
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Virtual Network Embedding with Formal Reachability Assurance / Marchetto, G.; Sisto, R.; Yusupov, J.; Ksentini, A.. -
(2018), pp. 368-372. (Intervento presentato al convegno 14th International Conference on Network and Service
Management, CNSM 2018 and Workshops, 1st International Workshop on High-Precision Networks Operations and
Control, HiPNet 2018 and 1st Workshop on Segment Routing and Service Function Chaining, SR+SFC 2018 tenutosi a
ita nel 2018).

Original

Virtual Network Embedding with Formal Reachability Assurance

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2753812 since: 2020-01-08T11:56:24Z

Institute of Electrical and Electronics Engineers Inc.

Virtual Network Embedding with Formal
Reachability Assurance

Guido Marchetto∗, Riccardo Sisto∗, Jalolliddin Yusupov∗, Adlen Ksentini†
∗ Politecnico di Torino

Email: {name.surname}@polito.it
† Eurecom

Email: adlen.ksentini@eurecom.fr

Abstract—Networks are becoming increasingly software-
defined and automated. In this context, SDN and NFV al-
low service providers to use the network infrastructure more
efficiently with reduced cost and to develop secure services.
This procedure of efficient mapping of virtual networks on the
substrate network is delegated to an orchestrator component
of NFV that automatically manages its constituent virtualized
network functions (VNFs). However, incomplete or inconsistent
configuration of VNFs and service graphs may be vulnerable
to potential security threats and could cause breakdown of
services and of the supporting infrastructure. The main purpose
of this paper is to provide an approach for allocation and
formal verification that can ensure at the same time that policies
such as reachability or isolation are never violated and that
optimization is achieved. This ability to orchestrate and automate
service validation makes assurance of reliable service delivery
possible and simplifies security management tasks for network
administrators.

I. INTRODUCTION

Many platforms have recently emerged for NFV man-
agement and orchestration (MANO). These are capable of
setting up and configuring service chains on demand, mapping
Virtual Network Functions (VNF) onto physical resources, and
steering traffic according to chaining policies. However, wrong
configuration of VNFs and service graphs (SGs, aka service
chains) could cause service degradation and security issues or
even the breakdown of the supporting infrastructure. Moreover,
automation of the NFV process with integration of Software-
Defined Networking (SDN) technologies may lead the network
services to be even more error-prone.

This renewed scenario poses new challenges, because the
output of management and mapping service chain components
needs to be carefully verified in order to ensure network
correctness, security and fault tolerance. With this respect,
mechanized formal methods have proven to be powerful
engines for a formal verification of the network behavior in
many different contexts [?], [?], [?], [?], [?], but they all refer
to the service graph or low level configuration correctness. For
example, in our previous work [?] we modeled the network,
the forwarding behavior of VNFs, taking configurations into
account, and reachability policies, as sets of First Order Logic
(FOL) formulas. These sets of formulas are fed as input to a
Satisfiability Modulo Theories (SMT) solver, z3[?], to verify
their satisfiability, i.e. to verify the reachability requirements
are correctly satisfied by the network model.

To the best of our knowledge, a verified orchestration of
network services, giving at the same time optimal placement
and assurance about a number of safety and security-related
properties of the orchestrated virtual networks, remains an
open problem to be addressed by the research community. For
example, optimal placement alone does not provide assurance
that reachability properties requested by a user are valid.
Only after the deployment, a reachability analysis can be
performed by means of tools such as ”ping” or ”traceroute”.
The integration of formal verification with the placement
procedure would allow these analyses to be automated and
performed before deployment, thus formally verifying that
services work before their actual deployment.

