we are dealing with sample- 240

based sensors, with the output data eventually re-sampled or 241

interpolated (at a fixed rate, as described in Sec. II-A), we can 242

define a new sequence I , {i}, corresponding to the sequence 243

{ti = iTs} (with i ∈ N) of discrete time-points at which an 244

event is generated, as follows: 245

I , {i | |x∆
TX [i]| ≥ δ[i] ∧ |x∆

TX [i− 1]| < δ[i− 1])} (3)

where we define

x∆
TX [i] , x̃TX [i]− x̂TX [i]

δ[i] , δ∗ (4)

being x̃TX [i] and x̂TX [i] the interpolated and predicted, re- 246

spectively, signals, δ[i] the threshold set to a fixed (positive) 247

value δ∗. 248

With this scheme, two events are sufficient to implement 249

an unambiguous communication. We can define a sequence 250

of events E , {Ei}, with each Ei triggered at time ti ∈ T (in 251

case of time-continuous system) or, with the resampling (as 252

in this case), at i ∈ I, as: 253

Ei =

{
E↑ if x∆

TX [i] ≥ δ[i]
E↓ if x∆

TX [i] ≤ −δ[i].
(5)

E↑ and E↓ are usually encoded by a polarity bit added to the 254

address of the event [8], [16], [17]. Events are transmitted from 255

the TX to the RX in real-time with a low-latency/low-overhead 256

point-to-point asynchronous AER protocol [19], [20], so that 257

events can be immediately processed by the RX. 258

On the RX side, whenever an event is received at time 259

t (EvRcv(t)), the corresponding x̃RX(t) can be updated as 260

follows: 261

x̃RX(t) =


x̂RX(t−) + δ(t) if EvRcv(t) = E↑

x̂RX(t−)− δ(t) if EvRcv(t) = E↓

x̂RX(t−) otherwise
(6)
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where x̂RX(t) is the predicted value at time t by the RX.262

This scheme, even if based simply on a difference, is not263

optimal in the application under investigation. Indeed, the264

accelerations provided by the sensor could go as high as 4 G265

and as low as -4 G, crossing the zero level, as proved in several266

datasets acquired on the iCub robotic equipment [24]. For267

an equal relative change (eg. 10% of the reference value),268

a fixed threshold produces more events for a higher sensor269

value. However, using fixed thresholds the sensitivity of the270

event generator is constant for the whole range of the sensor.271

The advantage of a relative threshold is that the produced272

number of events is constant for equal relative changes, but273

the sensitivity decreases for higher sensor values.274

In order to obtain an homogeneous event rate over the whole275

range and to compare several algorithms for equal maximum276

relative error, a relative-threshold-based scheme has been used,277

instead. A fixed relative threshold is equivalent to a dynamic278

absolute one, so in the mathematical model described by279

equations (3) and (4) we can replace equation (4) with:280

δ[i] , µ · |x̃TX [i]| (7)

where µ is the relative threshold, in the range (0, 1), and is281

a constant time-invariant tuning parameter, which is set once.282

As a consequence, the relative threshold µ describes how the283

sensitivity of the event generator increases for small sensor284

values and how the sensitivity decreases for high sensor values.285

By substituting equation 7 in 3 we can rewrite 3 as:286

I , {i | |xδTX [i]| ≥ µ ∧ |xδTX [i− 1]| < µ} (8)

where we define287

xδTX [i] ,
x̃TX [i]− x̂TX [i]

x̃TX [i]
(9)

so to highlight the relative behavior (w.r.t. x̃TX [i]) of the event288

generation.289

To summarize, an E↑ event with a relative threshold µ290

means that the interpolated value is, in absolute value, 100μ%291

(or more) higher than the predicted one, whereas an E↓ event292

means that the absolute value of the interpolated sample is293

100μ% (or more) lower than the corresponding predicted294

one. However, thanks to the resampling mechanism, an exact295

100μ% difference can be expected. This shall be confirmed296

by the software simulations on the considered input datasets,297

which are discussed in Section V.298

As a result, the reconstructed signal at the receiver x̃RX(t)299

can be obtained as follows:300

x̃RX(t) =


x̂RX(t−) · (1 + µ) if EvRcv(t) = E↑

x̂RX(t−) · (1− µ) if EvRcv(t) = E↓

x̂RX(t−) otherwise
(10)

