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Summary

The Goal of robotics is to improve people’s quality of life in several ways as well
as in different areas. In recent years autonomous systems have been conquering
more and more space in our daily life. Clear examples are given by robots able to
help doctors during complex surgery and robots assisting people with disabilities.
Furthermore robots are changing the approach of transportation and mobility. Our
cars, in fact, are becoming day by day less human dependent and the final goal is
to reach a complete autonomy of the entire transportation system. Autonomous
cars will improve the quality of our daily life in different ways: blind people could
conquer their own freedom moving around, commuters could boost their productiv-
ity exploiting the time previously used to drive towards the workplace, traffic jam
and accidents would be dramatically reduced and so on. However, the process is
slow and far from completed. Current technology, in fact, is not advanced enough
to handle the entire involved complexity. On the other hand end users are not yet
ready for this type of change.
This work focuses on the study of path planning problems analyzed in two differ-
ent realms: (1) autonomous cars and (2) service robotics. The complexity in path
planning is introduced by factors like tolerance to planning errors, real time con-
straints, machine constraints, risk management and so on. The presented scenarios
are different but they share several characteristics such as real time constraints or
the strict interaction with the end user. In the former we studied the applicability
of GPGPU hardware to improve the trajectory generation in a highway scenario.
We show how exploiting the computational power of GPGPUs can significantly
reduce the trajectory generation time and selection (15 ms for the GPGPU version
against 86 ms for the CPU version in generating 3125 trajectories ) and how the
entire system can receive benefits from this performance boost.
While for the second domain (service robotics) we designed a framework in which
a robot can semantically navigate the environment interacting with objects in the
scene. Environment understanding and interaction, in fact, significantly affect the
robot navigation ability. We provided a state machine model, which includes tech-
niques for error recovery, supporting a robust navigation. As a case of study we
also present an approach to the door opening problem. We evaluated our frame-
work for navigation and door-opening approach in a challenging realistic scenario
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inspired by Robocup 2018 tasks. Our results show the robustness and flexibility of
our approach and its high applicability by using a standard service robot.
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Chapter 1

Introduction

1.1 Introduction
Nowadays autonomous systems are becoming more present and active in our

daily life. The Goal of robotics is to improve people’s quality of life in several
ways as well as in different areas. Clear examples are given by robots able to help
doctors during complex surgery and robots assisting people with disabilities. Fur-
thermore robots are changing the approach of transportation and mobility. Our
cars, in fact, are becoming day by day less human dependent and the final goal is
to reach a complete autonomy of the entire transportation system. Autonomous
cars, in particular, will improve the quality of life in different ways: blind people
could conquer their own freedom moving around, commuters could boost their pro-
ductivity exploiting the time previously used to drive towards the workplace. Even
of more immediate impact, the traffic and the number of fatal incidents would be
drastically reduced. The majority of the incidents, in fact, are caused by human
faults. However, the process is slow for multiple reasons. Even if pushing towards
further goals, present day technology is not advanced enough for handling the in-
volved complexity. On the other hand end users are not yet ready for this type of
change.
Service robotics also, has a strong impact on our society but suffers the same inte-
gration issues in our daily life. One of the most difficult things, in fact, is to create
confidence between robots and end users. To design fully autonomous systems sev-
eral technologies and techniques, still far to be completely solved, are combined
together (e.g., environment perception and understanding, human-robot interac-
tion, action planning, and so on).
This work is mainly focused on the study of path planning problems analyzed in
two different realms: (1) autonomous cars and (2) service robotics. The complex-
ity in path planning is introduced by factors like tolerance to planning errors, real
time constraints, machine constraints, risk management and so on. The presented
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scenarios are different but they share several characteristics such as real time con-
straints or the strict interaction with the end user. In the former we studied the
applicability of GPGPU hardware to improve the trajectory generation in a high-
way scenario. GPGPUs are an established technology that has a strong influence
on system performance. It received huge attention thanks to the boost given to the
development of deep learning algorithms. Few applications, have been presented in
the domain of self-driving cars. Thanks to this technology we reached a consider-
able performance improvement, in terms of efficiency and reliability, for trajectory
generation. While for the second domain (service robotics) we designed a frame-
work in which a robot can semantically navigate the environment interacting with
objects in the scene. In this scenario, in fact, environment understanding and inter-
action can significantly improve navigation ability of the robot. For studying the
robot-environment interaction, we focused our attention on the door opening and
traversing problem. We define the door opening problem as a sequence of action:
(1) door recognition, (2) handle recognition and grasping, (3) door pulling/pushing
to open it and (4) door traversing. All these actions are complex and composed of
several sub-tasks. A successful door opening is crucial to improve navigation time
and the robot freedom in navigation. In this work, we approach door recognition,
opening and traversing proposing a unified approach based on state machines. The
presented scenario plays a key role for the introduction of autonomous robots in
our daily life. Even if it is a natural daily task for humans, it hides several diffi-
culties that the robot has to handle. Examples are: door/handle recognition and
grasping, door type (pulling/pushing) understanding and door traversing. Espe-
cially in a context in which it has to help elderly people or people with disabilities,
the machine’s autonomy is of clear importance and the human intervention has to
be reduced to the minimum.
In the next paragraphs we briefly introduce the reader to the scenarios analyzed
in this work. We also want to make clear that the contents of Chapter 3 have
been already published [13]. The contents presented here do not differ from the
published ones. For this reason the author list is presented. We also declare that
each author contributed equally to the reached results and that there is no con-
flict of interests. Alphabetically the authors are: prof. Gianpiero CABODI, prof.
Paolo CAMURATI, Alessandro GARBO (PhD), Michele GIORELLI (PhD), prof.
Stefano QUER and Francesco SAVARESE.

The contents of Chapter 3 have been submitted and accepted at the ICSOFT2019
conference. They will be presented the 27th and the 28th of July 2019. The con-
tents presented here do not differ from the submitted ones. Authors of the submit-
ted paper are: Francesco SAVARESE, Antonio TEJERO-DE-PABLOS (researcher
at The Tokyo University), Stefano QUER (associate professor at Politecnico di
Torino), Tatsuya Harada (full professor at The Tokyo University). Even if not di-
rectly involved in the experimentation stages and in the writing process we would
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1.1 – Introduction

like to thank Yusuke Kurose (researcher at The Tokyo University), Yujin Tang, Jen-
Yen Chang, James Borg, Takayoshi Takayanagi, Yingy Wen and Reza Motallebi
(students at The Tokyo University) for their help implementing this research. This
research was conducted as part of a collaborative research project with Toyota
Motor Corporation.

Advanced driver-assistance systems known as ADAS are designed to help
drivers in handling complex situations. Thanks to a better knowledge of the envi-
ronment, given by sensors, and to a faster response time with respect to the human
one, ADAS systems increase the safety on our roads. Several different levels of
autonomy can be reached by a vehicle. SAE, an automotive standardization body,
stated that a vehicle can be classified in 6 different levels, starting from 0, depend-
ing on the amount of driver intervention requirements and the vehicle’s capabilities
to drive by itself.
ADAS systems are governed by international safety standards like IEC-61508 and
ISO-26262. Following are few examples of driver-assistance systems, differing as
regards to aim and level of autonomy:

• Adaptive Cruise Control: This mechanism is useful in highway scenarios
when the vehicle has to follow a fixed speed profile for a long time. What
makes the system really interesting is the interaction with other surrounding
vehicles. Speed, in fact, is adapted to the one of the preceding vehicle.

• Automatic Braking: Sometimes the response time of the driver is too slow
to avoid collisions. Automatic braking can avoid crashes acting at two levels
depending on the autonomy: (1) The system can slow down the vehicle and
signal the driver the dangerous situation or (2) The system can act on the
brakes to completely stop the car. The first solution has less conflict with
the driver’s autonomy while the second one moves towards a higher level of
vehicle autonomy.

• Blind Spot Detection This system was developed by Volvo and now is a
Ford Motor Company patent. This system aims to a precise description of
the environment around the car. This is useful to inform the driver about
complex situations preventing accidents. Sometimes, in fact, it is not possible
to have enough information about other vehicles using only mirrors and this
can lead to harder situations to handle.

• Intelligent speed adaptation: This system is useful to help the driver
in maintaining a legal speed. The current vehicle speed is monitored and
compared with the road speed limits. The limits can be retrieved detecting
and interpreting the speed signals or by the navigation maps. If the ego
vehicle speed is too high, the electronic system will slow down the vehicle
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1 – Introduction

or will inform the driver about the situation. The choice depends on the
autonomy level that the vehicle has to reach.

• Lane Centering: This systems is designed to ensure that the car moves
keeping the lane center. Lane monitoring is often accomplished using camera
information or previously computed maps. This means that road conditions
and the knowledge of the area are crucial to implement this system. Of-
ten it works alongside with the adaptive cruise control guaranteeing driving
autonomy for a non-trivial amount of time.

Trajectory generation and selection lead to the success or failure of a maneuver
for each of the cited systems. Reliability and robustness to environmental changes
are key aspects in the path planner quality evaluation. To work in a proper way
it exploits information provided by sensors and the quality of the received data
can compromise the final result. In this work we focus our attention on trajectory
generation studying the performance in terms of generation time and quality of
the generated paths according to quantitative metrics. For this reason we can
assume that maps and positioning are reliable. The path planning module closely
interacts with the vehicle controller demanding that the trajectory generation time
is compatible with the working frequency of the controller module itself. The
synchronization of these modules influences a successful planning. The quality and
efficiency improvements move in three directions:

1. The Selected trajectory has to follow as much as possible the desired path.

2. The Number of generated trajectories has to be high enough to guarantee a
wide exploration of the environment around the vehicle.

3. The Trajectory generation time has to be as short as possible to be compliant
with the vehicle controller working frequency.

To meet all these requirements we decided to study the applicability of GPGPU
architectures. The contributions are detailed in the Chapter 3.

Service robots for helping people in their daily life are becoming an im-
portant goal for scientists and engineers all over the world. First attempts at
human-robot cooperation were focused on robots capable of guiding people in pub-
lic environments like museums [8, 36, 78]. However, influenced by the population
aging problem, current service robotics is mainly focusing on the design of robots
to assist elderly people, or people with mobility impairments, in their daily life at
home [35]. Nowadays, robots are able to work in environments like houses or offices
to perform common tasks such as picking up objects or delivering articles. They
have also reached a high level of human-robot cooperation [27, 48]. Overall, current
robotics emphasizes the ability to autonomously navigate unknown environments
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and to interact with humans. To freely navigate in unmodified domestic envi-
ronments, robots have to be able to perform basic obstacle avoidance and handle
complex situations. Even if the house environment is not highly dynamic, common
and simple tasks for humans can be really hard to solve for robots (find small ob-
jects, use domestic appliances, discriminate between different objects ...). This can
depend on many factors like mechanical or technology limitations. Also, environ-
ment understanding and thus interaction is still far to be stable and reliable. This
aspect highly limits robot independence and a natural interaction with the user. In
particular, one common and still unsolved problem is opening a door, without hu-
man assistance. Door opening has drawn attention because of its complexity, and
because it involves different sub-tasks such as handle recognition, handle grasping,
discrimination between pulling or pushing the door, and the detection of locked
doors.
In this scenario Toyota proposed a new platform to assist people: The Human
Support Robot HSR. The aim of this robot is to assist people in house scenarios
and its main characteristics is the ability of working in unmodified environments
(e.g., no special doors are needed or any special furniture to allow the robot oper-
ators). For the success of the platform human-robot interaction plays a key role.
In this PhD thesis we developed algorithms for environment navigation and door
opening and we used the HSR for our experiments. We tested our software against
tasks proposed for the Robocup2018. In this context the robot has to be able to
complete several different tasks. We focus our attention, anyway, on two subjects:

• The study and the implementation of a semantic navigation framework acting
as an underlying layer for completing different types of action

• The study and the implementation of a motion planning algorithm to open
and traverse closed doors

The contributions are detailed in Chapter 4.
The remainder of this thesis is organized as follows. In Chapter 2 we give a

technical background introducing the mainly used tools and technologies for de-
veloping the described projects. In Chapter 3 we describe the GPGPU approach
we followed to improve the trajectory planner performance in the autonomous car
domain. Chapter 4 describes the approach we followed to solve the door opening
problem with robot navigation. Chapter 5 concludes the work describing reached
results.
The contributions of this work are in two different directions: On the one side we
analyze the improvement that the use of GPGPUs can provide to the path planning
stage in the field of autonomous cars. On the other side we studied how to plan
the interaction with environment objects in the context of indoor navigation
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Chapter 2

Background

2.1 Background
In this chapter we introduce the reader to algorithms and techniques we used

in this thesis work. Several technologies, in fact, are involved and we want to
summarize them before proceeding to the core part of the project. An in-depth
and complete treatment of each topic is out of scope for this work. For a more
complete study we invite the reader to refer to the specific bibliography. To avoid
ambiguity in the next paragraphs we refer to an autonomous car as a robot.

2.1.1 Path Planning
Path Planning has different meanings according to the domain of applica-

tion [67]. In this work we adopt the meaning used in robotics. Path planning
consists in the conversion of high-level tasks, frequently expressed in natural lan-
guage, into low-level descriptions of how to move. Intuitively we can say that
a machine uses a planning algorithm to interact and eventually modify the sur-
rounding environment. As shown in Figure 2.1 a Machine M (also called Agent
A) interacts with the Environment E thanks the actions of Sensing and Actuation.
Using the sensors, in fact, M is able to acquire knowledge about the current state
of the environment and then modify it acting with the actuators.

An example of a planning problem is the so called Piano Mover’s Problem:
given a precise house description the goal is to move a piano between two different
rooms avoiding all obstacles in the scene. To succeed in this task, finding a path to
reach the destination is not enough. The piano orientation during the movement,
in fact, can significantly influence the the final result.
Before moving on we define here a basic terminology used in the context of path
planning and consequently in this work:

• State: A state represents a possible configuration of variables describing the
Agent. Typical examples can be the car pose (position and orientation) and
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Figure 2.1: Machine-Environment Interaction. The machine retrieves information
about the environment using sensors and modifies it using the actuators.

speed or a robot arm joints pose. The set of all possible states defines the
state space. It can be discrete (finite or countably infinite) or continuous
(uncountably infinite) and sometimes too large to be represented.

