
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Model-Checking Speculation-Dependent Security Properties: Abstracting and Reducing Processor Models for Sound
and Complete Verification / Cabodi, Gianpiero; Camurati, Paolo; Finocchiaro, Fabrizio; Vendraminetto, Danilo. - In:
ELECTRONICS. - ISSN 2079-9292. - 8:9(2019). [10.3390/electronics8091057]

Original

Model-Checking Speculation-Dependent Security Properties: Abstracting and Reducing Processor
Models for Sound and Complete Verification

Publisher:

Published
DOI:10.3390/electronics8091057

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2753232 since: 2023-04-27T13:24:18Z

MDPI

electronics

Article

Model-Checking Speculation-Dependent Security
Properties: Abstracting and Reducing Processor
Models for Sound and Complete Verification †

Gianpiero Cabodi , Paolo Camurati, Fabrizio Finocchiaro * and Danilo Vendraminetto

Dipartimento di Automatica e Informatica, Politecnico di Torino, 10129 Turin, Italy;
gianpiero.cabodi@polito.it (G.C.); paolo.camurati@polito.it (P.C.); danilo.vendraminetto@polito.it (D.V.)
* Correspondence: fabrizio.finocchiaro@polito.it
† This paper is an extended version of our paper published in the Proceedings of the International Conference

on Codes, Cryptology, and Information Security, Rabat, Morocco, 22–24 April 2019; pp. 462–479.

Received: 24 July 2019; Accepted: 16 September 2019; Published: 19 September 2019
����������
�������

Abstract: Spectre and Meltdown attacks in modern microprocessors represent a new class of attacks
that have been difficult to deal with. They underline vulnerabilities in hardware design that have
been going unnoticed for years. This shows the weakness of the state-of-the-art verification process
and design practices. These attacks are OS-independent, and they do not exploit any software
vulnerabilities. Moreover, they violate all security assumptions ensured by standard security
procedures, (e.g., address space isolation), and, as a result, every security mechanism built upon
these guarantees. These vulnerabilities allow the attacker to retrieve leaked data without accessing
the secret directly. Indeed, they make use of covert channels, which are mechanisms of hidden
communication that convey sensitive information without any visible information flow between
the malicious party and the victim. The root cause of this type of side-channel attacks lies within
the speculative and out-of-order execution of modern high-performance microarchitectures. Since
modern processors are hard to verify with standard formal verification techniques, we present
a methodology that shows how to transform a realistic model of a speculative and out-of-order
processor into an abstract one. Following related formal verification approaches, we simplify the
model under consideration by abstraction and refinement steps. We also present an approach to
formally verify the abstract model using a standard model checker. The theoretical flow, reliant on
established formal verification results, is introduced and a sketch of proof is provided for soundness
and correctness. Finally, we demonstrate the feasibility of our approach, by applying it on a pipelined
DLX RISC-inspired processor architecture. We show preliminary experimental results to support our
claim, performing Bounded Model-Checking with a state-of-the-art model checker.

Keywords: model-checking; secure CPU architecture; speculative execution; taint propagation;
abstraction and reduction; pipeline flushing; confidentiality; reorder buffer; spectre; meltdown

1. Introduction

Information security has gained increasing attention, over the last years, not only from the
technical community but also from the general public. This trend is highly related to the awareness
that (the lack of) security affects business, privacy and even health information. Actors involved in
information security, on both sides, are using increasingly sophisticated methods and tools. Software
is becoming more complex, hardware more compounded, services are growing in number. All these
trends induce the attack surface to develop bigger and wider. While the main focus of cyberattacks is
on software vulnerabilities, it is in the hardware spectrum that the challenge is becoming hard, due to

Electronics 2019, 8, 1057; doi:10.3390/electronics8091057 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-5839-8697
https://orcid.org/0000-0001-8695-7353
http://www.mdpi.com/2079-9292/8/9/1057?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8091057
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 1057 2 of 19

the intrinsic complexity, the incompleteness of simulation techniques, and the scalability issues of
formal verification.

In this paper, we address scalability of formal verification techniques, by focusing on a
recently emerged class of hardware vulnerabilities, related to speculative execution of instructions in
microprocessors, such as Spectre [1] and Meltdown [2], that pinpoint and exploit vulnerabilities in the
processor design jointly with known side channel attacks.

Security weaknesses of speculative executions are of great concern because of the intrinsic
complexity of hardware designs and the inherent difficulty of their verification.

Spectre and Meltdown are clear examples of violations to two classes of key security requirements:
confidentiality and integrity. Confidentiality safeguards that an unauthorized party cannot obtain
sensitive information [3], whereas integrity is the assurance that the information is trustworthy and
accurate (i.e., not tampered) [4].

Belonging to the class of side-channel attacks, they exploit the physical environment of a system
to extract secret data (or information dependent on them) from its (externally visible) state, rather than
exploiting flaws in the implementation (i.e., software bugs and buffer overflows).

Side channels, though actively researched [5–8] in recent years, were never considered to be big
threats, as usually demanding very peculiar expertise and knowledge about the target. In the case of
Meltdown and Spectre, data leakage can occur using simple exploits, and without any particular prior
knowledge/expertise.

In the case of speculative execution, information can flow through side channels, based
on a well-known gap between the concrete realization of the Instruction Set Architecture (ISA)
and processor-specific speculation-related behaviors of high-performance MicroArchitectures (MA).
Although registers and memory show no visible distinguishable architectural effect, side effects might
happen at the microarchitectural level. It is this subtle discrepancy between MA and ISA [9] that
Spectre/Meltdown rely on. So, while the ISA behavior is proven completely correct by verification
and validation steps, the actual MA can attain certain states which could lead to potential threats,
e.g., cache prefetched data exploited by established techniques [10–12].

In other words, as authors in [13] brilliantly stated: “Spectre variants are a form of side-channel attack
in which microarchitectural state, formerly intended to be isolated from retired execution becomes observable at an
architectural level by an attacker program sharing resources with the victim. This state can include secrets loaded
into shared architectural state including data referenced via speculation prior to completing access, validity,
or bounds checks.”

The great impact of Meltdown and Spectre has not entirely been recognized yet [14].
Some mitigations have been undertaken but they tend to impact very heavily on performance.
The reported magnitude of impact varies depending on the industry sector and expected workload
characteristics [15]. Despite all the adopted countermeasures, the paramount question is still there:
how do we prevent such attacks?

In this paper, we propose a novel approach to verifying security properties in pipelined
out-of-order processors that can be applied to check speculation-based vulnerabilities.

The main idea is to use abstraction and reduction techniques to create a feasible model of the
original design. The correctness of our approach is proved by resorting to well known literature on
formal processor verification, such as model checking techniques, taint propagation, refinement of
abstract models.

Though the approach is not yet automated, we describe the key steps and we employ a use case
to show that it is viable: we perform it on a processor inspired by Hennessy and Patterson’s DLX RISC
processor [16]. The design has been enriched by adding pipelining and reorder buffer to be Tomasulo’s
algorithm compliant.

After the application of model transformations, which preserve functionality and correctness,
we feed the final abstract model to a model checker.

The transformations could be summarized as follows:

Electronics 2019, 8, 1057 3 of 19

• data abstraction,
• pipeline reduction,
• taint encoding,
• refinement.

The present work is an extended version of [17]. The main differences are:

• Section 5 has been revisited and expanded to better illustrate the underlying details of the approach.
• Model abstraction, taint propagation and verification have been expanded to better illustrate the

underlying details of the approach.
• Tables and Figures have been added.
• Comments and explanations have been added to figures and tables.
• A full detailed example has been provided to show the feasibility of our approach.
• The correctness of the approach has been revisited and expanded: references to related

state-of-the-art publications have been added.

