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The problem of efficiently reconstructing tomographic images can be mapped into a Bayesian inference
problem over the space of pixels densities. Solutions to this problem are given by pixels assignments that are
compatible with tomographic measurements and maximize a posterior probability density. This maximization
can be performed with standard local optimization tools when the log-posterior is a convex function, but it is
generally intractable when introducing realistic nonconcave priors that reflect typical images features such as
smoothness or sharpness. We introduce a new method to reconstruct images obtained from Radon projections by
using expectation propagation, which allows us to approximate the intractable posterior. We show, by means of
extensive simulations, that, compared to state-of-the-art algorithms for this task, expectation propagation paired
with very simple but non-log-concave priors is often able to reconstruct images up to a smaller error while using
a lower amount of information per pixel. We provide estimates for the critical rate of information per pixel above
which recovery is error-free by means of simulations on ensembles of phantom and real images.

DOI: 10.1103/PhysRevE.100.032134

I. INTRODUCTION

The classical problem in image reconstruction consists in
recovering the density of an object’s two-dimensional (2D)
slice from a set of Radon transformations. These correspond
to a set of projections on a plane, which can be usually
identified with the absorption of radiation by the object along
a given line of response. In the ideal case, and from a purely
mathematical point of view, the original image can be recon-
structed when enough projections are available by applying
the inverse Radon transform, a method usually referred to
as filtered back-projection [1]. However, in real scenarios,
detectors and radiation sources have an actual finite size,
data collection is restricted to a short time window and
measurements are naturally noisy. With limited and/or noisy
information, it is only possible, in principle, to reconstruct a
finite-resolution discretization x = (x1, . . . , xN )T ∈ RN of the
image from a finite set of Radon projections. In these more
realistic scenarios, algebraic reconstruction techniques (ART)
are normally used. Under reasonable working hypotheses,
discretized images that are compatible with the measurements

*These authors contributed equally to this work.

are the ones satisfying a set of linear relations:

Ax = p, (1)

where p = (p1, . . . , pM )T ∈ RM is the M-dimensional mea-
surements vector of projection data, and A = (ai j ) ∈ RM×N is
the so-called projection matrix. Here variable x j represents the
density of the image at the position of pixel j, while the entries
ai j of the matrix A correspond to the length of the intersection
of the ith projection ray with the jth pixel or, in other terms,
to the contribution of the jth pixel to the total attenuation
along the ith ray. In the field of image reconstruction, a
pivotal role is played by algorithms capable of providing
accurate reconstructions with the lowest possible number
of measurements M. Often in medical imaging, one faces
practical constraints posed by the acquisition system, and/or
the need to mitigate the dangerous effects of ionizing radiation
exposure. In the following we will mostly concentrate on this
limited data regime that corresponds to an underdetermined
system of equations in Eq. (1), i.e., M < N , where the system
has infinitely many solutions in the noiseless regime and
none in the noisy one. Using the ART algorithm [2,3], one
can, however, obtain an approximate reconstruction of the
image x by iteratively minimizing the �2 error, ||Ax − p||2.
Its performance can be drastically enhanced by combining it
with the total variation (TV) method [4] which relies on an a
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priori knowledge that realistic images have intrinsic structure,
in particular smoothness, that can be encoded by means of a �1

sparsity regularization on the (discrete) gradient of the image.
The reconstruction problem can be alternatively recast

in the language of Bayesian inference by considering the
posterior probability distribution of images for a given vector
of measurements p

P(x|p) = P(p)−1P(p|x)P0(x). (2)

The reconstructed image is often given by the maximum a
posteriori (MAP) estimation x� = arg maxxP(x|p).

The likelihood term P(p|x) corresponds to the discretized
model in Eq. (1) and takes the form P(p|x) = δ(Ax − p)
for the noiseless case [5]. If measurements are affected by
independent additive Gaussian noise (although other noise
models can be assumed), then the likelihood reads P(p|x) ∝
exp[− β

2 (p − Ax)2], where β is the inverse variance of the
noise distribution.

The prior P0(x) plays a crucial role as it allows to include
further information complementing the set of measurements,
making the reconstruction possible in the underdetermined
regime. Fairly intuitively, a smaller amount of image-specific
information is needed to perform the reconstruction, provided
we have access to a more informative prior on the class of
images. Both �2 and �1 regularizations can be mapped in
this framework as log-concave priors that admit the compu-
tation of the corresponding MAP estimates by means of stan-
dard convex optimization techniques. The mapping between
Eq. (2) and �p regularization for p > 0 is straightforward
by considering P0(x) ∝ exp(−λ‖x‖p), as the measure then
concentrates on the minima of �p for λ → ∞.

A thorough analysis of actual tomographic and natural
images reveals that in many cases the statistics of pixel
intensities are ill fitted by trivial log-concave functions [6–9]
but can, in principle, be well fitted by priors involving non-
log-concave terms. In particular, as it can be seen in Fig. 1, the
distribution of neighbor pixel differences in real tomographic
images present a cusp at zero which seems much more com-
patible with a �p norm with 0 < p < 1 than with p = 1 or p =
2. Unfortunately, the change from p � 1 to p < 1 renders in
principle the MAP estimate a computationally formidable task
as it leads to a nonconvex optimization problem. Furthermore,
in this setting the mean value of x of the posterior distribution
P(x|p) should be generally preferred to the MAP estimation as
it is the vector that minimizes the mean squared error between
the reconstructed and the original signal. To cope with these
average values, the computation of the marginal probability
densities plays a key role.