• Initial and Goal States: In a planning problem initial and goal states have
to be defined. Actions are applied to reach the final goal starting from the
initial one.

• Actions: Actions are the way that the machine uses to change from a state
to another one. A sequence of actions changes the current state of the agent
towards the desired one. The set of possible actions is also limited by the
current state of the system.(e.g., A “move to right” action can be prohibited
if there is an obstacle on the right of the system).

• A Plan: A plan specifies the sequence of actions to apply for reaching a
desired system/environment configuration starting from an initial one. The
plan is a sequence of actions to apply.

• Time: The planning decisions and actions must be applied along time. Time
can be explicit, so the actions have to be executed as fast as possible, or
implicit, and the planned actions have to be executed one after the other.

• A Criterion: To attest that a selected path is suitable for solving the problem
a testing criterion has to be defined. The easiest one to think about is the
plan Feasibility meaning that the agent is able to complete the sequence of
actions without hitting any obstacle and without bypassing any constraints.
Another criterion is the criterion of Optimality. Being able to use this
criterion means that the selected path is the best possible one in terms of
some desired metrics (e.g., the fastest or the safest path). Unfortunately,
this criterion is not always applicable because of constraints like computation
time.
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Other important definitions in path planning are related to the environment
description:

• C-Space: Is the set of all the possible configurations of the system.

• C-Free: Is the set of all free configurations reachable by the system.

• C-Obs: Is the SET of all the obstacles configuration.
Notice that: C-Obs ∪ C-Free → C-Space .

Obstacles can be defined as static or dynamic. While the first one can be treated
easily complex techniques have to be exploited to predict the dynamic obstacles
movements over time. A Classical technique used in this context is the Extended
Kalman Filter.

The A* Algorithm [24] has historical relevance in the context of path plan-
ning. We give here a brief description of the algorithm. It was proposed by Peter
Hart, Nils Nilsson and Bertram Raphael of Stanford Research Institute (now SRI
International) in 1968. It can be seen as an extension of the Dijkstra’s 1959 al-
gorithm[16]. The A* algorithm performs better then previous works, in terms of
time for finding the best path and number of explored states, because it exploits
heuristics to implement a guided search. An example of a possible A* execution is
shown in figure 2.2. In this example the map is a made of white cells and grey cells
respectively representing C-Free and C-Obs. The starting state is represented by
the yellow point while the green one shows the goal state. The agent can move only
horizontally or vertically. In the picture (b) a possible generated path is shown.
A* is formulated as an informed search algorithm on weighted graphs. Starting
from a specific node of the graph the goal is to find a path towards the final state
minimizing the path cost (e.g., shortest path, minimum time). From each node the
algorithm determines the next node to reach. To select the proper node the idea
is to compute the cost of the choice in terms of cost from the current node to the
next one and estimation of the cost of the path from the next possible node to the
goal node. Among all the possible solutions the minimum costing one is selected.
A mathematical formulation of the cost computation is given in the Equation 2.1

f(n) = g(n) + h(n) (2.1)

where n is the candidate next node on the path, g(n) is the cost to reach the node
n from the initial one and h(n) is a heuristic function to estimate the cost from the
node n to the goal. The selected heuristic strongly depends on the problem (e.g., the
distance to the goal node). To be correct A* needs to use an admissible heuristic.
By definition a heuristic function is said to be admissible if it never overestimates
the cost of reaching the goal (e.g., the estimated cost to reach the goal is not higher
than the lowest possible cost from the current point in the path [62]).
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(a) Starting and Goal State (b) Path Generated using A*

Figure 2.2: An example of path computation using the A* algorithm. In figure (a)
the initial and goal states are represented on the occupancy grid map, respectively
in yellow and green. Grey regions are the prohibited ones. Figure (b), instead,
represents a possible computed path. According to the above definitions C-Obs is
represented by the regions while C-Free is represented by the white ones.

As shown in Figure 2.3 path planning is generally structured in three hierarchical
modules: a Global Planner, a Decision Maker, and a Trajectory Planner. The global
planner is in charge of generating a long-term path based on user requests. The
trajectory planner, also known as local planner, creates the trajectories and selects
the low level actions to move the system (e.g., selects the command to move the
vehicle). The decision maker can be modeled as sub-module of the global planner.
It is in charge of supporting the global planner in selecting the desired high level
path to follow. According to the environment constraints, in fact, several paths are
possible and decision maker is a crucial module to impose the driving style.

•

The trajectory planner generates trajectories according to decisions made at a
higher level of the hierarchy. Selected trajectories are sent to the vehicle controller
that move the robot actuators. To properly complete the task, the path planning
module receives pre-processed data, such as environment description including ob-
stacles and constraints (2D or 3D maps), robot speed and localization and so on.
Using this information it is possible for the module to compute the best possible
path according to environment and car constraints.
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VEHICLE
CONTROLLER

VEHICLE/
VEHICLE SIMULATION

SENSORS &
PERCEPTION

PATH PLANNING MODULE

GLOBAL PLANNER

TRAJECTORY PLANNER

DECISION MAKER

EXTERNAL ENVIRONMENTPLANNING
POLICIES 

Environment Description (occupancy grid maps, 3D maps...)
Local Vehicle State LVS ( x, y,  heading, v ) 

GOAL 
(for global planner)

Figure 2.3: Path Planner Structure (global planner, decision maker, and trajectory
planner) and its relationship with the vehicle and the external environment. Inputs
to the path planning modules are the goal to reach and path planning policies used
to make decisions. Data provided by the external environment are collected and
pre-processed.

2.1.2 Trajectory Planning Methodologies
Referring to Figure 2.3 a local trajectory, generated by the trajectory planner,

is subject to stringent mathematical constraints that prevent purely mathematical
solutions. In order to solve this issue, several algorithms and frameworks have been
proposed, such as sample-based (randomized and deterministic) techniques, control
strategies, and purely geometrical planning methods.

Instead of exploiting the configuration space in a continuous way, sample-based
planning techniques [68, 69, 70, 47] sample the configuration space into a set of finite
motion goals. Although the sampling phase could affect the optimality of the final
trajectory, it allows significant speed up and more realistically real time constraints.
Furthermore, sample-based techniques do not need sophisticated mathematical ap-
proaches.

Within the framework of sample-based planning, randomized algorithms are
mostly based on the so-called Rapidly-exploring Random Tree (RRT) [68, 69]. In
this case the driving idea is to iteratively expand a random tree by applying control
inputs that drive the system toward randomly-selected points. Originally, if online
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operations were requested, these methods were restricted to approximately four-
dimensional state spaces, thereby limiting the fidelity of the models they could
reproduce. They thus mainly found application in situations where no external
structure could be extracted for guidance, such as off-road or large-scale parking
lots. If a reference path (or a trajectory) is available for guidance, such as road or
lane information, a common approach is to align the end-points of local trajectory
samples with the reference path (see for example Werling et al. [82]). This technique
simultaneously reduces search complexity, and overcomes the danger of entering
unsafe states. Most of these approaches are based on geometric primitives instead
of actual vehicle models, separating the computation of velocity profiles from the
geometric construction of the path [Bacha2008, 50, 86]. This separation may
result in conflicts, especially at low speeds. Consequently, trajectories need to be
validated in a post-processing step, which may in turn lead to the pruning of a
considerable amount of candidate motion [82].

Deterministic sample-based algorithms [84, 28, 70] explore the configuration
space without applying any probabilistic function. For example, in graph-based
approaches [84] both speed and space are completely discretized into a finite set of
samples with a certain resolution.

Control strategies [33, 83] represent a natural formalism for representing path
problems. In these methods the planning process is expressed through differential
equations, which take into consideration the initial and the terminal states, the
mathematical model of the vehicle, the cost function that should be minimized, and
practical constraints that have to be taken into consideration (such as limitation
on the actuators). This continuous-time optimization problem can be transformed
into a nonlinear programming task assuming a parametric solution. Unfortunately,
this high-level notation masks severe difficulties. First of all, generally there are no
analytic solutions to compute first derivatives with respect to the parameters, and
implementations must rely on numerical methods. Moreover, numerical strategies
may be trapped in local minima. Furthermore, they are really time-consuming,
and thus unsuitable for real-time applications.

Purely geometric planning techniques [74] represent the oldest planning ap-
proaches, developed especially for mobile robots. To produce smooth trajectories,
with respect to the comfort of human body, these techniques transform the planning
problem into an interpolation task. The main advantages of these planning tech-
niques are their low computational cost and the continuity ensured for the control
inputs. However, these approaches seem to be too simple and inappropriate for real
applications, as trajectories turn to be neither feasible nor optimal. Furthermore,
collision avoidance methods are often not integrated with these algorithms since no
different candidate trajectories are offered.
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2.1.3 GPGPU
General purpose graphical processor units (GPGPU) are becoming more and

more invasive in our every-day life [9, 65, 42, 10, 45, 18]. Dividing a process in dif-
ferent flows, executed in parallel, gives many advantages in terms of computation
time and resource management. This approach is known as concurrent program-
ming and exploiting a specific hardware infrastructure can significantly improve
performances.
GPGPU programming is an instance of the well known S ingle Instruction Multiple
Data, SIMD, programming paradigm. A GPGPU has generally many more core
than a CPU but with a reduced computational power. All threads execute the same
code but on different data. In this way it is possible to complete a computation on
a large amount of data reducing completion time. Modern CPUs are made of few
cores (4 or 8) and are equipped with large memories up to 32GB. For the GPU the
trend is the opposite: a large amount of cores (hundreds or thousands) equipped
with small hierarchical memories.
The first GPUs have been designed to improve performances in the context of
graphical computation. Each pixel operation does not affect operations on other
pixels. In this sense an image can be seen as a big source of data. Thanks to this
idea each computation can be performed at the same time, ideally at one time (de-
pending on the number of inputs and the number of execution units). Convolution
is an example of mathematical operation that gets benefits from the GPGPU archi-
tecture. Convolution has high relevance in the context of Artificial Intelligence. In
the last years, in fact, we assisted to a fast development of Deep Neural Networks
thanks to GPGPUs.

2.1.4 GPU Frameworks
Two main frameworks have been proposed for GPGPU developing: CUDA by

NVIDIA and OpenCL by Apple and Khronos [52]. The first one is nowadays the de
facto standard used by companies and universities. In this project we used CUDA
technology to improve trajectory planner performance in terms of trajectory speed
generation and number of generated trajectories.
To write software based on the CUDA architecture, NVIDIA designed an extended
C/C++. In the CUDA terminology the CPU and its memory is referred as Host
while the GPGPU and its memory is called Device. The CPU and GPU memories
have to be explicitly managed by the programmer. A Kernel is a function executed
on the GPU over different cores, thus in parallel. A kernel is defined using a special
CUDA declaration, and it is executed using the <<<. . .>>> construct. For the sake
of simplicity, we will use the“<. . .> ” notation in our pseudo-code to represent the
same operation. The parallel code is executed on the Device (GPGPU). Threads
executing kernels are grouped together. At a higher level threads are organized in
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a grid structure. The grid can be made of 1 or 2 dimensions. Each Block of a
grid is made of several threads. A block can be shaped as a 3dimensional matrix.
This multidimensional organization is really useful when shaped data structure
have to be modelled over the memory. A clear example are images. Pixels, in
fact, are shaped in a 2D matrix. A kernel can be executed by multiple equally-
shaped thread blocks and the number of blocks and the number of threads for
each block is specified as: <numberOfBlock, numberOfThreadsPerBlock >. As
a consequence, the total number of threads running is equal to the number of
blocks multiplied by the number of threads per block. Figures 2.4 gives a graphical
representation of the threads/blocks organization. The number of threads that can
be executed at the same time and so the grids/blocks arrangement are limited by
hardware constraints.

Figure 2.4: CUDA Device representation. There are k blocks each one made of
n ∗ m blocks. Blocks are organized as a 2D matrix of n columns and m rows.

A developer, when designing an algorithm, decides how many threads have to
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be launched to execute a precise task and how to organize them, namely how many
threads per block and how many blocks. When launched, a program is runs on
the CPU. Specific functions are defined for host and device memory management.
Examples of functions are: cudaMalloc, cudaFree, cudaMemcpy. These functions
are better treated and explained in CUDA manuals.
Each executing thread has a unique ID that is accessible within the kernels using
some CUDA data structures:

• threadIdx.x/y/z: identify the thread id in a block for a specified direction

• blockIdx.x/y/: identify a grid in a block for a specified direction

• blockDim.x/y/z: retrieves the number of threads for a specified block direc-
tion

• gridDim.x/y: retrieves the grid dimension for a specified direction

In Figure 2.5 the Single Instruction Multiple Threads model used by GPUs is
depicted. The hardware simultaneously executes groups of threads running the
same code on different data. A set of 32 threads executed together is called warp.

Figure 2.6 shows how threads and memory are organized. Memory varies in
terms of size and visibility to threads. Differences can be summarized as follow
(Memories are listed from the smallest to the biggest):

• Local Memory (registers) are private to each thread.

• Shared Memory is shared by threads of the same block and it is private to
each block. It is used for data exchange between threads of the same block.

• Global Memory is unique for each application. Because it is common to all
threads it used for the communication between different blocks.

• Constant Memory is visible to all threads, it is a read/write memory for the
CPU but a read only memory for each thread.

Thanks to the concept of space locality cache misses can be reduced accessing
data stored in memory in close locations. Also, threads in the same warp execute
the same operation, if not the threads are executed sequentially. Thread synchro-
nization, as for CPU multithreading, is a huge problem and if not correctly solved
it can negatively affect performance. CUDA provides primitives for the thread
synchronization.
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Figure 2.5: CUDA SIMT Architecture Model.

2.2 Deep Neural Networks
Artificial neural networks (ANN) are computing systems inspired by the human

brain in which the smallest computation unit is named neuron. ANNs belong to
the field of machine learning. The idea behind it is to instruct a system to solve a
specific problem without having a specific algorithm for problem resolution. Typi-
cal examples of application from the computer vision world are image classification,
object detection or scene understanding. For example we could teach an ANN to
discriminate between dogs and cats without providing a specific rule. A generic
flow is to use a database of images, called training dataset, representing dogs and
cats. With this dataset the network can learn what dogs and cats are. After the
teaching stage, using another dataset, named test dataset it is possible to test the
ability of the network to complete the required task. When the desired degree of
accuracy is reached it is possible to use the network in operating scenarios.
The first example of neural networks was the single layer perceptron SLP pro-
posed in 1957 at the Cornell Aeronautical Laboratory by Frank Rosenblatt and
represented in Figure 2.7. The SLP is able to determine if an input image, rep-
resented by a vectors of values, belongs or not to a specif class. The SLP is a
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Figure 2.6: CUDA Architecture Overview. Each component has different visibility
of the memory.

binary classifier and belongs to the set of supervised learning algorithms. Although
the perceptron initially seemed promising, its inability at solving more complicated
tasks was soon shown. The Multilayer Perceptrons MLP overcomes the previous
limitations combining several SLPs together and building a more complex neural
network. An MLP is made of:

• an input layer.

