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ABSTRACT: In the challenging scenario of anode materials
for sodium-ion batteries, TiO2 nanotubes could represent a
winning choice in terms of cost, scalability of the preparation
procedure, and long-term stability upon reversible operation
in electrochemical cells. In this work, a detailed physicochem-
ical, computational, and electrochemical characterization is
carried out on TiO2 nanotubes synthesized by varying growth
time and heat treatment, viz. the two most significant
experimental parameters during preparation. A chemometric
approach is proposed to obtain a concrete and solid
multivariate analysis of sodium battery electrode materials.
Such a statistical approach, combined with prolonged
galvanostatic cycling and density functional theory analysis,
allows identifying anatase at high growth time as the TiO2 polymorph of choice as an anode material, thus creating a benchmark
for sodium-ion batteries, which currently took the center stage of the research in the field of energy storage systems from
renewables.

1. INTRODUCTION

Current tremendously growing energy demand is pushing
forward the pursuit of high-performing, cost-effective, safe and
environmentally friendly energy conversion and storage
systems. Indeed, electricity generated from renewable sources
represents an oasis in the future to effectively meet the demand
for energy supply systems characterized by as low as possible
carbon footprint.1 However, renewable sources, such as wind,
solar, tidal, biomass, and geothermal, are all inherently
intermittent and, often, widely scattered into isolated large-
scale facilities around the globe.2 The best way to exploit these
energy resources for practical human needs is to set up smart
and efficient systems to store the energy they produce.3−7 To
this purpose, secondary batteries represent a viable solution for
the integration of renewable plants into the grid and will play a
fundamental role to guarantee a brighter and cleaner
environment for future generations.8−12

Whereas Li-ion batteries (LIBs) offer the highest energy
density among present battery technologies,13−17 still an
amount of open challenges remains to be faced, particularly
the reduced availability of global lithium resources, which are
also mainly concentrated in remote and/or politically sensitive
areas,18−21 and its increasing cost due to the rising demand for

smart high energy/power density storage devices. Indeed,
people are now starting to consider lithium as “the new
gold”,22 as its price recently soared 300%.23 In this respect,
sodium is rapidly emerging as an alternative light metal for
batteries: it is cheap and very abundant and has a uniform
geographical distribution.24−26 Its redox potential is −2.71 V
versus standard hydrogen electrode (vs −3.04 V of lithium);
moreover, Na+ is heavier (23 vs 6.9 g mol−1) and larger (97 vs
68 pm) than Li+. This means thatwhen sodium is
considereda small penalty has to be paid in terms of overall
cell operating potential and gravimetric/volumetric energy
densities, but it is anyway much more appealing than lithium
when widespread, low-cost, and large-scale energy storage
systems (ESSs) have to be implemented.27,28 For all of these
reasons, the investigation of materials for sodium-ion batteries
(NIBs), along with the correct understanding of their
electrochemical characteristics, has recently become hot topics
within the scientific community.29−33
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One of the main issues of NIB technology concerns the
selection of suitable anode materials.34−36 Graphitethe
commercial choice anode for LIBscannot be used in NIBs
because of its extremely low performance. Indeed, while Li+

ions are readily inserted into graphite with a final stoichiometry
of LiC6 (accounting for a theoretical specific capacity of 372
mAh g−1), only a very little amount of Na+ ions can be
intercalated into graphite.37,38 Such a limited capacity can be
explained from a thermodynamic viewpoint, being related to
Na plating on the carbon surface before forming the graphite
intercalation compounds.39

The lack of low-voltage metal oxide anodes assuring
reversible storage of sodium ions at room temperature and
for a sufficient amount of cycles40,41 can be justified by the
large ionic radius of Na+, the insertion of which in
nanostructured electrodes requires substantial distortion of
the metal oxide lattice.42 To this purpose, titanium dioxide
(TiO2) could represent a viable solution, being a stable, safe,
inexpensive, nontoxic, and abundant semiconductor, able to
intercalate alkali ions at moderate potential values with specific
capacities comparable to graphite anodes in LIBs. Given these
features, TiO2 would clearly represent an interesting material
to be investigated as the anode for NIBs,43−45 as first reported
by Xu et al.46 and Usui et al.47 Unfortunately, it shows intrinsic
low electronic conductivity, which accounts for relatively poor
rate capability. As a viable solution, the use of one-dimensional
TiO2 nanostructures (i.e., nanowires, nanorods, and nano-
tubes) provides shorter electron diffusion paths and improved
conductivity values.48,49 Among the number of approaches
proposed by the scientific community for the preparation of
ordered TiO2 nanostructures,