Recently, groundbreaking applications of statistical me-
chanics techniques to nonconvex computational problems
have yielded very efficient algorithms and reliable methods to
make the computation of marginals of complicated multivari-
ate distributions computationally tractable. These techniques
have been recently and successfully applied to image recon-
struction of binary images for the case of discrete tomography
[5]. Here it was noted that the belief propagation (BP) algo-
rithm provides better reconstruction than TV in some cases,
especially in the high-noise regime. Statistical techniques
such as BP have the additional advantage of being able to
deal more efficiently in the imperfect reconstruction regime
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FIG. 1. Computed tomography scans (left panels) and their cor-
responding empirical distributions (right panels), going from full
resolution images of 512 × 512 (corresponding to the narrower, dark
red empirical distribution) to lower resolutions 256 × 256, 128 ×
128, 64 × 64, and 32 × 32 (the latter corresponding to the wider,
light red empirical distribution). Panels (a) and (b) show two different
viewpoints of the abdomen while (c) and (d) two different views of a
knee.

than optimization methods, since the maximum probability
point may be uninformative when the posterior distribution is
not very concentrated. The BP algorithm, however, relies on
the Bethe-Peierls approximation, which is inaccurate in many
realistic scenarios. Although corrections to the Bethe-Peierls
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approximation abound in the literature [10–13], they become,
more often than not, impractical for current applications.

Our main purpose is to introduce a family of priors with
a corresponding family of algorithms based on expectation
propagation (EP), whose reconstruction performance sur-
passes the ones obtained with standard log-concave priors and
standard local optimization algorithms. Expectation propaga-
tion, originally introduced in Refs. [14–17], gives additionally
a natural probabilistic framework to maximize the inference
performance in the imperfect reconstruction regime. In partic-
ular, it allows us to compute an approximation of the posterior
marginal distribution and the posterior average, allowing in
principle for a more accurate reconstruction. It should be
noted that �p regularization with 0 < p < 1 for tomographic
reconstruction has been considered at least in Ref. [18]. How-
ever, in this latter work, the proposed reconstruction algorithm
is based on a local optimizer and it lacks the probabilistic
framework and interpretation proposed here.

This work is organized as follows: In Sec. II we introduce
the method of EP together with the different priors we have
used when reconstructing images. Section III is dedicated
to explain how one can estimate the various parameters of
the method based solely on probabilistic arguments. Results
of our approach for phantom and real images are presented
and discussed in Sec. IV. We end up with some concluding
remarks in Sec. V. Thorough mathematical derivations, to-
gether with details of previous reconstructing algorithms, can
be found in the appendices.

II. IMPLEMENTATION OF PRIOR KNOWLEDGE AND
THE METHOD OF EXPECTATION PROPAGATION

Before discussing the method of EP to approximate the
posterior distribution P(x|p), it is crucial to have a prior
distribution P0(x) that captures reasonably well some of the
typical properties of the images we aim to reconstruct. To
achieve this, we assume that the prior P0(x) can be written
as a product P0(x) ∝ P(single)

0 (x)P(pair)
0 (x), where the factor

P(single)
0 (x) imposes independent local constraints designed to

catch the concrete nature and support of the pixels involved,
whereas P(pair)

0 (x) contains all priors that can be written as
product of probability distribution over pairs of variables and
it is supposed to model the highly correlated nature among
pixels in real images.

For the factor P(single)
0 (x), we will consider three different

choices. In the first one, which we will call interval prior, we
assume a uniform measure on a generic support [x(m)

i , x(M )
i ] of

the pixels, that is,

P(single)
0,int (x) =

N∏
i=1

I
xi∈

[
x(m)

i ,x(M )
i

]
x(M )

i − x(m)
i

≡
N∏

i=1

�i(xi ), (3)

where IA denotes the indicator function of condition A. A sec-
ond viable choice, which it is usually called the spike-and-slab
[19] or sparse prior, is particularly useful in the reconstruction
of images with extensive monochromatic background:

P(single)
0,sparse(x) =

N∏
i=1

[sδ(xi ) + (1 − s)�i(xi )]. (4)

Here the weighting factor s ∈ (0, 1) is the sparseness param-
eter of the image and is equal to the average fraction of
background pixel within the image. Finally, in discrete binary
tomography [20,21] one assumes that the two available colors
are either black or white, corresponding to a region totally
transparent or completely opaque, for which we will assign
values xi = 0 or xi = 1, respectively. In this scenario, the
single variable prior, that we will denote as the binary prior,
takes the following simple form:

P(single)
0,bin (x) =

N∏
i=1

[sδ(xi ) + (1 − s)δ(xi − 1)]. (5)

The remaining factor P(pair)
0 (x) in the prior probability is

supposed to favor images with certain features, such as a
smooth change in the intensities of neighboring pixels. This
accounts for the fact that real images possess local structure.
A standard choice for P(pair)

0 is

P(pair)
0,lap (x) ∝ e− J

2 xT ·L·x ∝ e− J
2

∑N
i=1

∑
j∈∂i (xi−x j )2

, (6)

where L is the Laplacian matrix of the nearest-pixels adja-
cency graph, J a weight parameter, and ∂i denotes the set of
neighbors of pixel i. We will denote the prior in Eq. (6) as �2

smoothness, as it favors small norms of the finite-differences
gradient. Notice that this prior assumes a Gaussian profile
for the probability density of the difference variables, which
makes, in turn, the treatment more analytically amenable.
Empirically, it turns out, at least for tomographic images,
that the histogram of these auxiliary variables is far from
being Gaussian distributed. Indeed, Fig. 1 shows the empirical
frequency count of the gradient of the image, that is, P( f ) ∝∑N

i=1

∑
j∈∂i δ( f − xi + x j ), for a series of real CT scans.