• an output layer.

• several interleaved layers named hidden

Hidden layers are considered the computational engine of the MLP. An example of
MLP is given in Figure 2.8.

When an MLP has many hidden layers with heterogeneous characteristics it
is named Deep Neural Network. Deep Learning is the most successful branch of
machine learning of the last decade [85]. Thanks to nonlinear transformation, be-
tween the input and the output, a deep-net is able to solve complex tasks, like
object detection, with a high degree of accuracy. Deep Learning is becoming ev-
eryday more popular thanks to the increasing amount of available data and the
technological improvement. Deep neural networks training exploits, in fact, a huge
quantity of data and requires incredible computation effort that can accomplished
only by GPGPU clusters.
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Figure 2.7: Example of single layer perceptron. Weights are used to give a different
strength to each input. The output value is determined by the weighted sum of
all input neurons. In this simple version, the output is a linear combination of the
input. If the result exceed a certain threshold Θ, the output value will be 1, 0
instead. Training a neural network means to find the weights configuration that
maximizes the ability of the network in completing its task.

One of the most successful deep neural network class is the Convolutional Neural
Network, also know as CNN or ConvNet [25, 76]. This class of deep-net, in
the beginning, was used to mainly solve computer vision tasks. Convolution is a
computationally-intensive task that can be accelerated using concurrent processors
[63]. A CNN is made of multiple hidden layers that typically consist of convolu-
tional layers, pooling layers, fully connected layers and normalization layers. In
section 2.2.1 we briefly illustrate the Convolutional Neural Network training pro-
cess.
This section gives some ideas on how a deep neural network is trained and how
it works. Also some information are given on available image dataset and deep
learning architecture and tools.
Thanks to its power, deep learning is one of the most used machine learning tech-
niques especially in the context of computer vision. Several architectures have been
proposed in these years and we want to report here some of the most famous ones.

• LeNet5 [43]. LeNet5 is considered the first Convolutional Neural Network. Is
made of 7 hidden layers and it is used to classify handwritten digits.

• AlexNet [41]. Convolutional Neural Networks became popular with AlextNet.
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Figure 2.8: Example of multi layer perceptron. There is only one hidden layer
and each node is fully connected with the following one. This architecture is the
starting point for Deep Learning

Alex Krizhevsky, Ilya Sutskever and Geoff Hinton proposed this network for
the ImageNet ILSVRC challenge in 2012. Alexnet outperformed all the other
proposed approaches becoming popular in the research community. AlexNet
is much deeper and bigger then the provious CNN.

• GoogLeNet [75]. Szegedy et al. presented GoogLeNet and won the ILSVRC
contest in the 2014. The main contribution in this work was parameters re-
duction thanks to a module called Inception. Several versions of this network
have been proposed in the following years.

• VGGNet [73]. This network was presented for the ILSVRC contest in the
2014. VGGNet has many parameters and is often used as base network to
build new DNNs.

• ResNet [25]. Residual Network developed by Kaiming He et al. won the
ILSVRC competition in 2015 with an error rate of 3.6%. Several versions of
this network have been proposed and the deepest one has 152 layers.
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• Yolo [56]. Yolo is a state of the art object detection CNN. A smaller version
of Yolo, named Fast Yolo, has been proposed to reach real time performances.

• Faster R-CNN [57]. This network is made of two different modules: (1)
the RPN for the region proposal (where the object could be )and (2) the
Fast R-CNN for the object detection in the proposed region. Fast R-CNN
belongs to a specific class of convolutional neural networks named recurrent
convolutional neural networks.

• SSD [81]. It is a neural network for object detection. Its structure is relatively
simple and can be used to build more complex systems. In the second part
of this work, in which we illustrate the design of a service robot able to open
doors, we describe how we trained and used this network for the door/handle
detection problem.

Because of the generated interest, also a lot of different frameworks have been
proposed from both, companies and academia. The most famous are:

• Caffe [14]

• TensorFlow [77]

• Torch [15]

• Pytorch [53]

2.2.1 Training a Deep Neural Network

Figure 2.9: Neural Networks Training Process.
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A convolutional neural network is usually trained using a supervised learning
approach. This technique consist in training a system providing input-output pairs
as example. This pairs are used to “show” to the network the output corresponding
to a certain input. For the training stage a so called training dataset is used. Such a
dataset is generally large and contains data (e.g., images) plus an associated label
describing the corresponding output. For an object detection task, for example,
the network output can be made of object coordinates in the image plus a label
describing the object class. Several datasets of images, with the associated labels,
are publicly available and can be used to train deep neural networks with many
hidden layers. Public datasets do not contain all the existing object classes for
obvious reasons. A typical approach is thus training a deep net using the available
huge dataset and then refine the networks parameters using data describing the
specific problem. Some of the most famous datasets are:

• PASCAL VOC [17].

• COCO [44].

• IMAGENET [41]

• ILSVRC [60]

• KITTI [19]

. Figure 2.9 is a graphical representation of the entire training process. We can see
2 main stages:

1. Forward Propagation.

2. Backpropagation.

In the first stage the network is fed with the input and the corresponding output
is computed. The stage of backpropagation, instead, consists in computing the
error between the desired output and the current one using a loss function. The
error is the propagated back to update the network weights. The first use of the
backpropagation was proposed by Rumelhart et al. [59]. A Loss Function is s
mathematical function used to compute the error between the current output and
the desired one. The easiest loss function to think about is:

| od − oa | (2.2)

Where od is the desired output while oa is the actual one. The error is computed
for each output node and then they are all summed up. However, several situations
can lead to the same total sum of errors: for instance, lot of small errors or few
big errors can sum up exactly to the same total amount. Anyway, it is preferable
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to a have small errors distributed instead of big errors for specific inputs. For this
reason the loss function can be defined as the sum of squares of the absolute errors.
Equation 2.3 is an example of loss function in which oj and dj are respectively the
current output and the desired output for the j − th neuron. In this way small
errors are counted much less then large ones.

LF = 1
2 ∗

N∑
j=1

(oj − dj)2 (2.3)

The goal of the process is to minimize the loss function to reach good performances.
In this sense the machine learning problem can be seen as an optimization problem
that aims at minimizing the loss function. Example of loss functions are: Cross
Entropy, Binary Cross Entropy or Logarithmic Squared Error. According to Fig-
ure 2.9 the first step for training a neural network is randomly initialize its weights.
Once the net is initialized the first input can be received by the network and its
accuracy can be computed using the loss function and the training labels (the de-
sired output). Once computed the current error the network weights have to be
slightly updated. To do so the derivative of the loss function respect the weights is
computed. Eq. 2.4.

dE

dWi

(2.4)

This derivative represents the error variation respect to a small variation of the
weights. The derivative is backpropagated in the network and used to update the
weights. The Equation 2.5 shows the weights update process. The parameter η is
named learning rate and it influences the learning speed. A low learning rate value
can cause a slow training phase but a too high value can generate a non predictable
system.

w′
i = wi − η ∗ dη

dwi

(2.5)

A complete cycle from the feedforward phase to the weights update is named Epoch.
This process continues until a termination condition is reached. Examples of stop-
ping criteria are:

• The error is below a predefined threshold.

• The error between two consecutive epochs does not decrease of a significant
amount.

• A maximum number of epochs have been reached.

Training Set and Test Set

To train a neural network a huge dataset is required. Anyway, after the network
training stage it is important to verify how well the network can complete the
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desired task. A common approach is to divide a huge dataset into two disjoint sets:
the Training set and the Test Set. The first one is used to train the network while
the second one is used to verify the ability of the network at solving the specific
task. During the NN training process is important to avoid the overfitting problem.
This phenomenon happens when the network performs well when the training set is
used but performances drop when the test set is used. Preventing this phenomenon
is crucial when a neural network is trained. A successful technique to reduce the
overfitting probability is the K-fold cross-validation. The dataset is partitioned in
K different sets: one of the sets is used as validation set while the remaining ones
are used as training set. The training is repeated several times and each of the K
sets has to work as test set at least one time.

2.3 State Machines
In this section we introduce basic concepts about state machines and clarify

the terminology we used in this work. To design state machine in this work we
used a python package named SMACH1.

2.3.1 Concepts
A Finite State Machine (FSM), is a mathematical model used to represent the

evolution of a systems along the time. To model such a system there are two main
entities:

• State.

• Transition.

A state describes the system as configuration at a given time while a transition
links two states. A transition between two different states depends on the input to
the machine and its current state. If every input leads to a unique state then the
state machine is named Deterministic State Machine. On the contrary, if an
input can lead to one, more than one or no transition, the state machine belongs to
the non-deterministic State Machine type. It is always possible to represent a
non-deterministic SM as a more complex deterministic SM.
If a state transition depends only on the current state of the machine, a state ma-
chine is named Moore Machine. If the state transition depends on the current
state and the current input the SM belongs to the category of Mealy Machines.
A Moore machine, generally, requires a bigger number of state respect to the equiv-
alent representation with a Mealy machine.

1SMACH is a ROS-independent Python library for building hierarchical state machines.
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Mathematical Representation

A deterministic FSM can be represented by the quintuple (Σ, S, s0, δ, F ) where:

• Σ: is the input alphabet. It is a finite and a non-empty set of symbols.

• S: is a finite, non-empty set of states.

• s0: is an initial state, it belongs to S.

• δ: is the state-transition function: δ : S × Σ → S

• F : s the set of final states, a (possibly empty) subset of S.

A non-deterministic FSM, instead, is represented by a sextuple (Σ, Γ, S, s0, δ, ω)
where:

• Σ: is the input alphabet. It is a finite and a non-empty set of symbols.

• Γ: is the output alphabet. It is a finite and a non-empty set of symbols.

• S: is a finite, non-empty set of states.

• s0: is a set of initial states. Each one belongs to S.

• δ: is the state-transition function: δ : S × Σ → P(S)

• ω: is the output function. The output function can depend by state and input
alphabet (ω : S × Σ → Γ) or only by the state (ω : S → Γ). In the former
the FSM is modeled as a Mealy machine. In the latter the FSM is modeled
as a Moore machine.

Graphical Representation

There are several ways of representing a state machine. The two most famous are
the State/Event table and the state transition diagram. Table 2.1 and Figure 2.10
are respectively the State/Event table and the STG of a same state machine.

PPPPPPPPPRoom
Date S1 S2 S3

Input X S1 S1 S1
Input Y S2 S2 S3
Input Z S3 S2 S2

Table 2.1: State Event Table
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Figure 2.10: State transition of a Mealy FSM. Each circle represents a state while
each arrow represents a transition. The label on the arrow is the input causing the
transition.

Other examples of FSMs representations are UML state machines and SDL
state machines.

2.4 About the Robocup Competition
As the second part of this project has been developed in collaboration with The

University of Tokyo in the context of Robocup Project, we report some information
about the Robcup Competition. We believe this is useful to better understand some
choices we made in our design. The designed software architecture, in fact, is not
only focused on path planning. The path planner module is an underlying layer
serving as support to complete several and different tasks. It is clear in this sense
that some choices have been made to reach an architecture able to solve problems
of different nature.

The Robocup 2 is a robot competition started in the 1997 with the main goal of
creating a robot football team able to compete against a human team, and possibly
win, before the year 2050. During the following years several different categories

2https://www.robocup.org.
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with different goals have been introduced in the competition. Currently the major
categories are:

• RoboCupSoccer

• RoboCupIndustrial

• RoboCupRescue

• RoboCup@Home

This work is developed in the context of RoboCup@Home. Goal of this league is
to push indoor robotics research to create robots able in assisting elderly people or
people with mobility impairments. RoboCup@Home is split in 3 leagues:

1. Domestic Standard Platform League

2. Social Standard Platform League

3. Open Platform League

This three leagues differ for scope and for robot type they use. The DSPL faces
the problem of assistance to humans in a domestic environment using a standard
platform, the Toyota HSR shown in Figure 2.11a. A more precise description of
the platform is given in Chapter 4.
For the SSPL the main goal is a user-friendly interaction with the user. Possible
scenarios see the robot working as waiter or as guide in a museum. The robot used
for the SSPL is the SoftBank Pepper shown in Figure 2.11b. The selected platform
is shown in Figure 2.11b.
The last league is the OPL. Scope of this league is the same of the DSPL but the
platform is not standardized. Each team builds its own robot without any design
limit.
Because we tested our robot against the tasks proposed for the DSPL we briefly
describe the involved taks.

2.4.1 DSP League
Each stage has to be completed successfully to move to the following one and

the finals. Each stage is made of different tasks. The DSPL is organized in 4
different stages with different tasks:

1. Setup and Preparation

2. Stage 1
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(a) Toyota HSR (b) Softbank Pepper

Figure 2.11: DSPL and SSPL Platforms

Figure 2.12: Help Me Carry Task Flow

• General Purpose service robot: The user can select commands among
a set organized by difficulty. The robot should be able to understand
and execute the command imparted by the user. To give a proof of
command understanding the robot has to repeat it. The robot has to
enter the arena and leave it autonomously and give a proof of speech
understanding.

• Help Me Carry: The robot’s owner went to shopping for groceries and
once back home needs the robot help for bringing the bags from the car to
a specific house place. Navigation, people following, object recognition
and grasping are evaluated during this task.

• Speech and Person Recognition: The robot has to be able to identify
unknown people and answer question about them. Abilities like sound
localization, speech recognition or human interaction are evaluated in
this task.

• Storing Groceries: Some groceries are next to a cupboard and the robot
should be able to store them. The groceries are of different types and the
robot has to group them by category. Groceries are of different shapes
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to evaluate the manipulation robustness.