50 anodic oxidation stands out as
a well-established technique that allows large area samples,
along with the obtainment of uniform nanotubular arrays
(namely, TiO2 NTs) characterized by interesting character-
istics for various energy-related applications and relatively high
specific surface.51−53 Other two advantages of TiO2 NTs are
relevant in the battery field: (i) regularly aligned inner
nanopores may provide preferential pathways for the fast
diffusion of the electrolyte, which can also thoroughly wet the
active material surface; (ii) the growth process can be
performed onto conducting flexible substrates (e.g., Ti foil),
thus avoiding the use of binders and electronic conductivity
enhancers, which clearly influence the overall cell energy
density.54

Despite some research groups have recently proposed TiO2
NTs as the anode for NIBs, the scientific community does not
agree on some fundamental aspects as to which is the best
polymorph (e.g., amorphous or crystalline anatase/rutile) in
terms of overall capacity output and/or long-term performance
and which kind of modifications occur to the nanostructure
during cell operation.55,56

Very recently, we proposed a possible explanation for the
different electrochemical behavior of the amorphous and
anatase phases of TiO2 nanotubes,57 demonstrating the
superior behavior of the latter upon long-term reversible
cycling in lab-scale sodium cells. Here, we thoroughly
investigate how the different experimental parameters, related
to the growth time of the nanostructures by anodic oxidation
and to different structural characteristics obtained upon
annealing at different temperatures, influence the overall
electrochemical response of the material, thus allowing to
define the best performing polymorph. In addition, most of the
research works published in the NIBs field consist in

monovariate analysis; however, such a procedure often leads
to error when interactions between the variables occur. As a
result, we propose here an experimental design that
simultaneously studies different variables to obtain not only
an empirical mathematical equation for the considered factors
but also a response map useful to consider the influence of all
the parameters. As a result, a systematic approach to identify
suitable active materials and properly optimize them to
develop highly efficient sodium-based ESSs is presented.
In this work, we aim at identifying the best TiO2 polymorph

for NIBs, by means of a solid and combined experimental,
computational, and statistical approaches.

2. RESULTS AND DISCUSSION
2.1. Morphological and Structural Characterization.

X-ray diffraction (XRD) and field emission scanning electron
microscopy (FESEM) analyses were performed on the
different fresh samples as well as at the end of the galvanostatic
cycling test. XRD profiles of the different anodized samples,
that is, pristine amorphous (nonthermally treated, namely
TiO2-am) and upon crystallization in air at different temper-
atures of 300 (TiO2-300), 450 (TiO2-450), and 600 °C (TiO2-
600) are shown in Figure 1.

The TiO2-am and TiO2-300 samples show only the Ti
reflections (reference JCPDS 89-5009), independently of the
NTs length, thus accounting for their bare amorphous
characteristics; even if some literature references report the
formation of anatase at 300 °C,58 we did not detect it in our
experiments. The formation of an anatase polycrystalline
structure is clearly seen in the diffraction pattern of TiO2-450
and justified by the presence of the peaks related to the (0 0 4),
(1 0 1), (1 0 5), and (2 0 0) crystal planes (JCPDS 89-4921).
As regards the additional peaks present in the pattern, they
originate from the Ti substrate (JCPDS 89-5009). No
additional peak is observable, which might be ascribable to
some foreign impurity phases. Finally, TiO2-600 shows both
anatase (reference JCPDS 89-4921) and rutile (reference
JCPDS 87-0710) (1 1 0) and (0 2 0) peaks, thus accounting
for a mixed crystalline phase structure. Indeed, the resulting
material of the anodic oxidation process is polycrystalline, and
there is no possibility to induce a preferred orientation by
acting on the preparation parameters.