Interestingly, the empirical profiles do not depend much on the
type of organ analyzed but depend in a highly nontrivial way
on the coarse-graining of the image. To capture these more
realistic cases, we introduce the following spike-and-slab
prior for neighboring pixel differences, which corresponds to
finite-differences partial derivatives:

P(pair)
0,diff (xi, x j ) ∝ ρδ(xi − x j ) + (1 − ρ)e− λ

2 (xi−x j )2
, (7)

with ρ ∈ [0, 1] and λ � 0. For brevity, we will refer to this
prior as �0 smoothness. As we will show below, this prior
produces very accurate image reconstructions.

Once we have selected the prior distribution, the image
is reconstructed by using the first moments of the marginals
of the posterior distribution P(x|p). The main goal is to find
an efficient way to extract the information of this poste-
rior. Expectation propagation was introduced to approximate
posterior distributions, along with their marginals [14–16],
for a large class of intractable probabilistic models. In the
image reconstruction problem, the posterior distribution of
images, given the projections, takes the functional form of a
multivariate Gaussian with positive definite covariance matrix
� and mean μ times a product of univariate distributions
ψi(xi ):

P(x|p) = 1

Z
e− 1

2 (x−μ)T �−1(x−μ)
∏

i

ψi(xi ). (8)

032134-3



ANNA PAOLA MUNTONI et al. PHYSICAL REVIEW E 100, 032134 (2019)

The multivariate Gaussian term takes into account the mea-
surements, i.e., the likelihood term, times other interacting
terms in the prior, if any. For instance, in the case of the prior
given by Eq. (6), the expressions for � and μ are

�−1 = βAT A + JL, μ = β�Ap, (9)

respectively. The set of functions ψi(x) account for non-
Gaussian factors, such as density bounds between 0 and
1, �0 sparsity, binary constraints, or non-log-convex priors
(explicit forms for other choices of priors can be found in
Appendix B). To introduce the method of EP, we proceed as
follows. Suppose that, to trade off accuracy for solvability, we
approximate Eq. (8) by replacing each ψi(xi ) term by a normal
density,

φi(xi ) = 1√
2πbi

e− (xi−ai )2

2bi . (10)

Then the new posterior, denoted here as Q{φ}(x), has the
following expression:

Q{φ}(x) = 1

ZQ{φ}
e− 1

2 (x−μ)T �−1(x−μ)
∏

i

φi(xi ). (11)

Note that Q{φ}(x) is a multivariate Gaussian distribution for
which it is easy to obtain the single variable marginals
Q{φ}(xi ), whence the value of each pixel can be inferred as
the mean of its corresponding marginal.

We are now left with the problem of choosing the mean and
variance vectors, a = (a1, . . . , aN ), b = (b1, . . . , bN ), in order
to best approximate the true posterior probability P(x|p) by
using Q{φ}(x). A seemingly reasonable form for the approxi-
mating factors φi would be the closest univariate Gaussians [in
Kullback-Leibler (KL) distance] to ψi. This approach, more
often than not, produces poor results in reconstruction. The EP
algorithm improves strikingly the estimation of the marginal
densities by approximating not the ψi measures themselves
but their effect on the full distribution. More precisely, we
introduce the so-called tilted distribution for pixel ith, Q(i)

{φ}(x):

Q(i)
{φ}(x) = 1

ZQ(i)
{φ}

e− 1
2 (x−μ)T �−1(x−μ)ψi(xi )

∏
j 	=i

φ j (x j ). (12)

One then chooses the parameters (ai, bi ) of the Gaussian
distribution φi(xi ) such that the KL distance DKL between Q{φ}
and Q(i)

{φ} is minimized, that is,

(a�
i , b�

i ) = arg min(ai,bi )DKL
[
Q(i)

{φ}||Q{φ}
]
. (13)

It is straightforward to show [15–17] that the DKL mini-
mization is equivalent to the following moment-matching
condition:

〈xi〉Q{φ} = 〈xi〉Q(i)
{φ}

,
〈
x2

i

〉
Q{φ}

= 〈
x2

i

〉
Q(i)

{φ}
. (14)

Here 〈· · · 〉Q{φ} and 〈· · · 〉Q(i)
{φ}

correspond to performing the

expectation values with respect to the distributions given by
Eqs. (11) and (12), respectively. In this way, Eq. (13) can be
used as an iterative procedure until convergence is reached for
every pair of parameters (ai, bi ). At convergence, the value of
each reconstructed pixel is determined by the formula

x∗
i = 〈xi〉Q(i)

{φ}
. (15)

This choice is motivated by the fact that using the mean of
a posterior minimizes the mean squared error with respect
to the true value of a variable, with the added persuasive
argument that, on convergence, we have morally obtained
the best Gaussian approximation to the tilted distribution,
which in turn includes the ψi measures present in the original
posterior of Eq. (8).