3. Stage 2

• Enhanced Endurance General Purpose Service Robot: is an enhanced
version of the GPSR task. Now the robot has to execute multiple com-
mands for a period of 40 minutes. For this task a specific plot is not de-
signed, increasing consequently the difficulty. The requested commands
can require interaction with people or objects in the arena.

• Open Challenge: Teams are encouraged to show their recent research
achievements. They have to demonstrate new successful approach in
solving problems in robotics.

• Restaurant: The robot has to work in a real environment like a restaurant
and has to interact with another robot to help customers in their needs.

• Set a Table and Clean it up: The robot has to set a table and clean it
up. Object recognition and manipulation are analyzed during this task.

4. Finals

• Final Demonstration: Teams have to perform an open presentation sim-
ilar to the one performed during the open challenge. Anyway this pre-
sentation has not to be completely the same.

28



Chapter 3

Improving Trajectories
Generation Exploiting GPGPU
Technologies

This section analyzes how to exploit the GPGPU hardware environment to
improve the efficiency of the path planning phase in the context of autonomous
cars. This section is the result of a long work completed during the thesis project
with the collaboration and funding of Magneti Marelli. The reached results have
been already published in [13]. We propose here the content of the published
paper. The authors are (in alphabetical order): prof. Gianpiero CABODI, prof.
Paolo CAMURATI, Alessandro GARBO (PhD), Michele GIORELLI (PhD), prof.
Stefano QUER and Francesco SAVARESE. All authors declare that there is no
conflict of interests.

3.1 Introduction
Autonomous driving systems are becoming more real in our daily life, and new

techniques and new improvements are proposed by researchers and companies at
a high rate. An autonomous car has to fulfill many tasks, working in a highly
dynamic environment, respecting hard real-time constraints, and minimizing error
probability. In particular, the trajectory planner module is highly “sensible” to
driver choices, environment changes, and time constraints. This module is the one
responsible for generating several different trajectories and selecting the best one
to follow. The selected path has to be collision-free, suitable for the vehicle, and
the most cost-effective with respect to a given cost function.

Sample-based planning techniques [68, 69, 47] sample the configuration space
into a set of finite motion goals. Randomized sample-based algorithms generate
those goals randomly in close proximity of a reference path (or a trajectory) such
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as a road or a lane infrastructure. Rapidly-exploring Random Trees (RRT) [6, 51, 70]
have recently been adopted with complex environments due to their ability to search
high-dimensional input spaces, to navigate among static and dynamic obstacles, and
to consider vehicle dynamics and terrain shape in their solution. Given a vehicle,
these algorithms generate a set of paths to explore the state space along a given
reference path. This set is organized as a tree, where the root node is placed in the
initial vehicle position, vehicle trajectories are represented by tree paths from root
to leaves, and each new tree level explores the space for a specific distance or time.
Among all generated paths from root to leaves, these techniques eventually select
the best path, using a proper cost function. The cost function usually evaluates
the distance of each leaf from the desired target trajectory, the path geometry
(feasibility and convenience of the trajectory), and its safety (distance from all fixed
and moving objects along the path). Among the advantages, these methods do not
require good approximations of the reference path, they do not rely on accurate
vehicle models, and they derive their power from an extensive computational effort
directed to improve the quality of the trajectory from step to step.

In this work, we concentrate on how to exploit the power of recently born
massive parallel architectures to improve the efficiency and the quality of existing
algorithms, rather than developing new ones. Indeed, we focus our attention on how
to re-engineer the randomized sample-based algorithm presented by Schwesinger et
al. [70], on a CUDA (a parallel computing platform and application programming
interface model created by Nvidia, acronym for Compute Unified Device Architec-
ture) many-core GPGPU-based architecture.

First of all, while transforming the sequential algorithm into a concurrent one,
we trimmed the method to its best, by optimizing all parameters and each ba-
sic step. Then, we re-implemented the original algorithm using different CUDA
kernels, each one running several working threads on the GPU. We defined how
to propagate information among threads, how to synchronize those threads, and
how to organize memory transfers between the CPU and the GPU (and among the
different CUDA kernels) to reduce planning times and to minimize memory usage.
We finally obtained an application completely implemented in CUDA, and running
all path-planning activities on a GPU.

Overall, our main motivations are the following ones. First of all, planning tasks
need efficiency and scalability which modern CPUs may fail to guarantee. CPUs
may become a bottleneck on automotive applications given their overall working
load and the generated and dissipated power. We are also motivated by the purpose
to adopt CUDA technology as a de facto standard in many applications that enable
efficient many-core implementations. Thirdly, though many-core applications are
becoming a standard, efficient design and implementation techniques have not yet
spread enough among researchers in the field. Overall, we present the approach we
adopt to port a CPU-based algorithm to a many-core GPU-based platform.
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In the experimental result section, we compare our sequential CPU-based im-
plementation of the method presented by Schwesinger et al. [70] with a many-core
concurrent GPU-based one. In this respect, explicitly comparing our GPU im-
plementation with any other one would be meaningless. This sort of comparison
would grade the quality of the original algorithm against other similar or dissimilar
methodologies, while our target is to identify the potential benefit of a GPU imple-
mentation against the corresponding CPU one. We define an evaluation framework
and quantitative metrics, going beyond the mere wall-clock time required to run the
algorithm, to evaluate our implementation in several critical scenarios. We present
the impact that our set-up may have on real world scenarios. We also analyze
several critical aspects of the original algorithm, as well as of our parallel CUDA
implementation.

Power consumption and energy efficiency are undoubtedly key aspects to con-
sider when resorting to GPUs, especially when they may replace CPUs. The issue
has been addressed in numerous papers, covering aspects of power measurements
and/or estimation. A recent survey on models and tools for measurement and esti-
mation of GPU power consumption appears in [Mittal2015]. However, the debate
among researchers is still open as whether GPUs are more power- and energy re-
quiring than CPUs or not, and under which conditions. This work does not address
the issue, as we are not considering the final hardware platforms, rather we work
on an industrial prototype including both a multi-core CPU and a GPU. Although
required for the final hardware and software architecture evaluation, CPU versus
GPU comparison on power efficiency is thus beyond the scope of this work.

As a final remark, notice that the project has been developed under an industrial
non-disclosure agreement between Politecnico di Torino and Magneti Marelli. For
that reason, the software and the experiments cannot be made publicly available.

3.1.1 Contributions
Graphical Processing Units have been spreading in many scientific domains, and

they have also been used in some recent works on automotive motion planning (see
Section 3.2.1 for further details on this issue). However, those works usually present
a new planning algorithm, or some new feature of an existing planning strategy. In
all cases, GPUs are used to run only specific and particularly expensive phases of the
planner. Moreover, those strategies do not specifically concentrate on the parallel
implementation and often do not apply any specific memory management optimiza-
tion. We concentrate our analysis on how a fully GPU-based implementation can
be obtained starting from an existing state-of-the-art sequential application. Our
parallel algorithm for path planning is entirely implemented on a CUDA GPGPU
environment. As far as we know, we are the first to describe into details such a
process. Furthermore, we present detailed results on how our GPU-based approach
compares with our standard CPU-based one, in terms of both path accuracy and
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time efficiency.
To sum up, our major contributions are the following:

• We analyze the original algorithm in different scenarios to understand the
quality of the original path planner and trim it to its best.

• We implement several concurrent versions of the original algorithm, to analyze
transfer, memory, and computational time issues.

• We compare CPU and GPU results, performing tests on several real maneu-
vers. Results are analyzed defining, and computing, specific ad-hoc metrics
and evaluation parameters.

• We show that paths obtained using the GPU are completely superimposable
to the ones collected with the CPU. At the same time, response times are
drastically reduced, giving the system enough time to span the space deeper
and more accurately or to improve the system’s behavior in critical conditions.

3.2 Related Works

3.2.1 GPU-Based Path Planning Strategies
GPU analysis has also been the subject of some recent works on automotive

motion planning.
Pan et al. [30] introduce a motion planning randomized algorithm that exploits

the computational capabilities of many-core GPUs. This approach uses threads and
data parallelism to achieve high performance for all components of sample-based
algorithms, including random sampling, nearest neighbor computation, local plan-
ning, collision queries and graph search. The authors demonstrate the efficiency of
their algorithm by applying it to several 6 degrees-of-freedom planning benchmarks
in 3D environments.

Kider et al. [31] implement a randomized variant of the A∗ algorithm. The core
of the search is transformed into a CUDA kernel. They test their parallel algorithm
using a 6 degrees-of-freedom planar robotic arm showing that their GPU-based
approach offers significant improvements in term of solution cost and chances of
finding feasible solutions.

McNaughton et al. [46] suggest a search space representation that allows the
search algorithm to systematically and efficiently explore both spatial and tempo-
ral dimensions in real time. Their main contribution is how to solve a high di-
mensional state space optimization problem using an exhaustive search algorithm.
As this cannot be done on a CPU multi-threading environment without specific
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optimizations, the authors moved the complete state transition and lattice genera-
tion onto the GPU device. The authors show that their algorithm could readily be
accelerated on a GPU, and demonstrate it on an autonomous passenger vehicle.

As real-time constraints for path planning are often quite tight, Heinrich et
al. [26] present a sampling-based planning method considering motion uncertainty
to generate more human-like driving paths. Given information in the form of a
small set of rules and driving heuristics, the planning system optimizes trajecto-
ries in a seven-dimensional state space. Results show that a mobile GPU can be
used as an enabler for real-time applications of computationally expensive planning
approaches.

Notice, that as already described in Section 3.1.1, all previous works concentrate
on new algorithmic features, and essentially use a GPU to enable real-time com-
putations. In fact, only specific expensive sections of the planner are usually run
on the GPU, and many methods do not apply any specific memory management
optimization.

3.3 Baseline Algorithm
Starting with a list of terms used in this work, in order to make it self-contained,

this section summarizes the algorithm presented by Schwesinger et al. [70].

3.3.1 Terminology
Referring to Figure 3.1:

• The Local Path is a finite set of points that the vehicle should ideally follow.

• The Local Vehicle State (LVS) is the description of the current vehicle state.
It is a tuple (x, y, θ, v) where x and y are the vehicle coordinates in a 2D
space, θ is the vehicle orientation, and v is the vehicle speed.

• The Lookahead Time (Tlookahead) is a parameter of the algorithm that drives
the identification of terminal states while generating trajectories, i.e., the time
difference between the terminal states and the current time (T0).

• The Simulation Time (Tsim) is the parameter in charge of regulating the
density of the points computed by the algorithm that form the trajectory in
a discrete way.

• The Planning Time (Tcycle) is the time needed by the trajectory planner to
compute the trajectory. Its value represents the temporization for trajectories
generation and it is strictly bounded by real time environment constraints.
We usually work with Tcycle = 20 ms.

33



3 – Improving Trajectories Generation Exploiting GPGPU Technologies

• The Occupancy Grid Map is a discrete representation for free and occupied
portions of the space. Grid maps are the standard model for environment
representation in mobile robotics [1, 40, 23, 79], and are used for collision
avoidance and for trajectory cost evaluation. In Figure 3.1 black tones are
used to represent obstacles. They become first gray and then white as distance
from those objects increases.

T0+ T

LVS 
Local Path

T0 T (time)

x0 x1 x (space)

T Tsimcycle

lookahead

Figure 3.1: A graphical representation for our terms on a standard background
occupancy grid map. Black areas represent obstacles which must be avoided at all
costs. Gray tones become darker closer to black areas to represent an increasing
level of danger. The vehicle position is represented at time T0 in horizontal
position x0. The current vehicle direction is represented by the horizontal black
line, whereas the local path (indicated by the dotted line) is computed to maintain
the vehicle at the center of the white area, thus minimizing the risk of collision.
Dots on the local path represent position samples. The algorithm will target the
terminal states computed at time T0 + Tlookahead and horizontal position x1.

Please notice that in our environment, occupancy grids are created by a data
fusion system resorting to data coming from vision, GPS, radar and LiDAR sensors.
We will not discuss how local paths and occupancy grids are generated as these
topics are outside the scope of the local path planner and of our presentation as
well.

3.3.2 The Algorithm
The trajectory planner generates an optimal trajectory as a result of a planning

cycle. Within each run of the planning cycle, the planner generates a set of trajec-
tories, organized as a tree as represented in Figure 3.2. The tree is built level by
level. At each level, the algorithm tries to explore (reach) a larger set of objectives
starting from the current set of possible vehicle positions. While the initial position
(for the first tree level) coincides with the initial vehicle coordinates, each new ob-
jective is computed using a predefined (node or) path splitting policy. Objectives
are found guessing the desired vehicle position after Tlookahead time units, consider-
ing differing vehicle lateral offsets (A lateral offset is a position displacement used
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to sample the space around the vehicle position prediction during tree building)
and vehicle longitudinal speeds. Each tree level spans the space for (Tlookahead/H)
time units, where H is the tree height. At tree level 0 the current position is unique
and the number of objectives is equal to the number of root children D. At level 1,
there are D current positions and D2 targets, etc. The entire process is repeated
H times, generating a tree with H levels. Leaves are then at a Tlookahead time unit
distance from the initial position. The algorithm finally applies to all trajectories
a cost function, to select and return the best one according to given criteria. As
it is not guaranteed that objectives are indeed reached, the outcome is the closest
feasible tree node, and the corresponding edge, leading from the tree root to the
best first level node.

degree D

tree level 1 tree level 2 ...tree level 3

Figure 3.2: A random tree exploring the area around a given trajectory. In the
representation, the degree of the tree is D = 3, so is its height H.

As shown in Algorithm 1, tree nodes represent pairs (LVS, timestamp) while
tree edges are sets of points connecting parent and child LVS pairs. Nodes and
edges are collected in N and E, respectively. Along the reference path, a set of
terminal states, M , is built from a discrete set of lateral offsets O, and a set of
longitudinal vehicle velocities V . The tree degree D is equal to D = |O| × |V |.
Variables t0, n̂, ê, and u0 represents the initial time-stamp, the computed node
and edge, and current vehicle commands, respectively. Parameter f represent the
vehicle model. Parameter g is a user-supplied controller that controls the simulated
system model parameter f (see Schwesinger et al. [70] for further details).