where x̂RX(t) is the predicted value at time t by the RX.301

Here, when no event is received, the predicted value302

x̂RX(iTs) is within x̃TX(iTs) · (1± µ).303

As (1 + µ) and (1 − µ) are always positive, xrx(t) will304

always have the same sign as xrx(tprev). Further generalizing,305

the value of xrx(t) after an arbitrary sequence of (eventually306

mixed in any order) up and down events is xrx(tafter) = 307

xrx(tbefore) · (1 + µ)N (1 − µ)M , where N and M are the 308

numbers of up and down events, respectively. As above, given 309

the range of values of µ, there is no value of N and/or M (and 310

therefore no sequence of events) which can lead to have the 311

sign of the reconstructed signal different from that of the initial 312

value, i.e., to have the reconstructed signal (xrx(t)) cross the 313

zero. For this reason, we introduce the zero-crossing event. 314

Algorithm 1: Custom event generation scheme

initialize last event as El
region_sign = 1
while in acquisition do

Compute x̃TX [i] by resampling
if x̃TX [i] is outside the base region then

if last event was either El or E↓ following El
then
x̂TX [i] = region_sign× θ

else
x̂TX [i] ≡ x̂{SoD,Lin,Quad,Avg,PID}

end
if sign of x̃TX [i] == sign of x̂TX [i] then

if µ is crossed then
if sign of x∆

TX [i] 6= sign of x̃TX [i] then
Transmit E↓

else
Transmit E↑

end
else

if x̃TX [i− 1] was inside the base region
then

Transmit E↓
end

end
else

if x̃TX [i− 1] was inside the base region then
region_sign = region_sign× (−1)
Transmit El

end
end

else
if x̃TX [i− 1] was outside the base region then

Transmit El
end

end
end

C. Zero-crossing 315

The acceleration samples have signed values, as opposed to 316

the capacitance values of a tactile sensor [13] or the grayscale 317

level of a vision sensor [9], [12]. This characteristic, along 318

with the use of a relative threshold, causes a zero-crossing 319

problem to be addressed. 320

In the communication scheme based on a fixed threshold, 321

the change in the sign of the received value could happen 322

when one out of two possible situations occurs: 323
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1) an E↑ event is received when −δ(t) < x̂RX(t) < 0;324