The explicit form of the moment matching conditions (14)
depends on the choice of priors. For instance, for the case of
using the interval prior, the posterior distributions Q and Q(i)

are given by:

Q(x|p) = 1

ZQ
e− 1

2 (x−μ(i) )T ·�−1
(i) ·(x−μ(i) ) e− (xi−ai )2

2bi√
2πbi

,

Q(i)(x|p) = 1

Z (i)
Q

e− 1
2 (x−μ(i) )T ·�−1

(i) ·(x−μ(i) )
I

xi∈
[

x(m)
i ,x(M )

i

]
x(M )

i − x(m)
i

, (16)

where we have defined the following matrices and vectors:

�−1
(i) = βAT A + JL + B(i),

μ(i) = �(i) · (βAT · p + B(i) · a),

B(i) = diag
(
b−1

1 , . . . , b−1
i−1, 0, b−1

i+1, . . . , b−1
N

)
. (17)

Solving the moment matching conditions of Eq. (14) for the
parameters {(ai, bi )}N

i=1 results in:

bi =
[

1〈
x2

i

〉
Q(i) − 〈xi〉2

Q(i)

− 1

ii

]−1

,

ai = bi

[
〈xi〉Q(i)

(
1

bi
+ 1

ii

)
− μi

ii

]
. (18)

To shorten notation we have defined ii ≡ (�(i) )ii, whereas
〈xi〉Q(i) and σ 2

Q(i) ≡ 〈x2
i 〉Q(i) − 〈xi〉2

Q(i) have the following
expressions:

〈xi〉Q(i) = μi +
N

[
x(m)

i −μi√
ii

]
− N

[
x(M )

i −μi√
ii

]
�

[
x(M )

i −μi√
ii

]
− �

[
x(m)

i −μi√
ii

] ii,

σ 2
Q(i) = ii

⎧⎪⎨
⎪⎩1 +

x(m)
i −μi

ii
N

[
x(m)

i −μi√
ii

]
− x(M )

i −μi√
ii

N
[

x(M )
i −μi√

ii

]
�

[
x(M )

i −μi√
ii

]
− �

[
x(m)

i −μi√
ii

]

−

⎛
⎜⎝N

[
x(m)

i −μi√
ii

]
− N

[
x(M )

i −μi√
ii

]
�

[
x(M )

i −μi√
ii

]
− �

[
x(m)

i −μi√
ii

]
⎞
⎟⎠

2⎫⎪⎬
⎪⎭, (19)

with definitions

�(x) = 1

2

[
1 + erf

(
x√
2

)]
, N (x) = 1√

2π
e− x2

2 . (20)

In this particular case, the moment matching condition given
by the set of Eqs. (18) is solved by using a standard fixed-
point iteration method, that is, starting with initial values of
{(ai, bi )}N

i=1 the set of Eqs. (18) is iterated until convergence.
Even though a theoretical analysis of the convergence of the
EP algorithm is beyond the scope of the present paper, we
have generally found, when running it in phantom and real
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tomographic images, that our method needs of the order of
200 to 400 iteration steps on the set of equations (18) to stop.
Convergence is numerically reached when the error

εt = max
i

{∣∣∣〈xi〉Q(i)
t

− 〈xi〉Q(i)
t−1

∣∣∣, ∣∣∣〈x2
i

〉
Q(i)

t
− 〈

x2
i

〉
Q(i)

t−1

∣∣∣} (21)

is smaller than a tolerance of the order of 10−7.

III. PARAMETERS ESTIMATION

Unlike other methods used in image reconstruction, those
based in Bayesian inference allow us to estimate fairly natu-
rally the set of parameters of the model to obtain an optimal
reconstruction. In our particular case, the set of parameters to
infer depends on the actual choice of the prior distribution.
To fix ideas let us consider, for instance, a prior distribution
consisting on the binary prior, together with the �2 smoothness
prior, given by Eqs. (5) and (6), respectively. This choice
then contains three parameters: the inverse variance noise
distribution β, the weight of the Laplacian matrix J , and
the sparseness parameter s. Our approach can be understood
as an expectation maximization [22] technique applied at
every time step of the main EP algorithm. In particular, at
each update of the mean and variances of the approximation
{(ai, bi )}N

i=1, we temporarily fix the distribution of each pixel
to its tilted distribution at time t and compute the values of the
parameters s, J, β, which maximizes the likelihood of the data
P(p|s, J, β ). This computation leads to the following update
equations for β and J:

β (t+1) = M

[Ax(t )
EP − p]T [Ax(t )

EP − p]
,

J (t+1) = N

x(t )
EPLx(t )

EP

. (22)

where x(t )
EP are the EP estimates at time t (see Appendix C

for details). Unfortunately, there is no explicit formula for
the sparsity parameter, but one can perform a gradient de-
scent over − log[P(p|s, J, β )]. This function, in a statistical
mechanics jargon, is equivalent to an intractable free energy
that can be approximated using EP approximation. Thus the
sparsity can be updated at each iteration according to

s(t+1) = s(t ) − η
∂F (t )

EP

∂s
, (23)

where F (t )
EP is the EP free energy (see further details in

Appendix C) at iteration step t evaluated using x(t )
EP, while η

is a relaxation parameter of the gradient descent algorithm.
On convergence, this scheme yields an estimation of s� which
corresponds to a local minimum, thus assuming that the real
image sparseness minimizes the EP free energy. This indeed
seemed to be the case, as our binary reconstructions did show
a low fraction of errors under many circumstances once s� was
inferred. The value of ρ and λ in the difference variables prior,
appearing in Eq. (7), can be inferred using the same technique.

IV. RESULTS

To estimate the goodness of the prior distribution choice,
we compare our performances against three reconstruction

methods commonly used in the literature: TV (for �1 smooth-
ness); quadratic programming (QP) (for �2 smoothness); and,
for binary reconstruction only, the BP algorithm. Experiments
consist in the reconstruction of ensembles of phantom images
in different noise and measurements regimes as well as the
reconstruction of real tomographic images. The noise distribu-
tion is considered to be known for QP, TV, and BP (since there
is no clear strategy to estimate it within the algorithms), while,
for the implementations of EP, we estimate β as described in
Sec. III. A more detailed description of TV, QP, and BP is
reported in Appendix D.