In Algorithm 1, lines 1–2 initialize the data structures. To take planning time
Tcycle into account, function simulate, at line 3, expands the root vertex n gener-
ating n̂, i.e., the LVS at time-stamp (T0 + Tcycle) , and ê. Queue Q, initialized to n̂
at line 5, supports breadth-first tree building. Lines 6–16 are the core of the algo-
rithm. Lines 6, 7 and 9 control the expansion of the tree. The outer loop expands
the tree to a desired height H. The intermediate one iterates on the children of
each node. The inner loop expands each node to its degree D. Within the inner
iteration function drawSample generates D pairs of reference points and speeds
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(dref , vref ) taking into account the Tlookahead parameter. Function expand gener-
ates the node closest to each (dref , vref ) pair, and the corresponding edge following
the controlled kinematic vehicle model. In lines 17 function computeCost selects
the less expensive trajectory. The minimum cost node n̂opt (line 18) is identified
and the first edge êopt (line 19) leading to it is returned (line 20).

In our version of the algorithm node cost computation (function compute-
Cost) is performed during the expansion process. Costs propagate from node to
node until leaves are reached. Occupancy grid maps serve both the purpose of
optimizing cost and of avoiding obstacles.

Algorithm 1 Top-level Local Planner Algorithm.
Planning cycle

1: N = ∅, E = ∅
2: n = (LV S, T0), N = N ∪ {n}
3: (n̂, ê) = simulate (n, f, g, Tcycle, u0)
4: N = N ∪ {n̂}, E = E ∪ {ê}
5: Q.insert(n̂)
6: for d = 0 to H − 1 do
7: for all nodes at tree depth d do
8: n = Q.extract()
9: for j = 1 to D do

10: (dref , vref ) = drawSample (M)
11: (n̂, ê) = expand (n, f , g, dref , vref , Tsim)
12: N = N ∪ {n̂}, E = E ∪ {ê}
13: Q.insert(n̂)
14: end for
15: end for
16: end for
17: computeCost(E, N)
18: n̂opt = minimum cost node at leaves
19: êopt = edge in tree level 1 leading to n̂
20: return êopt

3.4 Migration to a Parallel Environment
In this section we describe our choices to realize an efficient many-core version of

the algorithm presented above. They are mainly oriented to obtain a highly efficient
tool able to run on an embedded system with constrained hardware resources like
the ones available on modern vehicles.
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3.4.1 High Level Tool Structure
CUDA programming adopts a SPMD (single-program, multiple-data) parallel

programming style, and we design the algorithm to build the tree on a level by level
basis.

As described in Figure 3.2, trajectories are organized as a tree of height H and
degree D. This tree includes all physically feasible paths taken into consideration.
Among them, the best one is finally extracted based on a specific cost function.
Algorithm 1 calls functions drawSample and expand once for every tree edge.
This means that the algorithm performs several basic steps equal to:

1 + D + D2 + D3 + . . . + DH = ∑H
h=0 Dh = DH+1−1

D−1

as easily derived by using the geometric progression.
In a highly parallel environment, it is somehow immediate to organize tree con-

struction on a level-by-level basis using one thread to generate each single parent-to-
child edge (trajectory). As for each tree level i, Di calls to functions drawSample
and expand will be made in parallel, the concurrent algorithm will be bounded
by H basic steps. Obviously, in a many-thread environment one of the main issues
is how threads are synchronized and how they exchange information among them.
Following this idea, Figure 3.3 revisits Figure 3.2 to show how the logic relationship
among threads and how the overall data structure is organized. Figure 3.3 shows
the data array T h used at each level.

From a logical point of view, each T h is a texture array, containing Dh cells
for each tree level h. From an implementation point of view, all T h textures are
organized as a 2D matrix to exploit the 2D caching of the GPU. Threads refer to
them using a 2D matrix index notation whereas in our logical explanation we often
refer to a single index access. With this approach each tree level represents a set of
parents for the next level and a set of children for the previous one. A data array
at level i is used to save the appropriate data to pass from threads at level i to
threads at level i+1. Each array length is equal to the number of tree nodes at that
specific tree level. The array size grows exponentially, being 1, D, D2, D3, . . ., DH .
The following relations hold for parent and children indexes: a node i at a level j
has a parent from level j − 1 and D children at level j + 1. The correspondence
among those node indexes is the following:

PARENT (ni,h) = n⌊ i
D

⌋,h−1 0 < h ≤ H

CHILDj(ni,h) = n[(i·D)+j],h+1 0 ≤ h < H, 0 ≤ j < D

Notice that this relationship is also a key aspect within the CUDA environment
as each thread, given its position within the block-grid, has to save the computed
data for its D children.
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... ...
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Figure 3.3: Tree, reserved memory to communicate information between layers,
and mathematical dependency among tree nodes (i.e., concurrent threads). The
tree has a degree equal to D and a height equal to H. At each level h, we use a
texture array T h containing Dh elements, implemented as a 2D matrix to exploit
2D caching strategies.

3.4.2 Data Structures and GPU Memory
Maps are built by the data fusion module which is external to the path planner.

We consider map creation, manipulation, and transfer somehow outside the scope
of the present project. Anyhow, we need to keep into account all memory and CPU
costs to perform such operations to properly synchronize our threads. As the data
fusion module does not share any memory with the path planner, a critical aspect
of the system is how to make the path planner communicate with the outside world.
If we suppose that the data fusion module organizes its data as grid maps, those
maps have to be transferred within the path planner and updated frequently, as a
high refresh rate guarantees a better precision and a more dynamical behavior with
respect to obstacles. This in turn also means to have large memory transfer costs
and high memory occupation. For the above reasons, we decides to use a surface
as a Read/Write data structure exploiting caching to optimize accesses. Working
on surface memories has several performance benefits compared to using global
memory.

In our implementation maps are accessed to evaluate the quality of our path,
i.e., the cost of each position along the path. As we must represent the environment
around the car dynamically changing along time, we use a different map for each
tree level expansion.
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In our framework, maps are represented as an image with a resolution of (1000×
1000) pixels. Each pixel is described by a float value. Map resolution is 0.50 m
meaning that a space of 500 m can be represented. Considering the resolution
power of our sensors (see Section 3.5) maps are more than sufficient to represent
the neighboring area.

We use GPU textures to store maps efficiently. As in texture memories each
pixel is represented using the 4 RGBA channels (R, G, B and A), i.e., it is repre-
sented on 4 floating point values, we simultaneously represent 4 maps on a single
texture by compressing 4 pixel floating-point representations into a unique RGBA
field. As a consequence, a single texture in sufficient to encode all information
required by an expansion tree with height H ≤ 3. For tree with H > 3, one pos-
sibility would be to use more than one texture to represent the required number
of maps. However, we experimentally noticed that for expansion trees higher than
H = 3, all estimated maps become so approximated (This approximation is due to
different reasons, such as the sensor inaccuracy and the erratic behavior of many
objects present in the scene, e.g., pedestrians) that they loose their meaning. For
that reason, when we analyze the space for a number of tree levels higher than 3,
we re-use the map for h = 3 for all higher levels.

In addition to occupancy grid maps the data fusion module sends to the path
planner a mathematical path description together with the associated Voronoi dia-
gram (In mathematics, a Voronoi diagram is a partitioning of a plane into regions
based on distance to points in a specific subset of the plane. That set of points
(called seeds) is specified beforehand, and for each seed there is a corresponding re-
gion consisting of all points closer to that seed to any other. These regions are called
Voronoi cells). The drawing sample procedure, in both CPU and GPU versions,
uses the Voronoi diagram for the generation of reference points. The procedure is
the following one. When the car is not on the path and it is physically impossible
to select a goal on the path, the algorithm selects a feasible goal and then it ap-
proximates such a goal with the closest point on the path. Finding the closest point
on the path to a given goal point (in all steps) would be really time consuming.
For that reason, we use Voronoi diagrams creating “Voronoi cells” including the set
of points closer to the desired “Voronoi seeds” (i.e., the given goals).

The data structure containing the Voronoi diagram is an RGBA texture of
(1000 × 1000) cells containing one short type. In the case of GPU implementation
this diagram has to be transferred from host to a surface in the device memory.
This process is expensive.

The basic data item necessary to compute a new tree edge includes the LVS and
the steering angle, as well as additional information related to the current node cost.
Each one of those data items requires 4 real values, i.e., 4 objects of type float4
in CUDA. In our application all kernels share a common data structure. This can
be stored on the global memory but with performance penalties.

The data structure is pre-allocated and overwritten at each execution of the
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planning cycle, and, as introduced in Figure 3.3, it can be seen as a set of layers,
one for each tree level. Each layer stores all shown data, whose number depends
on the current level.

3.4.3 High Level Algorithm
Our concurrent version of Algorithm 1 replaces the main iterations at lines 7

and 9 with concurrent thread computations. The overall work-load is then natu-
rally partitioned in three conceptually independent tasks. Each of these tasks is
implemented by a separate CUDA kernel:

• The drawSampleKernel function computes reference nodes and speeds.
This kernel, starting from source nodes, computes reference nodes for the
second kernel and stores them in the surface memory.

• The expandKernel function generates trajectories. This second kernel
reads from the surface pair of source and reference nodes, and it computes
the closest node according to the vehicle kinematic model. Results are made
available in the surface memory for the next execution of the other two ker-
nels. A cost is stored for each node, keeping into account the node’s parent
cost.

• The computeCostKernel function computes the final path. This kernel
efficiently identifies the minimum cost node, and the best physically feasible
path to the root.

Algorithm 2 presents our concurrent version of Algorithm 1.
Lines from 1 to 4 follow the sequential algorithm. On line 5, function mem2surf

stores the required data from the CPU memory to the GPU surface memory. Within
the main loop (line 6), the application runs twice Dh groups containing D threads
for a total of 2 · Dh+1 threads per cycle. The first set of Dh+1 threads runs through
the drawSampleKernel function, and the second set runs through the expand-
Kernel code. Those kernels are run in sequence, and are logically kept separated.
This is because we want to keep both kernels simple enough, and to avoid branches
such that the SPMD programming style is preserved.

Please remind that to avoid excessively long waiting times, all threads within the
same kernel should execute in close time proximity with each other. Anyhow, the
CUDA run-time system satisfies this constraint by assigning execution resources to
all threads in a CUDA block as a unit, that is, when a thread of a block is assigned
to an execution resource, all other threads in the same block are also assigned to the
same resource. This ensures time proximity of all threads in a block and prevents
excessive waiting time during barrier synchronization.
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Algorithm 2 Highly-parallel (i.e., many-core) top-level path planner algorithm.
Concurrent Planning cycle

1: N = ∅, E = ∅
2: n = (LV S, T0), N = N ∪ {n}
3: (n̂, ê) = simulate (n, f , g, Tcycle, u0)
4: N = ∪ {n̂}, E = E ∪ {ê}
5: mem2surf (surf, n̂)
6: for h = 0 to H − 1 do
7: drawSampleKernel <Dh,D> (surf , V oronoiMap, Path)
8: expandKernel < Dh,D > (n, f , g, dref , vref , Tsim, surf ,

gridMap)
9: end for

10: computeCostKernel <DH,1> (surf)
11: n̂opt = minimum cost node at leaves
12: êopt = edge in tree level 1 leading to n̂
13: return êopt

Moreover, to enforce regularity to all computations performed along each tree
path, we avoid tree pruning even when certain edges are not useful anymore (for
example, when an obstacle is too close to the computed path).

Another main issue of the algorithm is thread parallelism. For each tree layer
h, with h starting from 0, we have Dh+1 concurrent threads. As we suppose to set
D = 6, we will have 6h+1 threads running in parallel. As in our experiments, we
used a GPU with 1664 cores, its parallel capability will saturate with h ≥ 5. As we
build the tree in a breadth-first way, this also means that we obtain the maximum
parallelism in the last level whereas the parallelism is quite low during previous
levels. To further increase the parallelism obtained, we have schemes in which the
degree D is trimmed during the process, being larger during lower tree levels and
higher for higher tree levels.

The first two kernels are executed sequentially, one after the other, H times.
Only when the tree is complete, the third kernel (see description in Section 3.4.6)
is launched. To efficiently run those two kernels, we organize our data structure as
previously described, i.e., as a sequence of arrays containing nodes belonging to the
tree and stored within surface memories. Working on surface memories has several
performance benefits compared to using global memory.

Threads executed by different kernels share data and logically relate to each
other using the same data structure. Figure 3.4 illustrates the communication
between threads. In this picture, time flows from left to right, and we highlight
how working threads at level h = 0 generate information for the working threads
at level h = 1. We suppose D = 6.
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At the very beginning, the algorithm concentrates only on the tree root repre-
senting the initial vehicle position. This position is stored in a single data record
named src1. The first kernel DrawSampleKernel evaluates the first set of 6
target points. To perform this step, as represented in Figure 3.5a, the initial vehi-
cle position is projected along the current path, and then orthogonal to the desired
path, to find D (6 in the picture) projected points.
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Figure 3.4: Memory organization for thread communication concentrates on a tree
of degree D = 2. For h = 0, the drawSampleKernel kernel generates D = 6
goal destinations goali. The expandKernel kernel tries to reach these goals, and
it generates 6 destinations desti, as close as possible to the corresponding goal. For
h = 1 all operations are repeated starting from 6 source positions (the 6 destinations
reached at the previous iteration).
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Figure 3.5: Figure (a) shows an example of how procedure DrawSampleKernel
generates the goal samples already analyzed in Figure 3.4. The Voronoi map (Figure
(b)) shows all points with the minimum distance for any point along the desired
reference path (i.e., the points on the normals to the path itself).

Notice that as the planner is running over and over again to compute paths
in close proximity of one another, orthogonal projections must be computed and
recomputed for many points close to the vehicle. To avoid those re-computations
and to make DrawSampleKernel more time efficient, all orthogonal projections
for dense points around the vehicle are computed during the map generation for
all maps points at fixed time intervals. This is allowed by a proper use of Vonoroi
maps. Figure 3.5b is a logical representation of the Voronoi map, where for each
point p, the segment passing from p and orthogonal to the path identifies the point
on the path closest to p. Each Voronoi map is stored into a texture of size equal
to (1000 × 1000) pixels. Within the Voronoi map, each pixel is represented with
4 float values stored as an RGBA information. The first float indicates the index
of the orthogonal projection path point stored within the texture path. All other
float values store the angle of the tangent to the path and its orthogonal direction.
These data are used by the kernel to compute the goals. Each map includes the GPS
coordinates stored within the first top-left pixel. This pixel also specifies the pixel
density within the map, i.e., the real distance between two points. This density is
a function of the vehicle speed at the moment the map is generated by the global
planner. Each thread reads this information and it is then able to compute the
lookahead position on the map. Please note that as each map may serve several
path planning cycles, it has to be large enough to include all lookahead positions
computed within the next few cycles.