To cover this gap, this paper presents an approach that
merges the two operations in one step. In our solution, we gen-
erate an optimal placement plan on the basis of given perfor-
mance parameters (e.g., CPU cycles, physical location, latency,
bandwidth, etc.) and deliver a formal assurance of reachability
policies (e.g. isolation) within the requested performance con-
straints (e.g., sufficient bandwidth is available and latency is
within the recommended values). Overall, this method makes
it safer and more reliable for network operators to compose
their network services in an NFV environment, so that they can
be assured that the properties are correctly enforced. This is
not possible with the previously mentioned verification tools
(e.g. [?], [?]), which offer the possibility to verify network
functionality but without keeping performance indicators into
account. We recently introduced the formulation of the joint
virtual network embedding and formal verification problem in
[?], where we also presented some preliminary results related
to an IIoT use case. Here we generalize the problem to a
more generic network scenario by considering a larger set
of supported VNFs and presenting more experimental results
related to real network topologies different from the IIoT
use case. Also, we discuss the advantages of the proposed
approach over the traditional techniques generally used for
the placement problem.

The remainder of this paper is structured as follows. We first
introduce the main concepts of formal techniques in Section II
to provide the background information for our work. Section
III presents related work and in Section IV we describe the
proposed solution via an example. The obtained results are
presented in Section V, while Section VI concludes the paper.

II. BACKGROUND

Verigraph [?] is a network reachability verifier that models
the forwarding behavior of a virtual network, possibly includ-
ing stateful middleboxes, in a formal way. Verigraph models
the network and its functions as a set of logical formulas and
reduces the verification of reachability properties to a SMT
problem. Our work is based on the same approach used by
Verigraph. However, while Verigraph exploits an SMT solver
(z3), we exploit the possibilities offered by z3Opt [?] which
can solve the Maximum Satisfiability (MaxSAT) problem.

Maximum satisfiability problem: The MaxSAT problem is
the optimization version of the satisfiability (SAT) problem.
The goal is to state and solve optimization objectives in the
context of logical constraints by maximizing the weight of
satisfied clauses in a SAT formula. The clauses can be divided
into hard and soft clauses, depending on whether they must
be satisfied (hard) or they may or may not be satisfied (soft).
In our approach, reachability properties between nodes in the
network that must be satisfied during the verification process
are modeled as hard clauses, while the choices of how to
allocate the VNFs of the SG onto the substrate nodes are
modeled using soft clauses. The MaxSAT solver tries to find
an assignment that satisfies all the hard clauses, and ensures
the sum of the weights of the falsified clauses is minimal.

III. RELATED WORK

The classical literature on Virtual Network Embedding
(VNE) is based on Integer Programming (IP) formulation of
mapping each VNF to specific nodes and links in the substrate
network, but it does not take into consideration reachability
analysis during optimization. A number of NFV placement or
orchestration frameworks have been studied in the literature.
Some approaches, such as PACE [?], propose smart VM
placement to deploy VNFs without considering reachability
properties at all, so they cannot optimize or control the way
packets are forwarded. Other state-of-the art approaches, such
as APPLE [?], also consider reachability policies while pro-
viding VNF placement, where policies describe the sequence
of VNFs that each class of flows needs to traverse in order.
However, these approaches only assure that traffic is forwarded
by the SDN switches according to the policies while they do
not provide formal assurance that reachability policies will
really hold, because they do not use precise models of the
forwarding behavior of middleboxes.

In contrast to traditional methods for solving VNE problem
based on mathematical programming and heuristic methods,
which are limited to a set of constraints over binary, integer,
or real variables, the problem addressed in this paper is to
allocate VNFs while also formally checking that the desired
reachability policies will hold, considering formal models of
the forwarding behavior of all the VNFs involved, including
their configurations. Even though the transformation of propo-
sitional calculus statements into integer and mixed integer
programs is possible [?], combinatorial encoding is impractical
in most cases and we were often not able to generate MaxSAT
encodings for many of the instances when using it. The reason

Table I
SUMMARY OF KEY NOTATIONS

Symbols Notations
Ns, Es, Ls set of substrate nodes/endpoints/links
Nv , Ev , Lv set of VNFs to be allocated/endpoints/links
As

N , As
L attributes of substrate nodes/links

Av
N attributes of virtual functions

lsj,k
link between substrate nodes
indexed by j and k

nv
i ↑ ns

j VNF nv
i is hosted on substrate node ns

j

xi,j
boolean variable, true if a virtual function
xi is mapped onto substrate node j

yi boolean, true if substrate node is in use
Soft(c, w) clause c is a soft clause with weight w

route(vvi , v
v
adj , l

s)
true if the adjacent neighbor of vvi is vvadj
and it is reached via link ls

is that the formulation we have adopted in this paper is the
first-order logic - an extension of propositional logic that
covers variables for individual objects, quantifiers, symbols
for functions, and symbols for relations.