Figure 1. XRD patterns of TiO2 NTs nonthermally treated and
thermally treated at 300, 450, and 600 °C. Dark colors indicate
samples before cycling, while light colors refer to cycled electrodes.
The growth time by anodic oxidation is kept constant at 5 min.
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The dependency of TiO2 NTs array length on their
electrochemical performance as electrodes in sodium cells
was investigated. The length was controlled by acting on the
time of anodization during synthesis: Figure 2A shows the
expected linear growth of the nanotubes for 1, 5, and 10 min
with corresponding FESEM images of the cross sections. The
resulting lengths are about 320, 1800, and 4800 nm,
respectively.
Moreover, the effect of crystallization was considered as a

parameter of interest on the final performance of the materials.
Indeed, the as-grown TiO2 NTs are completely amorphous,
but they can be thermally crystallized in the desired
polycrystalline phase (anatase, rutile, or mixed phase) by
simply selecting the right calcination temperature in ambient
atmosphere. The high magnification FESEM images collected
in Figure 2B illustrate the morphological evolution of the NTs
wall during thermal treatments. Almost no difference can be
appreciated up to 300 °C, but at higher calcination
temperatures the nanotubes walls start exhibiting some small
cracks and an increased roughness due to crystallite formation.
In all cases, the TiO2 nanotube arrays demonstrate excellent
mechanical robustness and self-standing ability.
2.2. Electrochemical Characterization in Sodium

Cells. The evaluation of the electrochemical behavior in
laboratory-scale sodium test cells was carried out at ambient
temperature by means of constant current (galvanostatic)
discharge/charge cycling at various current regimes, from 0.1
to 5 mA cm−2. It is worth noting that, thanks to their self-
supporting ability and excellent mechanical integrity, the TiO2
NTs arrays supported on the underneath titanium foil were
directly assembled in laboratory-scale sodium cells, without
any addition of conductivity enhancers and/or binders, thus
leading to an increased overall energy density output from the
working electrode.
Representative potential versus specific capacity profiles for

all the samples under study are shown in Figure 4. They are
extracted from the ambient temperature long-term cycling tests
obtained at different current regimes between 0.1 and 2.5 V

versus Na+/Na (see Figure 3). The formation of the solid
electrolyte interface passivating film at the surface of the

nanotubes is clearly visible in the initial discharge (Na-ion
insertion) step as a steadily sloping pseudopotential plateau
slightly below 1.0 V versus Na+/Na (black profile in all the
upper plots in Figure 4). It is the main responsible of the initial
large irreversible capacity and corresponding low Coulombic
efficiency, in agreement with literature reports.57,59 After the
initial irreversible reactions took place, the charge/discharge
processes unfold into typical S-type shaped reversible sloping
potential profiles, where a visible plateau is not clearly present
for both discharge and charge curves, but only the expected
gradual evolution associated with a continuous solid-solution
reaction between sodium ions and active material, as for the
typical behavior of titania upon reversible insertion/de-
insertion of sodium ions.57,60 Overall, the process is highly
reversible for all the samples, as well-evidenced by the very
similar Na+ ions insertion/de-insertion capabilities, even when
increasing the current regimes. This observation clearly
accounts for the lack of structural changes upon reversible
reaction with sodium ions and the good diffusion pathways.

Figure 2. (A) Graph of TiO2 NTs length vs time of anodization; FESEM images showing different NT lengths are shown as insets. (B) High-
magnification FESEM images of the NTs annealed at different temperatures, namely 300, 450, and 600 °C, for 1 h in ambient atmosphere.

Figure 3. Specific discharge capacity vs cycle number at different
current densities (from 0.1 to 5 mA cm−2) for sodium cells assembled
with TiO2 NT arrays as working electrodes, as described in Table 1.
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The symmetry and shape of the constant current profiles
remain almost unchanged upon cycling, which accounts for the
good structural stability of the materials, as also confirmed by
XRD analysis after cycling (see Figure 1).
The potential drop at below 0.6 V versus Na+/Na, which is

visible in TiO2-450 and, particularly, in TiO2-600, is attributed
to the reversible sodiation/desodiation process in rutile TiO2
host, which is consistent with previous reports.61,62 The
process is visible, even if much reduced, in the following cycles
and, in particular, at lower current regimes; this may suggest
that the reaction between rutile TiO2 and Na+ is a surface-
confined charge-transfer process.63

The comparison of the constant current profiles of the
different samples clearly enlightens that TiO2-450 and TiO2-
600, calcined at higher temperature, demonstrate a remarkable
increase in the specific capacity output at 0.1 mA cm−2 and
upon long-term cycling (lower plots in Figure 4). This reflects
an increased material utilization upon reversible cycling of
highly crystalline samples, which is not the case for the
materials having a higher degree of amorphicity.
2.3. Nanostructure-Performance Correlation by a