Figure 3.4 shows how kernel DrawSampleKernel modifies the memory struc-
ture to set-up all required data to run kernel Expand. Record src1 is expanded
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into 6 record pairs srci-goali. For each couple, goali is the target positions (the
ones represented in Figure 3.5a), and src1 is the same source, common to all tra-
jectories that must be computed by kernel ExpandKernel. When the second
kernel ExpandKernel runs, each src1 record is replaced by the simulated des-
tination position desti. In this way, those destinations will be considered as new
sources during the next algorithm iteration. This step is also represented by Fig-
ure 3.6a, whereas Figure 3.6b represents a mock grid map and a possible vehicle
trajectory. Notice that at the end of our tree construction desti are the final ve-
hicle positions. Then each path from src1 to a desti implicitly includes the set
of commands (generated by ExpandKernel) that are necessary to reach a des-
tination that, at least theoretically, should coincide with the corresponding goali

at Tlookahead. Unfortunately, the algorithm just approximates desired paths. As a
consequence, we store pairs desti-goali at the end of step h = 0. When the
second iteration of the loop at line 6 (the one with h = 1) of Figure 3.4 starts
the 6 destination points desti found during the previous iterations become source
points srci. The second iteration will proceed as the previous one, but starting
with D = 6 points procedure drawSampleKernel will generate D2 = 36 points,
and procedure expandKernel will target them.
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Figure 3.6: Figure (a) shows an example of how procedure ExpandKernel
computes destination points by expanding the recursion tree of one single level.
Figure (b) shows all generated points (the entire path) within the current occupancy
grid.

3.4.4 Function drawSample: Finding Target Points
Function DrawSampleKernel prepares the necessary data for kernel Ex-

pand at the beginning of each cycle or tree level.
As represented in Figure 3.4 by dotted boxes, at the tree level i, DrawSam-

pleKernel runs a thread group of size D for each source node. Each group works
on the same source node to generate D destination nodes. This source node is
directly read from the surface memory. This operation is represented in line 1 of
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Algorithm 3, where the node is addressed using the group index blockIdx.x.
Function DrawSampleGPU is a modified version of function drawSample,

introduced in Algorithm 1. Starting from the unique single reference node collected
in src, each thread threadIdx.x within DrawSampleGPU performs the following
steps:

• It computes the lookahead position, i.e., the position of the vehicle without
any new command, at future time Tlookahead.

• Starting from the lookahead position within the Voronoi map, it computes
the orthogonal projection onto the path.

• Given the path, the planner (node or) path splitting policy, and its threadIdx.x
index, it generates a new goal goali.

Algorithm 3 kernel1: drawSample
DrawSampleKernel

1: src = surfReadSrc (blockIdx.x)
2: goal = DrawSampleGPU (src, threadIdx.x)
3: surfaceWriteRef (src, goal, blockIdx.x,

threadIdx.x)

3.4.5 Function expandKernel: Computing Path to Target
Nodes

Following Section 3.4.1, at tree level i a thread group of size D is launched for
each pair (src, goal). Each thread executes the kernel described in Algorithm 4.
For each group the source node is read from the surface, whereas the reference node
for each thread threadIdx.x is the one computed by the first kernel.

Function expand is the same of Algorithm 1. The output of expand is the
reached point (dest) using functions f and g and represents the source node for the
following execution of Algorithm 3.

Line 3 is in charge of computing the cost of a generated node and the correspond-
ing edge. Function computeWeightAndCollision computes node costs. Each
node has a cost that derives from its parent node cost and its position within the
grid map. For this kernel, grid maps have a structure similar to the one described
in Section 3.4.1. Nevertheless, these grid maps have to serve function expand for
H consecutive calls, corresponding to H tree levels of the expansion tree. Each map
has thus to foresee all object movements within Tlookahead/H time unit. As we rep-
resent each pixel with 4 RGBA float values, we are able to represent grid maps up
to 4 unit of time. If the H > 4, the last map is reused by all kernel calls following
the fourth one. Notice that this choice does not invalidate results, as in any case
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the last map is the one in which the trajectory is foreseen less precisely, and thus
reusing it does not entail larger errors.

We use exponential averaging to compute new costs, given higher weights to
more accurate estimated positions, i.e., nodes closer to the root. For a new node at
level h the cost is computed based on the cost of all nodes along the path leading
to this node from the root:

costh = cost0 · α0 + cost1 · α1 + . . . + costh−1 · αh−1

where α ∈ [0, 1[, cost0 is the coefficient for the closest estimate (after 1·(Tlookahead/H)
time units), and costh−1 is the farther estimate (after h · (Tlookahead/H) time units).
The destination node is marked as unfeasible when required. This essentially de-
pends on how the grid maps are generated and on how the trajectory is placed on
such a map.

Function surfaceWriteTree writes nodes on the surface to set up all required
information for the next iteration of the main cycle of Figure 2. Each thread works
on one tree layer overwriting old information (all source and goal points written by
function expand) with source and destination points.

Algorithm 4 Kernel2: expand
expandKernel

1: (nsrc, ndest) = surfRead (blockIdx.x)
2: (n̂, ê) = expand (nsrc, f , g, ndest, Tsim)
3: computeWeightAndCollision (n̂, ê)
4: surfaceWriteTree (n̂, ê, blockIdx.x, threadIdx.x)

3.4.6 Function computeCostKernel: Selecting the Best
Path

Once all trajectories have been computed and their costs evaluated, tree leaves
contain the cumulative cost of the entire path leading to them. The next step is to
select the most promising trajectory, i.e., the one with the smallest cost. Finding
a minimum entails a linear visit, but implementing a linear visit on a multi-core
architecture can lead to several inefficiencies. As suggested by many other authors
(see for examples Chen at al. [65] for considerations on many-thread sorting) we
trade-off time-efficiency and accuracy. Figure 5 describes our bucket sort-inspired
algorithm. It works as follows.

The cost function computes real cost values for each leaf. Let us suppose those
values are included in a specific interval [l, r]. First of all, we divide this interval into
N classes. In this way, each class has a width equal to (r − l)/N . Then, we build
a pseudo-histogram by inserting in each class all leaves with a costs belonging to
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the class interval. To populate the histogram, i.e., to insert each leaf in the proper
class, function computeCostKernel runs one thread for each tree leaf.

Each thread behaves like function populateHistogram in Algorithm 5. Each
thread is in charge of placing the leaf identifier into the corresponding histogram
class. To do that, it gets the leaf identifier and the leaf cost from its leaf (lines
1 and 2). Given the leaf cost leafcost, line 3 computes the index of the bucket
(histogramindex) the leaf belongs to. As all threads work in parallel, we must
guarantee a proper synchronization among them, such that only one thread can
modify a class at any given time. To do that, we use the atomic CUDA function
atomic_add (see line 4) to add the node identifier to the proper class bucket
(properly initialized to zero). As the CUDA atomic_add returns the original
value for each addition, we always know whether the added value is the first one or
not (line 5). In the first case, the thread leaves the bucket equal to the leaf identifier
and then it terminates. Otherwise, it subtracts the same leaf identifier from the
bucket (line 6) such that when all threads have terminated each class bucket stores
only one identifier value, corresponding to the node placed in the bucket first.

Once all threads running function populateHistogram have terminated,
function computeCostKernel runs one more kernel with a single thread. This
thread performs a linear search in all buckets of the histogram looking for the leaf
with the smallest cost, i.e., the one stored in the leftmost bucket.

Notice that in this case linear search is performed only on those classes that
have no representative, as the algorithm stops on the first non-empty class. This
makes our algorithm much faster than a standard linear search. Moreover, we
select the number of classes N as a function of maximum available number of
threads available and the desired approximation. For example, if our costs belong
to the interval [0.0, 1.0], and we select N = 1000, we generate a histogram with
1000 classes, and we obtain a class width and an accuracy equal to 0.001.

As a last step, function computeCostKernel returns the selected node plus
the the entire path leading to it from the tree root.

Algorithm 5 Histogram Computation.
populateHistogram

1: leafid = retrieveNodeIndex()
2: leafcost = retrieveNodeCost()
3: histogramindex = ⌊ leafcost

r−l
· N⌋ − 1

4: oldV al = atomicAdd(bucket[histogramindex], leafid)
5: if oldV al /= 0 then
6: atomicAdd(bucket[histogramindex], −leafid)
7: end if
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3.5 Experimental Analysis
Our goal has been to analyze the complexity and implications to re-implement

an existing algorithmic-based and efficient strategy on a many-core architecture.
For this reason, to really compare apple-to-apple, the main goal of our experi-
mental analysis is to compare our CPU implementation of the algorithm with the
parallel and optimized one running on a GPU. Explicitly comparing our GPU im-
plementation with other ones would be meaningless, as it would eventually grade
the quality of the original algorithm, we did not improve or modify at all, against
other similar or dissimilar strategies.

Moreover, notice that the project has been developed under an industrial non-
disclosure agreement between Politecnico di Torino and Magneti Marelli. For that
reason, the software and the experimental results cannot be made publicly available.

Our environment follows the path planner structure represented in Figure 2.3.
Our planner (fully implemented in CUDA language) works in close loop with a ve-
hicle controller and a vehicle simulator acting as the external environment. To be
as complete as possible, we compare our CPU implementation with our GPU one in
terms of the quality of the paths gathered, algorithm scalability, and real-time re-
sponse time. Quality is evaluated in terms of the metrics described in Section 3.5.2,
scalability and response time in terms of wall-clock (elapsed) execution times and
number of generated trajectories.

Our results have been collected by running our implementations on the following
hardware devices:

• A CPU Intel Core i7-6700 HQ with 2.60 GHz and 8.00 GB of RAM memory.

• A GPGPU NVIDIA GEFORCE GTX 970 with 1664 Cores and 4.00 GB of
RAM memory.

Section 3.5.1 describes our working scenarios and their relationship with the real
world. Section 3.5.2 introduces our quality and efficiency evaluation metrics. Sec-
tion 3.5.3 reports our work to trim the original algorithm to its best. Section 3.5.4
compares the CPU and the GPU versions of the planner in terms of computation
times.

3.5.1 Operating Scenarios
Countries and organizations define driving cycles to assess the performance of

vehicles in various ways, as for example fuel consumption and polluting emissions.
This represents a standard in the automotive industry. For example, Figure 3.7
shows the New European Driving Cycle (NEDC) driving cycle (updated in 1997
for the last time) designed to assess the emission levels of car engines and fuel
economy in passenger cars (which excludes light trucks and commercial vehicles).
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Figure 3.7: The New European Driving Cycle (NEDC): A driving cycle designed
to assess the emission levels of car engines. It is also referred to as MVEG cycle
(Motor Vehicle Emissions Group).

Unfortunately, such standardized driving cycles have not been yet defined for
evaluating a trajectory planner for autonomous navigation. Thus, the quality of
trajectory planner techniques can be proved only in user-defined test scenarios.

Operating scenarios range from parking areas, to urban roads, and to highways.
We need to differentiate situations where no external structure could be extracted
for guidance (such as driving off-road or parking in large-scale parking lots), from
the one in which a reference path may be made available (such as urban roads,
highways, and, in general, roads with some sort of lane identification). For a tra-
jectory planner working with a reference path, a very common scenario is driving
on a highway. In this case relevant benchmark tests are:

• Path following: On a straight path, a low curvature path (<0.008 1/m), and
a high curvature path (>0.008 1/m).

• Lane change: With normal condition (a lateral acceleration of 2 m/s2), and
with obstacle avoidance (a lateral acceleration up to 9.81 m/s2).

For example, Figure 3.8 shows a straight and a low curvature paths with the ex-
pansion tree drawn by our application.
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(a) (b)

Figure 3.8: Real paths and real expansion trees (logically described in Figure 3.2)
for a straight path (Figure (a)) and a curved path (Figure (b)). The car is initially
placed at the center of the lane and its target is to converge on the specified path
(black line). To have an idea of the convergence speed, the lane is 6 m wide and
the trajectory about 40 m long.

To reduce the number of cases we must present and discuss, we concentrate on
a more complex combined evasive maneuver, more commonly knows as the moose
or elk test. Forms of the test have been performed in Sweden since the 1970s, it
has been standardized in ISO 3888-2, and it is usually performed to determine how
well a certain vehicle evades a suddenly appearing obstacle. With a moose test,
we simulate a sequence of path followings and of lane changes at the same time.
Moreover, this test can also be seen as a vehicle overtaking or as a vehicle obstacle
avoidance. The first obstacle (the closest one) is on the same lane the vehicle is
moving on, whereas the second obstacle is on the fast lane. The distance between
the two obstacles is set to 75 m. The reference path is at y = 0 m, and the vehicle
starts simulation at y = −3 m at the center of the right lane (as in Figure 3.8).
Grid maps limit the road from y = −6 m to y = +6 m.

For our analysis we selected a highway with the following characteristics: Road-
way width 6 m, minimum curvature radius 340 m, and vehicle speeds spanning
between 13 m/s (46.8 Km/h) and 36 m/s (129.6 Km/h). In normal driving condi-
tions, accelerations vary in the range [-2 m/s2, +2 m/s2]. The vehicle width is set
to 2 m. Given the vehicle and roadway widths, lateral offset is at most 0.8 m. All
simulations are conducted considering a sensor configuration capable of identifying
obstacles in a 140 m radius with a 1.5 s delay to process an obstacle from its appear-
ance to its recognition. Sensor data are manipulated by a data fusion module which
creates all grid maps and all other information required by the planner. Maneuvers
are accomplished only using a kinematic model compatible with the vehicle and the
environment parameters. Suitable speeds for the experiments are computed using
motion equations and the available vehicle models. Moreover, in our setting the
vehicle control system sends commands to the actuators at fixed frequency rate,
ranging from 50 Hz to 100 Hz. As the controller produces commands based on the
trajectories generated by the path planner, the planner working time is bounded
by the controller frequency.
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3.5.2 Evaluation Metrics
We evaluate our implementations using the following four metrics.
The Starting Distance (SD) is the distance between the space point at which we

start the maneuver and the obstacle. It indicates how fast the algorithm is to react
to a stimulus. Usually, the higher the starting distance, the safer the maneuver.

