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The Cohomology of the Grassmannian is a gln-module

Letterio Gatto & Parham Salehyan ∗

(Communications in Algebra, 48:1, 274-290,

DOI: 10.1080/00927872.2019.1640240)

To Abramo Hefez & Marcio Soares

Abstract

The integral singular cohomology ring of the Grassmann variety parametrizing r-dimensional
subspaces in the n-dimensional complex vector space is naturally an irreducible representation
of the Lie algebra gln(Z) of all the n × n matrices with integral entries. The simplest case,
r = 1, recovers the well known fact that any vector space is a module over the Lie algebra
of its own endomorphisms. The other extremal case, r = ∞, corresponds to the bosonic
vertex representation of the Lie algebra gl∞(Z) on the polynomial ring in infinitely many
indeterminates, due to Date, Jimbo, Kashiwara and Miwa.

In the present article we provide the structure of this irreducible representation explicitly,
by meaans of a distinguished Hasse-Schmidt derivation on an exterior algebra, borrowed from
Schubert Calculus

1 Introduction

It is well known from the undergraduate linear algebra courses, that any vector space is a module
over the Lie algebra of its own endomorphisms. Less popular, but classical and well established in
the literature, is the fact that a polynomial ring in infinitely many indeterminates is a module over
the Lie algebra gl∞ of all the matrices (aij)i,j∈Z, whose entries are all zero but finitely many. The
explicit form of this representation, over any field containing the rationals, is due to Date, Jimbo,
Kashiwara and Miwa, as reported in the milestone article [4] (see also [14]).

It turns out that these two seemingly different situations are bridged up by the general obser-
vation that the singular cohomology of the complex Grassmannian G(r,n) is a module over the Lie
algebra of n×n matrices. In this paper we present the explicit description of such a module struc-
ture by means of the Schubert derivation originally introduced in [5], see also [8, 11]. Its extension
studied in [10] also enables us to deal with the r = ∞ case, so offering an alternative deduction
of the classical expression of the DJKM bosonic vertex representation. Our description also links
vertex operators in the boson-fermion correspondence to the Schubert Calculus as phrased in [5]
(see also [7]).

∗2010 MSC: 14M15, 15A75, 17B69. Keywords and phrases: Hasse-Schmidt Derivations on Exterior Algebras;
Schubert Derivations; vertex operators; cohomology of the Grassmannian; bosonic vertex representation of Date-
Jimbo-Kashiwara-Miwa.
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1.1 Cohomology rings of Complex Grassmannians. Let r,n ∈ N∪ {∞} such that 0 6 r 6 n.
The singular cohomology ring of the complex Grassmann variety G(r,n) will be denoted by Br,n,
to be understood in the following extended sense. If r,n are both finite, then Br,n = H∗(G(r,n),Z)
is the singular cohomology ring of the usual finite–dimensional Grassmann variety parametrizing
r-dimensional subspaces of Cn. If r < ∞ and n = ∞, then Br := Br,∞ = H∗(G(r,∞)), where
G(r,∞) is the ind-variety [13] corresponding to the chain of inclusions

· · · ↪→ G(r,n− 1) ↪→ G(r,n) ↪→ G(r,n+ 1) ↪→ · · · .

In this case Br = Z[e1, . . . , er], a polynomial ring in r indeterminates (see e.g. [1]), which is graded
by giving degree i to each indeterminate ei.

If both r,n = ∞, instead, Gr(∞) := G(r,∞) is the Universal Grassmann Manifold (UGM)
introduced by Sato (see the survey [19]), and which is the same as the ind-Grassmannian constructed
in [3, 13]. In this case the ring B := B∞ is the projective limit of Br in the category of graded modules
and, concretely, B = Z[e1, e2, . . .], a polynomial ring in infinitely many indeterminates.

Let now
∧
Mn =

⊕
r>0

∧r
Mn be the exterior algebra of the free abelian group Mn :=⊕

06i<n Zbi, with basis b := (bi)06i<n. Consider the Lie algebra

gln(Z) := {A ∈ EndZ(Mn) |Abj = 0 for all but finitely many j ∈ N}, (1)

with respect to the usual commutator.
For r < ∞, let Pr,n be the set of all the partitions whose Young diagram is contained in a

r× (n− r)-rectangle. Then there is a natural Z-module isomorphism

φr,n : Br,n →
r∧
Mn,

which maps the basis ∆λ(Hr) (see Section 1.4) of Schur polynomials of Br,n to a natural basis
[b]rλ of

∧r
Mn, both labeled by Pr,n (see e.g. [9, Formula (25)]). It turns out that

∧
Mn is a

natural representation of gln(Z) and that the exterior powers
∧r
Mn are precisely its irreducible

sub-representations.
The case r = n = ∞ needs a few adjustment, because the ring B is not isomorphic to any

finite exterior power. It must be replaced by the fermionic Fock space (FFS), a suitable irreducible
representation of a canonical Clifford algebra supported on the direct sum of M :=

⊕
j∈Z Zbj with

its restricted dual. The FFS is naturally a gl∞(Z)-module as well ([16, Section 4.3]). So, in general,

Br,n is a module over the Lie algebra gln(Z), for all r 6 n ∈ N ∪ {∞}.