2) an E↓ event is received when 0 ≤ x̂RX(t) < δ(t).325

By applying the corrections corresponding to the received326

events and described in equation (6), the sign of the received327

signal is changed inherently. As a result, only two types328

of events are required to obtain an unambiguous scheme329

including the generation of events with an absolute threshold.330

As opposed to that, a relative threshold-based communica-331

tion scheme does not have this capability, because the correc-332

tion is performed by means of a multiplication by a positive333

number. This means that the sign of the estimate cannot334

change, if only E↑ or E↓ polarities are used. In addition, if335

the estimate reaches zero, the following reconstructed values336

are going to be zero for the rest of the acquisition. This will337

be referred to as the “sign change problem” in the following.338

D. Constraining the relative variation of the input339

An additional problem introduced by the relative threshold340

is that, when approaching zero, the relative variation of the341

signal is higher and higher. This reduces the effectiveness of342

the resampling strategy employed immediately after the sensor,343

because the signal could double or more from one sample344

to the next (e.g., increasing from 10 mG to 20 mG). Since345

doubling is equivalent to an increase of 100 %, the expected346

performance of keeping the relative error under 100μ% cannot347

be guaranteed (μ is usually set below 1). This will be referred348

to as the “tracking problem” in the following.349

E. Adopted Solution350

The tracking problem is solved by the introduction of a base351

threshold (θ), which prevents the system from producing any352

event whenever the absolute value of the input signal is under353

that threshold, as shown in Fig. 2. The value of θ depends on:354

• the resolution of the sensor;355

• the relative threshold set for the acquisition;356

• where and how the sensor is physically connected;357

• the external environment.358

The base threshold could be further tuned after on-field359

simulations.360

On the other hand, the (relative) data threshold µ should be361

a trade-off:362

1) such to obtain a certain maximum relative error out of363

the base region;364

2) low enough to keep a certain compatibility with respect365

to the samples produced by the sensor;366

3) high enough to avoid that the event-rate could increase367

significantly.368

Once the base region has been introduced, the sign change369

problem is solved by the use of a third type of event called370

“Cross Base”, El, which may be produced in two different371

situations:372

1) the last event produced was an E↑/E↓ event;373

2) the last event produced was a El.374

In case 1), the El event communicates to the receiver that375

the input signal has just gone under the base threshold, causing376

the estimate to equate ±θ, where the sign is set equal to the377

TABLE I: Event coding

Event Output

E↑ 10

E↓ 01

El 11

— 00

one of the last predicted value. In case 2), a second El after 378

another communicates both the exit from the base region and 379

the change in the sign of the function. Until the next event, 380

the estimate will be ∓θ. 381

If, in case 1), after El the signal exits the base region with 382

the same sign, a E↓ is produced, to allow the algorithm to 383

restart computing the estimate with the implemented estima- 384

tion algorithm. This solves the sign change problem without 385

introducing ambiguities in the communication scheme. 386

Algorithm 1 reports the methodology used to implement the 387

complete communication scheme, including the conditions for 388

the El generation. Because there are three possible events and 389

the no event situation, two output lines are used to code the 390

events, as reported in Table I. 391

III. TAXONOMY OF ASYNCHRONOUS ALGORITHMS 392

Several asynchronous sampling algorithms have been inves- 393

tigated [1]–[4]. In the application under investigation, the in- 394

troduction of the dynamic threshold and the choice of sending 395

just events and not the whole sample reduce the quantity of 396

the potentially working methods to the magnitude-driven ones 397

only. At the beginning, even the integral algorithms have been 398

considered. Within this category Send on Area [6] and Send 399

on Energy [7] are well-known methods. However, they are 400

based on an integral relationship with respect to the original 401

signal, so the threshold used concerns the primitive function 402

in the Send on Area and the primitive of the signal squared in 403

the Send on Energy. This prevents the conceived scheme from 404

limiting the maximum relative error on the reconstruction of 405

the signal itself, thus this category of algorithms has not been 406

considered in the following. 407

On the other hand, the algorithms of the magnitude-driven 408

category are characterized by a direct relationship between the 409

approximating error and the received signal itself. This feature 410

is necessary because all the methods available in the literature 411

are based on a static absolute threshold and on the transmission 412

of the whole data, whereas the main requirement for the 413

system under development is to reduce the output bandwidth. 414

Indeed, with the event-based communication scheme defined 415

in Section II, only 2 bits per spatial axis would be necessary. 416

Further limitations in the choice of suitable sampling al- 417

gorithms depend on the need to limit the complexity of the 418

hardware implementation and optimization of resources. After 419

taking into account both the mathematical and complexity 420

criteria, the following algorithms have been analyzed: 421

A. Send on Delta; 422

B. Linear; 423

C. Quadratic; 424

D. Average; 425
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(a) (b)

Fig. 2: Zero crossing and base threshold θ: when the signal is close to zero, the relative thresholding can cause the generation
of way too many events, as the smaller the initial signal is, the finest the sensitivity of the thresholding is. This is solved by
setting a “base” threshold. When the signal falls within +/− θ, no events are generated. (a,b) clarify the two cases described
in the main text, when the signal changes sign.

E. Proportional-Integral-Derivative (PID).426

A. Send on Delta427

The Send on Delta (SoD) is the most popular algorithm and428

uses the last received value corresponding to the last received429

event, as the estimatefor the following samples, until another430

event is received.431

The approximation x̂SoD[i] yielded by this algorithm cor-432

responds to a zero-order estimation and the formula is inde-433

pendent of the time elapsed from the last event [1]:434

x̂SoD[i] , x̂[i] = x̂[iL] (11)

with iL the index of the last event.435

B. Linear436

The Linear method is based on a first-order approximation437

x̂Lin[i] of the signal [2]:438

x̂Lin[i] , x̂[i] = x̂[iL] +
x̂[iL]− x̂[iL−1]

iL − iL−1
· (i− iL) (12)

with iL−1 the index of the last but one event.439

Differently from the SoD algorithm, the time elapsed from440

the last and last but one events is used to compute the estimate,441

so two events are required to compute the estimate. When no442

event is available or the signal is inside the base region, the443

estimation is based on the Send-On-Delta algorithm with ±θ444

as an estimate. When only one event is available (e.g., after445

exiting the base region or after the very first received event),446

the method uses it as x∗(tL) and ±θ as x∗(tL−1).447

C. Quadratic448

The Quadratic algorithm, characterized by x̂Quad[i], in-449

creases the approximation by one order with respect to the450

Linear method [2]:451

x̂Quad[i] , x̂[i] = x̂[iL] +
x̂[iL]− x̂[iL−1]

iL − iL−1
· (i− iL)+

+
1

2

[
x̂[iL]− x̂[iL−1]