The second metric is the Root Mean Square Error (RMSE), which can be ex-
pressed as:

RMSE =
√∑N

i=0

√
(xgi−xpi)2+(ygi−ypi)2

N

where (xgi, ygi) is the i-th path planner generated point, (xpi, ypi) is the i-th point
on the path to follow, and N is the number of generated points. RMSE essentially
measures the root of the mean square distance between the computed trajectory
and the desired one. Usually, RMSE has to be as small as possible.

The third metric is the Minimum Obstacle Distance (MOD). It shows the mini-
mum distance reached from the obstacle, and it is a measure on how safely the path
has been placed on the scene. From the one hand, its value has to be as large as
possible even if it cannot exceed infrastructure size (e.g., it is unsafe to perform an
overtaking maneuver maintaining a distance to the overtaken vehicle larger than
the lane width). On the other hand, it strongly depends on driving style (relaxed,
fuel-efficient, sportive, etc.). This also depends on how grid maps have been de-
signs, as a shorter gradient between white (admitted) and dark (non-admitted)
areas implies more sporty driving styles and vice-versa.

Finally, we compare the CPU against the GPU implementation in terms of
wall-clock times. The wall-clock time is the time necessary to a (mono-thread or
multi-thread) process to complete its job on a new problem, i.e., the difference
between the time at which the problem is completely handled and the time at
which this task started. For this reason, wall-clock time is also known as elapsed
time. This is an important measure as the faster the computation, the deeper and
broader we can span the space around the vehicle, and the higher the frequency at
which we can update a path. This is particularly important in emergency driving
conditions. Emergency driving conditions happen when the car is forced to perform
a very sharp maneuver such as the one required to avoid an unexpected obstacle.
In this cases the car could reach accelerations higher then 2 m/s2 in absolute value.
Emergency driving conditions are somehow beyond the scope of this thesis work,
but we use them to compare the efficiency of our GPU algorithm to the original
CPU-based one.

3.5.3 Original Algorithm Parameter Setting
Algorithm 1 is influenced by several parameters. Among them, a few ones,

such as the tree degree D and the tree height H, have a larger impact on the tree
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structure, the degree of parallelism, and the required memory. Other ones, such as
Tsim and Tlookahead have a large impact on the path planner timing and accuracy.

The degree of the tree D has a high impact on the path planner as the higher the
number of trajectories the higher the covered region around the vehicle. The value
of D is selected based on a global splitting policy. This policy in turn is a function
of the maneuver the global planner decided to undertake and of the environment
around the vehicle. As described in Section 3.3.2, D = |O| × |V |, where O is a
discrete set of lateral offsets, and V is a set of longitudinal vehicle velocities. If the
global planner decides to enforce a rapid velocity change (i.e., extreme acceleration
or deceleration conditions) it will enforce large value of |V |. On the contrary, if
it decides to obtain abrupt direction changes (i.e., parking maneuver or obstacle
avoidance) a large value of |O| will be set.

For the sake of space, we do not present any experimental evidence on D in
this section, and we present results in Section 3.5.4, showing that we often obtain
the best trade-off with D = 6. To obtain this value, we adopt a splitting policy
in which |O| = 3, such that the tree spans the entire lane from border to border
(left-border, center, and right-border), and |V | = 2, with two speeds that are equal
to the current one ±∆. On the contrary, Figures 3.9–3.11 show our experimental
results to set the value of H, Tsim, and Tlookahead. As we will see, H has high impact
on the level of parallelism it is possible to obtain with the concurrent application.
At the same time, Tsim has a consistent impact on the elaboration time. Finally,
Tlookahead has a great influence on the reaction to obstacles and, as a consequence,
on the computed trajectory.

Figures 3.9e, 3.10e and 3.11e concentrate on the moose or elk test. The two
obstacles are represented by black rectangles, and as described in Section 3.5.1 the
first obstacle is on the same lane, whereas the second one is on the fast lane. The
distance between the two obstacles is 75 m.
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(a) Starting Distance (b) RMSE

(c) MOD (d) Computation Time

(e) Trajectories

Figure 3.9: Parameters and paths evaluation for an overtaking maneuver as a
function of the height of the tree H, ranging from 2 to 4. Graphs plot the start-
ing distance (Figure (a)), the root mean square error (Figure (b)), the minimum
obstacle distance (Figure (c)), and the computation time (Figure (d)). Figure (e)
shows the reference path and the final trajectories obtained with the different pa-
rameters. The car speed is fixed at 25 m/s (90 km/h). For all the graphs the space
is expressed in meters while time in milliseconds.
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(a) Starting Distance (b) RMSE

(c) MOD (d) Computation Time

(e) Trajectories

Figure 3.10: Parameters and paths evaluation for an overtaking maneuver as a
function of the height of the Tsim parameter varying from 10 ms to 100 ms. Graphs
plot the starting distance (Figure (a)), the root mean square error (Figure (b)),
the minimum obstacle distance (Figure (c)), and the computation time (Figure
(d)). Figure (e) shows the reference path and the final trajectories obtained with
the different parameters. The car speed is fixed at 25 m/s (90 km/h). For all the
graphs the space is expressed in meters while time in milliseconds.
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Each figure is essentially composed by 5 pictures. The first three small graphs
plot the starting distance, the root mean square error, and the minimum obstacle
distance from the obstacle as a function of one of the parameters H, Tsim, or
Tlookahead. The fourth small graph plots the computation time, i.e., the wall-clock
or elapsed time to compute the entire tree and to select the best trajectory. In
this first set of experiments all times are evaluated on the CPU version of our
application, used a baseline for our tool. The CPU to GPU comparison is reported
in Section 3.5.4. The largest graph, at the bottom, shows the reference path for
the maneuver and all paths generated using the tool with a few different settings.
The red dot represents the overtaken vehicle.
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(a) Starting Distance (b) RMSE

(c) MOD (d) Computation Time

(e) Trajectories

Figure 3.11: Parameters and paths evaluation for an overtaking maneuver as a
function of the height of the tree Tlookahead parameter varying from 1 to 5 s. Graphs
plot the starting distance (Figure (a)), the root mean square error (Figure (b)),
the minimum obstacle distance (Figure (c)), and the computation time (Figure
(d)). Figure (e) shows the reference path and the final trajectories obtained with
the different parameters. The car speed is fixed at 25 m/s (90 km/h). For all the
graphs the space is expressed in meters while time in milliseconds.
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Figure 3.9c presents the same plots of Figure 3.9a,b as a function on the height
of the tree H, varying from 1 to 5. Higher values of the tree height reduce the
starting distance and increase the RMSE metric, but reduce the minimum obstacle
distance. This trend may somehow be justified by the fact that the most influencing
tree section for the planning quality is the first level. When changing the tree height,
trajectory lengths remain the same but edges are shorter. From a computational
point of view more layers exponentially correspond to more nodes, and that implies
a growth of the computation time as shown in Figure 3.9c. At the same time, more
nodes imply a higher parallelism on the GPU version of the algorithm. For that
reason a value of tree height equal to 4 is preferred to reach the right balance among
several parameters.

Figure 3.10 shows the behavior of the algorithm as a function of Tsim. The plots
show that Tsim does not influence too much the computed trajectory within a wide
range of values as Figure 3.10a–c shows modest variations. While Figure 3.10a,b
would suggest values close to 100 for Tsim, Figure 3.10c suggests values close to
20. Please note that, as previously stated, Tsim has a consistent influence on the
elapsed time because varying Tsim from 10 to 20 ms reduces computation times
from 60 to 50 ms. Keeping into account the computational efforts required for the
generation of the trajectories, plotted in Figure 3.10d, we select Tsim = 20 ms for
all our subsequent experiments.

Figure 3.11 presents the same plots of Figure 3.10 as a function of Tlookahead,
varying from 1000 ms to 5000 ms. It can be noticed that the lookahead time has
an impact on the computed trajectories much larger than Tsim. Figure 3.11a shows
that a higher lookahead time corresponds to an early obstacle detection. On the
other hand, Figure 3.11c shows that an early vehicle detection together with a
deeper knowledge of the future path decreases the minimum obstacle distance from
the overtaken obstacle. This means that the lookahead time influences vehicle
behavior in terms of driving style, which is also related to the comfort perceived
by passengers. Finally, Figure 3.11b shows that the root mean square error is
not influenced that much by Tlookahead. A quite conservative value for Tlookahead

can be around 3000 ms, as with this value the resulting trajectories run not too
close but not too far from the obstacle. As a summarizing remark, notice that
higher Tlookahead values are more suited to highway routes, where starting distance
may have a higher priority with respect to minimum obstacle distances, On the
contrary, smaller Tlookahead values are better for parking maneuvers where speed is
drastically reduced and obstacles are usually motionless.

3.5.4 Time Comparison
This section is devoted to a numerical comparison in term of performance be-

tween the CPU and the GPU version of the presented path planner.
Table 3.1 compares computation times for the CPU and the GPU version as a
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function of tree degree D and tree height H. Our splitting policy generates the set
of points represented in Figure 3.12.
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Figure 3.12: A graphical representation for the D points selected by kernel
drawSampleKernel based on our splitting policy. The initial direction of the
car must be modified to converge toward D = 4 (Figure (a)), D = 5 (Figure (b)),
or D = 6 (Figure (c)) different goals, respectively. The picture shows how goals
are selected based on the initial curve projection on the desired path.

Notice that reported times are somehow independent from the path followed and
maneuver computed, as the amount of computation performed does not vary with
the trajectory. Column D indicates the tree degree, and H the tree height. Given
those two values we generate a defined number of trajectories (column # Tra-
jectories). M indicates the memory occupancy (in k Bytes). For the CPU
implementation each node requires 10 float values, each one requiring 4 bytes of
memory. For the GPU implementation each node requires 16 float values, stored as
4 pixel textures RGBA, each one requiring 4 bytes of memory. The textures used
to store trees are square matrices of size L, with L = 32, 55, 79, 124, 147, 280 in
the reported configurations. Computation times (in m seconds) follow in the next
columns. T1 is the time required to build the tree, whereas T2 is the time required
to run computeCost, and Tot is the total time, i.e., the sum of those two values.

Data show that our CPU version is somehow comparable with the one by
Schwesinger et al. [70] albeit different hardware architectures have been adopted,
and possibly several implementation details may differ.

The GPU implementation outperforms the CPU variant. The performance gap
increases with the size of the exploration tree. The GPU implementation is able to
generate more trajectories than the CPU version, respecting the time constraint of
Tcycle = 20 ms. In any case, notice that with the GPU implementation, occupancy
grid map and Voronoi diagram transfer time, respectively 4.01 ms and 3.80 ms, have
to be added to times shown in Table 3.1. Voronoi diagrams contain a more long-
term information with respect to occupancy grid maps that contain more dynamical
information. We synchronize the sending process so a new diagram with a new path
is sent every 400 ms. Occupancy grid maps are sent every 200 ms. When the path
planner cannot compute a trajectory in less than 20 ms, the vehicle controller uses
an old command. If the GPU has to upload all maps it needs about 4+3 ms. Then
the remaining time is 20 − 7 = 13 ms. As a consequence, the last configuration for
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which the GPU is able to compute a trajectory in every cycle is the one with D = 6
and H = 4. Nevertheless, most time-consuming configurations, such as the ones
with D = 5, H = 5 (needed 15 ms) and D = 4, H = 6 (needed 18 ms), can still run
within Tcycle = 20 ms in all cycles but the ones in which maps have to be updated.

Table 3.1: Comparing CPU and GPU wall-clock or elapsed times for several real-
world scenarios. All times are reported in milli-seconds while the memory con-
sumption is measured in Kilo Bytes.

D H # Trajectories CPU GPU
M T1 T2 Tot M T1 T2 Tot

[KB] [ms] [ms] [ms] [KB] [ms] [ms] [ms]
6 3 216 10 15 4 19 16 2 2 4
5 4 625 32 26 7 33 51 3 2 5
6 4 1296 62 45 10 55 99 9 3 12
5 5 3125 156 77 14 86 250 11 4 15
4 6 4096 218 83 16 99 349 12 6 18
5 6 15,625 781 218 44 262 1250 38 18 46

Figure 3.13 finally shows that the quality of the results comparing CPU and
GPU trajectories using the parameters introduced in Section 3.5.1. Figure 3.13
includes two sets of experiments. In all cases, as described in Section 3.5.3 we
selected Tlookahead = 3 s and Tsim = 20 ms, whereas D and H are the one used in
Table 3.1. Figure 3.13a–c represent experiments where the elk test is repeated with
two different speeds, i.e., 25 m/s and 36 m/s. Figure 3.13d–f report experiments
where the elk test is repeated with different distances between the two obstacles.
As described in Section 3.5.3 the original distance is 75 m; now we use the 80%,
60%, 40%, and 20% of that value and a 25 m/s speed. The different histogram
bars represent different values of D and H as reported in the picture caption.
Overall, trajectory accuracy is maintained when the CPU and GPU are using the
same settings. At the same time, as the GPU is faster, it is possible to use better
parameter values with it. In those cases the starting distance, the root mean square
error, and the minimum obstacle distance can be trimmed a bit more by creating
trees with a higher number of levels or a higher degree.

As far as Figure 3.13b is concerned, notice that by increasing D and H, we obtain
smaller RMSE values with 25 m/s but larger with 36 m/s. This is due to the fact
that with higher speeds, the expansion tree spans the space for longer distances and
avoidance maneuvers start earlier. This is also confirmed by Figure 3.13a,c. In the
first one, the safety distance is higher with 36 m/s than with 25 m/s. In the second

59



3 – Improving Trajectories Generation Exploiting GPGPU Technologies

one, the minimum obstacle distance decreases with higher speeds. This behavior
better reproduces a more realistic human driving style.

In Figure 3.13c the bar for D = 5 and H = 5 is higher than the one with D = 4
and H = 6. This is motivated by the consideration that the first splitting policy
spans better the surrounding area, whereas the second one encompasses the space
at farther distances.