Design of Experiments (DoE) Approach. The experimen-
tal parameters behind the preparation (and related character-
istics) of vertically aligned TiO2 NTs and the resulting
performances in lab-scale sodium cells were investigated by
means of a chemometric approach. The proposed multivariate
mathematical analysis represents a powerful tool if the aim is
that of optimizing functional materials, especially when it is
required to determine variables as others are modified in the
experimental work. By means of this statistical-mathematical
approach, the operational variables (i.e., the growth time of

TiO2 NTs by anodic oxidation and the annealing temperature)
can be concurrently varied to identify the relative weight of
each one and the relation between them, particularly indicating
synergies and antagonisms. This approach aims at challenging
the strong imbalance that now exists between the technical
ability to generate a large amount of excellent experimental
data and the human ability to interpret them properly.
Fourteen sodium cells were assembled to investigate the

experimental domain in the proposed chemometric approach.
The overall constant-current cycling behavior at various
current densities (0.1−5 mA cm−2) of the series of TiO2
NTs arrays under study is shown in Figure 3, where the
influence of the growth time on the overall materials
performance as well as the peculiar opposite behavior of
amorphous and crystalline TiO2 NTs samples is well-
evidenced. Only specific capacity values upon discharge are
plotted to simplify the figure and facilitate the understanding.
The chemometric matrix shown in Table 1 was filled with

the experimental responses corresponding to the specific
capacity values of the assembled sodium cells at the 85th cycle.
The interpolation parameters derived from the multiple linear
regression were Q2 = 0.79 (i.e., the fraction of the variation of
the response that can be predicted by the model) and R2 =
0.95 (i.e., the fraction of the variation of the response explained
by the model). In other words, these parameters provide the
summary of the fit for the studied model, representing
overestimated (R2) and underestimated (Q2) measures of the
quality of chemometric model fitting. In the present study, R2

and Q2 are close to 1 (R2 in particular), which indicates that an
excellent description of the relationship between the response
and the independent variables is provided by the regression

Figure 4. Ambient temperature electrochemical behavior of the different TiO2 NTs arrays under study: TiO2-am (A), TiO2-300 (B), TiO2-450
(C), and TiO2-600 (D). In particular, constant-current discharge/charge potential vs specific capacity profiles are shown between cycles 1 and 170
at different current densities from 0.1 to 5 mA cm−2 (upper plots in A−D) and between cycles 170 and 300 at fixed 0.1 mA cm−2 (lower plots in
A−D).

ACS Omega Article

DOI: 10.1021/acsomega.8b01117
ACS Omega 2018, 3, 8440−8450

8443

http://dx.doi.org/10.1021/acsomega.8b01117


model; this is also clear when predicted specific capacity values
listed in the last column of Table 1 are considered.
The set of experiments permitted the achievement of a

maximum specific capacity of 90.9 μAh cm−2 for the cell
assembled with the amorphous TiO2-am sample, which was
grown for 10 min and clearly not annealed. Figure 5A shows
how much each variable influences the experimental response,

with 95% confidence. From the coefficient plot shown in this
figure, it is possible to write the modeling equation, which
represents an empirical relationship between the variables and
the response expressed in polynomial form:

y x x

x x

x x

31.20( 3.44) 28.60( 3.12) 23.10( 2.45)

5.80( 0.47) 3.40( 0.03)

11.80( 0.97)

1 2

1
2

2
2

1 2

= ± + ± − ±

+ ± − ±

− ± (1)

where y is the specific capacity of the various sodium cells. The
numerical values of the coefficients in the equation indicate the
importance of each factor in the equation. It is worth noticing
that the coefficients of x1 and x2 are positive, while those of the
respective quadratic effects are one positive and one negative.
It means that a slight increase in x1 and x2 leads to an increase
in specific capacity, but high values of these factors lead to
opposite effects on cells performance. Lastly, the interaction
term x1·x2 is negative, and this indicates that there is absence of
synergistic effects between these two variables.
The response surface of the quadratic matrix of 14

experiments is shown in Figure 5B, where the maximum
response zone for specific capacity is observed at x1 = 10 min
and x2 = 25 °C. Two hypotheses were analyzed to validate the
chemometric experimental model:

• H1: a dependency between the variables exists.
• H0: a dependency between the variables does not exist.