If r = ∞, the gl∞(Q) structure of B ⊗Z Q is described by the bosonic vertex representation due
to Date, Jimbo, Kashiwara and Miwa (DJKM) [4, 14]. It amounts to determine the shape of
the generating function E(z,w) =

∑
i,j∈Z Eijz

iw−j of all the elementary endomorphisms Eij ∈
EndQ(M ⊗ Q), defined by Eijbk = biδjk acting on B. In [10] the notion of Schubert derivation, a
priori only defined on an exterior algebra, is extended to the FFS. As a byproduct, we offered an
alternative deduction of the DJKM generating function E(z,w).

The present paper, instead, is concerned with the description of the generating function E(z,w)n :=∑
06i,j<n Eij · ziw−j as acting on Br,n for r <∞ and any n ∈ N∪ {∞}, see Sections 4 formula (25)

and 5, formula (32). The formulas obtained in this case are new and their deductions are cheap.
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1.2 Plan of the paper. We first consider the case n = ∞, and find two equivalent, although
looking different, expressions for the action of E(z,w) :=

∑
i,j>0 Eijz

iw−j on Br, see section 4 and
5. They have interesting complementarty features. The former is useful for explicit computations,
and can be implemented as well when r = ∞ (Cf. [10, Section 7]). The latter visibly shows its
close relationship with the DJKM representation, also because the shape of the approximated vertex
operators in terms of Schubert derivations is exactly the same as that occurring in non-approximated
DJKM ones, as shown in [10].

Section 6 is eventually devoted to make explicit the gln(Z) structure of Br,n, for finite n. It
is obtained from the gl∞(Z)–structure of Br, by projecting it through the canonical epimorphism
Br → Br,n. We provide a few examples to show how our formulas work to write explicit expressions
for the product E(z,w)n with elements of Br,n. It is something that can be done automatically on
a computer.

1.3 Statement of the results. For a more precise description of the outputs of this paper, let us
introduce some further piece of notation. The canonical gln(Z)-module structure on

∧
Mn, where

n ∈ N ∪ {∞}, is defined by mapping each A ∈ gln(Z) to δ(A) ∈ EndZ(
∧
Mn) such that: δ(A)u = A · u, ∀u ∈Mn =
∧1
Mn,

δ(A)(v ∧ w) = δ(A)v ∧ w + v ∧ δ(A)w, ∀v,w ∈
∧
Mn

. (2)

Since every u ∈
∧
Mn is a finite linear combination of monomials of some given degree, the initial

condition and the Leibniz rule determine the map δ(A) over all
∧
Mn. An easy check shows that

the commutator [δ(A), δ(B)] ∈ EndZ(
∧
Mn) is equal to δ([A,B]), where [A,B] is the commutator

in gln(Z). The composition of δ with the restriction map to the r-th degree of the exterior algebra,
A 7→ δ(A)|

∧rMn
, turns

∧r
Mn into a representation of gln(Z) for any r. This is easily seen to

be irreducible, because any basis element of
∧r
Mn can be transported to any other via a suitable

element of gln(Z).

1.4 Let us set M :=M∞. In the ring Br := Z[e1, . . . , er] consider the generic polynomial of degree
r:

Er(z) := 1 − e1z+ · · ·+ (−1)rerz
r ∈ Br[z]

and the sequence Hr := (hj)j∈Z implicitly defined by∑
i>0

hiz
i :=

1

Er(z)
∈ Br[[z]].

It is well known that Br =
⊕

λ∈Pr
Z∆λ(Hr) (see [18, Proposition (3.2)] or [8, Corollary 5.8.3] for

an alternative deduction), where Pr denotes the set of all partitions of length at most r and ∆λ(Hr)
is the Schur determinant det(hλj−j+i)16i,j<n. We have a Z-module isomorphism φr : Br 7→

∧r
M

given by ∆λ(Hr) 7→ [b]rλ, where

[b]rλ := br−1+λ1 ∧ · · ·∧ bλr ∈
r∧
M.

Consider now the following two sequences of elements of the polynomial ring Br[z
−1]:

σ−(z)Hr := (σ−(z)hj)j∈Z and σ−(z)Hr := (σ−(z)hj)j∈Z,

3



where

σ−(z)hj = hj −
hj−1

z
and σ−(z)hj =

∑
i>0

hj−i

zi
.

Extending the action of σ−(z) and σ−(z) to all basis element of Br, through the rule

σ−(z)∆λ(Hr) = ∆λ(σ−(z)Hr) and σ−(z)∆λ(Hr) = ∆λ(σ−(z)Hr), (3)

provides two well defined Z-linear maps σ−(z),σ−(z) : Br → Br[z
−1]. Set now

δ(z,w) :=
∑
i,j>0

δ(Eij)z
iw−j,

and define E(z,w) :=
∑
i,j>0

Eij · ziw−j : Br → Br[[z,w
−1] via the equality

φr(E(z,w)P(e1, . . . , er)) = δ(z,w)φr(P(e1, . . . , er)),

where P(e1, . . . , er) is an arbitrary Z-polynomial in e1, . . . , er.

Let now set, as a notation:

∆λ(w
−λ,σ−(z)Hr) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w−λ1 w1−λ2 · · · wr−1−λr

hλ1+1 −
hλ1
z

hλ2 −
hλ2−1

z
· · · hλr+r−2 −

hλr+r−3

z
...

...
. . .