How to verify security holes in SGs is another important
consideration. During our research, we observed a number of
existing approaches ([?], [?]) on the problem of security-aware
optimal VNE. These approaches make an assumption that
each virtual network request has a set of security requirements
and enumerate them in a virtual network. These requirements
only comprise constraints on confidentiality levels of the
substrate nodes and isolation of the resources. In terms of
security services, authentication, data integrity, confidentiality,
and replay protection should be provided [?]. On the other
hand, several VNFs (e.g., NAT) can modify or update packet
headers and payload. In these environments, it is difficult to
protect the integrity of flows traversing such VNFs and reason
about reachability properties without using precise behavioral
models of VNFs.

IV. PROPOSED SOLUTION

Similar to previous works in [?], [?], [?], the substrate net-
work is modeled as a weighted undirected graph and denoted
by Gs = (Ns, Ls, As

V , A
s
L). We illustrate our methodology

with a simple example of a substrate network with two nodes,
three endpoints, and five links, as shown in topology. The
notation used in our derivation is summarized in nots (detailed
description can be found in [?]). We model a virtual network
service request as another weighted directed graph denoted
Gv = (Nv, Lv, Av

V , A
v
L). In this paper we are considering

only chains of VNFs, and we assume the ordering in the chain
is given by the indexes, i.e. vvi is the ith VNF in the chain.
topology shows an example of a service request graph with 3
VNFs and 2 endpoint VNFs.

Upon the arrival of a service request Gv , an orchestrator
component has to decide how to optimally allocate the VNFs
of Gv onto the substrate network nodes. In our case, this VNE
problem is combined with the problem of verifying that a
number of reachability properties are satisfied by the virtual
network, with a given configuration of the VNFs.

The mapping of the endpoint VNFs of the service request
Gv is assumed to be already specified in the service request.
In the example, ev0 and ev4 are assumed to be mapped onto
endpoints es0 and es4 respectively. Figure topology, illustrates
the overall schema of the tool where the Service Request is
supplied by the administrator to the orchestrator component.
In topology, c is a shorthand for the storage attribute while l is
a shorthand for the latency attribute. The storage requirement
is 10 for all VNFs, to be installed in Docker containers. The
figure depicts the SDN paradigm where all physical nodes that
host VNFs are connected to one of the SDN-enabled switches.
The orchestrator obtains network information and delegates
forwarding rules to a central controller. In our example, the
chain of the service request is assumed to be composed of the
following types of functions: a web client (ev0), a firewall (nv

1),
a NAT (nv

2), a DPI (nv
3), and a web server(ev4).

The joint VNE and verification problem is formulated as
a set of clauses for an SMT solver as follows. We use an
initial set of hard clauses representing the VNF forwarding
models and the reachability properties we want to ensure.
These clauses are the same ones used for formal verification
by Verigraph. The reachability properties for our example
can be that the HTTP packets with allowed payloads can
reach ev4 from ev0 while the other packets cannot. If the
current configurations of the involved VNFs in the chain don’t
satisfy the reachability property, the solver returns UNSAT
(unsatisfiable) and it will not produce a placement plan. In
our example, the firewall is configured to allow only HTTP
packets from ev0 to ev4 while the DPI is configured to drop
HTTP packets with certain contents in the payload to satisfy
the reachability property. In presence of these configurations
we check the reachability property between the endpoints and
we obtain SAT (satisfiable) result with an optimal placement
plan. Analogously, we can assert an isolation property between
the endpoints (e.g., if we want to be assured that affected
endpoints are isolated in the network).