(iL − iL−1)2
− x̂[iL−1]− x̂[iL−2]

(iL − iL−1) · (iL−1 − iL−2)

]
·

·(i− iL)2 (13)

Like the Linear algorithm, this method has an intrinsic 452

latency, as at least three events out of the base region should 453

have been produced to apply the algorithm. 454

In addition, not only does this method require to track the 455

time elapsed from the last (iL) and last but one events (iL−1), 456

it also needs the time elapsed from the last but two event 457

(iL−2). Until two events are available, it behaves like the 458

Linear algorithm; when two events are available, x̂[iL−2] is 459

set to ±θ. 460

D. Average 461

The Average method obtains the estimatex̂Avg[i] with a 462

summation over the last M predicted values, divided by M . 463

When all the last M predicted values are equal to each other, 464

this method is equivalent to the SoD [3]: 465

x̂Avg[i] , x̂[i] =
1

M

M−1∑
j=0

x̂[i− j] (14)

M is chosen depending on the desired number of predicted 466

values one would like to consider and the number of available 467

memory elements, to store the previous predicted values. In 468

the simulations, M has been set to three, as suggested in [3]. 469

If less than M values are available, the average is computed 470

on the available number. 471

E. PID 472

The PID algorithm is based on the same theory as in the 473

Control Application field. It groups the Send on Delta, Average 474

and Linear methods (this last one in a further approximate 475

form, to avoid considering the elapsed times), weighing their 476

contributions differently [3] into x̂PID[i]: 477
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Fig. 3: Event-driven encoding of a signal over time. Top: acquired signal (subset of samples from dataset #8) and reconstructed
waveforms using each algorithm, the black lines represent the boundaries of the base region.
Bottom: Events produced by each algorithm with the transmitter fed with the acquired signal. No event is produced during the
time interval when the acquired signal is in the base region. At time 0.17 s all the algorithms produce an El when the acquired
signal is sampled with opposite sign with respect to the estimate just outside the base region. Consequently, the reconstructed
signal changes from +θ to −θ (falling edge at 0.18 s).

x̂PID[i] , x̂[i] = wSoD · x̂[iL] + wAver ·
1

M

M−1∑
j=0

x̂[i− j]+

+ wLin · (x̂[iL]− x̂[iL−1])
(15)

As suggested in [3], the three coefficients have been set to:478

1) wSoD = 0.4;479

2) wAver = 0.6;480

3) wLin = 0.3.481

When less than M events are available, the estimateis com-482

puted for each of the three contributions as previously detailed483

in the descriptions of the corresponding algorithms.484

IV. METHODOLOGY485

The algorithms have been written in Matlab R© code and486

they were simulated with twenty-one heterogeneous datasets487

as input stimuli (Table II). The first three datasets listed were488

used because already present in the technical literature [2],489

[3] and to show that the implemented scheme is general and490

could be employed on control and medical waveforms as well.491

The datasets related to the sensor were obtained from real-492

time acquisitions using a general-purpose computer as data493

collector from the FPGA, which, in turn, receives data from494

the accelerometer. Three different situations were used for495

TABLE II: Datasets Used for the Algorithm Test.

Dataset # Content

1 1st order response
2 2nd order response
3 Electro-cardiography

4-6 Sensor manual static XYZ
7-9 Sensor manual tilting XYZ

10-12 Sensor manual shaking XYZ
13-15 Robot motion XYZ
16-18 Robot static XYZ
19-21 Robot shaking XYZ

generating the accelerations: a static one, one tilting the sensor 496

along its Z axis and one shaking the sensor along its X axis. 497

The robotic datasets were acquired on the iCub robot left hand 498

in three different movement conditions, similarly to the sensor 499

data: one static, one moving the arm randomly and one shaking 500

the arm. 501

The events produced have been collected by a software 502

receiver, which reconstructs the original waveform within 503

a maximum relative error equal to the maximum relative 504

threshold set. The reconstructed waveforms, along with the 505

polarity of the received events for a portion of dataset #8, are 506

shown in Figure 3. 507
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(a) (b)

(c) (d)

Fig. 4: Results of the simulations: a) γabs, b) γrel, c) ξabs and d) σ.