The organization of the paper is the following:

• Section 2 provides state-of-the-art related work and background notions.
• Section 3 presents the processor architecture model.
• Section 4 gives a detailed description of an implementation of Spectre and Meltdown.
• Section 5 shows the verification approach we adopt on our case-study processor model.
• Section 6 produces experimental results to support the viability of our methodology.
• Section 7 proposes remarks and future directions in this field.

2. Preliminaries, Background, Related Works

We assume that the reader has basic knowledge of cybersecurity concepts, architecture of
microprocessors, and formal verification. The notations used in this paper are defined whenever
used for the first time.

In the following, we briefly overview some notions and related works that we deem important
for the understanding of the subsequent sections.

2.1. Spectre and Meltdown Attacks

Speculative execution is a widely used performance improving feature in modern CPU designs.
Within the context of speculative execution, the architectural state is intended to be largely unaffected
by modifications at the microarchitectural level: if an instruction is not retired (not committed),
e.g., due to branch misprediction, the processor is reverted to its previous state and execution restarts
on the correct execution path. In a similar way, in the case of an exception handling, a pipeline flushing
is enforced, and all the instructions occurred after the exception are cancelled, i.e., no architectural
changes are made effective.

With out-of-order and speculative execution, an architecture allows many memory references to
be issued but eventually aborted. However, incorrectly issued memory references may produce an
indirect prefetching effect with consequent data transfers into the cache.

Although the attacker cannot directly access sensitive data, even when the cache holds it,
the attacker can obtain indirect information depending on the secret, such as the memory addresses
accessed by the victim.

Well-known side-channel techniques exist that, based on measuring cache access times, can
identify previously accessed cache sets/pages. Meltdown and Spectre, for instance, use a special case
of this kind of leakage. They build a covert channel, in order to transfer the microarchitectural state,
which was modified by transient (i.e., not yet retired) instruction sequence, into the architectural state.
At this point, specific cache timing attacks are employed, such as Flush+Reload [5]. Thus, the attacker

Electronics 2019, 8, 1057 4 of 19

can recognize whether the monitored cache line was filled in with data, by simply measuring the
access time.

Though side channels attacks have long been studied since the 1970s, only with Meltdown and
Spectre it became clear that this class of attacks could be a potential threat for economic, privacy and
security matters.

The full impact is not known at the time of writing. What we know is that there are two primary
ways Meltdown and Spectre could impact business policies: increased risk of cyberattacks targeting
sensitive data and a decrease in performance resulting from patches.

2.2. Formal Verification of Microprocessors with Out-of-Order Execution

Processors have always represented a serious challenge for design verification tools. Within this
field, formal verification potentially offers a high degree of preciseness and automatic procedures.
When complete, it can prove the correctness of a design.

Formal verification of processors is covered by a vast literature, ranging from more automated
(yet poorly scalable) techniques, such as Model-Checking [18,19], to Theorem Proving systems that,
though more powerful and complete, typically need much more manual (expert) work.

Most formal processor verification approaches tackle scalability (state explosion) by resorting to a
couple of model transformations:

• model reduction: a form of case split, where only a properly selected subset of possible execution
traces is considered;

• data abstraction: the model behavior is over-approximated by (partially) removing/transforming
data (deemed) unnecessary to the proof; assumptions have to be made so that the soundness of
the approach is guaranteed, e.g., arithmetic and logic functionalities are already verified. Possible
refinement steps are needed, whenever the abstraction is unsound.

Theorem proving is the most general approach, virtually able to deal with more convoluted
hardware designs and, in general, it is not limited to a specific configuration, and it can prove arbitrary
processor configurations. Yet, as shown in the literature [20,21], developing proofs for real world
designs tends to be very labour intensive.

Within the field of pipelined processor verification, theorem proving can be adapted and partially
automated, thus leading to approaches that could even be considered to be generalizations of
model checking.

Completion functions, used in [22], specify the desired effect of unfinished instructions on the
pipeline. They can be viewed as a map between any out-of-order (OOO) processor state and a flushed
state on the architectural side. The method leads to modularized and layered proofs that can be
managed independently and used as hints for subsequent proofs. The authors in [23] have applied
them to the verification of a Tomasulo compliant OOO processor.

Though partially automatic, the approach requires the user to manually define a set of completion
functions, one per unfinished instruction and to manually define a way to compose them, in order to
form the abstraction of the processor.

Burch and Dill [24] use a similar flushing technique in conjunction with the notion of uninterpreted
functions. They make an abstraction of the behavior of a processor using uninterpreted function
symbols, then verification is done by symbolic execution. To avoid state space explosion, they
decompose the verification problem into three subproblems, and require the user to provide some
extra control inputs. Informally, the first property states that the implementation correctly executes
instructions from a flushed state; the second confirms that stalling does not affect the specification state;
and the third checks that instructions are fetched correctly. One of the advantages of this approach is
that it can be used to verify a hardware system without knowing the concrete implementation details.
Another great benefit is that it is easily automated. Yet, special decision procedures for uninterpreted

Electronics 2019, 8, 1057 5 of 19

function symbols are needed. Another limitation is the application to pipelined processors only,
without any out-of-order feature.

Skakkebaek et al. [25] introduce a two part approach. First, the implementation is modified to
derive an in-order abstraction; then, by exploiting domain-specific knowledge, they define a functional
equivalence relation between the out-of-order implementation and the abstraction. Second, they prove
that the abstraction is functionally equivalent to the ISA via a technique called incremental flushing,
which is based on the Burch-Dill automatic flushing approach. Although the proposed method
effectively applies to out-of-order processors, it heavily relies on human-guided theorem proving.

McMillan [26] verified Tomasulo’s algorithm for out-of-order execution, tackling scalability
by compositional model-checking. The main issue with his approach is that it is not fully
automatic, and a good balance between number of invariants and state space explosion must be
manually/heuristically reached.

Sajid et al. [27] extended and combined the BDD techniques with decision procedures for
uninterpreted function symbols. Despite being a great improvement, their approach cannot be easily
integrated with symbolic model checkers. Also, they have not considered the application of their work
on the verification of OOO processors.

Berezin et al. [28] enhanced traditional model-checking by incorporating uninterpreted function
symbols, and proposed effective and scalable propositional completion function for Tomasulo’s
algorithm. Their methodology enables the automatic verification of complex parametrized designs
and allows them to verify Tomasulo’s algorithm in any arbitrary configuration.

2.3. Verifying Cybersecurity by Tainting

None of the approaches described in the previous section was proposed for verification of
cybersecurity properties. Though formal verification has been discussed and applied to cybersecurity,
the main efforts have been devoted to expressing security properties, and/or to attain scalability
by mixed dynamic/static techniques such as semi-formal and/or concolic (concrete symbolic)
approaches [29,30].

Information Flow Tracking (IFT) is a method for ensuring confidentiality and integrity of systems
that manipulate sensitive data by tracking how information moves throughout the system. IFT has
been extensively employed in the security context for both hardware and software systems, both
within formal and non formal approaches.

Basically, IFT models how labeled data moves through a system. The foundation of IFT is to
label data by enhancing the hardware and/or the software to make information flows explicitly
visible [31,32].

IFT techniques for hardware systems have been applied at different levels of abstraction, in order
to ensure confidentiality and integrity of a system. For example, at the gate level, augmenting each
logic primitive with additional IFT logic in the synthesized design netlist enables the tracking of all
logical information flows.

