
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Service-Defined Approach for Orchestration of Heterogeneous Applications in Cloud/Edge Platforms / Castellano,
Gabriele; Esposito, Flavio; Risso, FULVIO GIOVANNI OTTAVIO. - In: IEEE TRANSACTIONS ON NETWORK AND
SERVICE MANAGEMENT. - ISSN 1932-4537. - STAMPA. - 16:4(2019), pp. 1404-1418. [10.1109/TNSM.2019.2941639]

Original

A Service-Defined Approach for Orchestration of Heterogeneous Applications in Cloud/Edge Platforms

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSM.2019.2941639

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2752663 since: 2019-09-18T12:55:09Z

IEEE

1

A Service-Defined Approach for Orchestration of Heterogeneous
Applications in Cloud/Edge Platforms

Gabriele Castellano, Flavio Esposito and Fulvio Risso

Abstract—Edge Computing is moving resources toward the
network borders, thus enabling the deployment of a pool of new
applications that benefit from the new distributed infrastructure.
However, due to the heterogeneity of such applications, specific
orchestration strategies need to be adopted for each deployment
request. Each application can potentially require different opti-
mization criteria and may prefer particular reactions upon the
occurrence of the same event. This paper presents a Service-
Defined approach for orchestrating cloud/edge services in a
distributed fashion, where each application can define its own
orchestration strategy by means of declarative statements, which
are parsed into a Service-Defined Orchestrator (SDO). Moreover,
to coordinate the coexistence of a variety of SDOs on the same
infrastructure while preserving the resource assignment optimal-
ity, we present DRAGON, a Distributed Resource AssiGnment
and OrchestratioN algorithm that seeks optimal partitioning
of shared resources between different actors. We evaluate the
advantages of our novel Service-Defined orchestration approach
over some representative edge use cases, as well as measure
convergence and performance of DRAGON on a prototype
implementation, assessing the benefits compared to conventional
orchestration approaches.

Index Terms—Orchestration, Mathematical optimization, Dis-
tributed algorithms, Distributed management.

I. INTRODUCTION

With the expansion of Cloud Computing toward the edge
of the network, the diversity of the involved applications
and of their management requirements has been drastically
exacerbated. Indeed, the largely heterogeneous set of (often
distributed) applications running over Cloud/Edge platforms
may have different and unpredictable deployment objectives;
furthermore, reacting differently to network events, such as
a traffic load increase, became a necessity. In the above
circumstance, some applications may need to scale up or
out, while others may migrate to a more convenient location.
Others may even modify the service behavior without asking
for additional resources. For instance, the optimization of a
Content Distribution Network (CDN) service may require to
monitor the average miss-rate on deployed caches, to identify
occasional hot spots such as flash crowd during live events;
this in turn requires optimizing the service by relocating and
possibly duplicating some caches. Vice versa, a video stream-
ing application may need to monitor the provided quality of
service in terms of Frames Per Second (FPS), opting for the
deployment of a more aggressive video transcoder whenever a
particular high load deteriorates the current frame rate, instead
of asking for more processing resources.

G. Castellano and F. Risso are with the Department of
Control and Computer Engineering, Politecnico di Torino, Italy,
gabriele.castellano@polito.it, fulvio.risso@polito.it.

F. Esposito is with the Computer Science Department at Saint Louis
University, USA, flavio.esposito@slu.edu.

While large service providers may run their applications
on ad-hoc platforms and therefore can define their best opti-
mization strategies, most of the other providers have to rely
on third-party Edge/Cloud platforms, which host heteroge-
neous applications and hence in need of adopting service-
agnostic one-size fits-all orchestration strategies to handle the
entire applications pool. Embedding of virtual services is thus
accomplished by optimizing generic metrics such as energy
saving, latency, load balancing [1]. Similarly, load increases
are managed by taking into account conventional infrastructure
metrics such as CPU and memory consumption through the
traditional auto-scaling techniques (i.e., scaling up/down is
performed whenever consumption goes above/below a certain
threshold). In summary, existing orchestration approaches can-
not (i) take their decisions based on service-specific parameters
(i.e., cache miss-rate) and (ii) perform service-specific actions
such as modifying the internal behavior of the service (e.g.,
switching the transcoder), as only infrastructure-related actions
are possible. As a consequence, they often fail to optimize
application-specific goals.

This paper fills this knowledge gap by proposing a novel
Platform-as-a-Service (PaaS) approach where the orchestration
component is fully distributed and provides the possibility to
instantiate, prior to service deployment, small-scoped Service-
Defined Orchestrators (SDOs), each dedicated to handling the
life-cycle of a particular application. Such orchestrator may
operate by modifying the current overall resource assignment
(e.g., if the application needs more resources or may release
some) as well as merely act on the application itself to adapt
its operational state to the current infrastructure situation (e.g.,
switch the used video codec on a streaming service compo-
nent). To avoid exacerbating applications development, which
would also include such an orchestration module, we present
a distributed architecture where SDOs are automatically syn-
thesized starting from an Orchestration Behavioral Model,
used by the service provider to specify metrics and objectives
needed to build the proper orchestration strategy for the given
application by means of high-level declarative statements.

The coexistence of such a variety of small orchestrators
(SDOs) operating on a shared infrastructure introduces the
problem of coordinating resource allocation. To address this
problem, we extend our prior work [2] by designing a
fully Distributed Resource AssiGnment and OrchestratioN
(DRAGON) algorithm, which enables a pool of SDOs to
reach an agreement on how infrastructure resources should
be (temporarily) partitioned among them, by means of a fully
distributed decision process. Our contributions are as follows:
Design contribution. We present a novel distributed or-
chestration architecture (Section III) and detail the design of
its core component, namely the Service-Defined Orchestrator

2

(Section IV). We also formally define a Declarative Behav-
ioral Model used to synthesize an SDO from an high-level
description of its orchestration strategies.
Algorithmic contribution. We detail our DRAGON
asynchronous algorithm (Section V) formalizing its complete
multi-node version — the single-node version was previously
presented in [2] — and we show how it provides non-
improvable guarantees on resource assignment performance
to independent SDOs and a convergence bound (Section VI).
Evaluation contribution. We assess the benefits of our
approach analyzing three reference use cases: (i) QoS degrada-
tion for a video streaming application, (ii) cache placement for
a CDN provider and (iii) edge migration for mobile gaming.
Moreover, we evaluate both convergence and performance
properties of DRAGON, comparing them with traditional ap-
proaches (Section VII). Our findings confirm the applicability
of this approach in edge infrastructures and the performance
advantages over conventional one-size fits-all paradigms.

II. RELATED WORK

The orchestration of infrastructure resources is primarily
investigated in several recent works. Most of them focus on the
VNF deployment problem proposing algorithms that rely on a
centralized solver [3]–[5]. Among them, some propose a joint
computation of different phases of the problem to seek better
optimization. For instance, [4] proposes an algorithm in which
scaling, placement, and mapping are optimized jointly, while
in [5] authors solve the embedding problem combined with the
service composition one. Other works as [6], [7] investigate
instead the problem of joint orchestration among multiple
infrastructure providers, proposing distributed optimization
approaches. In [6], the authors propose a game-theoretic
approach, while [7] illustrates a decentralized algorithm on
top of an existing multi-domain architecture developed in the
5Gex project [8]. This last one addresses relationships across
multi-administrative domain orchestrators, distinguishing be-
tween Resource Orchestration, service-agnostic and performed
at the infrastructure level, and Service Orchestration, i.e.,
service-specific management of a single slice [9]. Within
the project, a distributed architecture enabling multi-domain
resource orchestration is proposed, as well as analysis of
their coordination [8], [10]. However, no focus is given on
the interaction between service orchestrators, which is only
theorized in [9] and is mostly outside the scope of the project.

Infrastructure level orchestration alone does not provide
service specific optimization.

Indeed, recent work on edge computing [11]–[13] proposes
ad-hoc optimization focusing single edge application sepa-
rately. For instance, [11] optimizes the placement of roadside
units on new generation vehicular networks; [12] focuses on
the service placement problem in mobile applications, where
the dynamism of user’s location plays a key role; [13] proposes
an optimal allocation for high-performance video streaming in
5G networks. While the above solutions enable optimization
of isolated applications, to the best of out knowledge, it
is still unclear how such a variety of service embedding
algorithms can coexist on a shared infrastructure without

undermining the overall performance optimality. Mesos [14]
enables dynamic decisions on resource partitioning and allows
the coexistence of diverse cluster computing frameworks,
each one featuring different scheduling needs, on top of the
same cloud infrastructure. This solution exploits a centralized
master that assigns resources dynamically by making offers
to demanding frameworks. SONATA [15] introduced the
concept of service-specific optimization in the ETSI NFV
reference architecture, extending it with Service-Specific
Managers (SSMs) micro-services, so that service awareness
can be dynamically introduced to the generic orchestrator. In
this work, we even go further by enabling a fully distributed
approach to remove such a centralized component. Indeed,
mandating the existence of a centralized component (featured
both in [14], [15]) may not be suitable in a scenario where
services are executed on scattered compute nodes, e.g., at the
edge of the network, which feature arbitrary and unpredictable
topologies that evolve over time. In this context, we should
rely on solutions that provide decentralized consensus
(e.g., Paxos [16] and RAFT [17]) to reach agreement on
resource assignment. In particular, RAFT is implemented in
widespread SDN controllers to enable data-store replication
and resiliency among multiple controller instances. Some of
its limitations have already been highlighted in [18], where
authors also propose an enhancement of RAFT to improve
recovery times on the specific use case of SDN Controllers.
More generally, none of [16], [17] simultaneously provides
(i) guarantees on convergence time and performance, and (ii)
a fully distributed approach.

III. OVERALL ARCHITECTURE

This section introduces our distributed orchestration ar-
chitecture (Figure 1). We identified three separated oper-
ational planes that have a correspondence with the well-
established cloud layered model (XaaS) [19]. An Infrastructure
Plane (i.e., Infrastructure-as-a-Service) provides elementary
resources (such as computing, networking and storage) by vir-
tualizing a set of edge or cloud servers (compute nodes) scat-
tered across the network. A set of Service-Defined Orchestra-
tors, each dedicated to the management of a given application,
constitutes a distributed Platform-as-a-Service that we name
Orchestration Plane. Finally, the whole set of edge/cloud end
applications running on top of the distributed infrastructure
constitutes the Service Plane (i.e., Software-as-a-Service).