...

hλ1+r−1 −
hλ1+r−2

z
hλ2+r−2 −

hλ2+r−3

z
· · · hλr −

hλr−1

z
.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(4)
with which we are now in position to state the first main result of this paper.

Theorem 4.3. The E(z,w)-image in Br[z,w
−1] of a basis element ∆λ(Hr) ∈ Br, is:

E(z,w)∆λ(Hr) =
zr−1

wr−1
· 1

Er(z)
∆λ(w

−λ,σ−(z)Hr). (5)

In other words, the product Eij · ∆λ(Hr) is the coefficient of ziw−j in the expansion of the
right–hand side of (5). A second equivalent expression for the action of E(z,w) is provided by:

Theorem 5.7. The following formula holds

E(z,w) =
(

1 −
z

w

)−1
(

1 −
zr

wr
Γr(z,w)

)
, (6)

where

Γr(z,w) :=
Er(w)

Er(z)
σ−(z)σ−(w).

Equation (6) recalls the shape of the bosonic representation of the Lie algebra A∞ of all the matrices

with finitely many non-zero diagonals: see [4, 14, 16] and, from now on, also [10, Section 9].
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Suppose now that n <∞. In this case

Br,n =
Br

(hn−r+1, . . . ,hn)
.

Denote by πr,n : Br → Br,n the canonical epimorphism. Then

Br,n =
⊕
λ∈Pr

Z · πr,n∆λ(Hr) =
⊕
λ∈Pr

Z · ∆λ(Hr,n),

where Hr,n = πr,nHr = (πr,n(hj))j∈Z = (1 = h0,h1,h2, . . . ,hn−r). As remakerd, Br,n is a gln(Z)-
module. Denote E(z,w)n :=

∑
06i,j<n Eijz

iw−j.

Theorem 6.4. The following equality holds in Br,n[z,w
−1]:

E(z,w)n∆λ(Hr,n) = πr,n(E(z,w)∆λ(Hr)). (7)

Equality (7) means that the gln(Z)-action on an element of Br,n is obtained putting hn−r+1+j = 0

for all j > 0 in the expression (5). For example:

E(z,w)4∆(2,2)(H2,4) =
1

w2

(
−h2 − h1h2z+ h

2
2z

2
)
+

1

w3

(
−h1 − (h21 − h2)z+ h

2
2z

3
)

=
1

w2
[(e2 − e

2
1) + (e1e2 − e

3
1)z+ (e41 − 2e21e2 + e

2
2)z

2]

−
1

w3
[e1 + e2z− (e41 − 2e21e2 + e

2
2)z

3] ∈ B2,4[[z,w
−1].

2 Preliminaries and Notation

2.1 A partition is a monotonic non increasing sequence of non-negative integers λ1 > λ2 > . . .
all zero but finitely many, said to be parts. The length `(λ) of a partition λ is the number of non
zero parts. We denote by P the set of all partitions, by Pr := {λ ∈ Pr | `(λ) 6 r} and by Pr,n
the set of all partitions of length at most r whose Young diagram is contained in a r × (n − r)
rectangle. The partitions form an additive semigroup: if λ,µ ∈ P, then λ+ µ ∈ P [18, Chap. I.1].
If λ := (λ1, λ2, . . .), we denote by λ(i) the partition obtained by removing the i-th part:

λ(i) := (λ1 > λi−1 > λ̂i > λi+1 > . . .),

where ̂ means removed. By (1j) we mean the partition with j parts equal to 1.

2.2 In the following M will denote the free abelian group
⊕
i>0 Z ·bi with basis b := (bi)i>0. For

λ ∈ Pr, let
[b]rλ := br−1+λ1 ∧ · · ·∧ bλr . (8)

Clearly
∧r
M :=

⊕
λ∈Pr

Z[b]rλ. The restricted dual of M is M∗ :=
⊕
i>0 Zβi, where βi ∈

HomZ(M,Z) is such that βi(bj) = δij. There is a natural well known identification between
(
∧
Mn)

∗ and
∧
M∗n, see e.g. [9, Section 2.6].
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2.3 Hasse-Schmidt derivations on
∧
M. Let z denote an arbitrary formal variable. A Hasse-

Schmidt derivation (HS) [8] on
∧
M is a homomorphism of abelian groups D(z) :

∧
M→

∧
M[[z]]

such that
D(z)(u∧ v) = D(z)u∧D(z)v, (9)

for all u, v ∈
∧
M. Writing D(z) as

∑
j>0Djz

j, equation (9) is equivalent to

Dj(u∧ v) =

j∑
i=0

Diu∧Dj−iv. ∀j > 0.

2.4 If D(z) is a HS–derivation on
∧
M and D0 is invertible, there exists D(z) :=

∑
i>0(−1)iDiz

i ∈
EndZ(

∧
M)[[z]] such that D(z)D(z) = D(z)D(z) = 1. The map D(z) is a HS-derivations, said to

be the inverse of D(z). Thus the two integration by parts formulas hold:

D(z)u∧ v = D(z)(u∧D(z)v) and u∧D(z)v = D(z)(D(z)u∧ v). (10)

As remarked in [12], the second of (10) is the generalization (holding also for freeA-module of infinite
rank) of the Cayley-Hamilton theorem, which in [6] is also extended in the “tropical” context of
Grassmann semi-algebras.