In general, there are two parties (i.e., two variables in software systems, two modules in hardware).
Information flows from one object A to the object B if and only if a change in A affects the value of B
(i.e., interference).

Within this framework, one could define confidentiality and integrity properties as follows:

• Confidentiality: object A is confidential, while object B is public. An attacker could gain
information about A by observing variations on B. In this case, the property would be that
A must not flow to B.

• Integrity: object A is untrusted, while object B is trusted. An attacker could gain access to B
through malicious modifications on A. Again, the property would be that A must not flow to B.

Electronics 2019, 8, 1057 6 of 19

A natural way to implement this logic is by using the so called tainting. This approach works by
marking sensitive data introduced at the source as tainted and monitoring taint propagation over the
whole system until it reaches a sink (i.e., the target).

The authors in [33] propose a new kind of security properties called taint-propagation properties.
The core idea is that information flow analysis is extended with instruction level abstraction (ILA) to
create a model of the interactions between hardware and software. The method, thus, can express
security properties at the HW/SW boundary and it is shown to be successful in software/hardware
co-verification. However, they do not cover vulnerabilities at the microarchitectural level.

Further notable research on adapting software taint analysis in the hardware domain, in order to
detect security vulnerabilities, has been pioneered in [34–36].

As an alternative to standard model-checking approaches, the Secure Path Verification technique
has been presented in [37]. Starting from the notion of taint-propagation properties, the authors develop
a new class of properties: Path properties. As for its parent class, a path property specifies a source,
a destination and environmental constraints for taint propagation. Path properties also introduce path
constraints to enforce secure information flow properties. The work also describes a verification engine
based on a variant of equivalence checking, where taint propagation is straightforward as directly
supported by the model checker engine.

As shown before, IFT can be applied at different levels of precision and abstraction and this
can lead to different verification results in terms of soundness. The repercussions of this choice are
discussed in Sections 5.1 and 5.3.

3. Processor Model

This section describes a case study, the pipelined microprocessor that we adopt to introduce our
methodology. The processor is based on the renowned Hennessy and Patterson’s DLX architecture [16],
a 32-bit generic RISC processor architecture that we enhanced by implementing pipelining and
speculative execution.

The processor, whose high-level design is shown in Figure 1, is a load/store architecture and
adopts a seven-stage pipeline. Speculative execution is supported by means of a reorder buffer
and reservation stations, controlled by a Tomasulo’s algorithm [38]. Tomasulo’s algorithm supports
out-of-order instruction execution based on data-flow order, rather than sequential order. In case
of mispredicted instructions a misprediction exception is raised, the execution is stopped, and the
pipeline is flushed. In a similar way, if there is an instruction cache miss, the pipeline is stalled until
the instruction is available. In case of an exception, any microarchitectural step occurring after the
exception is not committed to the architectural state.

Stages IF1, IF2 and ID handle instruction fetch and decode. After stage ID, instructions wait
for their operands to be available. They are then issued to the appropriate functional unit. This is
done in the reservation stations (RS), where instructions are treated as in a FIFO queue until they are
dispatched to the corresponding execution unit.

An instruction is ready for issue when operands, destinations, and execution units are available,
Reservation stations are hardware data structures that hold instructions waiting for execution.
Operation results available in reservation stations are possibly forwarded to reduce RAW hazards
(i.e., result values go back to the RS, therefore also in the ROB, so that dependent instructions have
their operands ready), and they support out-of-order execution.

For the sake of simplicity and without losing correctness, we consider the execution units to be
fully pipelined, i.e., their throughput is one instruction every cycle. Likewise, regarding our model all
instructions take the same number of clock cycles to complete their execution, though in reality they
do differ for timing span.

The reorder buffer is used to maintain the program order of the instructions so that they can be
committed in that order to respect the ISA semantics.

Electronics 2019, 8, 1057 7 of 19

Figure 1. The pipelined processor model with 7 stages: [IF1] A 32-bit instruction is fetched from
memory at the address given by the program counter PC (branch prediction logic is included); [IF2] This
is meant to be a virtual address translation unit, possibly coupled with a TLB, but in this case study it is
just a combinational delay. We retain this stage for future work; [ID] Instruction Decoding, fetching of
values from registers, evaluation of branch conditionals and target addresses, pipeline hazard detection
and control flow of program execution. Opcodes and operands are fed to the Reorder Buffer (ROB);
[EX] The EX stage executes both integer and floating-point instructions and generates exceptions as
needed. This stage includes reservations stations, providing operands to and acting as a scheduler for
execution units; [M1] access to data memory for load/store instructions. This enables a bypass towards
the ROB; [M2] access to data memory for load/store instructions; [WB] instruction commit, exception
handling and storing values to the register file. This includes the ROB that retires instructions to the
register file.

4. Attack Description

To show the weakness of CPU architectures, we decided to replicate the well-known Spectre [1]
and Meltdown [2] attacks, which both abuse the out-of-order execution to disclose internal
microarchitectural state information.

Both cases are based on side-channel attacks. A side-channel attack is any attack based on
information gained from the implementation of a computer system, rather than the implemented
algorithm itself or the Instruction Set Architecture. Side-channel attacks typically exploit timing, power,
electromagnetic leaks, or other sources of information.

In the case of Spectre and Meltdown, the attack is based on a covert side-channel that exploits
the timing of cache-based memory accesses. A malicious attacker intentionally induces a speculated
execution of mispredicted instructions. The effects of these instructions (not yet retired, thus called
transient) are not intended to be committed into the architectural state, as the instructions will be
cancelled and their results discarded. However, they change the internal processor microarchitectural
state, due to a memory read affecting the cache state, observable by a (timing-based) side-channel:
retrieving data from (un-cached) memory takes longer than retrieving it from cached addresses.

A Meltdown attack provides a way for a user level attacker to read the entire kernel space memory,
including all physical memory mapped in the kernel, being able to bypass the privileged-mode
isolation. A Spectre attack has a more limited scope, the memory within the address space of another
(victim) process.

Although different, both attacks rely on common “building blocks”. The first consists of
executing one or more instructions which would never be computed in the proper execution path.
Applying Meltdown’s naming convention, we call transient instruction an out-of-order executed
instruction, which will leave measurable side effects. We also call transient instruction sequence any
sequence of instructions which contains at least one transient instruction. To be able to exploit transient

Electronics 2019, 8, 1057 8 of 19

instructions to perform an attack, the sequence needs to hold a secret value which will be leaked by
the attacker.

The second building block consists of transferring the architectural state affected by the transient
instruction sequence to propagate and extract the leaked information.

From a high-level perspective, our attack, based on Meltdown, consists of 3 steps:

1. the attacker chooses an inaccessible memory location, then the contents of that memory location
is loaded into a register;

2. a cache line is accessed by a transient instruction based on the secret contents of the register;
3. the attacker exploits a side-channel to probe the previously accessed cache line and leaks

information depending on the sensitive data saved at the chosen memory location.

Listing 1, written in DLX assembly code, presents the basic implementation of the transient
instruction sequence of our attack that is then used to leak information with a side-channel. We describe
now in detail the actions performed and the effect of every single step of our attack, considering the
presented assembly code but also the processor model under analysis.

Listing 1. Attack transient instruction sequence in DLX assembly code.

1 ; R1 = i n v a l i d a d d r e s s
2 ; R3 = p r o b e a r r a y
3 LW R2 , 0 (R1)
4 ADD R4 , R2 , R3
5 LW R1 , 0 (R4)

4.1. Step One

Referring to line 3 of Listing 1, R1 register holds the invalid address, i.e., an attacker chosen target
kernel address that is loaded into register R2.