A. Service Plane

To preserve the generality of our approach, we assume that
applications may follow the micro-service paradigm [20], that
is, services are composed by small components, each special-
ized on a given task. For instance, a video streaming applica-
tion may feature a video source, a transcoder and a web server,
each one potentially deployed on a separate location according
to the placement decisions enforced by the orchestrator.

Figure 1 shows a Service Plane where each application
requires the deployment of multiple components. The pro-
posed architecture assumes that each application component
may feature multiple valid implementations when physically

3

Fig. 1: Overall distributed orchestration architecture.

deployed on the infrastructure. Each implementation may
feature different characteristics, for example, the execution
environment could be over virtual machines, containers, or
dedicated hardware. Each implementation may require differ-
ent resources and provide different QoS levels. Based on the
scenario, an application may benefit more from a particular
implementation policy set. As shown in Figure 1, the Orches-
tration Plane features an Implementation Repository that stores
valid implementations for well-known components, along with
details about their configuration and resource requirements.
Additionally, at deployment request time, an application may
customize further each one of its components.

An application deployment request consists of (i) the list of
components to be deployed, along with their virtual topology,
(ii) any custom implementation needed for the deployment and
(iii) a declarative description of the orchestration strategies to
be used to properly deploy and manage the application.

B. Orchestration Plane

Our approach defines a highly modular and dynamic Or-
chestration Platform, whose building blocks are our Service-
Defined Orchestrators (SDOs), each (i) dedicated to a single
application and (ii) generated and executed on demand. Note
that such an approach makes the overall PaaS behavior defined
by the application itself.

The orchestration platform accepts application deployment
requests. These requests come with additional information
that is used to drive the orchestration process (i.e., resource
allocation, placement and run-time management) in a way
that is optimal for that specific application. Metadata that
comes with each application deployment request are in the
form of an Orchestration Behavioral Model, which features
declarative statements used to actually generate the Service-
Defined Orchestrator by means of an SDO Compiler. Details
regarding the Orchestration Behavioral Model and how its
declarative statements are composed to generate an SDO are
discussed in Section IV.

Whenever a new SDO is generated, it is instantiated as an
extension of the existing platform and employed to manage the
orchestration of the corresponding application. Orchestration
is performed with respect to both deployment and run time. At

Fig. 2: Interactions between an SDO and (i) the infrastructure controller and
(ii) components of the managed application.

deployment time, the SDO interacts with the infrastructure to
decide where each component should be physically deployed
(placement) and the amount of resources to reserve (resource
allocation). At run time, the SDO monitors the state of both
application components and infrastructure, reacting to subop-
timal placement and resource allocation. SDO actions include
rescheduling components or resizing applications on demand.

C. Infrastructure Plane

After orchestration decisions have been taken, application
components are physically deployed on a shared hosting
infrastructure. The infrastructure is partitioned in multiple
hosting nodes (Figure 1), each featuring different physical
capacity in terms of resources of different types (e.g., CPUs,
storage, network bandwidth, etc.). The current state of the
hosting infrastructure and the state of each deployed appli-
cation components are dynamically reported to the relevant
SDOs by each hosting node, by means of a distributed mes-
sage broker. Additionally, infrastructure nodes expose resource
controller APIs through which SDOs can deploy and manage
application components. Figure 2 highlights SDO interactions
with both the infrastructure and application components.

IV. SERVICE-DEFINED ORCHESTRATOR

This section provides details on the Service-Defined Orches-
trator (SDO), the on-demand generated piece of the platform
that manages deployment and run time of a single application.
We first provide a formal definition of the Orchestration
Behavioral Model, used to describe a specific SDO behavior
through declarative rules. Then, the architecture and synthesis
of an SDO are detailed, and a practical example is discussed.

A. Orchestrator Behavioral Model (OBM)

By definition, an SDO cannot be a generic module, as it
should necessarily be specialized for each particular applica-
tion. Application needs in an edge/cloud environment are usu-
ally unknown a priori, so we need a mechanism that allows, on
demand, generation of any desired orchestration strategy. We
propose an approach that derives a specialized SDO starting
from a high level declarative description. In this section we
formalize such a description through an Orchestration Behav-
ioral Model (OBM). Our design generalizes the application
specific approach of [21] by adapting some of the concepts

4

from [22] on the formalization of declarative workflows, with
the aim of subsuming any deployment orchestration strategy
and encompassing multiple run-time situations.

An OBM instance is provided with the application as
deployment metadata, specified by the service provider. It
should feature at least the following: (i) parameters which
the SDO should be aware of, such as infrastructure and/or
application state; (ii) the objective that should be optimized;
(iii) events that may occur and actions to be performed in
response. We formally define the OBM by providing the
following abstractions.

Definition 1. (state S). We define as state S = SA ∪SI ∪SO
the set of variables, parameters and, in general, configu-
rations, that the SDO can have access to. We distinguish
three separate sets composing it: Application State (SA),
Infrastructure State (SI) and SDO State (SO).

Each element s ∈ S represents a generic readable and,
possibly, configurable parameter within a given area, and is
associated with few information (e.g., name, type, scope).

The Application State (SA) concerns the current deployment
of each application component. It includes (i) the list of imple-
mentations currently chosen for each component (and where
they have been physically deployed), (ii) their configuration
and (iii) any operational variable, i.e., read-only data that the
SDO may obtain by directly querying one or more components
(e.g., the current miss-rate measured on a given deployed
content cache).

The Infrastructure state (SI) is mainly the set of information
the SDO obtains from the hosting nodes below, namely, their
resource capacity and topology data. Since more than one SDO
concurrently allocates resources over the same infrastructure,
we add another piece of information to the Infrastructure State,
i.e., how much resources the SDO is allowed to allocate at the
moment. This is obtained by each SDO through our distributed
agreement algorithm that will be described in Section V.

Additionally, the OBM features an SDO State (SO), which
is maintained internally to the SDO itself and can be used to
store some run-time information, thus enabling the definition
of stateful behaviors.

Definition 2. (constraints C). We define a set of constraints C,
where each element γ ∈ C is a mathematical statement (equa-
tion or inequation) between two functions fL, fR : S |S| → R
defined on state variables s ∈ S.

Constraints represent additional requirements associated to
a given application. They can state the maximum latency be-
tween two components, specific characteristics of the physical
nodes where a given component has to be deployed, and more.
If constraints are specified in the OBM, they are interpreted by
the generated SDO as hard requirements that should always be
satisfied, thus discarding any deployment solution that would
violate them. Moreover, since variations that may occur at run-
time in the State may possibly lead to a constraint violation,
Actions to be performed (see below) upon such violation must
be specified for each declared constraint.

Definition 3. (events E). Given a state S, a particular set of

variations that may occur at run-time on its variables may be
declared to be an event e ∈ E, where E is the set of all the
events declared in the OBM.

A service parameter that exceeds a given threshold, the
amount of a given resource that drops below the configuration
requirement, the expiration of a timer defined at run-time on
the SDO State, and more, can identify situations where the
application is suffering and reconfiguration actions should be
performed. An Event may be defined on a single state variable
variation, or even when more than one of the variables change
in a predefined way. Each variation is defined through: (i) the
reference to the state variable in question; (ii) the kind of
variation that must be observed, i.e. equal to, higher or lower
a threshold, or it simply changes in any way; (iii) the value,
if any, to which the changing variable should be compared,
which can be a static value (e.g., a string or a number) or
even a reference other variables on the state. Each event is
labeled with a name, which is used to associate Action(s) that
should be performed upon its occurrence.

Definition 4. (actions A). Given an event e ∈ E that may
occur on a state S, we define as action a ∈ A, a vector
of functions ai : S |S| → S, each giving the new value to
“write” on a particular state variable si ∈ S. The size of
the action vector a represents the number of write operations
to be performed on the state.

Executing an action may consist in one or more of the
following: (i) modify the configuration of a given application
component; (ii) reschedule the deployment of the application,
or scale/migrate just a particular component; (iii) update some
local variables of the SDO State, e.g. to modify the SDO future
behavior. Whenever an action is invoked, it takes as implicit
parameters any variation registered by the triggering event.

Definition 5. (objective o). Given a state S declared in an
OBM, we define the objective of the associated SDO, and we
denote it with o : S |S| → R, the numerical function that the
SDO should optimize during the application deployment.

The objective function of an application should model
one or more service QoS metrics (e.g., the frame rate in a
video streaming application) through variables that correspond
to placement and resource assignment decision during the
deployment. The objective optimization process is modeled
through a default, implicit Action ao, which is automatically
invoked at deployment time. Additionally, one can declare to
invoke the same action in response to some particular events,
in order to reschedule application components on resources
from scratch when necessary.

In declaring their own orchestration strategies through the
OBM, service providers are able to take into account different
situations the service may face while operating. The remote
need of re-defining the strategies while the service is operating
may constitute a limitation. However, in a real framework
product, an SDO specified through declarative statements
should provide an increased level of flexibility compared to
developing and deploying ad-hoc software.

5

Fig. 3: Overall architecture of the Service-Defined Orchestrator.

B. SDO Architecture

Figure 3 shows the architecture of the Service-Defined
Orchestrator. The figure distinguishes between modules that
are dynamically generated from the Orchestration Behavioral
Model, and those that are fixed (hence application indepen-
dent). Each of the former modules has a direct correspondence
to a precise piece of the OBM.

The State Module maintains the run-time information about
all the state variables described in the dedicated section of
the OBM (Definition 1), distinguishing between SDO internal
variables, information related to the infrastructure and to each
deployed application component. An Event Listener imple-
ments the detection of events declared in the OBM through
Definition 3. Whenever there is a variation on one of the
relevant state variables, the Event Listener checks for events
that may have occurred. Additionally, this module also checks
if a state variation causes a violation of one of the defined
constraints. In any of these cases, the Event Listener invokes
the corresponding Handler, that is one (or more) of the Actions
defined in the OBM. If the particular event that occurred
requires to reschedule the entire deployment of the application,
action ao, i.e., the application deployment, is invoked instead.
This action implements the optimization of the application
objective declared on the OBM and is performed by the
Deployment Manager, which schedules a solution based on
(i) the current state, (ii) defined constraints and (iii) the
Application Description. Upon SDO startup, this deployment
action is automatically triggered by the Event Listener.