The performance was evaluated in terms of accuracy, mea-508

sured as error on the reconstructed waveform (i.e., the error509

between the x̃RX(t) computed by the RX and the signal510

x̃TX(t) internally used by the TX to generate the events),511

and effectiveness, measured as the reduction in the number of512

output messages in the conceived event-driven scheme with513

respect to a synchronous transmission. For the sake of clarity514

and without loss of generality, we assume no latency and515

perfect synchronization (same timings) between TX and RX,516

so that we can use the two corresponding discrete-time signals517

x̃TX [i] and x̃RX [i]. In all the simulations, µ is set to 0.02, in518

order to have a maximum relative error of 2 %. This value has519

been chosen as an acceptable tradeoff between reduced data520

rate and resulting accuracy.521

Moreover, following the points listed in Section II-C and522

the specifications of the employed accelerometer [23], θ is set523

to 0.12 G.524

A. Accuracy figures525

The first two performance figures, concerning the accuracy526

evaluation, have an average meaning: the average absolute527

error (γabs) and the average relative error (γrel) [2].528

γabs =
1

Nsamples
·
nfin∑
i=nin

|x̃TX [i]− x̃RX [i]| (16)

529

γrel =
1

Nsamples
·
nfin∑
i=nin

|x̃TX [i]− x̃RX [i]|
|x̃TX [i]|

(17)

where nin and nfin are the first sample index and the last530

one, respectively. The average relative error is a factor with531

respect to the reference. Moreover, the maximum absolute 532

(ξabs) and relative (ξrel) errors have been evaluated. 533

ξabs = max (|x̃TX [i]− x̃RX [i]|) (18)
534

ξrel = max

(
|x̃TX [i]− x̃RX [i]|

|x̃TX [i]|

)
(19)

As the signal changes sign, another useful parameter is the 535

root mean squared error (σ): 536

σ =

√∑nfin

i=nin
|x̃TX [i]− x̃RX [i]|2

Nsamples
(20)

B. Effectiveness figures 537

Two performance figures evaluate the gain of the algorithm, 538

where the gain is the number of samples saved by using the 539

event-based method instead of a synchronous one. 540

The first figure is the equivalent sampling rate (called m 541

in [6]), which is the reciprocal of the average of the inter- 542

event intervals: 543

m =
1

∆taver
=

Nevents∑nfin

i=nin
∆ti

(21)

The second figure is called Effectiveness (also called energy 544

ratio as in [3]): 545

E =
Nsamples
Nevents

(22)

For example, an Effectiveness equal to ∼ 103 means that 1 546

event every 1000 synchronous samples is sent. 547
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C. Hardware considerations548