2.5 The transposed HS–derivation. For all η ∈
∧
M∗, let DT (z)η be the unique element of∧

M∗ such that
DT (z)(η)(u) = η(D(z)(u)),

for all u ∈
∧
M. By [9, Proposition 3.8], DT (z) is a HS derivation on

∧
M∗ said to be the transposed

of D(z). Integration by parts (10) implies the following equality for transposed HS–derivations.

2.6 Proposition. For all η ∈M∗ and each u ∈
∧r
M

DT (z)ηyu = D(z) (ηyD(z)u)) (11)

Proof. By definition of contraction of an exterior vector against a linear form (see e.g. [2, Ann.
15.3], for all ζ ∈

∧r−1
M∗:

ζ(D(z)Tηyu) = (D(z)Tη∧ ζ)(u).

Now we apply the first of integration by parts (10):

(D(z)Tη∧ ζ)(u) = D(z)T (η∧D(z)Tζ)(u)

from which, by definition of transposistion,

(η∧D(z)Tζ)D(z)u = D(z)Tζ(ηyD(z)u) = ζ
[
D(z)(ηyD(z)u)

]
which proves (11).
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3 Schubert derivations on
∧
M

It is easy to check that a HS-derivation on
∧
M is uniquely determined by its restriction to the

first degree M =
∧1
M of the exterior algebra (Cf. [8, Ch. 4]). Let σ+(z) :=

∑
i>0 σiz

i :
∧
Mn →∧

Mn[[z]] and σ−(z) :=
∑
σ−iz

−i :
∧
M→

∧
M[[z−1]] be the unique HS-derivations such that for

all i ∈ Z, σibj = bi+j if i+ j > 0 and 0 otherwise. Let σ+(z) and σ−(z) be, respectively, the inverse
HS-derivations of σ+(z) and σ−(z) in the algebra EndZ(

∧
Mn)[[z

±1]].

3.1 Definition. The HS-derivations σ±(z) and σ±(z) are called Schubert derivations.

Let ∆λ(σ+) = det(σλj−j+i)16i,j6r. Giambelli’s formula for Schubert derivations [8, Corollary
5.8.2] or [9, Formula (3.2)] says that [b]rλ = ∆λ(σ+)[b]

r
0. It enables us to equip

∧r
M with a

structure of Br-module by declaring that

hi[b]
r
λ := σi[b]

r
λ. (12)

Thus
∧r
M can be thought of as a free Br-module of rank 1 generated by [b]r0, such that [b]rλ =

∆λ(Hr)[b]
r
0. In particular

σ+(z)[b]
r
λ =

1

Er(z)
[b]rλ. (13)

3.2 Using the Br-module structure of
∧r
M one can define σ−(z) and σ−(z) as maps Br → Br[z

−1],
by setting

(σ−(z)∆λ(Hr))[b]
r
0 = σ−(z)[b]

r
λ and (σ−(z)∆λ(Hr))[b]

r
0 = σ−(z)[b]

r
λ.

A simple application of the definition shows, as in [9, Proposition 5.3], that the equalities

σ−(z)hj =

j∑
i=0

hj−i

zi
and σ−(z)hj = hj −

hj−1

z
, (14)

hold in Br for all r > 1.

3.3 Proposition. Let σ−(z)Hr (resp. σ(z)Hr) stands for the sequence (σ−(z)hj)j∈Z (resp.
(σ−(z)hj)j∈Z). If `(λ) 6 r then

σ−(z)∆λ(Hr) = ∆λ(σ−(z)Hr) and σ−(z)∆λ(Hr) = ∆λ(σ−(z)Hr).

Proof. According to [9, Theorem 5.7], by using a general determinantal formula due to Laksov and
Thorup as in [17, Main Theorem].

3.4 Lemma. For all λ ∈ Pr the following equalities hold:

b0 ∧ σ+(z)[b]
r
λ = zrσ−(z)

(
[b]rλ+(1r) ∧ b0

)
= zrσ−(z)[b]

r+1
λ . (15)

Proof. One argues by induction on r > 1. For r = 1 one has:

b0 ∧ σ+(z)bλ = b0 ∧ (bλ − bλ+1z)

= −b0 ∧ z(bλ+1 − bλz
−1)

= z(bλ+1 − bλz
−1)∧ b0 = zσ−(z)(bλ+1 ∧ b0) = zσ−(z)[b]

2
(λ).

Assume (15) holds for all 1 6 s 6 r− 1 . Then

7



b0 ∧ σ+(z)[b]
r
λ = b0 ∧ σ+(z)

(
br−1+λ1 ∧ [b]r−1

λ(1)

)
(decomposition

of [b]rλ)

= b0 ∧ σ+(z)br−1+λ1 ∧ σ+(z)[b]
r−1
λ(1) (σ+(z) is a

HS-derivation)

= zσ−(z)br−1+λ1+1 ∧ (b0 ∧ σ+(z)[b]
r−1
λ(1)) (case r = 1)

= zσ−(z)br−1+λ1+1 ∧ z
r−1σ−(z)([b]

r−1
λ(1)+(1r−1)

∧ b0) (inductive hypothesis)

= zrσ−(z)([b]
r
λ+(1r) ∧ b0). (σ−(z)b0 = b0

and σ−(z) is a
HS-derivation)

= zrσ(z)[b]
r+1
λ . (definition of [b]r+1

λ )

3.5 It is convenient to introduce one more formal variable w. Define

b(z) :=
∑
j>0

bjz
j and β(w) =

∑
j>0

βjw
−j−1.