Whenever an action is triggered, all writing operations are
buffered by a helper module, which checks if any of them re-
quires the acquisition of additional resources from the physical
infrastructure. If this is the case, the execution is mediated by
an Agreement Module, which, through a distributed consensus
algorithm, negotiates resource assignment with other SDOs
operating over the same infrastructure (details are given in
Section V). After the agreement, adjustments deriving from
executing the action are propagated to the relevant modules.1

In particular, an Infrastructure Manager acts as an interface

1Note that such adjustments may derive both from the execution of a local
Action, and from any change on the equilibrium with external SDOs.

towards the infrastructure controller and is in charge of allo-
cating resources on needed hosting nodes and scaling up/down
instantiated components. On the other hand, a Configuration
Manager pushes any new configuration on the appropriate
deployed component. Both changes on infrastructure and on
components are also propagated into the corresponding portion
of state maintained within the SDO. Additionally, the state
is also updated any time a change notification is received
from the infrastructure or any application component. Such
communication occurs over a pub/sub based message bus,
while the state and configuration of each component are
described using the YANG language.

C. A practical use case: the video streaming application

We now provide a practical example of an orchestration
strategy declared through our model. As a reference use case,
we use a video streaming application. For the sake of brevity
and clarity, we only focus the scope of a single component
within the service run-time.

Let us consider a video streaming application whose com-
ponents are: (i) a video transmitter (the media source), (ii)
a transcoder, (iii) a web server and (iv) a series of clients
consuming the output video streams. The transcoder takes as
input the original video stream and generates multiple output
streams at different bit rates and resolutions, so that each client
may select the most appropriate stream based on the available
bandwidth. Let us assume that the available implementation is
configurable with the number of output streams to be gener-
ated. Each of these configurations has associated a minimum
requirement in terms of CPU resources. The transcoder may
suffer in situations where resources assigned are not enough
to guarantee the proper generation of output streams.

In such a case, an example of a service-specific orchestration
strategy is to fix the number of output streams (transcoder con-
figuration) according to the available resources. A constraint
is defined on a variable of the Infrastructure State, i.e., the
available CPU resources. The constraint definition references
a parameter in the transcoder component configuration: when
the available CPU value drops below the requirement specified
for the current configuration, the constraint is violated and an
event is triggered. The action associated with this violation fea-
tures a single write operation defined as follows: the variable
to modify is on the Application State, i.e., the set of output
streams; the new value to assign is computed by selecting,
among the available setups, the one that (i) provides the higher
number of output streams and (ii) fits the newly available CPU
resource. This run-time orchestration strategy, alone, does not
require any write operation on the Infrastructure State.

V. DISTRIBUTED RESOURCE ASSIGNMENT AND
ORCHESTRATION (DRAGON) ALGORITHM

Using more than one orchestrator to allocate resources over
the same physical infrastructure is a natural approach to en-
able service-centric optimization. However, this introduces the
problem of coordinating resource allocation while preserving
the resource assignment optimality. In fact, each orchestrator
can potentially seek different optimization criteria due to

6

heterogeneous requirements of applications. In this section,
we first define the (NP-hard) orchestrator-resources assignment
problem by leveraging linear programming and then present
DRAGON, a distributed approximation algorithm.

A. Resource Assignment Problem

Let us model an application as a multiset — a set in
which element repetition is allowed — whose elements are
selected among Nµ (abstract) application components to be
embedded on a shared (physical) edge infrastructure. A com-
ponent is an abstract instance of a physical function, e.g., a
load balancer, a video transcoder or a content cache, which
can be implemented by selecting the best possible physical
implementation among the Nf available ones. In fact, each
implementation may feature different characteristics such as
execution environment (virtual machine, container, dedicated
hardware), required resources, or the capability to provide a
specific level of QoS.

The infrastructure is partitioned in Nυ hosting nodes, each
one with potentially different physical capacities. We assume
that each implementation consumes a given amount of re-
sources such as CPU, storage, memory, network bandwidth,
etc., which are modeled with Nρ different types.

Finally, let us assume that the deployment of each ap-
plication is managed by a Service-Defined Orchestrator. We
consider a total of No SDOs, all simultaneously demanding re-
sources from a shared edge infrastructure, each one following
a potentially different optimization strategy. We assume that
the SDO will select the best (feasible) implementations that
are required to realize application components, then allocate
them in the most appropriate location.

Our goal is to maximize a global utility U while finding
an infrastructure-bounded orchestrator-resources assignment
that allows the deployment of each application. We define
an orchestrator-resources assignment to be infrastructure-
bounded if the consumption of all assigned components allo-
cated on each hosting node does not exceed the ρn available
resources on that node.

We model the orchestrator-resources assignment problem
with an integer program; its binary decision variable xijn is
equal to one if an instance of the implementation j has been
assigned to the SDO i on hosting node n and to zero otherwise.

maximize
No∑
i=1

Nf∑
j=1

Nυ∑
n=1

Uijn(xi)xijn (1.1)

subject to
No∑
i=1

Nf∑
j=1

xijncjk ≤ ρnk ∀k ∈ K, ∀n ∈ N (1.2)

Nf∑
j=1

Nυ∑
n=1

xijn =

Nµ∑
m=1

(σim)yi ∀i ∈ I (1.3)

Nf∑
j=1

Nυ∑
n=1

xijn

λmj ≥ yi ∀m ∈M, ∀i ∈ I (1.4)

Nυ∑
n=1

xijn ≤ 1 ∀j ∈ J , ∀i ∈ I (1.5)

Nf∑
j=1

xij ≥ 1−Nfyi ∀i ∈ I (1.6a)

Nf∑
j=1

xij ≤ 1Nfyi ∀i ∈ I (1.6b)

xijn ∈ {0, 1} ∀(i, j, n) ∈ I × J ×N (1.7a)
yi ∈ {0, 1} ∀i ∈ I (1.7b)
cjk ∈ N ∀(j, k) ∈ J ×K (1.7c)
ρnk ∈ N ∀(n, k) ∈ N ×K (1.7d)
λmj ∈ {0, 1} ∀(m, j) ∈M×J (1.7e)
σim ∈ {0, 1} ∀(i,m) ∈ I ×M (1.7f)

where xi ∈ {0, 1}Nf×Nυ is the assignment vector for SDO
i, whose jth × nth element is xijn. The auxiliary variables
yi are equal to 1 if at least an instance of any component
implementation has been assigned to SDO i, and 0 otherwise
(constraints 1.6a, 1.6b, 1.7b). The index sets are defined as
I , {1, . . . , No},M , {1, . . . , Nµ}, J , {1, . . . , Nf}, K ,
{1, . . . , Nρ} and N , {1, . . . , Nυ}. The variable ρnk repre-
sents the amount of resource k available on node n; further-
more, we denote ρn ∈ NNn the capacity of node n ∈ N . With
cjk ∈ N we capture the cost of implementation j in terms of
resource k; thus, we name cj ∈ NNρ the cost vector of imple-
mentation j ∈ J . We set λmj = 1 if the abstract component m
can be implemented (i.e., deployed) through j, while σim = 1
if m is needed by the application orchestrated by SDO i.

The utility function models the overall gain Uijn(xi), i.e.,
the utility that the system gains by assigning cj resources to
SDO i, allowing it to add the implementation j to its assign-
ment vector xi. Note that the gain does not depend merely
from the given application component; in fact, it depends (i)
on the chosen implementation and (ii) on the node selected
for the deployment. Note how constraint (1.2) ensures that the
solution is infrastructure-bounded, while constraints (1.3 and
1.4) avoid partial allocations.

In the reminder of this section we introduce DRAGON (Dis-
tributed Resource AssiGnment and OrchestratioN), a novel
approximation algorithm that we designed to solve the NP-
hard Problem 1 through a distributed approach.

B. DRAGON Overview

Each SDO i runs a DRAGON agent, which iterates between
a local and a distributed phase. Locally, the SDO builds its
assignment vector xi, i.e., the set of component implementa-
tions to be deployed on each node. This is used to participate
to a resource election process by voting resources needed on
each hosting node. Each vote models the benefit that an SDO
would gain from the resources demanded on a given node,
and is directly related with the SDO private utility. Voting and
elections are performed at the node level. At first (Orchestra-
tion Phase), each agent performs the election locally, based
on its state awareness. During an Agreement Phase, agents
communicate and update their votes to ensure the convergence
of the election process by mean of max-consensus. SDOs
that are “elected”, i.e., that they win the distributed election,
gain the right to allocate the demanded amount of (virtual)
resources on a certain number of (physical) nodes.

7

Note that the assignment vector xi of each SDO i does
not need to be exchanged. Agents are aware of the resource
demand from their peers, but are unaware of the details
regarding which application components they wish to allocate.

To detail the algorithm, we give the following definitions:

Definition 6. (private utility function ui). Given a set I of
SDOs allocating a set J of component implementations over
a set N of hosting nodes, we define private utility function of
SDO i ∈ I, and we denote it with ui : J ×N → R, the utility
uijn ∈ R that SDO i gains by adding implementation j ∈ J
to its assignment vector xi and deploying it on node n ∈ N ,
i.e., implementing an application component on n through j.

Each SDO may have a different (conflicting) objective and
may have no incentive to disclose its utility; however, our
model, and so our algorithm, maximizes a global objective
(Equation 1.1), that in DRAGON is a policy. Since we assume
that a Pareto optimality is sought, the global utility is a
function of the applications private utilities, i.e.,

U i(xi) = f(ui(xi)), ∀i ∈ I.

DRAGON needs a vote vector that we define as follows.

Definition 7. (vote vector vi). Given a distributed voting
process among a set I of No SDOs, allocating resources on
a set N of Nυ hosting nodes, we define vi ∈ RNoNυ+ to be
the vector of current winning votes known by SDO i ∈ I
on hosting node n ∈ N . Each element viιn is a positive real
number representing last vote of SDO ι on node n as known
by i, if i thinks that ι is a winner of the election phase for
node n. Otherwise, viιn is 0.

Since SDOs compute resource assignments in a distributed
fashion, they could possibly have different views until an
agreement on the election winner(s) is reached; we use the
apex i to refer to the vote vector as seen by SDO i at each point
in the agreement process. During the algorithm description, for
clarity, we omit the apex i when we refer to the local vector
(the same applies also for the following vectors).