In the following we describe the measurement process we
used and we comment our reconstruction performances for
both synthetic and real images.

A. Acquisition process

The measurement matrices A are constructed mimicking a
realistic tomographic acquisition process. When using the BP
algorithm, i.e., when reconstructing binary images, the projec-
tion matrix is the result of the projections of several parallel
rays along a single direction, and this is repeated for angles
between 0◦ and 180◦ in regular steps. For all the other cases
(nonbinary phantoms and real tomographic images), A was
built using single ray projections along random directions.
Importantly, for nonbinary or real images the entries of the
projection matrix correspond to the length of the ray passing
through that pixel, while for binary images its entries are 1
or 0, depending on whether a ray passed or not through the
associated pixel. This latter constraint has been introduced to
use fairly the implementation of the BP algorithm in Ref. [5].

To simulate the noisy regime we add a random variable
with Gaussian distribution N (0, σ ) to each component of the
measurement vector p, with σ = β−1/2.

B. Results for phantom images

Synthetic phantoms represent light patches, or clusters, in
a circular black background (as in the inset of Fig. 2) that are
generated as follows: Starting from a black colored image of
dimension L × L, we color uniformly at random p2 pixels of
“white” that we will be used as centroids of a Gaussian filter
of width ∼1/p. For binary tomography only, we binarize the
resulting images (further details in the generation of phantom
images are provided in Appendix E). By tuning p we can
control the structure and complexity of the phantoms since
it has been found empirically that the number of pixels in the
boundary between the light regions and the background, and
thus the dimension of the patches, scales roughly linearly with
p [5]. For each chosen value of p, we generate a set of images
differing in the choice of the seeds.

Finally, to quantify the accuracy of the reconstructed image
x� compared to the real one x, we introduce two metrics: For
binary images, we use the number of wrongly assigned pixel
Ne, while for nonbinary images, we estimate the average �2

norm of the difference between the original image and the
reconstructed one, that is, E2 = ||x − x∗||2/N , where N is
the number of the pixels within the circular regions. We will
say that we have achieved a perfect reconstruction for binary
images whenever Ne = 0, while for nonbinary ones we have
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FIG. 2. (a) Fraction of wrong assigned pixels versus sampling
rate α. Dashed (thick) lines are used for p = 6 (p = 3) phantoms
while different symbols denote different reconstruction techniques.
(b) Estimate of the error versus noise-to-signal ratio σ/L with σ the
standard deviation for the Gaussian noise for binary images. In both
panels, the points correspond to sample averages over 50 randomly
generated phantoms, while the error bars are one standard deviation
from the average.

found that errors E2 significantly smaller than 10−4 do not
improve the quality of the reconstructed image, in the sense
they are indiscernible to the naked eye. All images used for
these experiments have sizes L = 50 [23], while the values of
p will be specified case by case.

Note that we have restricted our analysis to rather small
images since EP running time is dominated by a matrix
inversion per iteration that requires O(N3) operations when
using only priors over pixels (see Appendix A for details) and,
only for EP with difference prior, O[(N + E )3] operations
when dealing with E first nearest-neighbors intensity differ-
ences. Two possible strategies for a direct application of these
methods to real tomography where higher-resolution images
are generally required can be suggested. First, an increasing-
resolution iterative approach could be implemented, in which
(cheaper) reconstruction at smaller resolutions is used as
initial state of the iterative EP algorithm at larger ones (so
that only a few iterations are needed at the largest resolution).
Additionally, one may use GPUs to perform matrix inversion
using parallel programming. Either way, the sizes considered
here are large enough to draw strong conclusions of the

EP algorithm when compared the the current state-of-the-art
approaches.

The results for binary reconstruction obtained with EP, TV,
and QP are shown in Fig. 2. The subscript bin (respectively,
int) refers to the use of the binary (respectively, interval)
prior in the posterior distribution. The top panel depicts the
dependence of the fraction of errors Ne/N on the sampling
rate α ≡ M/N . The inset shows a typical realization of a
synthetic random phantom generated using p = 3 and p = 6.
The reconstruction error is non-negligible up to a certain value
of α above which perfect reconstruction is reached. Recall that
the smaller the value of α, the less number of measurements
M we need to achieve a good performance. The lower panel
shows the fraction of errors as a function of the noise-to-signal
ratio σ/L for a fixed value of α = 0.255 and p = 6. Notice
that for this value of α the reconstruction error is zero for all
the methods in the noiseless case (for σ very small) and then
increases for non-negligible value of the noise. As we can see,
the EP algorithm always achieves a lower error fraction when
using a binary prior as it outperforms any other reconstruction
method in the noiseless and noisy scenarios.