The LW instruction is fetched, decoded into µOPs (Although this is true in general, in our case-study
model there is no generation of micro-operations, i.e., every instruction is one µOP, due to the simplicity
of the model itself.), allocated, and sent to the reorder buffer, waiting to be executed.

At this point, in order to enable out-of-order execution, register renaming maps the architectural
registers (e.g., R1, R2, R3 and R4 in Listing 1) to underlying physical registers.

As for out-of-order execution, that aims at increasing CPU throughput, also the following
instructions (lines 4 and 5) have already been fetched, decoded and allocated as µOPs, they are
then sent on hold to the reservation stations, waiting to be issued to an execution unit.

In general, a µOP is delayed if operands are not available or if all execution units are already
holding and executing other µOPs. In our example, the ADD instruction must wait for the result of the
first LW instruction.

When the contents at the kernel address is loaded (line 3), subsequent instructions have already
been issued in the reservation stations as speculated instructions, waiting for the kernel address to
be available.

Once the needed data are fetched and available on the Common Data Bus (being accessible to
the execution unit and being stored into registers), µOPs on hold can be executed. After the execution
stage, completed µOPs are committed in-order (write-back stage), with their results affecting the
architectural state of the CPU.

If any interrupt or exception, e.g., illegal access, arise during the execution stage, the corresponding
exception unit handles it.

Therefore, when the LW instruction is retired, if an exception is thrown, then the pipeline is flushed
to discard all the computations of the following speculated instructions.

At this point, there exists a race condition between raising an exception and the speculative
execution of our attack, which is described in detail in Section 4.2 below.

Electronics 2019, 8, 1057 9 of 19

4.2. Step Two

The set of instructions executed during Step One must be carefully crafted to make a transient
instruction sequence.

To transmit the secret outside the CPU microarchitecture, first we define and allocate in memory
a probe array, ensuring that no part of it will be cached. The original Meltdown attack prevents the
hardware prefetcher from loading adjacent memory locations into the cache. For our purposes, in order
to make our attack model as generic as possible, we avoid this operation.

Then, an address is determined, based on the (inaccessible) secret value, and will be used by the
transient instruction sequence to perform an indirect memory access.

The secret value is added to the probe array base address, in order to compose the target address
of the covert channel. The target address is then read and used to store the corresponding cache line.

Therefore, the goal of our crafted instruction sequence is to alter the cache state, based on the
secret value read during Step 1.

4.3. Step Three

In Step 3, the attacker leaks and obtains the secret value (from Step One) exploiting a
microarchitectural side-channel attack which propagates the cache state (from Step 2) into an
architectural state.

This is due to the race condition mentioned in Step One: line 3 gets speculatively executed, depending
on the value of the secret, so a part of the probe array will be accessed and, most importantly, cached.

To sum up, despite the program never executing lines 4 and 5, the cache state has changed.
As already stated, Meltdown and Spectre exploit well-known cache covert channel attacks but

their specifics are considered out of scope.

5. Proof/Verification

To simplify the verification process, in our approach we propose several model transformations,
oriented to scalability. The performed transformations can be aggregated into two different typologies:

• data abstraction: register values, along with all the units that handle these values, as well
as the reorder buffer, reservation stations and execution units, are adequately abstracted.
Tainting information and evaluation/propagation circuitry are then added to or replace them.

• model reduction: applying established processor verification approaches such as pipeline flushing
and reduction by refinement map, we reduce speculation and parallel execution logic.

Considering that we strive to make our approach as general as possible, our CPU model does not
explicitly feature any main memory, therefore confidential/secret information is implicitly linked to a
given protected/invalid memory address. Consequently, we verify arbitrary sequences of instructions
(i.e., no explicit program is provided).

The completeness of our approach, even though this is a pessimistic choice in the framework of
our analysis, is guaranteed because all possible instructions sequences are covered, as well as being
consistent with other state-of-the-art processor verification approaches.

In the following subsections we provide a detailed description of the main notions of the two
typologies of transformations. Albeit a formal proof of correctness is not provided, we contribute with
the basic intuitions that support their applicability.

5.1. Data Abstraction and Tainting

All related works cited in Section 2 follow the same verification approach: they over-approximate
data (and consequently model behavior), provided that verification is sound. That is, this
transformation must guarantee that an abstract counterexample always implies a concrete one.

In our case, for every register Ri we call Vi its contents. Then, without altering security properties,
Vi is replaced by an abstract value V+

i . As already stated, RAM memory is removed, adopting common

Electronics 2019, 8, 1057 10 of 19

strategies used for data abstraction, which means drastically reducing its impact on the state of the
model. Partial abstraction of data, not relevant to the property under verification, is often performed.
Despite having greatly reduced the size of the model, we can still perform abstraction: for example,
processor functionality (e.g., ALU data computation/evaluation) can be considered correct (already
verified). In all abstraction processes, properly choosing a correct/adequate abstraction, either by
automated or manual selection, is a challenging task.

Following known methods in hardware verification, we augment each value V+
i with its

corresponding taint value Ti, as depicted in Table 1. The ALU, the data evaluation logic, is enhanced
with taint-propagation logic. Taint values are injected, propagated and observed through memory and
data transfer components. Propagation or combination of multiple taints is responsibility of the ALU.

Table 1. Concrete versus Abstract model transformation.

Register Concrete Abstract

R1 V1 (V+
1 , T1)

R2 V2 (V+
2 , T2)

...
...

...

Rn Vn (V+
n , Tn)

Table 2 shows that while the original processor model executes an arithmetic/logic operation
Vk = OP(Vi, Vj), the abstract model replaces it with V+

k = OP(V+
i , V+

j) and provides that the
transformation is sound. The first part is data evaluation and it is independent from taint values, while
the second is taint propagation, which in its broad form involves both data and taint values.

The tainting precision, i.e., the degree of over-approximation, swings between two corner cases:

• full data dependence: data values are fully involved in taint computation; whenever computing
Tk, actual operand data values are considered; for instance, a bitwise OR operation with all
V+

i = 1, or a multiplication with V+
i = 0, could mask (block) a taint on the other operand (Tj);

• full abstraction from data values: for instance, taint propagation through a binary ALU operation
propagates a taint on any of the operand terms (Tk = OPT(Ti, Tj) = Ti ∨ Tj).

The level of abstraction certainly affects the soundness of the overall approach: for detailed
comments and proof of correctness of the approach, see Section 5.3.

Table 2. Comparison of data evaluation and taint propagation between concrete and abstract models.

Concrete Abstract

Data abstraction + Tainting Vi (V+
i , Ti)

Data evaluation Vk = OP(Vi, Vj) V+
k = OP(V+

i , V+
j)

Taint propagation - Tk = OPT(V+
i , Ti, V+

j , Tj)

Also, the branch misprediction logic is abstracted and replaced by a non-deterministic value
(choice); this operation can be performed without altering the correctness of our approach, since it
generalizes (abstracts) the model under analysis.

Similarly, arithmetic/logic manipulation can be considered already verified, e.g., as pass-through
circuitry for taints. Since we are interested only in data leakages from/to memory, we can move our
focus taint propagation to memory access logic.

Let us now define the taint source/sink pair. A taint is thus injected at the memory data input,
whenever a protected/invalid address is used, that is a protected address is loaded into the CDB.
In other words, the taint (TMDR) associated with the Memory Data Register (MDR) is set whenever the

Electronics 2019, 8, 1057 11 of 19

address stored in the Memory Address Register (MAR) is not in the range of valid addresses (VA.start
and VA.end).