Definition 8. (demanded resource vector ri). Given a vot-
ing process among a set I of No SDOs on Nρ different
types of shared resources distributed among a set N of Nυ
hosting nodes, we define as demanded resource vector ri ∈
NNo×Nυ×Nρ+ , the vector of total resources currently requested
by each SDO on every node; each element riιn ∈ NNρ is the
amount of resources requested by SDO ι ∈ I on node n ∈ N
with its most recent vote viιn known by i ∈ I.

Definition 9. (voting time vector ti). Given a set I of No
SDOs participating to a distributed voting process over a
set N of Nυ hosting nodes, we define as voting time vector
ti ∈ RNo×Nυ+ , the vector whose element tiιn represents the
timestamp of the last vote viιn known by i ∈ I for SDO ι ∈ I
on node i ∈ I.

Definition 10. (neighborhood Īi). Given a set I of SDOs, we
define neighborhood Īi ⊆ I \ {i} of SDO i ∈ I, the subset of
SDOs directly connected to i.

Algorithm 1 DRAGON for SDO i at iteration t

1: orchestration(v(t− 1), r(t− 1), ρ)
2: if ∃ι ∈ I : vι(t) 6= vι(t− 1) then
3: send(i′, t), ∀i′ ∈ Īi
4: receive(i′, t), ∀i′ ∈ Īi
5: agreement(i′, t), ∀i′ ∈ Īi

Algorithm 2 orchestration for SDO i at iteration t

Input: v(t− 1), r(t− 1), t(t− 1), ρ, c
Output: v(t), r(t), t(t)

1: if t 6= 0 then
2: v(t), r(t), t(t) = v(t− 1), r(t− 1), t(t− 1)

3: do
4: v̄i = vi(t)
5: if vi(t− 1) 6= 0 ∧ vi(t) = 0 then . outvoted
6: embedding(t) . find next xi maximizing ui
7: voting(xi, c) . vote xi using U
8: election(v(t), r(t), ρ)
9: while v̄i 6= vi(t) . repeat until not outvoted

The notion of neighborhood is generalizable with the set of
agents reachable within a given latency upper bound.

We are now ready to describe DRAGON (Algorithm 1), by
detailing its two main phases.

C. Orchestration Phase

After the initialization of local vectors v(t), r(t) and t(t) for
the current iteration t (Algorithm 2, line 2), each DRAGON
agent uses Algorithm 2, line 8 to elect the current winners
according to the known votes updated at the last iteration. If
agent i has been outvoted (Algorithm 2, line 5), the algorithm
starts to iterate among (i) an embedding routine (Algorithm 2,
line 6), which computes the next suitable assignment vec-
tor xi maximizing i’s private utility, (ii) a voting routine
(Algorithm 2, line 7) where agent i votes for the resources
that follow the last computed assignment vector and (iii) the
election routine (Algorithm 2, line 8), which uses votes to
compute winning agents.

The iteration continues until agent i does not get outvoted
anymore (Algorithm 2, line 9). This may happen if either (i)
the selected assignment vector allows i to win the election or
(ii) there are no more suitable assignments xi (then no new
votes have been generated).

Remark. To guarantee convergence, DRAGON forbids out-
voted SDOs to re-vote with an higher utility value on resources
that they have lost in past rounds. Re-voting is, however,
allowed only on residual resources.

Note that an asynchronous agreement may never terminate
unless we forcefully timeout the consensus process. However,
we use the theory of max-consensus to show that the
agreement stops as long as we have reliable communication
and each vote traverses the network at least once (Section VI).
1) Embedding Routine. Either during the first iteration
(t = 0), or any time SDO i is outvoted, DRAGON invokes
an embedding routine (Algorithm 2, line 6) that, based on
the private policies of i, computes the next best suitable
assignment vector xi. Therefore, this routine is in turn private
for each SDO, and strictly dependent from the specific nature

8

Algorithm 3 voting for SDO i at iteration t

Input: xi, c
Output: vi(t), ri(t), ti(t)
1: ti(t) = t . vote time
2: if xi 6= 0 then . valid assignment
3: for all n ∈ N do
4: rink(t) = Σjxijncjk, ∀k ∈ K . resources required on node
5: vin(t) = score(xi, n) . vote new assignment

Algorithm 4 election for SDO i at iteration t

Input: v(t), r(t), ρ
Output: v(t)

1: do
2: for all n ∈ N do
3: Wn = node_election(v(t), r(t), n, ρn)

4: WF = election_recount(Wn ∀n) . detect false-winners
5: vι = 0, ∀ι ∈ WF . reset false-winners votes
6: while WF 6= ∅ . repeat until no false-winners are detected
7: vι = 0, ∀ι ∈ I \

⋃
n∈N Wn . reset loser votes

of the orchestrated application. More in detail, when a set
of operations are pending upon the execution of an action
(Section IV-B), a corresponding routine is built and passed
from the framework to the DRAGON agent in order imple-
ment the desired result under distributed agreement. For what
concerns DRAGON, this routine can be viewed as a private
decision process that selects, for each component needed by
the application, both the implementation j ∈ J to be used
and the node n ∈ N where j should be deployed.
2) Voting Routine. After a new assignment vector has been
built, each DRAGON agent executes a voting routine, updating
the time of its most recent vote; if the assignment vector is
valid, all demanded resources are updated and voted, through
a score function derived from the global utility (Algorithm 3).
Since voting is performed at node level, this routine generates
a vote for each hosting node involved in the current assignment
xi. Although the raw global utility itself may be used as score
function to compute votes, in Section V-E we give recom-
mendation on which function should be used to guarantee
convergence and optimal approximation bound (Section VI).
Since the value of ti is updated in any case (Algorithm 3,
line 1), if SDO i does not find any suitable assignment vector,
the recent timestamp associated with an empty vote will let
its peers know that i agrees with an election definitively lost.
3) Election Routine. The last step of the Orchestration Phase
(Algorithm 2, line 8) is a resource election that decides which
SDOs are capable of allocating the demanded resources on
the chosen hosting nodes (Algorithm 4). Based on the most
recent known votes v(t), the related resource demands r(t)
and the capacity ρn of each node, this procedure selects SDOs
by means of a greedy approach. For every node n ∈ N
(Algorithm 4, line 3-4), the node_election subroutine
(Algorithm 5) (i) discards every SDO whose demanded re-
sources ri exceed the residual node capacity and (ii) selects
the one with the highest ratio vote to demanded resources
(Algorithm 5, lines 4-5). The one elected is then added to the
winner set of that particular node and the amount of resources
assigned to the new winner is removed from the residual ones
(Algorithm 5, lines 6-7). The greedy election on each node
ends when either all candidates result winners, or residual node

Algorithm 5 node_election on node n at iteration t

Input: v(t), r(t), n, ρn
Output: Wn

1: ρ̄n = ρn . residual resources
2: Wn = ∅ . winner set
3: do
4: Ib = {i ∈ I| rink(t) ≤ ρ̄nk, ∀k ∈ K} . valid candidates
5: ω = arg maxi∈Ib\W

{
vin(t)

‖rin(t)‖

}
. candidate with higher vote

6: Wn =Wn ∪ {ω} . add to winners
7: ρ̄nk = ρ̄nk − rωnk, ∀k ∈ K . decrease residual resources
8: while Ib \W 6= ∅ . repeat until no candidate remains

SDO #2

node 1

SDO #3

node 2

SDO #3

node 3

SDO #5

node 4

SDO #1 SDO #2 SDO #4 SDO #4

losers

Election results per node

winners

SDO #5

Fig. 4: Example of false winners after an election routine: SDO #2 prevents
#1 to allocate needed resources on node 1, although #2 cannot be deployed,
since it lost elections on node 2.

resources are not enough for any of those remaining.
In Section VI we show that the greedy heuristic gives

guarantees on the optimal approximation.

Remark. In DRAGON an assignment xi is considered valid
only if SDO i wins all elections on each node n involved in the
assignment xi. If any node election is lost, DRAGON resets
the vote vector and a new assignment is built from scratch to
avoid suboptimal assignments.

Since elections are performed separately for each node
of the infrastructure, the election routine includes a conflict
resolution subroutine named election-recount (Algorithm 4,
line 4), which handles potential suboptimality deriving as
a result of elections. Consider the assignment scenario in
Figure 4; most resources of node 1 have been assigned to SDO
#2, thus preventing the deployment of SDO #1; however,
having #2 lost the election on node 2, releases its previous
vote on node 1 at the next iteration. Therefore, app. #1 could
be considered a winner.

The election-recount subroutine copes with this problem by
identifying which SDO should be removed from the election
so that the solution is optimized. We call these SDOs false-
winners, i.e., SDOs that only won a subset of the needed
nodes, preventing peers that would maximize the global utility
to win. False-winners are identified recursively. Given a poten-
tial false-winner ω, i.e., it lost elections on a subset of needed
nodes, the idea is to temporarily extend residual resources
on these nodes, whether that amount of resources have been
assigned to other false-winners during the previous election
round. If the extended residual resources are still in deficit
with respect to the resources that ω needs, then the candidate
is a false-winner as well.

For instance, let’s consider the election results in Figure 4.
To determine if SDO #2, that is a winner for node 1, is valid
or not, we check if it is possible to free some resources on node

9

2, where it lost. On that node, the only winner is SDO #3;
however, it is a valid one, since it has not lost any other needed
node. Therefore, SDO #2 definitely lost node 2, and can be
removed from the winners of node 1 (it is a false-winner), thus
enabling SDO #1 to win the elections. Situations in which
some SDOs cross-lose nodes are resolved in favor of the one
whose vote on any node is the highest; see e.g., Figure 4: app.
#4 and #5 cross-lost nodes 3 and 4.

The election process is repeated until the recount subroutine
does not detect any false-winners (Algorithm 4, line 6). When
the election result is confirmed, votes of SDOs that did not
win the election are reset (Algorithm 4, line 7).