Then b(z) = σ+(z)b0. Moreover β(w) = w−1σT−(w)β0. Indeed (σT−iβj)(bk) = βj(σ−ibk) =
βj(bk−i) = δi+j,k = βj+i(bk).

Let Γr(z) : Br → Br+1[[z]] and Γ∗w(z) : Br → Br−1[w
−1] be the operators implicitly defined by:

(Γr(z)∆λ(Hr))[b]
r+1
0 = z−rb(z)∧ [b]rλ (16)

(Γ∗r (w)∆λ(Hr))[b]
r−1
0 = wrβ(w)y[b]rλ. (17)

Clearly Γr(z), Γ
∗
r (z) are the finite r case of the bosonic vertex operators as in [16]. We now use the

following notation:

∆λ(w
−λ,Hr−1) :=

∣∣∣∣∣∣∣∣
w−λ1 w−λ2+1 · · · w−λr+r−1

hλ1+1 hλ2 · · · hλr+r−2

...
...

. . .
...

hλ1+r−1 hλ2+r−2 · · · hλr

∣∣∣∣∣∣∣∣ (18)

that keeps track of the fact that all the hj occurring in the determinant (18) live in the ring Br−1.

3.6 Proposition.

Γr(z)∆λ(Hr) =
1

Er+1(z)
∆λ(σ−(z)Hr+1) (19)

and
Γ∗r (w)∆λ(Hr) = ∆λ(w

−λ,Hr−1), (20)

8



Proof. Let us prove (19) first. One has

b(z)∧ [b]rλ = σ+(z)b0 ∧ [b]rλ (definition of σ+(z))

= σ+(z)(b0 ∧ σ+(z)[b]
r
λ) (integration by parts)

= σ+(z)(z
rσ−(z)[b]

r
λ+(1r) ∧ b0) (Formula15)

= zrσ+(z)σ−(z)([b]
r
λ+(1r) ∧ b0) (σ−(z)b0 = b0 and

σ−(z) is a HS derivation)

=
zr

Er+1(z)

(
σ−(z)[b]

r+1
λ

)
(by the Br-module structure

(12) of
∧r
M)

=
zr

Er+1(z)
(σ−(z)∆λ(Hr+1)) [b]

r+1
0 (definition of σ−(z)

as a map Br → Br[z
−1])

=
zr

Er+1(z)
∆λ(σ−(z)Hr+1)[b]

r+1
0 . (Proposition 3.3).

To prove (20), instead, the best is acting by direct computation:

β(w)y (br−1+λ1 ∧ · · ·∧ bλr)

= w−r−λ1 [b]r−1
λ(1) −w

−r+1−λ2 [b]r−1
λ(2)+(1)

+ · · ·+ (−1)r−1w−λr−1[b]r−1
λ(r)+(1r−1)

= w−r
(
w−λ1∆λ(1)(Hr−1) −w

1−λ2∆λ(1)(Hr−1) + · · ·+ (−1)r−1wr−1−λr∆λ(r)+(1r−1)

)
[b]r−1

0

= w−r

∣∣∣∣∣∣∣∣
w−λ1 w−λ2+1 · · · w−λr+r−1

hλ1+1 hλ2 · · · hλr+r−2

...
...

. . .
...

hλ1+r−1 hλ2+r−2 · · · hλr

∣∣∣∣∣∣∣∣ [b]
r−1
0 = w−r∆λ(w

−λ,Hr−1)[b]
r−1
0 ,

from which the desired expression of Γ∗r (w)∆λ(Hr).

4 The gl∞(Z) structure of Br. First description

Let Eij := bi ⊗ βj ∈ gl∞(Z).

4.1 Proposition.
δ(Eij)[b]

r
λ = bi ∧ (βjy[b]

r
λ).

Proof. It is an easy check, provided one invokes the very definition of the contraction operator as
a derivation of degree −1 of the exterior algebra.
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4.2 Let δ(z,w) =
∑
i,j>0 δ(Eij)z

iw−j. Then δ(z,w)[b]rλ ∈
∧r
M[[z,w−1]. Define E(z,w) : Br →

Br[[z,w
−1] through the equality:

(E(z,w)∆λ(Hr))[b]
r
0 = δ(z,w)[b]rλ.

4.3 Theorem.

E(z,w)∆λ(Hr) =
zr−1

wr−1

1

Er(z)
σ−(z)∆λ(w

−λ,Hr) =
zr−1

wr−1

1

Er(z)
∆λ(w

−λ,σ−(z)Hr). (21)

Proof. Since
∧r
M is a free Br-module generated by [b]r0, it suffices to expresses δ(z,w)[b]rλ as a

Br[[z,w
−1]-multiple of [b]r0. One has:

δ(z,w)[b]r0 = b(z)∧ (wβ(w)y[b]rλ)

= σ+(z)b0 ∧ (w ·w−rΓ∗r (w)∆λ(Hr)[b]
r−1
0 )

= w−r+1σ+(z)(b0 ∧ σ+(z)
(
Γ∗r (w)∆λ(Hr)