The maximum available latency is 50 clock cycles because549

the input frequency equals 5 MHz from the resampler and the550

internal working frequency of the target system is 250 MHz551

(both frequencies are compliant with [20]).552

V. SIMULATION RESULTS553

As detailed in the previous paragraphs, the proposed com-554

munication system is made of different blocks, each of which555

has been sized as follows. The resampler unit has 16 fractional556

bits of precision; the integer part depends on the sensor full557

scale, which had been set to the maximum available on the558

specific accelerometer employed in this work, i.e, ±16 G [23].559

As a consequence, 6 bits of integer part are required in a560

signed representation to properly encode even the +16 G value.561

Moreover, the Linear and Quadratic algorithms also need the562

inter-event time to be used for the computation, see Eqs. 12)563

and 13). A 1 s inter-event time could be considered high564

enough to avoid any timer wrapping, when the acceleration565

is above the base threshold. In case the acceleration is within566

the base threshold, a time wrap does not cause any problem567

because the estimation considers only the base threshold. For568

a time counter updated at every new sample coming from the569

resampler, 1 s corresponds to 5 million ticks, i.e., 24 signed570

bits. For this reason, the integer part of the data is extended571

to 8 bit and the acceleration data parallelism is set to [8.16]572

fixed-point representation. As a consequence, the maximum573

time interval without wrapping is 223 − 1, about 1.68 s.574

Figures 4 and 5 show the performance of the different EG575

algorithms over all the considered datasets. For the accuracy576

figures (γabs, γrel, ξabs and σ), the lowest box represents the577

one which, statistically on the considered datasets, has the best578

behavior. Conversely, for the effectiveness figures, the situation579

changes between the equivalent sampling rate (m) and the580

Effectiveness (E). The lower the equivalent sampling rate, the581

better, whereas the lower the Effectiveness the worse. As a582

preliminary evaluation, the maximum relative error has been583

verified to be under the desired threshold for all the algorithms.584

A. Accuracy parameters analysis585

In terms of Average Absolute Error, the best algorithms are586

the Linear and Quadratic ones, with the latter being slightly587

better than the former. Their values extend from 0.01 G to588

0.085 G, approximately. The SoD comes immediately after-589

wards, whereas the Average and PID have a wider dispersion590

towards higher values, greater than 0.1 G, with the PID being591

slightly better than the Average.592

In terms of Average Relative Error, the best algorithms are,593

again, the Linear and Quadratic ones, but in this case the594

former extends more than the latter in the low-value zone of595

the error, arriving at 0.4 %, with the upper boundary at 0.7 %.596

The Send on Delta is again the third best algorithm, exhibiting597

a very narrow dispersion around 0.9 %. The Average remains598

the worst, followed by the PID, extending over 1.2 %.599

For what concerns the Maximum Absolute Error, the dis-600

tributions are almost the same for all the algorithms, with the601

25th and 75th percentiles between 0.06 G and 0.37 G.602

The Root Mean Squared Error shows a situation very similar 603

to the Average Absolute Error case, where the Linear and 604

Quadratic algorithms are very close to each other, with a 605

distribution between 0.02 G and 0.12 G. The Average is still 606

the worst one, followed by the PID and the SoD. 607

B. Effectiveness parameters analysis 608

For the effectiveness figures, the Equivalent Sampling Rate 609

shows a very narrow distribution for the Linear and Quadratic 610

algorithms, meaning that their gain is almost independent of 611

the trend of the input signal. The Linear is slightly better be- 612

cause its box extends partially under the one of the Quadratic. 613

The SoD extends more towards high values, until 576 events/s, 614

approximately. The Average remains the worst one even in 615

this case, followed by the PID. 616

In the end, for the Effectiveness, the first and second order 617

waveforms show that the SoD, Linear and Quadratic have the 618

same performances. However, when considering the remaining 619

10 datasets a significant difference is shown between the 620

Linear-Quadratic pair and the SoD algorithms: if the for- 621

mer extends between 2.9·104 samples/event and 7.0·104 samples/event, 622

the latter box is comprised between 2.1·104 samples/event and 623

4.8·104 samples/event. The SoD is below, and the Average and 624

PID methods are even lower than the other ones. 625

More in detail, the performance of the SoD equals the ones 626

of the Linear and Quadratic methods for the datasets acquired 627

with a manual movement of the accelerometer. On the other 628

hand, the Linear and Quadratic algorithms are always better 629

than the SoD on the robotic datasets, with: 630

• Accuracy parameters: -0.4 % up to -26.7 % over SoD 631

(-5.4 % avg.); 632

• Equivalent sampling rate: -7 % up to -58 % over SoD 633

(-20.0 % avg.); 634

• Effectiveness: +8 % up to +142 % over SoD 635

(+48.0 % avg.). 636

This analysis allows to conclude that the best methods 637

are the Linear and Quadratic, followed by the SoD. As the 638

other two algorithms are more complex and show worse 639

performance than the SoD, they are not addressed in the 640

following part of this work. 641

VI. HARDWARE IMPLEMENTATION 642

The conceived algorithmic scheme has been described in 643

VHDL to be implemented onto an FPGA platform. In order 644

to achieve the target operating frequency, pipeline stages have 645

been added inside the hardware block. The number of pipeline 646

stages from input to output is however limited from the 50 647

clock cycles latency requirement. The available FPGA is a 648

speed-grade 1, the lowest speed-grade for the Xilinx Artix-7 649

XC7A35T model. As a consequence, the number of pipeline 650

stages was tuned until the target frequency was met and the 651

latency requirement was not exceeded (see Section IV-C). This 652

led to a N
2 pipe stages inside the multipliers and N inside 653

the divider employed in the Linear and Quadratic algorithms, 654

with N = 24 as detailed in Section V. While for the Linear the 655

total latency in the worst case (the one requiring the estimation 656

correction) is within 50 clock cycles, the Quadratic exceeds 657
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(a) (b)
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Fig. 5: Results of the Matlab R© simulations: a) Equivalent Sampling Rate (m), b) Effectiveness related to the first two datasets
and c) Effectiveness for all the remainder datasets.