D. Agreement Phase

Once vectors vi
′
, ri

′
and ti

′
are received from every

neighbor i′, each agent runs an Agreement Phase. During this
phase, SDOs make use of a consensus mechanism to reach
an agreement on their vote vector vi, hence on the overall
resources assignment (Algorithm 6). By adapting the definition
of consensus [23] to the orchestrator-resources assignment
problem, we define our own notion of consensus on the
election results as follows:

Definition 11. (election-consensus). Let us consider a set I
of No SDOs sharing a computing edge infrastructure through
an election routine driven by, for each SDO i ∈ I, the vote
vector vi(t) ∈ RNo×Nυ+ , the demanded resource vector ri(t) ∈
RNo×Nυ×Nρ+ and the voting time vector ti(t) ∈ NNo×Nυ . Let
e : RNo×Nυ+ ,NNo×Nυ×Nρ → 2I be the election function, that
given a vote vector v and the demanded resources r gives a
set of winners. Given the consensus algorithm for SDO i at
iteration t+ 1, ∀ι ∈ I,

viι(t+ 1) = vi
′
ι (t), riι(t+ 1) = ri

′
ι (t),

with i′ = arg max
i′∈Īi∪{i}

{ti
′

ι (t)}, (2)

election-consensus among the SDOs is said to be achieved if
∃t̄ ∈ N such that, ∀t ≥ t̄ and ∀i, i′ ∈ I,{

e(vi(t), ri(t)) ≡ e(vi
′
(t), ri

′
(t))

viι(t) 6= 0 ⇐⇒ ι ∈ e(vi(t)), ∀ι ∈ I,
(3)

i.e., on all SDOs the election function computes the same
winner set and only winner votes are non zero.

The agreement on votes of an SDO ι is performed by every
SDO i once received vectors vi

′
, ri

′
and ti

′
from each i′ in its

neighborhood, comparing them and selecting the most recent
information received, if any (Equation 2). Since DRAGON
is asynchronous by design, at each iteration t the agreement
phase can start even if agents have received a vote message
from only a subset of their neighbors.

E. Recommendations on the score function

DRAGON’s score function is a policy. Many policies may
work well in practice, but in some cases they may lead
to arbitrarily bad performance. As we will see in the next
section, DRAGON guarantees both convergence and a given
performance lower bound as long as the function maximized

Algorithm 6 agreement with SDO i′ at iteration t

Input: v(t), r(t), t(t), vi
′
(t), ri

′
(t), ti

′
(t)

Output: v(t), r(t), t(t)

1: for all ι ∈ I do
2: for all n ∈ N do . for every hosting node
3: if tιn(t) < ti

′
ιn(t) then . received newer vote

4: vιn(t) = vi
′
ιn(t)

5: rιnk(t) = ri
′
ιnk(t), ∀k ∈ K

6: tιn(t) = ti
′
ιn(t)

during the election routine is submodular (Definition 12). In
this section we give recommendation on the score function V
that each SDO should use during the voting routine described
in Algorithm 3 to satisfy this property. Analytic results are
shown in the next section.

Let Uin(xi) = ΣjUijn(xi)xijn be the overall node utility
of SDO i on node n. To guarantee convergence of the election
process, we let each peer i communicate its vote on node n
obtained from the score function:

Vi(xi,Wn, n) = min
ω∈Wn

{Uin(xi),Sin(ω)}, (4)

where Wn ⊆ I is the current winner set for node n, i.e.,
vωn(t) 6= 0 ∀ω ∈ Wn, and Sin is defined as

Sin(ω) =

{
+∞ if i never voted on n,
‖rin(t)‖ vωn(t)

‖rωn(t)‖
otherwise.

Since Uin(xi) ≥ 0 by definition, if i computes each vote with
the function V , it follows that, ∀(i, n) ∈ I×N , Vi(xi, n) ≥ 0.
Note how, if it is not the first time that i votes on n, the vote
vin(t) generated at iteration t never results as an outvote of
any SDO that has been previously elected on node n, during
the election process described in Algorithm 5.

VI. CONVERGENCE AND PERFORMANCE GUARANTEES

In this section we present results on the convergence proper-
ties of our DRAGON distributed approximation algorithm. As
defined in Definition 11, by convergence we mean that a valid
solution to the orchestrators-resources assignment problem
is found in a finite number of steps. Infeasibility is also a
valid solution. Moreover, starting from well-known results on
submodular functions, in this section we show that DRAGON
guarantees an (1 − e−1)-approximation bound, and that this
bound is also optimal, i.e. there is no better guarantee, unless
NP ⊆ DTIME(nO(log logn)).

Note that, if (4) is used as a score function, the election
routine of DRAGON is equivalent to a greedy algorithm
attempting to find, for each node n, the set of winner SDOs
Wn ⊆ I such that the set function zn : 2I → R, defined as

zn(Wn) =
∑

ω∈Wn

Vω(xω ,Wn, n), (5)

is maximized. By construction of V , we have that zn is
monotonically non-decreasing and z(∅) = 0.

Definition 12. (submodular function). A set function z : 2I →
R is submodular if and only if, ∀ι /∈ W ′ ⊂ W ′′ ⊆ I,

z(W ′′ ∪ {ι})− z(W ′′) ≤ z(W ′ ∪ {ι})− z(W ′). (6)

10

This means that the marginal utility of adding ι to the input
set, cannot increase due to the presence of additional elements.
Next we show that the total score zn (5) is submodular. Our
intuition behind its submodularity is that the score function
Vn can, at most, decrease due to the presence of additional
elements in Wn. Formally, we have:

Lemma VI.1. zn (5) is submodular.

Proof. Since W ′n ⊂ W ′′n , we have

min
ω∈W′′

n

{
‖rιn(t)‖

vωn(t)

‖rωn(t)‖

}
≤ min
ω∈W′

n

{
‖rιn(t)‖

vωn(t)

‖rωn(t)‖

}
,

and so, for (4),

Vι(xi,W ′′
n , n) ≤ Vι(xi,W ′

n, n). (7)

By definition of zn, the marginal gain of adding ι to Wn is

zn(Wn ∪ {ι})− zn(Wn) = Vι(xi,Wn, n), ∀ι /∈ Wn ⊆ I,

therefore, substituting in (7), we have the claim.

Convergence Guarantees. A necessary condition for conver-
gence in DRAGON is that all SDOs are aware of which are
the winning votes for an hosting node. This information needs
to traverse all SDOs in the communication network (at least)
once. Theorem VI.2 shows that a single information traversal
is also sufficient for convergence.

The communication network of a set of SDOs I is modeled
as an undirected graph, with unitary length edges between
each couple i′, i′′ ∈ I such that i′′ ∈ Īi′ and i′ ∈ Īi′′ , being
Īi′ ⊆ I\{i′} and Īi′′ ⊆ I\{i′′} respectively the neighborhood
of i′ and i′′.

Theorem VI.2. (Convergence of synchronous DRAGON).
Consider an infrastructure of Nυ hosting nodes, whose re-
sources are shared among No SDOs through an election
process with synchronized conflict resolution over a com-
munication network with diameter D. If the communication
channels are reliable and the function (5) maximized during
the election routine is submodular, then DRAGON needs at
most N2

oNυD iterations to converge.

Proof. We first show by induction that agents agree on the
first k assignments in at most kNoD iterations. Given the
submodularity of zn, the assignment (i?1, n

?
1) with the highest

vote computed at iteration 1 can be outvoted at most No − 1
times, i.e., until every agents voted on node n?1 at least once.
Since each time D iterations are needed to propagate the vote,
every agent will have agreed on the highest vote vi?1n?1 at most
after NoD iterations. Let us suppose that at iteration hNoD all
agents agree on the first k-best assignments. Since the next-
best vote propagated at iteration k+1 can be outvoted at most
No − 1 times, it follows that every agent will have agreed
on (i?h+1, n

?
h+1) by iteration hNoD + NoD. Then, together

with (i?1, n
?
1) being agreed to at NoD, every agent will have

agreed on (i?k, n
?
k) within kNoD iterations. In DRAGON each

compute node may be assigned to each SDO, then, in the worst
case there is a combination of NoNυ assignments. Therefore,
agents reach agreement in at most N2

oNυD iterations.

As a direct corollary of Theorem VI.2, we compute a bound
on the number of messages that SDOs have to exchange in
order to reach an agreement on resource assignments. Because
we only need to traverse the communication network at most
once for each combination SDOs per hosting nodes (i, n) ∈
I ×N , the following result holds:

Corollary VI.2.1. (DRAGON Communication Overhead). The
number of messages exchanged to reach an agreement on the
resource assignment of Nυ nodes among No non-failing SDOs
with reliable communication channels using the DRAGON
algorithm is at most N2

oNυDNmsp, where D and Nmsp are
respectively the diameter of the communication network and
its the minimum spanning tree.

Performance Guarantees. The election routine in DRAGON
is trivially extended with partial enumeration [24], leading to
the following two results (for brevity, the extension has been
omitted in Algorithm 4).

Theorem VI.3. (DRAGON Approximation Bound). DRAGON
extended with partial enumeration yields an (1 − e−1)-
approximation bound with respect to the optimal assignment.

Proof. (sketch) During the election routine, DRAGON uses a
greedy heuristic to assign node resources to a set of winners
Wn. The objective of the heuristic is to maximize the value of
the set function zn(Wn) without exceeding the node capacity
(knapsack constraint). From a recent result on submodular
functions [25], we know that a greedy approximation algo-
rithm used to maximize a non decreasing submodular set
function subject to a knapsack constraint is bounded by
(1− e−1) if the algorithm is combined with the enumeration
technique due to [24]. Being the set function zn(Wn) positive,
monotonic and non-decreasing, it remains to show that the
utility used by DRAGON is submodular, which comes from
Lemma VI.1; hence the claim holds.

Theorem VI.4. (DRAGON Approximation Optimality). The
DRAGON approximation bound of (1−e−1) is optimal, unless
NP ⊆ DTIME(nO(log logn)).

Proof. (sketch) To show that the approximation bound given
by DRAGON is optimal, we first show that the orchestrators-
resources assignment problem addressed by DRAGON can
be reduced from the (NP-hard) budgeted maximum coverage
problem [24]. Given a collection S of sets with associated
costs defined over a domain of weighted elements, and a
budget L, find a subset S′ ⊆ S such that the total cost of sets
in S′ does not exceeds L, and the total weight of elements
covered by S′ is maximized. We reduce the orchestrators-
resources assignment problem from the budgeted maximum
coverage problem by considering (i) S to be the collection
of all the possible set of orchestrators, i.e., S = 2I , (ii) L
to be the total amount of resources available on the hosting
node (in this particular case Nρ = 1), and (iii) weight and
costs to be votes and demanded resources of each SDO.
Since [24] shows that (1 − e−1) is the best approximation
bound for the budgeted maximum coverage problem unless
NP ⊆ DTIME(nO(log logn)), the claim holds.