By using the quadratic differences between the results and
their average, the Student’s t-test was applied, and it gave a
probability of 5% for H0 and of 95% for H1, therefore
corroborating H1 and underlining that a dependency between
the variables exists.
We decided not to stop cell testing at the 85th cycle

(although it was already enough to extract information on the
most promising electrodes, i.e., those with the growth time of
10 min). Surprisingly, when we resumed the initial current
regime (0.1 mA cm−2), we clearly observed the inversion of the
behavior of the amorphous and the anatase electrodes.
Specifically, as clearly visible in Figure 6A, the samples
calcined at 450 °C and above were much more stable upon
long-term operation, while the amorphous sample and TiO2-
300 calcined at low-temperature showed a rapid decay of the
specific capacity values. This is also clearly detectable from the
contour plot shown in Figure 6B, obtained by fitting the DoE
at the 250th cycle. The best performance was obtained by
anatase titania samples (i.e., calcined at 450 °C, TiO2-450),
which were grown for 10 min.
Summing up, the chemometric approach enabled the

following observations on the investigated system. A direct
correlation between growth time and specific capacity output
of the cell was evidenced: higher specific capacity values were
provided by longer TiO2 NTs, which were also able to retain
very long-term cycling stability. It accounted for the high
quality and excellent mechanical robustness of the TiO2 NTs
prepared by anodic oxidation in this work. This might be
considered as an “expected” result, but it is not trivial: very
often, longer 2D nanostructures lack by proper structural
stability that causes a rapid performance decay upon prolonged
operation.64,65 As already discussed,57 TiO2-am showed an
increase of performance in the very initial cycles at low current,
which was then followed by a constant capacity decrease at all
of the tested current densities. The TiO2-300 sample showed
likely the same cycling behavior. This was independent on the

Table 1. Experimental Matrix of Variables (x1 = Growth
Time of TiO2 NTs by Anodic Oxidation, x2 = Annealing
Temperature) and Corresponding Experimental and
Predicted Responses To Optimize the Specific Capacity of
the Samples

cell
x1

(min)
x2

(°C)
measured specific

capacity (μAh cm−2)
predicted specific

capacity (μAh cm−2)

N1 1 25 11.6 12.3
N2 1 300 6.6 7.9
N3 1 450 1.8 2.1
N4 1 600 1.1 0.3
N5 5 25 57.7 56.4
N6 5 300 36.1 38.9
N7 5 450 11.5 10.8
N8 5 600 0.4 0.8
N9 10 25 89.4 90.9
N10 10 300 67.9 67.0
N11 10 450 57.0 58.0
N12 10 600 25.0 27.2
N13 5 450 11.2 10.8
N14 5 450 12.0 10.8

Figure 5. (A) Coefficient plot for the D-optimal DoE; (B) response
surface showing the effect of the two experimental parameters on the
specific capacity at the 85th cycle of lab-scale sodium cells assembled
with the different vertically aligned TiO2 NTs under study.
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growth time, as both longer and shorter nanotubes had the
same behavior. Highly crystalline samples TiO2-450 and TiO2-
600 showed a rapid specific capacity increase at low current
density during initial operation; the specific capacity gain
remained constant even at higher current densities. It is worth
noting that the specific capacity of the crystalline samples
relentlessly and monotonously increased when the current was
reduced back to low 0.1 mA cm−2, which is a completely
different behavior if compared to amorphous samples. It
confirms the superior long-term cycling performance of anatase
TiO2 NTs over their amorphous counterparts. The presence of
rutile phase, which was obtained upon calcination at 600 °C, in
the material did not influence the overall cycling behavior but
was clearly not beneficial to the overall specific capacity output.
2.4. Nanostructure-Performance Correlation by a

Theoretical Approach. From the previous sections, a
distinction in the performance between anatase, rutile and
amorphous TiO2 clearly emerged. In our previous work,57 we
demonstrated the superior behavior of the anatase phase upon
long-term reversible cycling in lab-scale sodium cells. This is
confirmed here, as the single-phase anatase polymorph,
obtained by calcination at 450 °C, provides the highest
specific capacity value after 300 reversible discharge/charge
cycles. The growth time also affects the electrochemical
response of the material, and, in particular, notwithstanding the

calcination temperature, the best results are obtained at longer
growth time. In the present work, we also demonstrate that the
presence of foreign phases of TiO2 other than pure anatase
negatively affects the electrochemical performance. In this
respect, the TiO2-600 sample shows a sizeable amount of
rutile, which is formed upon calcination at 600 °C (see XRD
diffraction patterns in Figure 1), thus resulting in a mixed
anatase/rutile structure. It shows a substantial decrease in the
overall specific capacity output at all of the different current
regimes if compared to the single-phase anatase (TiO2-450),
which suggests the limited reversible insertion/de-insertion
capability of the rutile polymorph.
To confirm this statement, we have performed state-of-the-

art density functional theory (DFT) calculations of Na+

insertion in TiO2 rutile bulk phase, following the same
approach as for the case of TiO2 anatase bulk.