)
[b]r−1

0 ). (22)

Since (Γ∗r (w)∆λ(Hr))[b]
r−1
0 is a finite linear combination

∑
µ∈Pr−1

aµ(w)[b]
r−1
µ :

b0 ∧ σ+(z)
∑
µ

aµ(w)[b]
r−1
λ =

∑
µ

aµ(w)(b0 ∧ σ+(z)[b]
r−1
λ )

=
∑
µ

aµ(w)
(
zr−1σ−(z)[b]

r−1
µ+(1r−1) ∧ b0

)
= zr−1σ−(z)

∑
aµ(w)[b]

r
µ

= zr−1σ−(z)∆λ(w
−λ,Hr)[b]

r
0. (23)

Plugging (23) into (22) one finally obtains the equality

δ(z,w)[b]rλ =
zr−1

wr−1
σ+(z)(σ−(z)∆λ(w

−λ,Hr)[b]
r
0. (24)

Using the Br-module structure of
∧r
M over Br, one may replace σ+(z) by 1/Er(z) in (24), getting:

(E(z,w)∆λ(Hr))[b]
r
0δ(z,w)[b]

r
λ =

zr−1

wr−1

1

Er(z)
(σ−(z)∆λ(w

−λ,Hr)[b]
r
0, (25)

from which, by comparing the coefficients of [b]r0 on either side of (25), and using Proposition 3.3,
precisely (21).

4.4 Example. Let us compute E(z,w)e2 in B2[[z,w
−1]. Remind that

e2 = ∆(1,1)(H2) :=

∣∣∣∣h1 1
h2 h1

∣∣∣∣
and corresponds to the basis element [b]2(1,1) := b2 ∧ b1 ∈

∧2
M, In particular we expect that

Eije2 = 0 for all j /∈ {1, 2}. By applying the recipe:

E(z,w)e2 =
z

w
(1 + h1z+ h2z

2 + · · ·)

∣∣∣∣∣∣∣
w−1 1

h2 −
h1

z
h1 −

1

z

∣∣∣∣∣∣∣
10



=
1

w

h1 − h2z

E2(z)
+

1

w2

h1z− 1

E2(z)

=

[
1

w
(h1 − h2z) +

1

w2
(h1z− 1)

]
(1 + h1z+ h2z

2 + h3z
3 + · · ·) (26)

So, for instance

E4,2e2 = coefficient of z4w−2 of (26)= h1h3 − h4 = ∆(3,1)(H2) = e
2
1e2 − e

2
2.

5 The gl∞(Z) structure of Br. Second description

We now compute an equivalent expression of the generating function E(z,w) which recalls the shape
of the bosonic vertex representation of the Lie algebra A∞ of the matrices of infinite size with only
finitely many non-zero diagonals [16, Section 5.4] or [14, pp. 946–947].

5.1 Recall that b and β satisfy the Clifford algebras relations:

bi ∧ (βjy) + βjy(bi∧) = δij.

Thus

w (b(z)∧ β(w)y[b]rλ + β(w)y(b(z)∧ [b]rλ)) =
∑
i>0

zi

wi
[b]rλ = iw,z

w

w− z
[b]rλ, (27)

where, following [15, p. 18], the iw,z means that we are considering the expansion of w/(w −
z) in power series of z/w. We can then compute the gl∞(Z)-action of Br by first computing
wβ(w)y(b(z)∧ [b]rλ) and subtracting it from the right-hand side of (27).

5.2 Lemma. For all i > 1:

σ−(w)bn+i = σiσ−(w)bn +
1

wn+1
σ−(w)bi−1. (28)

Proof. In fact

σ−(w)bn+i = bn+i +
bn+i−1

w
+ · · ·+ bi

wn
+

1

wn+1
σ−(w)bi−1

= σiσ−(w)bn +
1

wn+1
σ−(w)bi−1,

as desired.

5.3 Lemma. The following commutation rule holds:

σ−(w)σ+(z)b0 = iw,z
w

w− z
σ+(z)σ−(w)b0.

Proof. Indeed
σ−(w)σ+(z)b0 = σ−(w)(b0 + b1z+ b2z

2 + b3z
3 + · · ·)

= b0 +

(
b0

w
+ b1

)
z+

(
b0

w2
+
b1

w
+ b2

)
z2 +

(
b0

w3
+
b1

w2
+
b2

w
+ b3

)
z3 + · · ·

11



=

(
1 +

z

w
+
z2

w2
+ · · ·

)
b0 +

(
1 +

z

w
+
z2

w2
+ · · ·

)
b1z+

(
1 +

z

w
+
z2

w2
+ · · ·

)
b2z

2 + · · ·

=

(
1 +

z

w
+
z2

w2
+ · · ·

)
σ+(z)b0 = iw,z

w

w− z
σ+(z)σ−(w)b0.