11

VII. EXPERIMENTAL RESULTS

To validate our approach, we implemented a prototype of
both the SDO compiler and DRAGON. Our code is available
at [26], [27]. Our evaluation focuses on two major sets of
results; we first provide evidence of the advantages of the
Service-Defined Orchestration approach, analyzing three use
cases: stream management on a video streaming application,
cache placement for a CDN provider and process migration
for mobile gaming; then, we assess both DRAGON’s asyn-
chronous convergence properties and performance.

A. Service-defined Orchestration

We show the advantages for service providers when de-
ploying their applications on an infrastructure that adopts our
service-defined orchestration approach and does not restrict
the available orchestration strategies. Our aim is to show that,
for example, a CDN provider that relies on a third party
platform/infrastructure to serve a certain area may benefit from
using its own cache placement algorithm (e.g., [28]), running
over DRAGON, rather than depending on a one-size fits-all
embedding orchestrator.

At first, we setup a virtualization infrastructure to or-
chestrate the deployment and run-time of a video streaming
application. Additionally, we setup a simulated environment
to evaluate two different edge use cases: (i) cache placement
for a CDN provider [29], and (ii) edge migration for mobile
gaming [30]. In our tests, we compared the provided QoS
resulting from different deployment approaches, also varying
the concurrency level by adding some concurrent applications,
thus evaluating the behavior when resources become scarce.
Video Streaming. We deployed an use case analogous to the
one described in Section IV-C. A VM generating an RTMP
stream through FFmpeg implements the video transmitter,
while both the web server and the transcoder have been
implemented through Wowza [31], generating 9 streams at
different bit rates. All these components have been deployed
on a KVM based infrastructure (Hypervisor Debian Linux
4.14.0-3 on i7-6700 CPU 3.40 GHz, RAM 32 GB). On a
second machine, we run the VLC software to consume the
output streams and measure the QoS in terms of frame rate.
We emulated a scenario in which, after 240 seconds, some of
the CPUs originally allocated for the transcoder VM are no
longer available. Figure 5 summarizes our findings.
(i) When resources are reduced for the transcoder VM, a
one-size fits-all orchestrator can neither understand that the
transcoder is suffering (it has no generic parameter to base
itself upon) nor can it identify a solution in such a constrained
situation, i.e. the VM cannot be scaled out since there are no
more resources locally and no other edge nodes are available
to migrate the VM. As a consequence, Figure 5a shows a
significant degradation of the provisioned service.
(ii) If the application is managed by an SDO, a custom action
can be defined to be executed whenever it is not possible to
assign a given amount of CPUs to the transcoder component;
in such a case, a possible service-defined solution may be to
configure the transcoder component to disable some of the
generated output streams (e.g., those at a higher resolution),

�

✁

✂�

✂✁

✄�

✄✁

☎�

☎✁

� ✁� ✂�� ✂✁� ✄�� ✄✁� ☎�� ☎✁� ✆�� ✆✁�

✆ ✝✞✟✠ ✄ ✝✞✟✠

✡☛
☞
✌
✍
☛☞
✎✍
✏
✑
✒
✓
✔

✕✖✗✘ ✙✠✚

✛✜✠

✘✢✢✣✢✠

✤✥✛✛✘✢✖✦✧

(a) One-size fits-all approach

�

✁

✂�

✂✁

✄�

✄✁

☎�

☎✁

� ✁� ✂�� ✂✁� ✄�� ✄✁� ☎�� ☎✁� ✆�� ✆✁�

✆ ✝✞✟✠ ✄ ✝✞✟✠

✡☛
☞
✌
✍
☛☞
✎✍
✏
✑
✒
✓
✔

✕✖✗✘ ✙✠✚

✛✜✢✗✘ ✜✢✕✘

✘✜✜✣✜✠

✤✥✛✛✘✜✖✦✧

(b) Service-Defined approach.

Fig. 5: Frame rate over time for a video streaming application in a resource
constrained situation.

thus reducing its workload and resource requirements. Fig-
ure 5b shows that this behavior effectively preserves the frame
rate after switching configuration.
CDN Caches. A CDN provider provisions content caches
over an edge network where user density dynamically changes
across compute nodes. The objective of the provider is to
minimize the average miss-rate occurring on deployed caches.
The CDN application should be adapted on events where
a set of users shifts from a node to another. In our tests
we simulated a set of 100 users moving over a network of
10 edge computing nodes. To visualize the user distribution
among nodes, we also report the Gini index (a high index
indicates that most users are located near few host nodes). We
summarize our findings in a few take home messages:
(i) A one-size fits-all approach that places caches by balancing
the resource consumption per node achieves good performance
when users are well distributed, but the number of miss-
rate grows fast when the concentration increases (Figure 6a).
A similar result is obtained by statically partitioning the
resources among coexistent applications (Figure 6b) when
their number is high with respect to the available resources.
(ii) A one-size fits-all approach that places caches according
with the traffic load on each node achieves optimal miss-
rates when users are concentrated on few nodes, while the
performance is poor otherwise. This is because a low traffic
amount on a certain node does not necessarily mean that users
are consuming less variety of contents. Figure 6b shows a
slight degradation when increasing the concurrency.
(iii) If application caches are placed by an SDO based on cur-
rent miss-rate on each node, mandating resource partitioning
to DRAGON, optimal miss-rate both for low and high users
concentration is achieved (Figure 6a). Moreover, note how Fig-
ure 6b does not show a noticeable QoS degradation when in-
creasing the number of concurrent SDOs, showing the scalabil-
ity of our approach. This is because DRAGON seeks optimal
resource partitioning with regard to the application objectives.
Mobile Gaming. A gamer moves into an area served by
multiple edge nodes. Whereas it may be convenient to re-
locate (part of) the game application components to better
fulfill the latency requirements, the relocation may happen
in a crucial phase of the game, causing undesirable service
degradation [30]. Therefore, if the deployment is managed by
an SDO, it may be instructed to recognize the time frame in
which a relocation is most appropriate (e.g., after the gamer
reaches a checkpoint or during the loading of a new level).

In our tests we simulated a user moving every 6 minutes

12

�

✁�

✂�

✄�

☎�

✆��

� ✝ ✆� ✆✝ ✁� ✁✝ ✞� ✞✝ ✂�

✟
✠
✡
☛
☞
✌✌
✍
✎✏
✏
☛
☞
✑✡
✒✓
✔

✕✖✗✘ ✙✗✚

✛✜✘✢✜ ✣✤✥✣✘✥✕✢✦✕✖✤✥ ✙✧✖✥✖ ✖✥★✘✩✚

✪✤✦★ ✫✦✪✦✥✣✖✥✬

✕✢✦✭✮✣ ✫✦✜✘★

✜✘✢✯✖✣✘✰★✘✮✥✘★

(a) Miss rate over time.

�✁

✂�✁

✄�✁

☎�✁

✆�✁

✝��✁

✝ ✞ ✟ ✠ ✡ ✝✝ ✝ ✞ ✟ ✠ ✡ ✝✝ ✝ ✞ ✟ ✠ ✡ ✝✝

☛☞✌☞✍✎ ✏✌✑✌✒✎✓✔ ✕✖✌✗✘✎ ✏✌✙✓✔ ☛✓✖✚✍✎✓✛✜✓✘✒✓✔

✢
✣✤
✤
✥
✦
✧
★
✩
✣✤
✧
✥
✣✪
✫
✧
✣✬
✭

✮ ✯✰ ✱✯✲✱✳✴✴✵✲✶ ✷✸✸✹✺✱✷✶✺✯✲✻

✼✺✻✻ ✽✷✶✵✾

✹✵✻✻ ✶✿✷✲ �❀✝

✰✴✯❁ �❀✝ ✶✯ �❀✂

✰✴✯❁ �❀✂ ✶✯ �❀✄

✰✴✯❁ �❀✄ ✶✯ �❀✠

❂✴✵✷✶✵✴ ✶✿✷✲ �❀✠

(b) Miss rate distributions.
�✁
✂

✄☎
☎
✆

✝✁
✞✆

✟
☎
☎
✂

✠☎
✄

✡ ☛✡ ☞✡ ✌✡ ✍✡ ✎✡

✏
✑
✒
✓
✔
✏
✕
✖✗
✘✙
✚
✛
✜
✢
✣
✒
✓✗
✒
✤
✥
✒
✦✧
★
✩
✪

✫✬✭✮ ✯✭✰

✱✲✮✳ ✭✴✵✬✭✮✶✫✲

✷✸✫✮✶✹✺ ✫✻✳✮✲✻✴✷✼

✲✮✳✵✬✹✮✽✼✮✾✶✮✼

(c) QoE over time.

�✁

✂�✁

✄�✁

☎�✁

✆�✁

✝��✁

✝ ✞ ✟ ✠ ✡ ✝✝ ✝ ✞ ✟ ✠ ✡ ✝✝ ✝ ✞ ✟ ✠ ✡ ✝✝

☛☞✌☞✍✎ ✏✌✑✌✒✎✓✔ ✕✌☞✓✒✎✖ ☞✗✘✓✙✗✚✑✔ ☛✓✘✛✍✎✓✜✢✓✣✒✓✔

✤
✥
✦
✧
★✩
✪
✫
★✬
✭
✪
★✥
✮

✯ ✰✱ ✲✰✳✲✴✵✵✶✳✷ ✸✹✹✺✻✲✸✷✻✰✳✼

✽✰✾✿

❀✸❁

❂✰✰✵

❃✸✻✵

❄✰✰❁

❅✰✹

(d) QoE distribution.

Fig. 6: (ab) Evaluation of a CDN cache provisioning application comparing different placement strategies: (a) miss rate over time varying the geographical users
distribution; (b) distribution of measured miss rate varying the number of concurrent applications. (cd) Evaluation of a mobile gaming application for different
deployment strategies: (c) QoE over time perceived by a user moving in different areas; (d) QoE distribution varying the number of concurrent applications.