TMDR = MAR < VA.start ∨MAR > VA.end

The taint is propagated through the abstract reservation stations, arithmetic/logic execution units
and reorder buffer. A taint can be cleared only by the branch misprediction circuitry, which means in
case of an instruction not committed but aborted.

The target (taint sink) under observation is the memory address. From the information flow point
of view, a taint in a memory address register corresponds to the property we are verifying.

Prop = ¬(TMAR == TAINT)

Considering, from a tainting point of view, a generic instruction sequence common to both
Meltdown and Spectre attacks, the following actions will be performed:

• inject a taint, exploiting a mispredicted instruction which performs an invalid/protected
memory access;

• transfer the taint into the (abstracted) reorder buffer, as a data expected to be committed;
• use the taint, as a data, as part of the computation of the address of a successive mispredicted

memory access: the taint hits the target.

The taint propagation path is described in Figure 2. In details, the taint is injected at the memory
read (1), when the address bus is filled in with an invalid address. As the instructions in the pipeline
move through the different steps, the taint reaches the reorder buffer (2), then it moves on to reservation
stations (3) as new instructions are fed by the instruction cache. The taint enters reservation stations
because of the propagation rules, as tainted data are fetched as operands of newly arrived instructions.
As soon as all the operands are available, the taint propagates to the corresponding execution unit (4).
Eventually it reaches the Common Data Bus (CDB) and consequently again the reorder buffer (5).

Figure 2. Taint propagation from source (memory read) to sink (reorder buffer) in our abstract model.

Table 3 shows how our model behaves with the instructions in Listing 1. The first instruction
reads from memory (M) at an invalid address (IA) and stores an invalid data (ID) into the destination.
This injects the taint into T2. The second instruction computes the array displacement as it adds the
probe array start address (PA) and the invalid data. The taint propagation logic, as previously stated,
involves the OR operator on the taints associated with the operands, so in this case the taint propagates

Electronics 2019, 8, 1057 12 of 19

to T4. The last instruction reads in from memory at the address computed in the second instruction.
The taint propagates to T1 and reaches the target where the property fails.

Table 3. Our model applied to a real use case: a basic implementation of Spectre/Meltdown.

Instruction Symbolic Concrete

LW R2, 0(R1) V+
2 ← M[V+

1]
T2 ← T1

ID ← M[IA]

1
inject←−−− 0

ADD R4, R2, R3 V+
4 ← ADD(V+

2 , V+
3)

T4 ← T2 ∨ T3

PA + ID ← ADD(ID, PA)
1← 1∨ 0

LW R1, 0(R4) V+
1 ← M[V+

4]
T1 ← T4

Y ← M[PA + ID]

1
target←−−− 1

Table 4 shows, in the rightmost table, the same instruction sequence as in Listing 1, while the
leftmost table displays the pipeline evolution. The sequence implements a generic and simplified
version of Meltdown/Spectre attack (as described in Section 4), in which:

(A) performs a memory access to an invalid address;
(B) executes an arithmetic operation using the secret data;
(C) performs a read from an array with a displacement related to the secret.

Table 4. Pipeline evolution of the proposed attack.

Clock ↓ IF ID EX MEM WB Taint Status A LW R2, 0(R1)

1 A B ADD R4, R2, R3

2 B A C LW R1, 0(R4)

3 C B A

4 B/C S A Taint source

5 C B S A Taint in ROB

6 C S B S Taint in EX

7 C S B Taint sink/property asserted

8 C S

9 C

The vertical axis represents time in terms of clock cycles. Columns from IF to WB represent the
different pipeline stages. The last column presents the taint status and its propagation. Cells filled
with “S” are stalls.

Instructions enter the pipeline and proceed without stalls until clock 3. At clock 4, B and C are
stalled to wait for their operands to be ready. When at stage MEM A reads from memory, the value is
placed into the Common Data Bus and becomes available also to the stalled instructions. At clock 5, B
goes on to the next stage, while C must wait for its operands to be prepared by B, thus a new stall is
inserted. Finally, from clock 7 to 9 the pipeline proceeds without stalls.

The taint source is at clock 4 inside the MEM stage of instruction A, when the access to the invalid
address is performed. At the WB stage of A, the taint propagates to the reorder buffer. Then the
taint propagates to the execution unit at the EX stage of instruction B. Afterwards during clock 7
the taint, reaching the CDB, is collected by the taint sink and captured by the previously defined
security property.

Compositional verification schemes are a very common way to exploit abstraction, where a
given module is taken and verified on a local basis, while removing (i.e., abstracting away) the

Electronics 2019, 8, 1057 13 of 19

remaining model components, considered to be the module’s environment. A refinement of the
environment, expressed as a set of constraints, is usually required to refine it to a sound abstraction,
thus leading to assume-guarantee strategies where a given refinement is either a property (to be
proved/guaranteed) when verifying a module, and an environment constraint (an assumption) for
another module under verification.

Considering our case study, seeing the high simplification level reached by
abstraction/refinement-based abstraction, we decided not to apply any compositional
simplification [39].

5.2. Combining Model Reduction with Abstraction

The CPU model of our case study, at this point, is further simplified, applying state-of-the-art
methodologies to formal verification of pipelines and speculation units [24,39,40].

Briefly, the processor model was already simplified by transforming data into taints. At this
point instead, we are simplifying all intermediate states associated with the control logic for parallel
execution, with a convenient reduction of the behavior and considering it as an abstraction, based on
proper equivalence notions between the concrete model and the reduced one.

Pipeline flushing is often applied, in order to highly simplify model behavior, by removing all
possible interleavings of pipeline executions. As this could lead to an incomplete solution (missing
possible wrong behaviors) the reduced model is considered to be an abstraction of the real model,
where each concrete state (among the set of all possible pipeline interleavings) is considered to be
a possible refinement of an abstract state in the reduced model: the correspondence is handled by
refinement maps. Similar strategies are also applied whenever reducing the bit widths of registers,
memory words and of memory addresses, the size of the register file, the number of reservation
stations and execution units, etc. All such reductions are deemed as complete by considering the
reduced model as an abstraction of the concrete (refined) model and/or by proving that the absence of
a bug in the reduced model implies that no bugs are possible in the concrete (non-reduced) one.

While considerably simplifying the model, a reduction process can thus still guarantee
verification completeness.

A detailed description of the reduction strategies is clearly out of our scope in this work, as any
property preserving reduction (with proper refinement map or alternative theory) is applicable,
provided that it guarantees completeness.

We here quickly introduce the simplifications applied on our model:

• pipeline flushing: all pipeline stages are flushed (collapsed), which simplifies the execution model
of an instruction, since the next instruction is initiated only when the previous one reaches the
reorder buffer;

• reorder buffer removal: ROB is reduced into a FIFO queue, which essentially delays instructions
between execution and results availability into the register file; to be noted that the FIFO strategy
preserves the original instruction order, assuring data dependency;

• reservation station replacement: as straightforward effect of previous pipeline flushing and ROB
removal, reservation stations are bypassed (performing in fact a model reduction);

• execution units merge: considering the data abstraction performed on our model, computation
parallelism is unnecessary, so just one instance of each execution unit is useful.

As a result, of the listed above simplifications, the complete original behavior is significantly
reduced, moving from a pipelined architecture with speculation, to a fully sequential model with a
FIFO-based delay between execution and obtainable results.