this limit. Moreover, the performance parameters show that658

the 2nd order term does not give any appreciable advantage659

over the Linear algorithm. These two considerations allow to660

discard the Quadratic algorithm.661

Finally, considering both the algorithmic performance and662

hardware optimization, the Linear and Send-on-Delta algo-663

rithms appear the most suitable to be mapped onto the FPGA.664

Since the employed transducer is a tri-axis accelerometer,665

the hardware blocks implementing the resampling and the666

estimation have been replicated once per each axis. The667

complete architecture is shown as a block diagram repre-668

sentation in Figure 6. The SPI Manager block acquires the669

synchronous samples from the accelerometer by using a 4-670

wire SPI communication. Then, it splits the data of each671

axis and feeds them to the corresponding resampling block.672

The output event lines consist, each, in a 6-bit address that673

identifies the axis and the accelerometer, followed by the 2-674

bit event information in the LSBs. Keeping the address inside675

the transmitted data is useful in case the event stream from the676

accelerometer shares the output channel of the system, where677

it is embedded, with other event streams coming from different678

sensors. This allows the receiving end to acknowledge the679

source of the arriving events and is based on the Address-680

Event-Representation (AER) [15]–[17]. Moreover, if the 3681

event lines are multiplexed at the transmitter, only 8 bits682

instead of 24 are present, further reducing the routing cost.683

Figure 7 shows the hardware arrangement. The MEMS684

accelerometer is connected to an Arty board, hosting an Artix-685

7 FPGA. The connection is achieved by using a series of686

jumpers toward one of the PMOD connectors of the Arty687

board. The board is also connected to a general-purpose688

computer with two cables: the black one in Figure 7 is a689

USB cable, used to program the FPGA and to receive the 690

raw acceleration samples from the FPGA; the white one is an 691

Ethernet cable, for collecting the events from the FPGA. The 692

Ethernet payload contains the data coded in AER. 693

A. Results 694

Table III shows the post-implementation complexity (esti- 695

mated by Xilinx Vivado R© software) for the single EG block 696

when it implements either the SoD or the Linear algorithm. 697

By replicating it 3 times and adding the SPI Manager block 698

and the resamplers, the LUT usage is 2892 elements (13.9 % 699

of the total) and the FF usage is 3620 elements (8.7 % of 700

the total) for the Linear case. The block works reliably at the 701

target frequency of 250 MHz. 702

In order to evaluate the improvement with respect to a 703

synchronous system, the output bandwidth is estimated as: 704

BWo = ob
∑

(m) (23)

where ob is the number of output bits and
∑

(m) is the sum 705

of the equivalent sampling rates obtained on each axis, due to 706

the multiplexed output. It is substituted with the fixed output 707

data rate of the accelerometer in the synchronous system. 708

B. Hardware setup 709

The synchronous system has a multiplexed output, for a 710

symmetrical comparison to the event-driven one. As a result, 711

the synchronous system has an 18-bit output data (6-bit 712

address and 12-bit acceleration data). The worst-case situation 713

for the Manual acquisitions is the shaking case (datasets 10- 714

12) with
∑

(m) = 753.9 events/s. The worst-case situation for 715
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Fig. 6: Block diagram of the complete hardware architecture and relative resource usage of every block after implementation
on a Xilinx XC7A35T-L1 FPGA.

Fig. 7: Hardware setup for the real-time acquisition.

the Robotic datasets is the static case (datasets 13-15) with716 ∑
(m) = 1698.0 events/s. The synchronous data, corresponding717

to the previous two categories of datasets, are produced by the718

accelerometer at 1344 Hz.719

Figure 8 shows the reconstructed waveforms using SoD and720

Linear algorithms on ten out of the twenty-one considered721

datasets.722

The performance of the algorithmic block on a single-output723

data are also considered for the first 3 datasets, which are724

generic waveforms. In that case the worst-case equivalent sam-725

pling rate is 229.5 events/s, obtained with the Medical waveform726

(dataset #3, Figure 8c). The synchronous data rate for that727

dataset is 360 Hz. The BWo variation is shown in Table IV,728

when switching from a synchronous transmission to an event-729

TABLE III: Complexity of the implemented algorithms on
Xilinx XC7A35T-L1 FPGA.