�

�✁✂

�✁✄

�✁☎

�✁✆

✝

✝✁✂

✄ ☎ ✆ ✝� ✝✂ ✝✄ ✝☎ ✝✆ ✂�

✞
✟
✠
✡
☛
☞
✌
☛
✠
✞
☛
✍✎
✏
☛
✑✒
✓

✔ ✕✖ ✗✕✘✗✙✚✚✛✘✜ ✚✛✢✙✛✣✜✣

✤✥✦✧★✥✤✥✩ ✪ ✫✬ ✭✮✯✰ ✱✫✰✯✮

✮✭✲✲✫✥★ ✭✮✤✳✯ ✫✬ ✴✤✱✩ ✱✫✰✯✮

✮✭✲✲✫✥★ ✭✮✤✳✯ ✫✬ ✬✯✵ ✱✫✰✯✮

(a) Convergence time.

�

✁��

✂��

✄��

☎��

✆���

✆✁��

✂ ✄ ☎ ✆� ✆✁ ✆✂ ✆✄ ✆☎ ✁�

✝
✞
✟
✟
✠
✡
✞
✟

☛ ☞✌ ✍☞✎✍✏✑✑✒✎✓ ✑✒✔✏✒✕✓✕

✖✗✘✙✚✗✖✗✛ ✜ ✢✣ ✤✥✦✧ ★✢✧✦✥

✥✤✩✩✢✗✚ ✤✥✖✪✦ ✢✣ ✫✖★✛ ★✢✧✦✥

✥✤✩✩✢✗✚ ✤✥✖✪✦ ✢✣ ✣✦✬ ★✢✧✦✥

(b) Number of exchanged messages.

�

✁

✂

✄

☎

✆

✝

✞

✟

✁�� ✠✡☛☞✌ ✂�� ✠✡☛☞✌ ✄�� ✠✡☛☞✌ ☎�� ✠✡☛☞✌

✍
✎
✏
✑
✒
✓✔
✒
✏
✍
✒
✕✖
✗
✒
✘✙
✚

✆� ✛✜✢✌

✁�� ✛✜✢✌

✁✆� ✛✜✢✌

✂�� ✛✜✢✌

✂✆� ✛✜✢✌

✄�� ✛✜✢✌

(c) Convergence times.

�

✁��

✂��

✄��

☎��

✆��

✝��

✞��

✟��

✠��

✁�� ✡☛☞✌✍ ✂�� ✡☛☞✌✍ ✄�� ✡☛☞✌✍ ☎�� ✡☛☞✌✍

✎
✏
✑
✑
✒
✓
✏
✑

✆� ✔✕✖✍

✁�� ✔✕✖✍

✁✆� ✔✕✖✍

✂�� ✔✕✖✍

✂✆� ✔✕✖✍

✄�� ✔✕✖✍

(d) Number of exchanged messages.

Fig. 7: DRAGON convergence evaluation. (ab) Results on prototype varying the number of simultaneous requests, also comparing different system policies.
(cd) Larger scale simulation varying the number of concurrent SDOs and hosting nodes, where resource allocation requests are randomly performed over time.

across a network of 10 edge nodes. We measured the Quality
of Experience perceived by the user based on latency and
packet loss, using the same Mean Opinion Score (MOS)
described in [32] for medium-paced games. Our findings are
summarized as follows (Figure 6cd):
(i) Statically partitioning resources between applications does
not scale (Figure 6d): the application may be unable to migrate
components on needed nodes, since resources are assigned to
other peers, despite not being currently used.
(ii) If the resources are managed by a one-size fits-all or-
chestrator that minimizes the end-to-end latency, the user
often experiences a QoE level that we label as bad due to
some process relocation occurring during the game session
(Figure 6c). Figure 6d shows that the percentage of bad QoE
measurements even may increase with the concurrency.
(iii) If the relocation decision is taken by an SDO, and
resources are dynamically assigned with DRAGON, it is
possible to define a behavior that does not migrate the service
rapidly whenever the user moves away; even if this may
temporarily increase the latency, it prevents undesirable service
degradation during a game session and the overall perceived
QoE results improved (Figure 6c). Figure 6d also shows that
this approach scales well with the number of concurrent SDOs.

B. DRAGON Properties Evaluation

In [2], we conducted an evaluation in a simulated environ-
ment; in this paper we extend the evaluation of DRAGON
in an environment with 4 physical nodes (deployed on the
CloudLab distributed research infrastructure [33]), each with
a different amount of computing resources (CPU, memory
and storage). We run 6 diverse application components, whose
implementation can be chosen among 9 different options; on
average, each implementation uses about 13% of a node capac-

ity. These numbers, combined with the rest of our parameter
space, allowed us to test the behavior of the algorithm when
the hosting resources are saturated, even running a moderate
number of SDOs. All tests have been repeated varying the
number of concurrent SDOs.
Convergence Evaluation. DRAGON convergence properties
have been evaluated by measuring the time needed to reach
consensus and the total number of messages exchanged. To
stress the convergence of the algorithm, we evaluated it when
up to 20 allocation requests arrive simultaneously.

Figure 7ab shows our results comparing three system poli-
cies: (i) components of an application are preferably allo-
cated on the lowest number of nodes; (ii) components of
an application are spread across as many nodes as possible;
(iii) no preference on the number of nodes is given. For
each configuration, we ran 25 instances, gradually varying the
average number of components per application (with averages
from 2.4 to 3.6 components). Plots show mean values; all
confidence intervals (not shown) were statistically significant.

In particular, Figure 7a shows the mean convergence times.
We found that, when a large number of SDOs interact,
encouraging the system to use fewer nodes significantly lowers
convergence time. Some consequences of this policy are (i) a
reduced probability to lose a node election and (ii) re-voting on
residual resources located on additional nodes is discouraged.
Hence, the highest convergence times have been registered en-
forcing the usage of many nodes, while convergence is slightly
faster when SDOs are free to arbitrarily decide the number
of nodes to use. The total number of exchanged messages
follows a similar behavior (Figure 7b). However, in this case
the previous trend is not marked as for convergence times.

Other than offline deployment, we also evaluated online
convergence on a large scale simulation, where an increasing

13

�

✁�

✂�

✄�

☎�

✆��

✂ ✄ ☎ ✆� ✆✁ ✆✂ ✆✄ ✆☎ ✁�

✝
✞✞
✟
✠
✝
✡☛
☞
✝
✌
✌
✞✍
✠
✝
✡✍
✟
✎
✏
✑✒
✓

✔ ✕✖ ✗✕✘✗✙✚✚✛✘✜ ✚✛✢✙✛✣✜✣

✤✥✦✧★✥✤✥✩ ✪ ✫✬ ✭✮✯✰ ✱✫✰✯✮

✮✭✲✲✫✥★ ✭✮✤✳✯ ✫✬ ✴✤✱✩ ✱✫✰✯✮

✮✭✲✲✫✥★ ✭✮✤✳✯ ✫✬ ✬✯✵ ✱✫✰✯✮

(a) Percentage of allocated applications.

�

✁��

✂��

✄��

☎��

✆���

✆✁��

✆✂��

✆✄��

✂ ✄ ☎ ✆� ✆✁ ✆✂ ✆✄ ✆☎ ✁�

✝
✞
✟

✠
✡
☛
☞
☞
✌✍
✎
☛
✏✍
✠
✑
✝
✒
✠
✓

✔ ✕✖ ✗✕✘✗✙✚✚✛✘✜ ✚✛✢✙✛✣✜✣

✤✥✦✥✤✥✧★✥ ✩✪✫✬✭✮✪✧

✯✰✱✲✳✴ ✵✶✥✷✧✸

✯✰✱✲✳✴ ✵✥✤✤✪✤ ✤✥✹✮✪✧✸

✺✪✻✥✤ ★✪✧✩✬✶✺✭✮✪✧

✹✤✥✥✼✽

✫✪✷✼ ✾✷✫✷✧★✮✧✹

✾✥✩✭ ✿✭ ✺✪✫✮★✽

(b) Sum of deployed application QoS.

Fig. 8: Performance evaluation of DRAGON comparing (a) different system
utilities and (b) DRAGON solutions against (i) three one-size fits-all common
approaches and (ii) a reference solution obtained through a centralized solver.

number of SDOs demand resources over time (Figure 7cd).
The convergence is evaluated on the variation of the num-
ber of SDOs and hosting nodes. Figure 7c shows that the
number of concurrent SDOs affects convergence times more
than the number of available nodes. Although this result is
expected (see Theorem VI.2), the increase of processing time
may be partially due to the limited number of physical CPUs
(the simulation runs on an i7-4770 CPU @ 3.40GHz, where
each SDOs is a separate process).

Figure 7d shows that increasing the number of available
nodes does not introduce noticeable variations on the total
number of exchanged messages. This result suggests that the
number of steps DRAGON requires to converge (hence also
the number of exchanged messages) does not significantly
depend on the number of nodes in the problem. Since, instead,
Figure 7c highlights that convergence times increase, we can
conclude that what changes is the duration of every iteration,
as more nodes need to be processed.
Performance Evaluation. Figure 8a compares DRAGON
performance for the same three system policies previously
introduced. The plot shows the percentage of applications
successfully deployed after the distributed assignment process.
We found that, when the number of concurrent SDOs stays
below 8, all requests are allocated, since the overall resource
demand is bounded by the total amount of available resources.
Above that threshold, all analyzed policies achieve approxi-
mately the same average allocation ratio, with the exception
of the “few-nodes-policy”, whose allocation ratio is lower for
less than 12 SDOs, although it shows the fastest convergence
time (Figure 7ab). This is because, when resources on the
already used nodes terminate, this policy discourages the usage
of residual resources available on other nodes. However, this
disadvantage disappears as the number of applications grows,
since the system implicitly introduces more allocation options.
This result suggests that DRAGON allocation ratio scales well
with the application concurrency regardless the system policy.

Finally, to evaluate the performance in practice we com-
pared DRAGON with traditional orchestration approaches. In
particular, we compare against three one-size fits-all allocation
policies, i.e., a centralized orchestrator that uses the same
objective function to optimize the deployment of all applica-
tions: (i) minimization of total power consumption, (ii) greedy
selection of the potentially best performing component imple-
mentations, (iii) load balancing among nodes. Figure 8b also

shows the performance obtained by switching between these
three policies based on which one fits best each application
needs. Additionally, we plot the reference solutions, obtained
by running a centralized solver to the Problem 1. Values
obtained with this experiment set have been used as a reference
to evaluate the other approaches.