57 We employed
a 96-atom structural model for TiO2 rutile, corresponding to a
2 × 2 × 4 supercell. The relaxed structural parameters are in
good agreement with the experimental values, as listed in Table
2.

The rutile structure presents a cavity that forms a channel
along the [001] direction: in this cavity, it is possible to
accommodate a Na+ cation, as depicted by Figure 7.
The insertion energy has been computed according to the

following equation:

E E E E(Na:TiO ) (TiO ) (Na )ins 2 2 m= − − (2)

where E(Na:TiO2) is the total energy of the system with the
inserted Na+ cation; E(TiO2) and E(Nam) are the reference
energies for titania and sodium metal, respectively. The
computed Eins for the insertion of the first sodium in rutile is
0.988 eV. This positive value means that the insertion is not
energetically favorable, and the reason is to be found in the
distortions of the Ti6O6 cavity that accommodates the sodium:
the oxygen−oxygen distances (see d1 and d2 Figure 7C) are
perturbed by the large Na+ cation and especially d1 is elongated
by ∼20% to make room for sodium.
The rutile unfavorable insertion energy should be compared

to the Eins value of −0.14 eV computed for the anatase phase.57

We also computed the insertion energies for a second Na+

cation in different relative positions with respect to the first
cation; Figure 8 depicts the different configurations.
The insertion of the second sodium is always unfavorable;

the computed insertion energies Eins for the different
configurations are (A) 1.379, (B) 1.725, (C) 0.855, and (D)
3.074 eV. These high-energy values correspond to very
unfavorable insertion for a second Na+ cation. For the C
configuration, the computed Eins is the least unfavorable, while
the most unfavorable is the D configuration where there is a
strong displacement of a Ti atom in a TiO6 moiety in between
two insertion sites. These computed values in rutile are much

Figure 6. (A) Specific discharge capacity values under 0.1 mA cm−2

for sodium cells assembled with TiO2 NTs array working electrodes
(growth time = 10 min) between the 250th and 300th cycle; (B)
response surface showing the effect of annealing temperature and
growth time on the specific capacity at the 250th cycle of lab-scale
sodium cells.

Table 2. DFT-PBE Minimum-Energy Structural Parameters
for TiO2 Rutile Bulk Phase (Space Group No. 136: P42/
mnm), Lattice Vectors (a = b, c) in Å and u Coordinate of
the 4f Wyckoff Position for the Oxygen

this work exp.a

a = b (Å) 4.6364 4.5936
c (Å) 2.9862 2.9862
uO 0.3047 0.3048

aReference 66.

ACS Omega Article

DOI: 10.1021/acsomega.8b01117
ACS Omega 2018, 3, 8440−8450

8445

http://dx.doi.org/10.1021/acsomega.8b01117


higher than the anatase counterparts, where the computed Eins
values for the second sodium are within ∼0.5−0.7 eV.
All these theoretical results support a worsening of Na+

insertion capability for TiO2 nanostructures going from anatase
to rutile, in agreement with electrochemical experiments.
Moreover, these experimental and theoretical results are in
agreement with previous observations independently obtained
for a different polymorph (TiO2@C nanospheres) by Wang’s
group.67 However, the anodic oxidation process here proposed
for nanotubes is faster and cheaper with respect to the
hydrothermal method used to design nanospheres by a
template approach.

3. CONCLUSIONS
The best nanostructure based on TiO2 nanotubes as the anode
for sodium batteries has been identified by a combined
physicochemical, electrochemical, computational, and chemo-
metric approach. The experimental design made it possible to

identify anatase electrodes grown for longer anodic oxidation
times as the best choice to this purpose, and the DFT study
allowed to justify this behavior. Anatase is the most stable
polymorph upon cycling, because it is not perturbed by the
insertion of new Na ions and the channels directed along the
[001] direction guarantee a favorable path for Na ion diffusion.
Conversely, the insertion in the rutile structure is not
energetically favorable because of the distortions of the
Ti6O6 cavities that accommodate sodium ions.
The combined approach proposed in this work allowed

obtaining a state-of-the-art benchmark as an optimized anode
for sodium batteries, an increasingly investigated electro-
chemical technology for the storage of energy produced from
renewable sources. Right now, as the TiO2 comprises only a
small fraction of the Ti foil used, the energy density for full
battery cells of size for commercialization will be quite low
when considering the mass of the entire cell: a proper choice of
Ti foil thickness and an evaluation of its application also in the
field of sodium-ion microbatteries will be challenging further
steps in this field; alternatively, a thin Ti layer can be deposited
onto a standard current collector, subsequently proceeding
with the anodization process.