For nonbinary images, we first tested our method using
the Shepp-Logan phantom [24], a well-known benchmark
synthetic image representing a 2D section of a simplified
human head. Experiments are performed in a noise-free setup
and for L = 80. In the implementation of the EP algorithm
applied to this image we have tried out three different priors,
namely the interval, the sparse, and the difference priors, given
by Eqs. (3), (4), and (7), respectively. The upper panel of
Fig. 3 shows the reconstruction error of all the algorithms
under study as a function of the sampling rate α. According
to our findings, EP with the difference prior reaches this
threshold error and thus achieves a perfect reconstruction,
for α in the interval (0.18, 0.20), considerably before the
other algorithms. To further benchmark the versatility of EP
algorithm, we have studied a noisy case in which we apply
EP, QP, and TV to an ensemble of synthetic nonbinary images
for p = 6. The lower panel of Fig. 3 depicts the behavior of
E2, averaged over 50 synthetic images of N = 1959 pixels,
as a function of the noise-to-signal ratio. As we can see from
this figure, EP with a difference variables prior outperforms
the other algorithms for moderate values of noise (low values
of σ ) and then perform very similarly to TV (that computes
the best reconstructed images) for larger value of the noise. A
similar behavior is also found as a function of σ/L for smaller
values of α. It is important to keep in mind, however, that
when using TV and QP the noise distribution is assumed to be
known, while in the EP approach it is an additional parameter
to be inferred. This means that EP with the difference prior
performs closely to TV even when less information about the
measurement setup is available.

C. Results for real tomographic images

We report here the results of QP, TV, and the two im-
plementations of EP algorithm for nonbinary pixels (with
interval and �0 smoothness priors) on the reconstruction of
four real computed tomography (CT) scans: a mouse’s head
and three images of a human head differing in the acquisition
plane. The index i associated with each CT_head_i image
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FIG. 3. (a) E2 error for continuous images as a function of the
sampling rate α for the Shepp-Logan phantom. The dashed line
corresponds to error-free reconstruction threshold. (b) Reconstruc-
tion error versus noise-to-signal ratio σ/L using synthetic random
phantoms for fixed α = 0.745 and p = 6 (an example of phantom
image is depicted in the inset).

refers the position of the scanner with respect to the neck of
the patient (the smaller the index i the closer to the neck).
For these experiments, the original high resolution images
are rescaled to a smaller size of 100 × 100 pixels and the
measuring process has been simulated by our acquisition
algorithm for nonbinary images in the noiseless regime.

In Fig. 4 we plot the reconstruction error E2 as a function of
α ∈ [0.1, 0.6] for the following cases: (a) the mouse’s skull,
(b) CT_head_38, (c) CT_head_80, and (d) CT_head_100.
The original images are reported in the same ordering in
Fig. 5. Rather remarkably, contrary to what we observed in
the Shepp-Logan phantom, here the E2 error of all algorithms
decreases rather smoothly as we include more measurements.
However, the transition to a perfect reconstruction regime
is reached only by TV and EP with difference prior. This
clearly indicates that including pairwise interactions in the
prior is certainly advantageous when dealing with tomo-
graphic images. It is worth noting that perfect reconstruction
is reached by EP with the �0 smoothness prior at α = 0.42 for
E2 = 1.9 × 10−4, while the TV algorithm needs more mea-
surements to achieve the same result, namely α = 0.53 for
E2 = 2.1 × 10−4. Hence, once again, EP surpasses the other
algorithms. This is illustrated in Fig. 6, where we show several
reconstructions of CT_head_100 as a function of α. The
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FIG. 4. E2 error for real tomographic images as a function of
the sampling rate α for (a) the mouse’s head, (b) CT_head_38,
(c) CT_head_80, and (d) CT_head_100.

red line marks the boundary between perfectly reconstructed
images (right region) and less accurate reconstructions (left
region). TV and EP with the �0 smoothness prior reach the
perfect reconstruction at α = 0.53 and α = 0.42, respectively,
while EP with interval prior and QP need more measure-
ments (that is, larger values of α) to achieve an errorless
reconstruction.

D. Phase-type diagram of perfect and imperfect reconstruction

To characterize the performances of all implementations
of EP we show here the perfect and imperfect reconstruction
diagrams in the (α, β ) plane. The tested images are the ones

FIG. 5. Full resolution images for (a) the mouse’s head,
(b) CT_head_38, (c) CT_head_80, and (d) CT_head_100.
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FIG. 6. Table containing the reconstructions of CT_head_100
using EPdiff, TV, EPint, and QP as a function of the sampling rate
α. Top right region, delimited by the red thick line, contains the
perfectly reconstructed images.

used for the lower panels of Figures 2 and 3. Results are
shown in Fig. 7 for both, binary (upper panel) and nonbinary
(lower panel) reconstructions. As we can see from the plots,
the implementations of EP that reach the best performances
(lower reconstruction errors) for both binary and gray-scale
images, are the ones with the binary prior and the difference

prior respectively. Intuitively, this confirms that inference
performance is strongly tied to the closeness of the prior
distribution to the correct statistics of the target ensemble of
images.

V. DISCUSSION

We have shown how to address the problem of recon-
structing tomographic images by including nonstandard prior
information about the image, normally resulting in non-log-
concave prior weight functions. The reconstruction itself can
be performed by the EP algorithm. EP is able to encode,
within a Bayesian framework, empirical information about
the statistics of the treated variables, using ad-hoc prior
distributions that are rather difficult or even impossible to
cope with standard tools. The results presented here employ
prior knowledge both about single pixel and the differences
of nearest-neighbor pixel intensities. For sake of simplicity,
the prior distribution over these auxiliary variables does not
take into account the spatial localization of the pixels but,
in principle, EP can treat even this more specific case. For
instance, one can exploit a collection of a certain class of
tomographic images as a training set for the statistics of
each difference variable, with the resulting histograms then
encoded as prior distributions for future inferences. Notice
that the treatment of difference variables is possible within
the EP framework because it involves a linear transformation
of the pixel intensities. From a more general perspective,
one can think of extending the same formalism to any linear
transformation of the pixel variables.