The performed reduction simplifications guarantee completeness, which means that taint
propagation sets of instructions are not removed, given the following two conditions:

• consecutive instruction sequences comprise mispredicted instructions, simulating real instructions
sequences made by an actual out-of-order CPU; this behavior is assured by a non-deterministic

Electronics 2019, 8, 1057 14 of 19

tag associated with an instruction, which marks that instruction as mispredicted (this operation is
performed during the abstraction transformation, as described in Section 5.1);

• the FIFO-based delay, replacing the ROB, simulates the (illegal) taint-propagation time from source
to sink; this behavior is assured by a proper FIFO queue size and a proper non-deterministic
queue control of get operations, which transfer data from ROB to the register file.

5.3. Correctness of the Approach

We now provide a concise proof of the correctness of our verification approach. Due to the
descriptive nature of the paper, where we omit a rigorous formalism for models, properties and
transformation steps, the proof is limited to a sketch, outlining the theoretical bases that support the
proposed methodology.

As with all verification approaches based on model transformations, formal correctness means
soundness and completeness of all model simplifications (abstractions and reductions) performed. In our
case, we operate two classes of simplifications:

• Abstractions and reductions that do not affect secure information flow by taint propagation. This
is a set of preliminary model transformations oriented to reduce the data width and the model
behavior (pipeline and speculative execution): transformations guarantee the model functionality,
and they have already been proved correct by related and state-of-the-art works on formal
verification of processor designs. We do not claim any contribution in this field, and we assume
them as correct

• Abstraction and reduction steps related to secure information flow by taint propagation.
Though we resort to standard formalisms and transformations, we nevertheless need to
show/prove that their combined application is complete and sound.

5.3.1. Model Abstraction and Reduction

As already written, our model abstraction and reduction (with refinement) steps are based on
state-of-the-art formal verification approaches [24,40], that have already been proved to be sound and
complete by their authors. We can assume them as correct in terms of processor design, but nothing is
said on the processor state, potentially observed by a side-channel attack. In other words, we exploit
state-of-the-art model simplifications that guarantee model functionality by pruning and simplifying
complex intermediate states and behaviors.

Therefore, the remaining critical issue in our methodology is the correctness of taint encoding and
manipulation all over the abstraction and refinement steps. This is what was missing in all previous
processor verification works, and represents the main contribution of our work.

To this respect, we need to show that

• tainting does not affect the correctness of the model
• secure information flow by tainting is sound and complete.

The first item is straightforward. We can claim that since a taint is actually an enhanced
data, added to the original one, it does not affect model functionality, provided that tainting logic
is just reading data, while not affecting data evaluation. More formally, this is clearly shown in
Table 2, where a result taint (in the more general case) is a function of operand data and taints
(Tk = OPT(V+

i , Ti, V+
j , Tj)), whereas result data do not depend on operand taints (V+

k = OP(V+
i , V+

j)).
The second item (soundness and completeness of taint propagation) is analyzed in the next subsection.

5.3.2. Taint Encoding and Manipulation

In the strict sense, the tainting and transformation steps we perform are unsound as, due to data
abstraction in the taint-propagation circuitry, we could obtain false negatives (taint-propagation traces
not feasible on the concrete model).

Electronics 2019, 8, 1057 15 of 19

In fact, we admit abstract execution traces that propagate the taint through the ALU logic, whereas
no information leakage would characterize the actual model.

This issue can be imputed to the taint-propagation strategy we decided to adopt: the applied
abstraction ignores the fact that a taint could be blocked/hidden by a real data. The taint computation
rules need to take into account both the operation and the data involved. Precise rules would impose
more complexity, so we had to reach a trade-off between precision and complexity:

• apply precise and narrower tainting rules, cutting off (adopting a more precise and detailed
taint-propagation model) all false negatives;

• adopt an imprecise but efficient approach, thus accepting false abstract counterexamples. If this
would be the case, counterexamples could be either:

– post processed, leading to subsequent model refinements;
– be converted into actual (equivalent) concrete counterexamples, by just exploiting them

partially (e.g., by removing data and keeping control bits), as constraints for a further
Bounded Model-Checking (BMC) run on the concrete model.

In our opinion the second approach is to a great extent coherent with the final aim of detecting
data leakages and solving them.

Therefore, in the end soundness relies on a proper notion of (bi-simulation) equivalence between
abstract and concrete counterexamples: any abstract counterexample is required to be mapped to
at least one concrete counterexample by simple data/behavior refinement: Abstractions done in
taint-propagation logic are sound if, for any tainting blocking based on data values, other non-blocking
data exist.

The approach is complete as no reduction is done on taint computation and propagation
(all reductions are done just based on equivalence/function preserving transformations, whose
completeness has been proved for model-checking purposes).

6. Experimental Results

The approach presented in this paper was tested and verified on the case study described in
Section 3.

The main purpose of our experimentation was not to provide detailed performance measures
of different model-checking engines/tools, rather to show that resorting to proper abstractions and
reductions allows tackling state explosion. This makes previously unfeasible problems now solvable
in matter of seconds with a state-of-the-art model checker.

The processor was described in Verilog, then converted into the AIGER format [41] and verified
using PdTRAV [42], a state-of-the-art academic model-checking tool we developed. Both Bounded
and Unbounded Model-Checking (interpolation-based UMC) algorithms were used, with a peculiar
focus on model reductions and transformations [43,44], multiple properties manipulations [45] and
interpolants-based engines [46,47].

In detail, taints were encoded as binary data, branch prediction/misprediction circuitry was
entirely abstracted and substituted by a non-deterministic (random) Boolean value. Moreover, parallel
execution units were substituted by a taint propagation pass-through circuitry.

A taint not reaching the address output of the microprocessor model corresponds to the encoding
of the confidentiality property we want to verify.

As already stated in [39], the original full microprocessor model (inclusive of speculation logic,
Tomasulo’s module, pipeline, multiple execution units and data paths) would be very difficult to verify:
the model consisted of more than 120 K gates and more than 3 K latches. The resulting model after all
the simplifications (abstraction, reduction and tainting), was converted into an AIGER file consisting
of 2724 AND gates and 106 latches, resulting by reducing the register file to 8 registers of 5 bits, and the
rest of the control and data logic accordingly. We also tested larger versions, by expanding the number

Electronics 2019, 8, 1057 16 of 19

of data registers up to 16 and their size up to 32 bits. The largest AIGER file (after Cone-Of-Influence
reduction) included 7245 AND gates and 395 latches. We could verify it by the BMC verification
engine, finding a counterexample of 11 clock steps in times ranging from less than 1 s to 9 s.

The counterexample retrieved after the verification process presented a data leakage issue: this
bug was made out of an instruction sequence starting with an invalid memory read (operation which
injected the taint), followed by an arithmetic computation of a memory address (operation which
propagated the taint), and finally a further memory read to the tainted address. This counterexample
can be considered to be an abstracted/reduced version of the example presented in Table 3.

Then the cybersecurity flaw was eliminated (and formally verified by model-checking, again in
less than 1 s and 15 s, with both a Bounded Model-Checking and an IC3 engine) by patching the model
in this way: all speculated instructions with data dependencies are prevented by an instruction with
invalid memory access. More in detail, designing a non-buggy (efficient) version of the processor
was out of our scope, we rather wanted to have a working non-buggy model. We thus exploited the
exception generation logic, making it active before committing the exception generation instruction:
whenever an invalid read is done by a speculated instruction, an exception is not generated until
confirming (committing) the instruction (due to branch prediction logic). The exception detection
logic immediately catches the invalid access, then it blocks the read data (thus not available for
subsequent operations) until the instruction is committed or aborted: if committed, the exception is
raised, if aborted, execution resumes on the correct path.