4. EXPERIMENTAL SECTION

4.1. Preparation of Vertically Aligned TiO2 Nano-
tubes. TiO2 nanotube arrays were directly grown on titanium
foils (thickness 70 μm, 99.96% purity, Goodfellow) by anodic
oxidation. Before use, foils were cleaned by ultrasonication in
acetone and soft HF etching (3 wt % HF in aqueous solution
for 1 min) to remove the native oxide layer. The electro-
chemical process was conducted in an electrolytic solution
containing NH4F 0.5 wt % and deionized water 2.5 wt % in
ethylene glycol, using a platinum sheet as the counter electrode
(thickness 250 μm, 99.99% purity, Goodfellow) at the constant
temperature of 25 °C in a Peltier thermostat (LAUDA
Omnicool unit 62 Plus) under magnetic stirring. The
anodization time was varied in the 1−10 min range applying
a constant voltage of 60 V (using a dc power supply, GW
Instek SPD-3606) to obtain nanotubes with lengths ranging
from approximately 300 nm up to about 5 μm. Samples were
then rinsed in distilled water and dried under nitrogen flow. To
investigate the effect of the crystallization on the electro-
chemical performance, the as-grown TiO2 nanotubes were
thermally treated at 300, 450, and 600 °C for 1 h in ambient
atmosphere into a laboratory furnace by Abb Furnace Co.

4.2. Chemometric Approach. The first step of our
chemometric approach entails the selection of the variables to

Figure 7. (A) Structural model of the relaxed 96-atom 2 × 2 × 4 supercell of TiO2 rutile, view along the [001] direction, color code: Ti (cyan) and
O (red). (B) Minimum-energy structure for the insertion of a Na+ cation (yellow) inside the TiO2 rutile. (C) Zoom over one Ti6O6 host “cage” for
Na+ showing six coordination oxygen atoms. The size of this cage is determined by the two closest oxygen atoms (d1 in orange), while two other
equivalent O−O pairs (d2 in red) lie at a higher distance: d1 goes from 3.36 Å in pristine TiO2 rutile to 4.01 Å in the presence of sodium
(Na0.03TiO2), and d2 goes from 4.49 to 4.41 Å.

Figure 8. Structural models for a second Na+ cation placed in
different configurations: (A) as next-neighbor along the same [001]
channel; (B) in the furthest position within the 96-atom supercell;
(C) in an adjacent site of a parallel [001] channel; (D) in a parallel
[001] channel bridged by a TiO6 moiety: the central Ti of such
moiety strongly goes off-center upon relaxation. Color code as in
Figure 7.
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be investigated and their relative experimental domain. In
agreement with the purpose of this work, we selected the
following experimental variables and related ranges of values:
the growth time of TiO2 NTs by anodic oxidation (x1, which
ranged between 1 and 10 min) and their annealing
temperature (x2, which ranged between 25 °C non-annealed,
i.e., amorphous samples, and 600 °C, crystalline samples). The
two variables were codified in 3 and 4 levels, respectively.
To carry out a multivariate DoE, the software MODDE

(version 11.0.2.2309, Umetrics) was adopted, which is widely
used in the chemistry field.68 An experimental domain as the
one considered here can be investigated by means of a D-
optimal design, with the goal of achieving the maximum
information within a well-determined set of experiments with
respect to a stated mathematical model. In detail, if a specified
regression model is considered, such as

y X β ε= · + (3)

where y is a (N × 1) vector representing the measured
responses (i.e., NIB specific capacity), X is a (N × p) extended
design matrix that includes all of the n experiments plus
additional columns for the p model terms (e.g., interaction
terms, constant term, square terms, etc.), β is a (p × 1) vector
related to coefficients that are unknown and to be determined
by fitting the model to the measured responses, ε is a (N × 1)
residuals vector indicating the differences between the
predicted and observed values of the response y, and the D-
optimal design constitutes the statistical mean that permits the
maximization of the X′X matrix determinant, being an overall
measure of the information in X.69

