
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automated Security Management for Virtual Services / Repetto, M.; Carrega, A.; Yusupov, J.; Valenza, F.; Risso, F.;
Lamanna, G.. - ELETTRONICO. - (2019). (Intervento presentato al convegno 2019 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN)) [10.1109/NFV-SDN47374.2019.9040069].

Original

Automated Security Management for Virtual Services

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/NFV-SDN47374.2019.9040069

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2753693 since: 2020-01-08T14:27:11Z

IEEE

Automated Security Management

for Virtual Services

M. Repetto, A. Carrega

S2N Lab, CNIT, Genoa, Italy

Email: {first.last}@cnit.it

J. Yusupov, F. Valenza, F. Risso

DAUIN, Politecnico di Torino, Turin, Italy

Email: {first.last}@polito.it

G. Lamanna

Infocom Srl, Genoa, Italy

Email: {first.last}@infocomgenova.it

Abstract—The virtualization of applications and network func-
tions facilitates the dynamic creation of compound services, au-
tomating both the provisioning of computing/networking/storage

resources and their life-cycle management. Virtualization of
security appliances is a common approach to protect such
services, but can neither offer broad visibility across the whole
deployed service nor implement coordinated and fine-grained
enforcement actions.

This paper proposes a novel security framework based on
the integration of lightweight and programmable monitoring and
enforcement hooks in each virtual function, which are collectively
controlled by a common logic for prevention, detection, reaction,
and mitigation of security threats. Our framework keeps direct
control over the functionalities of the security hooks, and lever-
ages standard orchestration tools for management actions on the
service graph. It can be automatically instantiated by common
orchestration operations, hence seamlessly integrating with the
deployment process of service graphs.

I. INTRODUCTION

The introduction of virtualization paradigms and software-

defined infrastructures enables fully-digital workflows in

the orchestration of applications and services, from dy-

namic resource provisioning to automatic software deployment

and configuration. The large correspondence between the

Infrastructure-as-a-Service model and physical infrastructures

has nurtured the belief that virtual services could have been

effectively protected by software instances of legacy secu-

rity appliances. However, the absence of a strong security

perimeter, multi-tenancy, and the different threats landscape

bring this attitude into question [1]. Furthermore, the lack of

interoperability and shared management interfaces also hinders

the creation of common control and management frameworks,

which would be necessary to bring more automation towards

a true Security-as-a-Service paradigm [2] and avoid anomalies

in security configuration [3].

Based on these considerations, we have already proposed a

novel approach, based on the separation between pervasive and

capillary monitoring and enforcement tasks and the centralized

logic for prevention, detection, mitigation, and reaction [4].

This concept is now being implemented in a framework that

complement existing orchestration tools. This paper shows

how the framework is deployed as part of the network service

graph, and how it behaves at run-time. Specifically, we demon-

strate (i) how firewalling rules are automatically inferred by

the service topology and security policies [5]; (ii) how hetero-

geneous data is collected, including logs from the operating

system and applications, as well as custom network statistics.

The current implementation leverages Kubernetes as service

orchestrator. We describe the overall system architecture in

Section II and current features in Section III.

II. ARCHITECTURE

Fig. 1 shows the logical architecture of our framework,

which is based on four pillars. First, the integration of

lightweight monitoring and enforcement hooks in each virtual

function, which can be dynamically programmed. Second, a

Context Broker that hides the heterogeneity of the security

hooks. Third, a Security Controller that reacts to management

events and security alerts, by invoking specific security ser-

vices. Fourth, an Automatic Configuration Element (ACE) and

a set of specific configuration modules.

Monitoring and enforcement hooks are automatically de-

ployed in each virtual function and consist in Logstash beats

running in userspace (monitoring) plus kernel eBPF programs

(monitoring and enforcement). They gather information from

system and application logs and include both standard compo-

nents (i.e., FileBeat, PacketBeat, MetricBeat) and a new one

(BpfBeat) that collects measurements from eBPF programs

(network statistics, system calls). The Polycube framework

is used to run control applications (cubes) that configure the

data plane. The interface exposed by the control plane is the

Polycube API, while the data channel is implemented by the

existing Logstash-Kafka pipeline.

The Security Controller receives notifications from the or-

chestrator, for example when a deployment starts/finishes, and

from security administrators when a new policy is required.

It invokes the ACE and carries out the required actions.

Actions entail both re-configuration of the security hooks

(e.g., increase verbosity, monitor additional files, measure

statistics of network flows) and management operations on

the service graph through the orchestrator (e.g., remove/re-

deploy/terminate a VNF).