7. Conclusions and Future Work

In this paper, our goal is to describe a formal verification procedure able to find confidentiality
security leaks in contemporary CPU microarchitectures featuring out-of-order/speculative execution,
in order to prevent future cybersecurity speculation-based attacks (as Meltdown or Spectre).

The proposed technique is based on state-of-the-art formal verification concepts, as model
abstraction and model refinement, as well as exploiting novel ideas from the information flow tracking
field, as taint injection and taint propagation, merging schemes taken from this two different areas of
research to reach our goals.

In future works we will automate the simplifications performed to the model under analysis
(abstraction/reduction), since in this paper the described transformations were manually driven.
Our final goal will be an automated (eventually in part) transformation and simplification mechanism.

Author Contributions: All authors have contributed equally to the work reported.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ALU Arithmetic Logic Unit
BDD Binary Decision Diagram
BMC Bounded Model-Checking
CDB Common Data Bus
EX Execution
FIFO First-in First-Out
HW/SW Hardware/Software
IC3 Incremental Construction of Inductive Clauses for Indubitable Correctness
ID Instruction Decode
IF Instruction Fetch

Electronics 2019, 8, 1057 17 of 19

IFT Information Flow Tracking
ILA Instruction Level Abstraction
ISA Instruction Set Architecture
MA MicroArchitecture
MAR Memory Address Register
MDR Memory Data Register
MEM Memory
µOP Micro-operation
OOO Out-of-order
PC Program Counter
PdTRAV Politecnico di Torino Reachability Analysis and Verification
RAW Read After Write
RISC Reduced Instruction Set Computer
ROB Reorder Buffer
RS Reservation Station
TLB Translation Lookaside Buffer
UMC Unbounded Model-Checking
WB Write-Back

References

1. Kocher, P.; Genkin, D.; Gruss, D.; Haas, W.; Hamburg, M.; Lipp, M.; Mangard, S.; Prescher, T.; Schwarz, M.;
Yarom, Y. Spectre attacks: Exploiting speculative execution. arXiv 2018, arXiv:1801.01203.

2. Lipp, M.; Schwarz, M.; Gruss, D.; Prescher, T.; Haas, W.; Mangard, S.; Kocher, P.; Genkin, D.; Yarom, Y.;
Hamburg, M. Meltdown. arXiv 2018, arXiv:1801.01207.

3. Beckers, K.; Heisel, M.; Hatebur, D. Pattern and Security Requirements; Springer: Berlin, Germany, 2015.
4. Boritz, J.E. IS practitioners’ views on core concepts of information integrity. Int. J. Account. Inf. Syst. 2005,

6, 260–279. [CrossRef]
5. Yarom, Y.; Falkner, K. FLUSH+ RELOAD: A high resolution, low noise, L3 cache side-channel attack.

In Proceedings of the 23rd USENIX Security Symposium (USENIX Security 14), San Diego, CA, USA,
20–22 August 2014; pp. 719–732.

6. Yang, B.; Wu, K.; Karri, R. Scan based side channel attack on dedicated hardware implementations of
data encryption standard. In Proceedings of the 2004 International Conferce on Test, Charlotte, NC, USA,
26–28 October 2004; pp. 339–344.

7. Lin, L.; Kasper, M.; Güneysu, T.; Paar, C.; Burleson, W. Trojan side-channels: Lightweight hardware trojans
through side-channel engineering. In International Workshop on Cryptographic Hardware and Embedded Systems;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 382–395.

8. Tehranipoor, M.; Wang, C. Introduction to Hardware Security and Trust; Springer Science & Business Media:
Berlin, Germany, 2011.

9. Lowe-Power, J.; Akella, V.; Farrens, M.K.; King, S.T.; Nitta, C.J. A case for exposing extra-architectural state
in the ISA: Position paper. In Proceedings of the 7th International Workshop on Hardware and Architectural
Support for Security and Privacy, Los Angeles, CA, USA, 2 June 2018; p. 8.

10. Joy Persial, G.; Prabhu, M.; Shanmugalakshmi, R. Side channel attack-survey. Int. J. Adv. Sci. Res. Rev. 2011,
1, 54–57.

11. Fan, J.; Guo, X.; De Mulder, E.; Schaumont, P.; Preneel, B.; Verbauwhede, I. State-of-the-art of secure ECC
implementations: A survey on known side-channel attacks and countermeasures. In Proceedings of the
2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), Anaheim, CA, USA,
13–14 June 2010; pp. 76–87.

12. Zhou, Y.; Feng, D. Side-Channel Attacks: Ten Years after Its Publication and the Impacts on Cryptographic
Module Security Testing. IACR Cryptol. EPrint Arch. 2005, 2005, 388.

13. Hill, M.D.; Masters, J.; Ranganathan, P.; Turner, P.; Hennessy, J.L. On the Spectre and Meltdown Processor
Security Vulnerabilities. IEEE Micro 2019, 39, 9–19. [CrossRef]

14. Bennett, R.; Callahan, C.; Jones, S.; Levine, M.; Miller, M.; Ozment, A. How to live in a post-meltdown
and-spectre world. Commun. ACM 2018, 61, 40–44. [CrossRef]

http://dx.doi.org/10.1016/j.accinf.2005.07.001
http://dx.doi.org/10.1109/MM.2019.2897677
http://dx.doi.org/10.1145/3267116

Electronics 2019, 8, 1057 18 of 19

15. Prout, A.; Arcand, W.; Bestor, D.; Bergeron, B.; Byun, C.; Gadepally, V.; Houle, M.; Hubbell, M.; Jones, M.;
Klein, A.; et al. Measuring the Impact of Spectre and Meltdown. In Proceedings of the 2018 IEEE High
Performance extreme Computing Conference (HPEC), Waltham, MA, USA, 25–27 September 2018; pp. 1–5.

16. Patterson, D.A.; Hennessy, J.L.; Goldberg, D. Computer Architecture: A Quantitative Approach; Morgan Kaufmann:
San Mateo, CA, USA, 1990; Volume 2.

17. Cabodi, G.; Camurati, P.; Finocchiaro, F.; Vendraminetto, D. Model Checking Speculation-Dependent Security
Properties: Abstracting and Reducing Processor Models for Sound and Complete Verification. In Proceedings
of the International Conference on Codes, Cryptology, and Information Security, Rabat, Morocco,
22–24 April 2019; pp. 462–479.

18. Clarke, E.M.; Emerson, E.A. Design and synthesis of synchronization skeletons using branching time
temporal logic. In Workshop on Logic of Programs; Springer: Berlin/Heidelberg, Germany, 1981; pp. 52–71.

19. Clarke, E.M.; Emerson, E.A.; Sistla, A.P. Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Trans. Program. Lang. Syst. (TOPLAS) 1986, 8, 244–263. [CrossRef]

20. Damm, W.; Pnueli, A. Verifying out-of-order executions. In Advances in Hardware Design and Verification;
Springer: Berlin, Germany, 1997; pp. 23–47.

21. Sawada, J.; Hunt, W.A. Processor verification with precise exceptions and speculative execution.
In Proceedings of the International Conference on Computer Aided Verification, Vancouver, BC, Canada,
28 June–2 July 1998; pp. 135–146.