When chemometrics is adopted in materials chemistry
studies, the D-optimal design is typically built up by choosing
N experiments (runs) from a candidate set, representing the
discrete set of “all potential good experiments” included in the
experimental domain that is initially defined by the operator.
After this step, the best design is constructed by a selection
process that depends on the number of runs that can be carried
out by the operator (some experiments can be performed
easily, others are costly) and on a statistical criterion. On the
basis of our previous experiences in the field, we selected G-
efficiency (Geff) as the statistical criterion, which is defined by
this mathematical equation

G
p

n d
100

eff =
·

· (4)

where p is the number of terms in the model, n the number of
experiments in the design, and d the maximum relative
prediction variance over the candidate set. The higher the
numerical value of Geff criterion, the higher is the probability to
obtain the maximum amount of information from the
experimental setup defined with the software and performed
in the laboratory. In the present case, the highest value of Geff
was obtained for a D-optimal design built with 14 runs, which
will be described in the following. A thorough discussion of the
mathematical and statistical basis behind the selected DoE can
also be found elsewhere.70 The experimental matrix generated
by the software is shown in Table 1. Our selected experimental
response (y) was the specific capacity of the lab-scale sodium
cells at the 85th galvanostatic cycle, thus having a clear idea
about the performance of each device assembled with the TiO2
NTs electrodes prepared accordingly to the experimental
protocol described above.

To evaluate the experimental reproducibility following the
standard criteria of DoE techniques, three replicates (named
N7, N13, and N14 in Table 1) of the central point were carried
out.

4.3. Characterization of the Materials, Fabrication of
the Devices, and Electrochemical Tests. The morphology
of the as-grown nanotubes was studied by FESEM analysis
using a MERLIN ZEISS instrument, equipped with an energy
dispersive X-ray spectrometer for compositional analyses. XRD
analysis was used to assess the structural characteristics of the
materials. A PANalytical X’Pert MRD Pro instrument,
equipped with a Cu Kα X-ray source and a curved graphite
secondary monochromator, was used to study the samples
both before and after galvanostatic cycling.
The electrochemical behavior of the vertically aligned TiO2

NTs upon reversible insertion/de-insertion of Na+ ions was
studied in three-electrode T-cells made of polypropylene and
assembled by contacting in sequence a working electrode (i.e.,
Ti foil-supported TiO2 NTs disk, with an area of 20 mm2), a
separator (that was a Whatman Grade GF/A product soaked
into a 1.0 M solution of sodium perchlorateNaClO4 by
Solvionicin propylene carbonatePC, Solvionic), and a
counter electrode (a sodium metal foil by Sigma-Aldrich).
NaClO4/PC was selected as the preferred electrolyte solution
as we found it to be the most performing in terms of
Coulombic efficiency and specific capacity output and is also
low cost and easily available.71

Constant current (galvanostatic) discharge (Na+ insertion)/
charge (Na+ de-insertion) cycling was conducted at ambient
temperature (≈20 °C) using the battery testing system model
BT2000 by Arbin Instruments. Discharge/charge cycles for all
the cells were set at the same rate ranging from 0.1 to 5 mA
cm−2 and keeping a cut off potentials: 0.2−2.5 V versus Na+/
Na. Procedures of devices assembly were carried out under
inert and controlled atmosphere by using a GP Dry-Glove Box
Workstation by Jacomex (H2O and O2 content lower than 0.1
ppm), filled with extra pure Ar 6.0. Before assembly, all
samples were prepared and stored in an environmentally
controlled dry-room (10 m2, relative humidity <2% ± 1 at 20
°C) produced by Soimar Group.

4.4. Computational Details. We performed spin-polar-
ized Kohn−Sham DFT72,73 calculations by means of the
generalized-gradient approximation with the exchange−corre-
lation density functional of Perdew, Burke, and Ernzerhof
(PBE),74 as implemented in the VASP code.75−77 The
projector-augmented wave potentials were used to describe
nuclei and core electrons.78,79 The pseudo-wave functions was
expanded in a plane-wave basis set with a kinetic energy cut-off
of 600 eV and a k-point sampling based on Γ-centered 3 × 3 ×
3 grid for the 96-atom TiO2 2 × 2 × 4 supercell. With these
numerical parameters the achieved convergence for total
electronic energies is within 5 meV per formula unit.
Furthermore, structural optimization were carried out until
the convergence of Hellmann−Feynman forces with a
threshold of 10 meV Å−1.
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