Figure 8b compares solutions in terms of overall Qual-
ity of Service, i.e., the sum of the QoS obtained by each
application successfully deployed2. Varying the number of
concurrent SDOs, for each configuration we ran DRAGON
multiple times. Results are shown with a 95% confidence
interval. Centralized algorithms always give the same solution.
Results show that deploying each application according with
its own objective through DRAGON provides a considerably
higher QoS compared to one-size fits-all approaches, despite
DRAGON being a distributed algorithm. In particular, for less
than 8 requests, i.e., before the resources start to run out,
DRAGON is always equivalent to the reference solution, con-
sidered as optimal. For a higher number of requests (and thus,
of distributed instances), as expected, the mean QoS departs
from the optimal. However, the total QoS continues to grow,
following the trend of the reference solution. This result sug-
gests that DRAGON effectively prefers the deployment of ap-
plications that introduce higher utilities to the overall solution.

Other findings from Figure 8b are summarized as follows.
(i) A common objective that minimizes the overall power con-
sumption provides poor total QoS, except for a high number
of applications, since this strategy accommodates the largest
number of requests. (ii) Greedily selecting the best performing
implementation provides high values of overall QoS only
when there are few applications. Finally, (iii) switching among
different common strategies based on the one that fits best each
application does not necessarily provide a higher QoS. This
is because some generic allocation strategies work well when
they are applied to all applications in the same way (e.g., load
balancing and power consumption minimization). Noticeably,
none of the one-size fits-all approaches is able to increase the
overall QoS after resources are saturated.

VIII. CONCLUSION

This paper proposes a distributed and Service-Defined ap-
proach for orchestrating cloud/edge applications. The pro-
posal enables individual applications to define their own
orchestration strategy by means of a behavioral declarative
model, which is used to dynamically generate a service-
specific orchestrator (Service-Defined Orchestrator - SDO).
This component is in charge of both the deployment (e.g.,
resource allocation) and run-time orchestration (e.g., scaling,
reconfiguration) of the given application. With respect to the
service deployment, we define DRAGON, a time-bounded
distributed approximation algorithm that solves the problem
of optimally partitioning a shared pool of resources between
multiple SDOs. DRAGON allows them to coexist over a
shared infrastructure by means of a dynamic agreement on
how resources have to be (temporary) assigned, providing

2The QoS of each application have been modeled through its private utility.
Values have been normalized between 0 and 100 for each component.

14

guarantees on both convergence time and performance. Our
evaluation assesses the scalability of convergence and perfor-
mance properties. Moreover, we evaluate our Service-Defined
approach over three representative edge use cases, showing
how an infrastructure provider may enable its customers (i.e.,
service providers) to implement their preferred orchestration
strategy for their services, without the restrictions deriving by
relying on a conventional one-size fits-all orchestrator.

ACKNOWLEDGMENT

The authors would like to thank Tierra Telematics and NSF
CNS-1647084 for their support, Antonio Manzalini (TIM) for
the support and the many fruitful discussions, and Emanuele
Fia for his work on the first prototype.

REFERENCES

[1] F. Esposito et al., “Slice embedding solutions for distributed service
architectures,” ACM Computing Surveys (CSUR), vol. 46, p. 6, 2013.

[2] G. Castellano et al., “A distributed orchestration algorithm for edge
computing resources with guarantees,” in IEEE International Conference
on Computer Communications (INFOCOM 2019), 2019.

[3] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and
resource allocation in mixed fog/cloud computing systems with min-max
fairness guarantee,” IEEE Transactions on Communications, vol. 66,
no. 4, pp. 1594–1608, 2018.

[4] S. Dräxler, H. Karl, and Z. Á. Mann, “Jasper: Joint optimization of
scaling, placement, and routing of virtual network services,” IEEE
Transactions on Network and Service Management, vol. 15, no. 3, pp.
946–960, 2018.

[5] B. Spinnewyn et al., “Coordinated service composition and embedding
of 5g location-constrained network functions,” IEEE Transactions on
Network and Service Management, vol. 15, no. 4, pp. 1488–1502, 2018.

[6] A. Leivadeas et al., “A graph partitioning game theoretical approach for
the vnf service chaining problem,” IEEE Transactions on Network and
Service Management, vol. 14, no. 4, pp. 890–903, 2017.

[7] P. T. A. Quang, A. Bradai, K. D. Singh, G. Picard, and R. Riggio,
“Single and multi-domain adaptive allocation algorithms for vnf for-
warding graph embedding,” IEEE Transactions on Network and Service
Management, vol. 16, no. 1, pp. 98–112, 2018.

[8] C. J. Bernardos et al., “5gex: realising a europe-wide multi-domain
framework for software-defined infrastructures,” Transactions on Emerg-
ing Telecommunications Technologies, vol. 27, pp. 1271–1280, 2016.

[9] R. Guerzoni et al., “Analysis of end-to-end multi-domain management
and orchestration frameworks for software defined infrastructures: an
architectural survey,” Transactions on Emerging Telecommunications
Technologies, vol. 28, no. 4, p. e3103, 2017.

[10] G. Darzanos, M. Dramitinos, and G. D. Stamoulis, “Coordination
models for 5g multi-provider service orchestration: Specification and
assessment,” in International Conference on the Economics of Grids,
Clouds, Systems, and Services. Springer, 2017, pp. 262–274.

[11] S. Mehar et al., “An optimized roadside units (rsu) placement for delay-
sensitive applications in vehicular networks,” in Consumer Communi-
cations and Networking Conference (CCNC), 2015 12th Annual IEEE.
IEEE, 2015, pp. 121–127.

[12] T. Bahreini and D. Grosu, “Efficient placement of multi-component
applications in edge computing systems,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing. ACM, 2017, p. 5.

[13] N.-S. Vo et al., “Optimal video streaming in dense 5g networks with
d2d communications,” IEEE Access, vol. 6, pp. 209–223, 2018.

[14] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing
in the data center.” in NSDI, vol. 11, no. 2011, 2011, pp. 22–22.

[15] H. R. Kouchaksaraei et al., “Programmable and flexible management
and orchestration of virtualized network functions,” in 2018 European
Conference on Networks and Communications. IEEE, 2018, pp. 1–9.

[16] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18–25, 2001.

[17] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm.” in USENIX Annual Technical Conference, 2014,
pp. 305–319.

[18] E. Sakic and W. Kellerer, “Response time and availability study of
raft consensus in distributed sdn control plane,” IEEE Transactions on
Network and Service Management, vol. 15, no. 1, pp. 304–318, 2017.

[19] B. P. Rimal et al., “A taxonomy and survey of cloud computing
systems,” in INC, IMS and IDC, 2009. NCM’09. Fifth International
Joint Conference on. Ieee, 2009, pp. 44–51.

[20] N. Dmitry and S.-S. Manfred, “On micro-services architecture,” Inter-
national Journal of Open Information Technologies, vol. 2, no. 9, 2014.

[21] M. Moser, “Declarative scheduling for optimally graceful qos degrada-
tion,” in Proceedings of the Third IEEE International Conference on
Multimedia Computing and Systems. IEEE, 1996, pp. 86–94.

[22] T. T. Hildebrandt and R. R. Mukkamala, “Declarative event-based
workflow as distributed dynamic condition response graphs,” arXiv
preprint arXiv:1110.4161, 2011.

[23] N. A. Lynch, Distributed algorithms. Elsevier, 1996.
[24] S. Khuller et al., “The budgeted maximum coverage problem,” Infor-

mation Processing Letters, vol. 70, no. 1, pp. 39–45, 1999.
[25] M. Sviridenko, “A note on maximizing a submodular set function subject

to a knapsack constraint,” Operations Research Letters, vol. 32, no. 1,
pp. 41–43, 2004.

[26] E. Fia, “SDO Compiler Prototype,” https://github.com/netgroup-polito/
sdo-compiler.

[27] G. Castellano, “DRAGON,” https://github.com/netgroup-polito/dragon.
[28] D. Karger et al., “Consistent hashing and random trees: Distributed

caching protocols for relieving hot spots on the world wide web,” in
Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing. ACM, 1997, pp. 654–663.

[29] T. Taleb et al., “On multi-access edge computing: A survey of the
emerging 5g network edge cloud architecture and orchestration,” IEEE
Communications Surveys & Tutorials, vol. 19, pp. 1657–1681, 2017.

[30] V. Sciancalepore et al., “A double-tier MEC-NFV architecture: Design
and optimisation,” in Standards for Communications and Networking
(CSCN), 2016 IEEE Conference on. IEEE, 2016, pp. 1–6.

[31] “Wowza streaming engine,” https://www.wowza.com/.
[32] M. Jarschel et al., “An evaluation of QoE in cloud gaming based on

subjective tests,” in Fifth conference on Innovative mobile and internet
services in ubiquitous computing (imis). IEEE, 2011, pp. 330–335.

[33] R. Ricci et al., “Introducing cloudlab: Scientific infrastructure for
advancing cloud architectures and applications,” ; login:: the magazine
of USENIX & SAGE, vol. 39, no. 6, pp. 36–38, 2014.

Gabriele Castellano is pursuing his Ph.D. degree
at Politecnico di Torino, Italy, where he received
his Master’s degree in Computer Engineering in
2016. During is Ph.D. career, he spent five months
as visiting student at Saint Louis University, Saint
Louis, MO. His research interests include service
virtualization, resource orchestration, distributed al-
gorithms and software defined networking.

Flavio Esposito received the M.S. degree in
telecommunication engineering from the University
of Florence, Italy, and the Ph.D. degree in computer
science from Boston University in 2013. He is
an Assistant Professor with the Computer Science
Department, Saint Louis University and a Visit-
ing Research Assistant Professor with the EECS
Department, University of Missouri at Columbia.
His research interests include network management,
network virtualization, and distributed systems.

Fulvio Risso received the M.Sc. (1995) and Ph.D.
(2000) in computer engineering from Politecnico di
Torino, Italy. He is currently Associate Professor at
the same University. His research interests focus on
high-speed and flexible network processing, edge/-
fog computing, software-defined networks, network
functions virtualization. He has co-authored more
than 100 scientific papers.