We have compared the performances of EP to the ones
of standard convex optimization techniques and, only in the
case of binary tomography, to the BP algorithm. Binary to-
mography results show that, using a binary prior, a perfect
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FIG. 7. Reconstruction error in the (α, β ) plane for all our reconstruction techniques differing in the priors: (a) EPbin, (b) EPsparse, and
(c) EPint panels for binary images and (d) EPdiff, (e) EPsparse, and (f) EPint for continuous images.
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reconstruction is possible for synthetic images even within
the limited-data regime, outperforming any other algorithms
adopted here. In the case of nonbinary images, EP performs
remarkably well when using the difference prior, carrying a
clear improvement in the inference when compared to EP
implementations with interval and sparse prior. This suggests
that when dealing with a more specific type of reconstruction
problem, a drastic improvement can be attained by employing
a prior that describes well the specific subclass of target
images. With respect to other techniques, EP reconstructions
present more accurate reconstruction with respect to TV ones
in the case of the Shepp-Logan phantom, real tomographic
images and for synthetic images affected by noise.

Not only is EP able to approximate well the posterior
distributions of the models presented here but it also provides
a powerful tool to estimate the parameters of the model and to
have access to the properties of the noise distribution affecting
the data that are, in real-case scenarios, unknown. We remark
that, in contrast to EP, neither TV nor QP are able to infer
the parameters of the optimization and thus several runs are
needed before reaching the best reconstruction. Moreover,
the model presented here deals with additive noise but the
multiplicative noise regime can be faced by EP using a slightly
different formulation of the likelihood.
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APPENDIX A: FAST COMPUTATION OF THE UPDATE
EQUATIONS

The aforementioned moment matching conditions, which
appear in any implementation of the EP algorithm, require
inverting �−1

(i) , since ai and bi depend explicitly on the ith
diagonal element of �. On top of that, a direct implementation
of the procedure described so far would involve performing
this inversion for each pixel, thus resulting in an algorithm that
scales as O(N4) per iteration step. This is a consequence of the
fact that inverting an N × N matrix scales as N3. However, let
us define

�
−1 = βAT A + JL + B,

μ = �(βAT p + Ba), (A1)

with B a full diagonal matrix of elements Bii = b−1
i . Using

these quantities, we can reduce the computational cost of the
EP algorithm, since now we are able to compute the necessary
elements for applying the moment matching conditions with

a single matrix inversion per iteration step. After some basic
algebra, we notice that we can express ii and μi as

ii = ii

1 − ii/bi
,

μi = μi − ai
bi

ii

1 − ii/bi
. (A2)

Even though this still requires O(N4) operations, we have re-
placed N matrix inversions per iteration step for N arithmetic
operations, as found in Eqs. (A2). As a side effect, we should
also consider that this improvement in performance limits us
to a parallel updating scheme for the values of a and b, instead
of a sequential one.

APPENDIX B: PRIOR ON DIFFERENCE VARIABLES

Let us introduce a set of difference variables fi j = xi − x j

for j ∈ ∂i, along with the pixels variables x, having a prior
distribution as in Eq. (7) on the main text. The joint posterior
probability of intensities and differences is written as

P(x, f |p) = 1

Z
e− β1 (Ax−p)T (Ax−p)

2 e− β2
2

∑
i∼ j (xi−x j− fi j )2

×
∏

i

Ixi∈[x(m)
i ,x(M)

i ]

∏
i∼ j

[
ρδ( fi j ) + (1 − ρ)e− λ

2 f 2
i j

]
,

(B1)

where i ∼ j stands for summing over distinct pairs of neigh-
boring pixels, and we expect to take the limit β2 → ∞. Let E
be the number of difference variables and let us introduce the
vector t = (x

f ). Further, let us define the following (M + E ) ×
(N + E ) matrix S(M+E )×(N+E ) written in block form:

S(M+E )×(N+E ) =
( √

β1A 0M×E√
β1RE×N −√

β2IE×E

)
. (B2)

Here R is a matrix whose entries are given by Ri∼ j,i = 1 and
Ri∼ j, j = −1. Then the posterior can be rewritten as:

P(t|p) ∝ e− 1
2 (St−p̃)T (St−p̃)

N∏
i=1

I
ti∈

[
x(m)

i ,x(M)
i

]

×
N+E∏

i=N+1

[
ρδ(ti ) + (1 − ρ)e− λ

2 t2
i

]
, (B3)

with p̃ = (
√

β1y
0 )

T
. According to the EP approximation

scheme, we approximate each single-variable non-Gaussian
prior via N (ai, bi ) whose parameters are determined through
the set of Eqs. (18). Notice that it depends on the form of the
tilted distribution that, for this choice of priors, reads

Q(i)(t|p) = 1

Z (i)
Q

e− 1
2 (t−μ(i) )T ·�−1

(i) ·(t−μ(i) )

×
{
Iti∈[x(m)

i ,x(M)
i ] i � N

ρδ(ti ) + (1 − ρ)e− λ
2 t2

i i > N
, (B4)
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with

�−1
(i) = ST S + B(i), μ(i) = �(i)

(
ST p̃ + B(i)a

)
. (B5)

APPENDIX C: ESTIMATION OF THE PARAMETERS OF
THE MODEL

As pointed out in Sec. III, Bayesian inference methods
allow to naturally estimate the values of the parameters.
We explain in detail the expectation maximization algorithm
used for determining J and β. Given the probabilistic model
described in the main text for solving the reconstruction
problem, we define P(p|β, J ) as the probability of observing
the data p. Using the actual measured values of p, P(p|β, J )
defines the likelihood of the parameters β and J ,