Resource requirements: We assume that VNFs from the
same service request can share the same substrate node, which
is common in Data Center networks, e.g. in order to reduce
latency. For our example, the sum of all storage required
by VNFs allocated on a substrate node should be less than
or equal to the storage available on that substrate node and
expressed as:

10 ∗ x11 + 10 ∗ x21 + 10 ∗ x31 ≤ 20 ∗ y1
10 ∗ x12 + 10 ∗ x22 + 10 ∗ x32 ≤ 10 ∗ y2

In addition to these inequalities, we need to represent explicitly
that each VNF can be mapped onto exactly one node. For our
example, such constraints take the following form:

x11 + x12 = 1 x21 + x22 = 1 x31 + x32 = 1

Finally, when substrate node is in use, there is at least one
VNF deployed on this node and for our example we have:

y1 =⇒ x11 ∨ x21 ∨ x31 y2 =⇒ x12 ∨ x22 ∨ x32

Data Center

𝑛1
𝑠

VNF VNF VNF

𝑛2
𝑠

VNF VNF VNF

Data Center

Substrate Network

SDN controller

l=10ms

l=20ms
l=30ms

l=40ms

l=60ms

Service Request

c=20

c=10

𝑒0
𝑣 𝑛1

𝑣 𝑛2
𝑣 𝑛3

𝑣 𝑒4
𝑣

𝑒0
𝑠

𝑒4
𝑠

𝑒3
𝑠

Orchestrator

Figure 1. An example of VNE problem with verification process.

Routing tables: The network behavior of the virtual service
is modeled by a set of formulas that represent the routing tables
of each network function involved in the service request. In
order to see the formulas related to the forwarding behavior
of network functions, readers are encouraged to see [?]. These
formulas express the next hops - next gateways to which
packets have to be forwarded along the path to their final
destination. For each VNF vvi and next hop vvi+1, we define a
predicate route(vvi , v

v
i+1, l

s) which is true if the next hop of
vvi is vvi+1 and it is reached via link ls.

The routing table of the first VNF ev0 in the chain is
formulated as a set of soft clauses, with the opposite of the
link latency as the weight. In this way, the MaxSAT solver
will minimize the overall latency of the chosen path in the
infrastructure. As the location of ev0 is fixed in the substrate
endpoint es0, we generate the following soft constraint for each
possible substrate node ns

k onto which nv
1 (the next VNF in

the chain) can be allocated:

Soft((route(ev0, n
v
1, l

s
0k) =⇒ x1k),−latency(ls0k)) (1)

where the notation Soft(c, w) specifies that clause c is a soft
clause with weight w.

In practice, the routing table of the endpoint VNF specifies
to which substrate node k a packet is forwarded depending on
the allocation of the next VNF in the chain. For the example
illustrated in topology, which involves two endpoints in the
substrate network, the following soft constraints are generated
for the first endpoint of the chain:

Soft((route(ev0, n
v
1, l

s
01) =⇒ x11),−10)

Soft((route(ev0, n
v
1, l

s
02) =⇒ x12),−20)

(2)

The soft clauses of the other VNFs nv
i ∈ Nv in the chain,

with i > 0, are formulated similarly:

Soft((route(nv
i , n

v
i+1, l

s
jk) =⇒ xij ∧ x(i+1)k)),

−latency(lsjk))

i.e., if VNF i forwards packets to the next VNF i + 1 in the
service graph through link ljk, then the corresponding boolean

variables xij and x(i+1)k, which indicate the locations of the
VNFs must be true. If two VNFs are allocated onto the same
substrate node, i.e. j = k, we have latency(lsjk) = 0, and a
soft clause with weight equal to zero is added to the set. For
the example in topology the soft constraints are formulated as
follows:

For nv
1:

Soft((route(nv
1, n

v
2, l

s
11) =⇒ x11 ∧ x21), 0)

Soft((route(nv
1, n

v
2, l

s
12) =⇒ x11 ∧ x22),−30)

Soft((route(nv
1, n

v
2, l

s
21) =⇒ x12 ∧ x21),−30)

Soft((route(nv
1, n

v
2, l

s
22) =⇒ x12 ∧ x22), 0)

(3)

For nv
2:

Soft((route(nv
2, n

v
3, l

s
11) =⇒ x21 ∧ x31), 0)

Soft((route(nv
2, n

v
3, l

s
12) =⇒ x21 ∧ x32),−30)