The Context Broker provides an abstraction of the security

hooks in each virtual function. The abstraction includes the

graph topology, current configurations (including IP addresses,

received from the orchestrator), security data and events. The

internal architecture of the Context Broker is based on the

Elastic Stack framework (Elastic Search + Logstash); informa-

tion is saved in a database for offline processing of historical

data. A Kafka message broker is included to stream data to

FileBeat

PacketBeat

MetricBeat

BpfBeat

Logstash

P
o

ly
c
u

b
e

Log files

Monitoring Firewall

Filter Tracer

Logstash beats

eBPF programs

Userspace

Kernelspace

Logstash

Virtual function (container)

Kafka

Logstash

Log files

Control plane

Data plane

Elastic
Search

Message Broker

Time
Series

Storage

Programming

Agent

NS
Repository

Context Broker

k8s

VeriKube
Security

Controller

uS1

uS1

uS1

uS1

uS1

Kibana

ACE

Mgmt

plane
ContextKube EventKube

Fig. 1: Framework for security management of virtualized applications.

detection algorithms that process it in real time. Through the

Context Broker, the Security Controller controls the behavior

of the security hooks by changing the type, frequency, and

verbosity of data and events collected.

The “smart” logic of the framework is implemented by ACE

and its modules. ACE takes as input the service topology,

the current network configurations, and the security policies,

and returns as output the configuration of the security hooks.

In the current implementation, the scope is limited to auto-

matic firewall configuration, through a specific module named

VeriKube.

We also developed two additional modules to interface

Kubernetes to our system. EventKube delivers infrastructure-

level events (e.g., “service has been deployed”) to the security

controller, whereas ContextKube gives access to management-

level configurations (e.g., IP addresses assigned for manage-

ment) which may not be visible outside Kubernetes.

III. SECURITY SERVICES

There are two security services already implemented,

namely automatic firewall configuration and collection of

heterogeneous security context.

A typical workflow starts by deploying the service; for

instance, a web-based application made of the Apache and

MySQL servers. Docker images already include Polycube,

Logstash, and the beats. After deployment and initialization,

a notification is sent by EventKube to the Security Controller.

At this stage, only the current configuration is monitored

by the Context Broker (through ContextKube). The Security

Controller retrieves the network service description from the

repository and the current configuration from the Context

Broker. It invokes, by ACE, the VeriKube module, which

determines the firewall rules to enable communication between

the servers and external clients, according to security policies

(i.e. the communication requirements) which are part of the

service description (e.g., Apache to MySQL, external client

to Apache). Firewall rules are then returned to the Security

Controller, which enables the firewalling service and pushes its

configuration through the Context Broker. The correct behavior

of the eBPF-based firewall can be verified by some connection

attempts.

Once the firewall is operating, the set of collected logs can

be progressively increased, starting from basic system logs

to server logs and network statistics, so to adjust the depth

of inspection to the current needs, in order to reduce the

overhead. In this case, the Security Controller re-programs

the local beats through the Context Broker, which in turn

invokes the Polycube API to notify the local control “cubes.”

By altering the network traffic (i.e., HTTP requests, a SYN-

flooding attack), it is possible to compare the verbosity and

frequency of data displayed by the Kibana interface with the

overhead on the network and CPU, as shown by standard

performance monitoring tools (i.e., Wireshark and top).

ACKNOWLEDGMENT

This work was supported in part by the European Com-

mission, under Grant Agreement no. 786922 and 833456.

The authors thank Elis Lulja who contributed to the first

implementation of the prototype.

REFERENCES

[1] R. Rapuzzi and M. Repetto, “Building situational awareness for network
threats in fog/edge computing: Emerging paradigms beyond the security
perimeter model,” Future Generation Computer Systems, vol. 85, pp. 235–
249, August 2018.

[2] S. Hares, D. Lopez, M. Zarny, C. Jacquenet, R. Kumar, and J. Jeong,
“Interface to network security functions (I2NSF): Problem statement and
use cases,” IETF RFC 8192, July 2017.

[3] F. Valenza, S. Spinoso, C. Basile, R. Sisto, and A. Lioy, “A formal model
of network policy analysis,” in 2015 IEEE 1st Int. RTSI Forum (RTSI),
Sep. 2015, pp. 516–522.

[4] S. Covaci, R. Rapuzzi, M. Repetto, and F. Risso, “A new paradigm to
address threats for virtualized services,” in IEEE 42nd COMPSAC, Tokyo,
Japan, Jul. 23rd-27th, 2018, pp. 689–694.

[5] C. Basile, F. Valenza, A. Lioy, D. R. Lopez, and A. Pastor Perales,
“Adding support for automatic enforcement of security policies in nfv
networks,” IEEE/ACM Transactions on Networking, vol. 27, no. 2, pp.
707–720, April 2019.