P(p|β, J ) =
(

β

2π

) M
2
(

J

2π

) N
2

∫
dN xe− β

2 (Ax−p)T (Ax−p)

− J

2
xT Lx

N∏
i=1

ψi(xi ), (C1)

Hence, we would like to find the values of β and J such that
the likelihood above is maximized. However, due to the func-
tional dependence on the parameters, a direct maximization
procedure is rather impractical. The EM algorithm provides
an alternative by iteratively estimating the optimal value of β

and J . Seeking indeed that ∂P(p|β,J )
∂β

= ∂P(p|β,J )
∂J = 0, we obtain

β� = M〈
(Ax − p)T (Ax − p)

〉
P(p,x|β,J )

,

J� = N〈
xT Lx

〉
P(p,x|β,J )

,

(C2)

with

〈(· · · )〉P(p,x|β,J ) =
(

β

2π

) M
2
(

J

2π

) N
2

∫
dN x(· · · )

× e− β�

2 (Ax−p)T (Ax−p)− J�

2 xT Lx
N∏

i=1

ψi(xi ).

(C3)

This provides a closed set of equations for the pair (β� J�),
which is solved by the fixed-point iteration method. Such a
procedure will yield the same equations that a direct imple-
mentation of EM would [22]. On the other hand, the averages
appearing in the formulas (C2) are rather slow to calculate
(as they involve the computation of all covariances). We
found out that an assumption of self-averageness x = 〈x〉QEP is
empirically reasonable (as the output distribution is generally
well concentrated) and leads to excellent results, rendering the
computation both trivial and fast. This finally results in:

β� = M

(A〈x〉QEP − p)T (A〈x〉QEP − p)
,

J� = N

〈x〉T
QEP L〈x〉QEP

. (C4)

The direct approach explained here cannot be applied for
parameters appearing in the priors, such as the sparsity

parameter. In this case the maximization of the likelihood
P(p|s) does not yield an explicit update equation for s∗, so
we choose to optimize this parameter by gradient ascent. In
this case, we can extremize the free energy F = − log P(p|s),
which is typically well approximated by the EP free
energy [16]

FEP = (N − 1) log ZQ −
N∑

i=1

log ZQ(i) , (C5)

where ZQ is the partition function of the approximating distri-
bution, Q(x|p), and ZQ(i) the corresponding one for the tilted
distribution Q(i)(x|p). Finally, to find the optimal value of s
we use the gradient-descent method,

s(t+1) = s(t ) − η
∂FEP

∂s
, (C6)

with η > 0 a relaxation parameter.

APPENDIX D: OTHER METHODS FOR
RECONSTRUCTION

In this section we briefly review the other reconstruction
algorithms we have compared our results to.

1. Quadratic programming

The reconstruction problem, Ax = p, with the prior infor-
mation about x coming from the Laplacian matrix and in the
noiseless scenario, can be recast as a constrained quadratic
minimization problem:

x∗ = arg min
x : Ax = p

xinf � x � xsup

xT Lx. (D1)

Here we have used xinf and xsup to denote the lower and upper
limits for the pixel values, to mimic the constraint of the
interval prior. When dealing with binary images, the pixels
of the above solution, whose value are larger than 0.5 are set
to 1 or to 0 otherwise. In the noisy regime, we instead assume
to know σ = β−1/2 and we minimize instead:

x∗ = arg min
xinf � x � xsup

JxT Lx+ β(Ax − p)T (Ax − p) (D2)

for different values of the parameter J . For each trial J we
compute the reconstruction error and we keep the smallest
one.

2. Total variation

As explained in the main text, we can pose the reconstruc-
tion problem as an optimization one whose objective function
is the �2 norm of the error: ||Ax − p||2. TV is an improvement
on this approach by adding the requirement that the solution
also minimizes the �1 norm of the image gradient, ||∇imgx||1,
which is defined as

(∇imgx)i = (xix − xi, xiy − xi ), (D3)

where ix and iy denote the neighboring pixel to the right and
below i, respectively. Hence, the TV optimization problem
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reads:

x∗ = arg min
x

||Ax − p||2 + λ||∇imgx||1. (D4)

In this last equation, λ is a parameter to weight the relevance
of the image gradient regularization. In the case of noisy
measurements we repeat the minimization for different values
of the parameter λ and we report the E2 error from the
best reconstruction. Since norms are convex functions and
the Laplacian matrix is positive semidefinite, the solution to
these two optimization problems can be found using convex
optimization techniques. For the cases studied in this work,
we used the Convex.jl and Gurobi optimization packages
[25,26] to find the solution x∗.

3. Belief propagation

The reconstructions using the belief propagation algorithm
were obtained with the implementation referenced in Ref. [5],
which can be found in Ref. [27].

APPENDIX E: DETAILS IN THE GENERATION OF THE
PHANTOM IMAGES

For binary images we used the procedure described in
Ref. [5] and the script provided in [27] to generate a sample
of 50 images of size 50 × 50, whose number of clusters is
controlled by an integer parameter p in the following manner:
The algorithm generates images within a circle, as shown in
the insets of Fig. 2, and therefore the effective number of
pixels to be reconstructed is reduced to 1959. Once the value
of p is specified, p2 pixels are chosen randomly as centroids
for a Gaussian filter. Once the filter is applied, only the pixels
that have a value above the image average value are set to 1,
and the rest of them are set to 0. On the other hand, when
dealing with gray-scale images, the same procedure is used to
generate binary clusters, but once they have been constructed,
we set the value of all the pixels within one of them to a
random integer inside the interval [105,255]. This is done for
each of the formed clusters.
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