Soft((route(nv
2, n

v
3, l

s
21) =⇒ x22 ∧ x31),−30)

Soft((route(nv
2, n

v
3, l

s
22) =⇒ x22 ∧ x32), 0)

(4)

For nv
3:

Soft((route(nv
3, e

v
4, l

s
14) =⇒ x31),−40)

Soft((route(nv
3, e

v
4, l

s
24) =⇒ x32),−60)

(5)

where ev4 represents the last VNF in the chain. As the location
of the endpoint VNF is fixed in the substrate endpoint es4, the
implication is similar to class, where we reason only about
the location of VNF nv

3 . It is important to mention that all the
equations automatically generated from a custom XML format
provided by the administrator of the network. This format
ensures that complex network services can be expressed in
a context fully compliant with NFV and SDN technologies.

Optimization Objectives: VNE is a multi-objective opti-
mization problem. From an infrastructure perspective, as many
service requests as possible should be mapped onto the sub-
strate network, making efficient use of the substrate network
resources and minimizing link propagation delay (especially
for communications that require low latency [?]). Accordingly,
the objective function of our formulation has two goals: to
minimize the number of substrate nodes in use and to minimize
network latency. By feeding these objectives along with the
formulas defined so far to the MaxSAT solver, we obtain,
if possible, a model that satisfies all hard clauses, including
the ones about reachability, while minimizing latency and the
number of nodes in use. In the case of our example, the solver
says the model is satisfiable with value true given to the
following variables: x1,2, x2,1, x3,1, y1, y2. We can conclude
from the output that the firewall VNF nv

1 in the chain is placed
on the substrate node ns

2, the NAT nv
2 and the DPI nv

3 on the
substrate ns

1. This allocation of the VNFs on the infrastructure
introduces a link latency of 90 ms.

V. EXPERIMENTAL RESULTS

The joint VNE and verification approach based on MaxSAT
presented in this paper has been evaluated by performing a
number of experiments with real data sets. Each of these
scenarios consists of a substrate network with a number of

Table II
COMPUTATION TIME OF DIFFERENT TOPOLOGIES

Topology Nodes Links Time (s)
Internet2[?] 12 15 0.551
GEANT[?] 23 74 17.674
UNIV1[?] 23 43 20.684

AS-3679[?] 79 147 31.454

service requests to be allocated, with related reachability
properties to be verified. As we can see from ourt, for small
and medium topologies the placement and verification tool
is fast. However, for the largest scenario where there are 79
hosts and 147 links, which involves 4 VNFs, the tool requires
average of 31 seconds.

Algorithms solving the VNE problem come in two forms:
offline algorithms and online algorithms. Online algorithms
are better suited to deal with high dynamicity, which however
comes at the cost of less optimal solutions, relying on heuris-
tics. Moreover the online VNE problem is more difficult as we
need to consider the arrival times of the requests and there are
more possibilities of inefficient resource utilization due to time
gaps created by earlier mappings. Our version allows to tackle
the cases where the service requests are issued well ahead of
the time when their service will be activated, thus allowing
for sufficient time for offline planning. Taking into account
that these calculations are performed with an exact method to
obtain an optimal solution in offline mode, the computation
time is acceptable. As the initial results show promises in
smaller instances, we plan to improve our abstract model to
cope with bigger instances and use them to further scale our
tool.

VI. CONCLUSION

As today’s networks are becoming more virtualized, it is
important that network wide invariants are carefully verified
before service deployment in production environments in order
to detect and mitigate security attacks. This paper studied
an approach for solving the VNE problem jointly with a
formal analysis of reachability. It relies on the notion of
maximum satisfiability and models the embedding problem
as a set of clauses to be fed to a MaxSAT tool, along with
other clauses that model the VNF forwarding behavior and the
desired reachability policies. Instead of providing two different
components for an orchestrator that performs allocation and
formal verification of network wide invariants separately, our
approach achieves this in one step. The results from our
experiments show that the computational cost for providing
formal assurance about reachability in addition to optimal
embedding of virtual functions is adequate for offline modes
of operation.