5.4 Lemma. For all n > 0:

σ−(w)σ+(z)bn = σ+(z)σ−(w)bn +
1

wn
iw,z

z

w− z
σ+(z)σ−(w)b0. (29)

Proof. First we use formula (28):

σ−(w)σ+(z)bn = σ−(w)bn +
∑
i>1 σ−(w)bn+iz

i (definition of σ+(z))

=
∑

i>0
σiσ−(w)bnz

i +
∑

i>1

1

wn+1
σ−(w)bi−1z

i (by eq. (28))

= σ+(z)σ−(w)bn +
z

wn+1
σ−(w)σ+(z)b0 (again definition of

σ+(z))

= σ+(z)σ−(w)bn +
z

wn+1
iw,z

w

w− z
σ+(z)σ−(w)b0 (Lemma 5.3)

= σ+(z)σ−(w)bn +
1

wn
iw,z

z

w− z
σ+(z)σ−(w)b0. (simplification)

In particular, for n = 0:

σ−(w)σ+(z)b0 = σ+(z)σ−(w)b0 + iw,z
z

w− z
σ+(z)σ−(w)b0

= iw,z
w

w− z
σ+(z)σ−(w)b0. (30)

5.5 Proposition. Let λ ∈ Pr. Then:

σ−(w)σ+(z)[b]
r+1
λ = iw,z

w

w− z
σ+(z)σ−(w)[b]

r+1
λ .

Proof. By using (29) and (30):

σ−(w)σ+(z)[b]
r+1
λ

= σ−(w)σ+(z) (br+λ1 ∧ · · ·∧ bλr ∧ b0)

= σ−(w)σ+(z)br+λ1 ∧ · · ·∧ σ−(w)σ+(z)b1+λr ∧ σ−(w)σ+(z)b0

12



=

r∧
i=1

(
σ+(z)σ−(w)br−i+1+λi +

z

wr+1+λ1
iw,z

w

w− z
σ+(z)σ−(w)b0

)
∧ iw,z

w

w− z
σ+(z)σ−(w)b0

= iw,z
w

w− z
σ+(z)σ−(w)[b]

r+1
λ .

5.6 Lemma. For all λ ∈ Pr:

σ−(w)(β0y[b]
r+1
λ ) = w−rσ+(w)[b]

r
λ.

Proof. If r = 1, then

σ−(w)(β0yb1+λ ∧ b0) = w
−1(bλ − bλ+1w) = w

−1σ+(w)bλ

and the property holds for r = 1. For r > 1 it follows by using the fact that σ−(w) is a HS
derivation. In fact

σ−(w)(β0y[b]
r+1
λ ) = σ−(w)[b]

r
λ = [σ−(w)b]

r
λ = w−rσ+(z)[b]

r
λ

5.7 Theorem. Let

Γr(z,w) :=
Er(w)

Er(z)
σ−(w)σ−(z). (31)

Then

E(z,w) = iw,z
w

z−w

(
zr

wr
Γr(z,w) − 1

)
. (32)

Proof. By properly expanding the expression wβ(w)y(b(z)∧ [b]rλ) and using 3.5 one obtains:

wβ(w)y(b(z)∧ [b]rλ) = zrσT−(w)β0y
(
σ+(z)σ−(z)[b]

r+1
λ

)
(expression of b(z) and
β(w) through Schubert
derivations)

= zrσ−(w)
(
β0yσ−(w)σ+(z)σ−(z)[b]

r+1
λ

)
(integration by parts (11))

=
zr

wr
σ+(w)σ−(w)σ+(z)σ−(z)[b]

r
λ (by Lemma 5.6)

=
zr

wr
iw,z

w

w− z
σ+(w)σ+(z) (σ−(w)σ−(z)[b]

r
λ) (Proposition 5.5)

=
zr

wr
iw,z

w

w− z

Er(w)

Er(z)
σ−(w)σ−(z)[b]

r
λ. (invoking the Br-module

structure of
∧r
M)

Therefore

E(z,w) = iw,z
w

w− z
−
zr

wr
iw,z

w

w− z

Er(w)

Er(z)
σ−(w)σ−(z) = iw,z

w

z−w
·
(
zr

wr
Γr(z,w) − 1

)
,

as desired.
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5.8 In the ring Br ⊗Z Q one can define the sequence (x1, x2, . . .) related to (e1, . . . , er) by the
relation

exp

∑
i>1

xiz
i

Er(z) = 1

Reference [9, Theorem 7.1] shows that, for r = ∞:

σ−(z) = exp

−
∑
i>1

1

izi
∂

∂xi

 and σ−(w) = exp

−
∑
i>1

1

iwi
∂

∂xi

 .

Thus:

Γ∞(z,w) =
E∞(w)

E∞(z)
σ−(w)σ−(z) = exp

∑
i>1

xi(z
i −wi)

 exp

−
∑
i>1

1

i

(
1

zi
−

1

wi

)
∂

∂xi

 .

the classical expression of the vertex operator involved in the DJKM bosonic representation of
gl∞(Q).

6 The gln(Z) structure of Br,n.

6.1 Recall that Mn :=
⊕

06j<n Z · bj. The abelian group σnM :=
⊕
j>n Z · bj is a sub-module of

M and sits into the split exact sequence:

0→ σnM→M→Mn → 0,

so that Mn can be identified with the quotient M/σnM. Similarly, the module
∧r
Mn sits into

the bottom exact sequence of the following commutative diagram

0 −→ (hn−r+1, . . . ,hn) ↪→ Br
πr,n−→ Br,n −→ 0y y y

0 −→
∧r−1

M∧ σnM ↪→
∧r
M

πr,n−→
∧r
Mn −→ 0

whose vertical arrows are multiplication by [b]r0 and where abusing notation we have denoted by
πr,n both the canonical projection Br → Br,n and

∧r
M→

∧r
Mn.