Block/Port SoD Linear

LUTs 582 (2.8 %) 842 (4.0 %)
FF 624 (1.5 %) 969 (2.3 %)

BRAM 0 (0 %) 0 (0 %)
IO 30 (14.3 %) 30 (14.3 %)

BUFG 2 (6.3 %) 2 (6.3 %)
MMCM 1 (20 %) 1 (20 %)

driven one operating on the same input datasets. 730

As it can be observed, when the movement has a full 731
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Fig. 8: Example of the considered datasets. the waveforms include the input resampled data (blue), the reconstructed signal
with a Linear algorithm (green), the reconstructed signal with a SoD algorithm (red) : a) dataset #1, b) dataset #2, c) dataset
#3, d) dataset #4, e) dataset #7, f) dataset #10, g) dataset #14, h) dataset #16, i) dataset #19, j) dataset #21.

TABLE IV: Output Bandwidth Comparison.

Datasets Synchr. (kbps) Event-dr.(kbps) Difference

Manual 24.2 6.0 -75 %
Robotic 24.2 13.6 -44 %

CNTRL & Medical 6.5 1.8 -72 %

dynamic within ±2 G, i.e., for a manual movement, the732

SoD yields the same performance as the Linear, being very733

attractive for its reduced complexity. In the robotic equipment,734

instead, the Linear algorithm performs better as discussed in735

Section V.736

VII. CONCLUSION737

This paper has detailed the entire process aimed at conceiv-738

ing a new event-driven scheme, identifying the best event-739

generation algorithm from accuracy, effectiveness and imple-740

mentation points of view. Both the communication scheme and741

the algorithm were mapped onto an FPGA hardware to code742

the information received from a digital MEMS accelerometer.743

Experimental results show that the best estimation algorithm744

is the first-order, or Linear, one. The real-time acquisitions 745

show that the maximum relative error is kept bounded within 746

the desired relative threshold set at the beginning of the 747

acquisition. The total resource usage in a low-cost FPGA does 748

not exceed the 15 % of both the logic cells and flip-flops. The 749

output bandwidth, thanks to both the 8-bit output event coding 750

and the obtained Effectiveness, is reduced by more than 40 % 751

in all the acceleration datasets, with a -44 % improvement in 752

the robotic platform case. An improvement of -72 % is also 753

observed for single waveforms with slower synchronous data 754

rate. 755

Although the analysis of the event-driven generation meth- 756

ods has been performed using an accelerometer as input 757

device, the formulation, characterization and FPGA imple- 758

mentation are general enough to hold for different types of 759

sensors, as needed in a fully event-driven robotic sensing 760

system. The main advantages of the event-driven approach 761

are low latency and compression. Our accuracy results show 762

that the compression does not decrease the information content 763

gathered by the sensor. The challenge in the design of artificial 764

perception based on this principle is that of finding principled 765

methods to extract this information without resorting to signal 766
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reconstruction and “traditional” algorithms. A fair amount of767

work has been published so far on the development of such768

methods, mostly on vision for robots. All the methods and769

results reported so far show that not only “frame” recon-770

struction is unnecessary, but also that those algorithms are771

robust to noise and to the loss of few events (hence having772

some drop in accuracy). This work goes in the direction of773

making other sensory modalities available to roboticists to de-774

velop multi-modal perception systems that improve efficiency,775

robustness and autonomy of robots, developing event-driven776

multi-sensory perception algorithms, ready for when native777

event-driven sensors will be mature enough to be integrated in778

robots. In the specific case of accelerometers, the information779

gathered from the sensor will be useful to assess the movement780

of the robot, or to detect impact on surfaces, or to classify781

roughness of surfaces from vibrations. In the first case, the782

latency of the signal is crucial to detect the contact and correct783

the action; in the second case, the frequency content of the784

signal, rather than the acceleration instantaneous value, is785

important. To study all these aspects, future work includes786

the integration of the designed system into the iCub robot787

and the substitution of the Ethernet output with the custom788

serial protocol discussed in [20], for event transmission in789

AER packets.790

Additionally, the design is fully-portable to other platforms,791

like ASICs. We will hence develop custom chips with event-792

driven event generation for off-the-shelf sensors to reduce size793

and power consumption due to the use of the FPGA. Further794

developments include the implementation of neural algorithms795

instead of asynchronous sampling ones and the design of an796

event-driven readout accelerometer which uses the conceived797

communication scheme and algorithm internally.798

AUTHORS’ NOTICE799

The material (i.e., the source code and datasets) presented800

in this work could be provided by the authors upon request.801
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