22. Hosabettu, R.; Srivas, M.; Gopalakrishnan, G. Decomposing the proof of correctness of pipelined microprocessors.
In Proceedings of the International Conference on Computer Aided Verification, Vancouver, BC, Canada,
28 June–2 July 1998; pp. 122–134.

23. Hosabettu, R.; Srivas, M.; Gopalakrishnan, G. Proof of correctness of a processor with reorder buffer using
the completion functions approach. In Proceedings of the International Conference on Computer Aided
Verification, Trento, Italy, 6–10 July 1999; pp. 47–59.

24. Burch, J.R.; Dill, D.L. Automatic verification of pipelined microprocessor control. In Proceedings of the
International Conference on Computer Aided Verification, Stanford, CA, USA, 21–23 June 1994; pp. 68–80.

25. Skakkebæk, J.U.; Jones, R.B.; Dill, D.L. Formal verification of out-of-order execution using
incremental flushing. In Proceedings of the International Conference on Computer Aided Verification,
Vancouver, BC, Canada, 28 June–2 July 1998; pp. 98–109.

26. McMillan, K.L. Verification of an implementation of Tomasulo’s algorithm by compositional model checking.
In Proceedings of the International Conference on Computer Aided Verification, Vancouver, BC, Canada,
28 June–2 July 1998; pp. 110–121.

27. Goel, A.; Sajid, K.; Zhou, H.; Aziz, A.; Singhal, V. BDD based procedures for a theory of equality with
uninterpreted functions. In Proceedings of the International Conference on Computer Aided Verification,
Vancouver, BC, Canada, 28 June–2 July 1998; pp. 244–255.

28. Berezin, S.; Clarke, E.; Biere, A.; Zhu, Y. Verification of out-of-order processor designs using model checking
and a light-weight completion function. Form. Methods Syst. Des. 2002, 20, 159–186. [CrossRef]

29. Cadar, C.; Dunbar, D.; Engler, D.R. KLEE: Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs. In Proceedings of the 8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’08), San Diego, CA, USA, 8–10 December 2008; Volume 8, pp. 209–224.

30. Godefroid, P.; Levin, M.Y.; Molnar, D. SAGE: Whitebox fuzzing for security testing. Commun. ACM 2012,
55, 40–44. [CrossRef]

31. Suh, G.E.; Lee, J.W.; Zhang, D.; Devadas, S. Secure program execution via dynamic information flow tracking.
In Proceedings of the 11th International Conference on Architectural Support for Programming Languages
and Operating Systems, Boston, MA, USA, 7–13 October 2004; Volume 39, pp. 85–96.

32. Tiwari, M.; Wassel, H.M.; Mazloom, B.; Mysore, S.; Chong, F.T.; Sherwood, T. Complete information flow
tracking from the gates up. In Proceedings of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems, Washington, DC, USA, 7–11 March 2009; Volume 44,
pp. 109–120.

33. Subramanyan, P.; Malik, S.; Khattri, H.; Maiti, A.; Fung, J. Verifying information flow properties of firmware
using symbolic execution. In Proceedings of the Design, Automation & Test in Europe Conference &
Exhibition (DATE), Dresden, Germany, 14–18 March 2016; pp. 337–342.

http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1023/A:1014170513439
http://dx.doi.org/10.1145/2093548.2093564

Electronics 2019, 8, 1057 19 of 19

34. Subramanyan, P.; Arora, D. Formal verification of taint-propagation security properties in a commercial
SoC design. In Proceedings of the conference on Design, Automation & Test in Europe, Dresden, Germany,
24–28 March 2014; p. 313.

35. Cabodi, G.; Camurati, P.; Finocchiaro, S.; Loiacono, C.; Savarese, F.; Vendraminetto, D. Secure embedded
architectures: Taint properties verification. In Proceedings of the 2016 International Conference on
Development and Application Systems (DAS), Suceava, Romania, 19–21 May 2016; pp. 150–157.

36. Ardeshiricham, A.; Hu, W.; Marxen, J.; Kastner, R. Register transfer level information flow tracking for
provably secure hardware design. In Proceedings of the Design, Automation & Test in Europe Conference &
Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 1691–1696.

37. Cabodi, G.; Camurati, P.; Finocchiaro, S.F.; Savarese, F.; Vendraminetto, D. Embedded systems secure path
verification at the hardware/software interface. IEEE Des. Test 2017, 34, 38–46. [CrossRef]

38. Tomasulo, R.M. An efficient algorithm for exploiting multiple arithmetic units. IBM J. Res. Dev. 1967,
11, 25–33. [CrossRef]

39. Jhala, R.; McMillan, K.L. Microarchitecture verification by compositional model checking. In Proceedings of
the International Conference on Computer Aided Verification, Paris, France, 18–22 July 2001; pp. 396–410.

40. Manolios, P.; Srinivasan, S.K. A complete compositional reasoning framework for the efficient verification of
pipelined machines. In Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided
Design, San Jose, CA, USA, 6–10 November 2005; pp. 863–870.

41. Biere, A.; Heljanko, K.; Wieringa, S. AIGER 1.9 and Beyond. 2011. Available online: fmv.jku.at/hwmcc11/
beyond1.pdf (accessed on 18 September 2019).

42. Cabodi, G.; Nocco, S.; Quer, S. Benchmarking a model checker for algorithmic improvements and tuning for
performance. Form. Methods Syst. Des. 2011, 39, 205–227. [CrossRef]

43. Cabodi, G.; Camurati, P.; Garcia, L.; Murciano, M.; Nocco, S.; Quer, S. Speeding up Model Checking by
Exploiting Explicit and Hidden Verification Constraints. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE 2009), Nice, France, 20–24 April 2009; pp. 1686–1691.

44. Cabodi, G.; Nocco, S.; Quer, S. Strengthening Model Checking Techniques With Inductive Invariants.
IEEE Trans. CAD Integr. Circuits Syst. 2009, 28, 154–158. [CrossRef]

45. Cabodi, G.; Nocco, S. Optimized Model Checking of Multiple Properties. In Proceedings of the Design,
Automation and Test in Europe (DATE 2011), Grenoble, France, 14–18 March 2011; pp. 543–546.

46. Cabodi, G.; Palena, M.; Pasini, P. Interpolation with Guided Refinement: Revisiting Incrementality in
SAT-based Unbounded Model Checking. In Proceedings of the 2014 Formal Methods in Computer-Aided
Design (FMCAD), Lausanne, Switzerland, 21–24 October 2014; pp. 43–50.

47. Cabodi, G.; Loiacono, C.; Vendraminetto, D. Optimization techniques for Craig Interpolant compaction in
Unbounded Model Checking. In Proceedings of the 2013 Design, Automation & Test in Europe Conference
& Exhibition (DATE), Grenoble, France, 18–22 March 2013; pp. 1417–1422.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MDAT.2017.2713393
http://dx.doi.org/10.1147/rd.111.0025
fmv.jku.at/hwmcc11/beyond1.pdf
fmv.jku.at/hwmcc11/beyond1.pdf
http://dx.doi.org/10.1007/s10703-011-0123-3
http://dx.doi.org/10.1109/TCAD.2008.2009147
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries, Background, Related Works
	Spectre and Meltdown Attacks
	Formal Verification of Microprocessors with Out-of-Order Execution
	Verifying Cybersecurity by Tainting

	Processor Model
	Attack Description
	Step One
	Step Two
	Step Three

	Proof/Verification
	Data Abstraction and Tainting
	Combining Model Reduction with Abstraction
	Correctness of the Approach
	Model Abstraction and Reduction
	Taint Encoding and Manipulation

	Experimental Results
	Conclusions and Future Work
	References