6.2 Let Ir,n the ideal (hn−r+1, . . . ,hn). Under the Br-module structure (12) of
∧r
M

Ir,n[b]
r
0 = σnM∧

r−1∧
M. (33)

Proof. Indeed, Ir,n[b]
r
0 ⊆ σnM∧

∧r−1
M, because

hn−r+1+j[b]
r
0 = bn+j ∧ br−2 ∧ · · ·∧ b0 ∈ σnM∧

r−1∧
M,

for all j > 0. Conversely, if [b]rλ ∈ σnM∧
∧r−1

M, then λ1 > n−r+1. Since for all λ ∈ Pr the Schur
polynomial ∆λ(Hr) belongs to the ideal generated by the its first column (hλ1 ,hλ1+1. . . . ,hλ1+r1),
it follows that, being λ1 > n − r + 1, the inclusion (hλ1 ,hλ1+1, . . . ,hλ1+r−1) ⊆ Ir,n holds, i.e.
[b]rλ ∈ Ir,n[b]r0.
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6.3 Let
δ(z,w)n :=

∑
06i,j<n

δ(bi ⊗ βj)ziw−j,

and define
E(z,w)n =

∑
06i,j<n

bi ⊗ βj · ziw−j.

as a map Br,n → Br,n[z,w
−1] through the equality:

(E(z,w)n∆λ(Hr,n))

(
[b]r0 + σnM∧

r−1∧
M

)
= δ(z,w)n

(
[b]rλ + σnM∧

r−1∧
M

)
. (34)

6.4 Theorem. The gln(Z)-module structure of Br,n is described by:

E(z,w)n∆λ(Hr,n) =
zr−1

wr−1
πr,n

(
1

Er(z)

)
πr,nσ−(z)∆λ(w

−λ,Hr), (35)

or, more explicitly:

E(z,w)n∆λ(Hr,n) =
zr−1

wr−1
(1 + h1z+ . . . + hn−rz

n−r)πr,nσ−(z)∆λ(w
−λ,Hr). (36)

Proof. Since

δ(z,w)n

(
σnM∧

r−1∧
M

)
⊆ σnM∧

r−1∧
M,

as a simple exercise shows, it follows that E(z,w)nIr,n ⊆ Ir,n. Therefore:

E(z,w)n∆λ(Hr,n)

(
[b]r0 +

r−1∧
M∧ σnM

)
= δ(z,w)n

(
[b]rλ + σnM∧

r−1∧
M

)

= δ(z,w)[b]rλ +

r−1∧
M∧ σnM

= (E(z,w)∆λ(Hr))[b]
r
0 + σnM∧

r−1∧
M, (37)

i.e., in other words, E(z,w)n∆λ(Hr,n) = πr,n (E(z,w)∆λ(Hr)) . Using Theorem 4.3 and the fact
that πr,n is a epimorphism, one finally obtains (35). Equality (36) follows from noticing that

πr,n

(
1

Er(z)

)
= πr,n

∑
i>0

hiz
i

 = 1+h1z+· · ·+hn−rzn−r.

6.5 Remark. It is important to notice that πr,n ◦ σ−(z) 6= σ−(z) ◦ πr,n and that

πr,nσ−(z)∆λ(w
−λ,Hr) = σ−(z)∆λ(w

−λ,πr,nHr) = σ−(z)∆λ(w
−λ,Hr,n)

only if n > r− 1 + λ1. Thus formula (35) is already in its best possible shape.
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6.6 Example. Let us evaluate E(z,w)4∆(2,2)(H2,4) ∈ B2,4[z,w
−1], where B2,4 is th cohomology

(or Chow) ring of the Grassmannian G(2, 4). Recall that in this case hi = ci(Q2), the i-th Chern
class of the universal quotient bundle over it. According to the recipe, we first compute

σ−(z)∆(2,2)(w
−(2,2),H2) =

∣∣∣∣∣∣∣
w−2 w−1

h3 −
h2

z
h2 −

h1

z

∣∣∣∣∣∣∣ .
Projecting ont B2,4 via π2,4 amounts to set h3 to 0. Then we muliply by π2,4(1/E2(z)) = 1+h1z+
h2z

2 and by z/w. Eventually one obtains:

E(z,w)4∆(2,2)(H2,4) =
z

w
(1 + h1z+ h2z

2)

∣∣∣∣∣∣∣
w−2 w−1

−
h2

z
h2 −

h1

z

∣∣∣∣∣∣∣ =

= h2
1

w2
+ h1h2

z

w2
+ h22

z2

w2
− h1

1

w3
− (h21 − h2)

z

w3
+ h22

z2

w3
. (38)

So, for instance, 
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

∆(2,2)(H2,4) = E1,2∆(2,2)(H2,4) = h1h2

6.7 Example. In 4.4 we have computed

E4,2e2 = h1h3 − h4.

This is zero in B2,4 := B2/(h3,h4). Indeed

E(z,w)2e2 =

[
1

w
(h1 − h2z) +

1

w2
(h1z− 1)

]
(1 + h1z+ h2z

2)

= [e1 + e2z+ (2e21e2 − e
4
1 − e

2
2z

3]w−1 + [−1 + e2z
2 + (e31 − e1e2)z

3]w−2.
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