As a final remark, notice that the closer the two obstacles get, the more the
vehicle speed tends to decrease. We do not report evidence on this issue, but it has
a strong impact on the minimum obstacle distance and some impact on the root
mean square error.
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(a) Starting Dist vs. Speed (b) RMSE vs. Speed

(c) MOD vs. Speed (d) Starting Dist vs. Dist

(e) RMSE vs. Distance (f) MOD vs. Dist

Figure 3.13: The elk test repeated with different speeds (Figures (a)–(c)) and dif-
ferent distances between the two obstacles (Figures (d)–(e)). The plots report the
starting distance (SD) (Figures (a) and (d)), the root mean square error (RMSE)
(Figures (b) and (e)), and the minimum obstacle distance (MOD) (Figures (c) and
(f)). The histograms report a comparison between CPU and GPU results. The red
(first) column represent the CPU response with D = 6 and H = 4. All other colors
represent the GPU response with: D = 6 H = 4 (second column, cyan), D = 5
H = 5 (third column, orange), D = 4 H = 6 (fourth column, green), and D = 5
H = 6 (fifth column, blue).
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3.6 Conclusions and Future Works
Autonomous cars are supposed to become a reality in the next decade. A com-

petitive autonomous car must acquire and fuse all data coming from environmental
sensors and find a comfortable, minimum time collision free path in real time.
Computation power and efficiency are then important issues to have real-time ap-
plications with reduced costs.

This part of the work focuses on re-engineering a state-of-the-art randomized
sampling-based motion planning method for a many-core concurrent computation
environment. This chapter presents how to re-implement the original sequential
algorithm using several concurrent CUDA kernels. It shows how to enforce regu-
larity, and how to appropriately store all data that have to be transferred from the
CPU to the GPU (and vice-versa) and exchanged among different kernels.

We compare the original sequential algorithm with the highly parallel one, in
terms of a few evaluation metrics (starting distance, root mean square error, and
minimum obstacle distance), and in terms of wall-clock times. We prove that the
accuracy of the original algorithm is essentially maintained when the algorithm is
run with the same setting. Moreover, we prove that the GPU is able to obtain a 5x
speed-up leaving the CPU free to work on any other task the designer may deem
necessary on board. This speed-up can be used to obtain a fine-grained and denser
space analysis, and a higher reactivity of the system in safety critical conditions.

One of the limits of the current approach is that many parameters of the original
algorithm can be selected only in a static way. This strategy, albeit conservative,
may be unsuited for rapidly changing driving conditions. As a consequence, as far as
future works are concerned, one of the directions to improve the overall algorithm
is to adopt the GPU to dynamically select and change the main parameters of
the algorithm, such as the tree height or the splitting policy. Moreover, those
parameters need to be better related to the environment context, and the driving
preferences, to reach safer and better planning trajectories.

As a final remark, for sure the planner needs more on-the-field experiments to
check it on every-day conditions and its real applicability on the somehow very
limited, and restricted, on-board hardware configurations.
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Chapter 4

Detecting, Opening and
Navigating through Doors: A
Unified Framework for Human
Service Robots

This section presents how we approached and solved a navigation problem in
the context of service robotics. We propose a semantic navigation framework based
on state machine. Thanks to our approach the robot is more conscious about the
environment and so it is able to interact with it. In this way the navigation prob-
lem is solved more efficiently. As case of study we used a task selected among the
Robocup 2018 tasks and we focused on the door opening problem for studying on
the environment interaction.
This section is the result of the work I developed at The Tokyo University while I
was working there as a visiting PhD student. The reached results have been sub-
mitted and accepted at the ICSOFT2019 conference. The associated paper will be
presented the 27th and the 28th of July 2019. Authors of the submitted paper are:
Francesco SAVARESE, Antonio TEJERO-DE-PABLOS (researcher at The Tokyo
University), Stefano QUER (associate professor at Politecnico di Torino), Tatsuya
Harada (full professor at The Tokyo University). Even if not directly involved
in the experimentation stages and in the writing process we would like to thank
Yusuke Kurose (researcher at The Tokyo University), Yujin Tang, Jen-Yen Chang,
James Borg, Takayoshi Takayanagi, Yingy Wen and Reza Motallebi (students at
The Tokyo University) for their help implementing this research. This research was
conducted as part of a collaborative research project with Toyota Motor Corpora-
tion. What we propose here is the same of what we already submitted in the form
and content. All authors declare that there is no conflict of interests.
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4.1 Introduction
First attempts at human-robot cooperation were focused on robots capable of

guiding people in public environments like museums [8, 36, 78]. However, influenced
by the aging population problem, current service robotics is mainly focusing on the
design of robots to assist elderly people, or people with mobility impairments, in
their daily life at home [35]. Nowadays, robots are able to work in environments like
houses or offices to perform common tasks such as picking up objects or delivering
articles. They have also reached a high level of human-robot cooperation [27, 48].

Overall, current robotics emphasizes the ability to autonomously navigate un-
known environments and to interact with humans. To freely navigate in unmodified
domestic environments, robots have to be able to perform basic obstacle avoidance
and handle complex situations. In particular, one very common and still unsolved
problem is opening a door, without the human assistance. Door opening has drawn
attention because of its complexity, and because it involves different sub-tasks such
as handle recognition, handle grasping, discrimination between pulling or pushing
the door, and the detection of locked doors.

4.1.1 Related Works
Recent works have approached the problem of door opening using a variety

of robots. Andreopoulos et al. [3] tried to solve the door opening problem using
a robotics wheelchair. They used a computer vision approach based on Viola-
Jones [80] for door and handle recognition. However, they only studied handle
detection and grasping, without proposing a method for door opening. Boston
Dynamics [7] presented a solution based on the cooperation of two SpotMini robots.
However, given the robot structure (i.e., a four-legged robot), it is hard to transfer
the approach to common service robots. Moreover, their approach is not public.

The challenging task of door opening while navigating has also received a lot
of attention. Meeussen et al. [49] propose a framework that integrates autonomous
navigation and door opening. For door detection, they use a point cloud repre-
sentation, while for handle recognition, they combine laser scans and a computer
vision approach. Although they analyzed the entire navigation and door opening
problem, their approach requires knowing several environment items in advance,
such as the door width and the door type (pushing or a pulling door). Similar
considerations can be made for Chitta et al. [66], where a planning algorithm is
proposed for opening pulling and pushing doors, but the robot needs to know in
advance if the target door is a pulling or a pushing one. As the first task to solve
to open a door while navigating is door and handle detection, Kim et al. [37] solve
the detection task using images. However the proposed method detects doors us-
ing a context-based object recognition approach, limiting its applicability to well
known environments. Shalaby et al. [71] base their recognition task completely
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on a vision system. The task is accomplished pairing visual information and door
geometric description. However, the approach requires a priori knowledge of doors
characteristics (e.g., the handle height) limiting the method’s applicability to only
well-known scenarios.

Once the door is detected, locating the handle is necessary in order to proceed
with the door opening task. Rusu et al. [64] use a laser perception-based to robustly
estimate the handle position. Klingbeil et al. [38] combine a visual algorithm with
laser data to locate the handle in the space. However, after handle unlatching, they
do not tackle the problem of door opening. Jain et al. [32] roughly estimate the
handle position using a laser scan. After that, the robot haptically searches for the
door handle over the surface of the door. After the handle unlatching, the door is
pushed to be opened. They do not study the case of pulling door and also they
do not move the robot through the door, which are necessary tasks in a unified
framework for door opening. Gray et al. [22] focus their attention in opening doors
discriminating between non-spring and spring-loaded doors. They propose a graph-
based planning algorithm for opening both the type of doors, pulling and pushing.
However, they do not analyze the entire problem flow, i.e., navigation and opening,
and their opening method requires to store additional information about the door.

4.1.2 Limitations of previous work and Contributions
Many of the previous works concentrate on independent tasks of the door open-

ing problem, often neglecting navigation issues. For example, the research in [55,
12, 54, 34] only tackles handle unlatching and door opening, obviating approaching
the door and navigating through it. For that reason, their major limitation lies on
the premise that the robot is initially facing the door to detect the handle. The
position of the robot with respect to the door can influence significantly the success
of the detection process, meaning that the robot needs to know the door position in
the space to proceed correctly. Thus, they are not suitable for realistic scenarios in
which the robot is moving. Moreover, other approaches assume a prior knowledge
on the location and attributes of doors and handles. For that reason, they are
not suited for unknown environments in which handles and doors, and their type
need to be recognized. Other examples with reduced applicability include robots
specifically modified for the target. For example [12] adopts an exclusive robot
whose hand is specifically designed for the door opening task. Other approaches,
e.g., [4, 66, 2, 11, 5], detect doors and handles relying on data fusion information
coming from cameras, lasers, and other sensors. Furthermore, after the door handle
detection phase, the robot has to act for opening the door and move through it.
Many works, do not discuss this issue even if it is of outermost importance.

In this work, we face the problem of door opening by a robot in its entire flow,
from recognizing the door to moving through it. Door opening is more relevant
when studied in a context of navigation in an unknown environment, but also
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more challenging. We solve the implied sub-problems adopting a unified approach,
providing detailed explanations on the automata.

For door and handle location estimation, we leverage a deep learning approach [20]
for automatic detection of doors and handles. In order to train such detector, we
constructed the “MIL-door” dataset. This approach allows the robot recognizing
doors and handles even while navigating unknown environments, that is, without
previously knowing their existence. After the door and handle are detected, depth
images are used to calculate the location of the handle more precisely.

We assume the robot navigates in an unmodified house, that is, a house fur-
nished with common furniture pieces and with non-automatic doors. In our frame-
work all door characteristics, i.e., door width, handle position and opening direc-
tion, are estimated at runtime. Moreover, our approach performs automatic door
type detection (pushing or pulling) which is particularly important in real world
scenarios.

Our proposed framework also considers robot navigation in a structured envi-
ronment, admitting semantic navigation. This allows studying the door opening
problem from the perspective of a realistic navigation problem. To evaluate our
framework, we chose a complex task among the Robocup 2018 1 challenges. The
H elp Me Carry task massively involves environment navigation, giving us the op-
portunity to extensively experiment our approach in a realistic scenario.

The proposed solution is more appropriate for real applications than the afore-
mentioned previous works. Moreover, we implemented it into a standard general
purpose robot, namely, the Toyota HSR2, whereas the majority of the proposed
solutions use the PR23 robot with its unique architecture and equipped with a
7-Degrees-of-Freedom arm. We also designed an error recovery strategy for our
automata.

To summarize, our main contributions are the following:

• We present a unified framework for door opening by a house service robot
while navigating the environment, without prior knowledge of the environ-
ment and of the door characteristics. The robot also recognizes whether the
door is a pushing or a pulling one, and performs the appropriate actions to
open it.

• We present a detailed hierarchical automata model of our framework. We
decompose the overall task into sub-tasks, and perform proper error recovery

1http://www.robocup2018.com.
2 HSR (Human Support Robot) - https://www.toyota-

global.com/innovation/partner_robot/robot/#link02.
3 PR2 (PersonalRobot 2) is a robotic platform developed by Willow Garage -

http://www.willowgarage.com.
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during the main phases.

• We implement our framework on a standard domestic robot platform, the
Toyota HSR, which makes it interesting for a large plethora of potential users,
and adds reproducibility to this research.

• We provide a door and a handle image dataset4 well suited to train a deep
learning-based recognition method within a robot navigation framework.

• We present extensive experimentation using a standard domestic robot plat-
form in a realistic scenario, and show the high applicability of our proposal.

The remainder of the chapter is organized as follows. Section 4.2 describes our hard-
ware and software platforms, and our semantic navigation. Section 4.3.1 overviews
our solution from the high-level point of view of an automaton model, and in-
troduces a realistic scenario, i.e., the “help me carry” task, which we take as a
reference. Our approach for door opening is presented in Sections 4.4 and 4.5 ex-
plain the solutions we propose to solve the sub-problems involved in door opening,
before and after making contact with the door, respectively. Section 4.6 describes
the experiments we carried out to evaluate our proposed framework. Section 4.7
summarizes the conclusions of this part of the project and discusses future research
lines.

4.2 Hardware and Software Configuration
Sections 4.2.1 and 4.2.2 describe the robot platform used in this work, and

the software stack we designed to control it, respectively. Section 4.2.3 describes
the semantic navigation framework underlying the entire structure to guarantee a
robust environment navigation.

4.2.1 Hardware Platform
As our development platform, we used the Toyota Human Support Robot, HSR.

The robot is aimed at helping elderly people and people with disabilities. Given its
design, HSR is optimal for operating in home settings without any modification that
facilitates its tasks (e.g. automatic doors). Toyota also provides some primitives
and basic software for controlling the robot.

The HSR body is cylindrical with a set of wheels that makes the robot movable
in all directions. It is equipped with a folding arm capable of grabbing objects,
manipulating handles and even grasping paper sheets from the floor. Thanks to

4 Project webpage: https://www.mi.t.u-tokyo.ac.jp/projects/mildoor/.
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its microphone array and its speakers, HSR is able to receive voice commands and
communicate with the user. Several sensors allow the robot interacting with the
surrounding environment. The HSR head is equipped with a stereo camera and
a depth camera. The robot base is equipped with a collision detector. The ROS
operating system [58] is installed on the robot, allowing to communicate with the
hardware layer. This way, writing low level controlling algorithms is not necessary.

TEXT TO SPEECH 

VOICE  
COMMAND

VOICE  
RESULT 

STATE MACHINE CONTAINER

HELP ME CARRY
TASK SM

SM FOR
DIFFERENT

TASKS 

SPEECH TO TEXT

Figure 4.1: Our Robot Software Architecture consists of three layers: a speech to
text layer for command processing, a state machine container layer that activates
state machines (SM) according to the task, and a text to speech layer for result
conveying.

4.2.2 Software Architecture
Figure 4.1 shows our software architecture. We designed it to implement the

robot’s functionality, and it is the backbone of the entire system. It allows managing
several basic tasks, the human-robot interaction, and easily adding new function-
ality on-demand.

We defined three different layers (from top to bottom):

68



4.2 – Hardware and Software Configuration

• A command processing layer (speech to text). We use HSR’s microphone
array to capture the user command, and then we internally process it.

• A container (state machine container). State machines (SM) are deployed to
solve different tasks.

• A user-friendly communication layer (text to speech). This is used to convey
the operation results to the user.

The first layer processes the user’s voice command, and forwards the result to the
second layer. To interpret the voice command, and generate a command, we used
the Google Speech-to-Text API [21]. This tool allows developers to convert speech
into text exploiting the power of neural networks and using the Google Cloud
suite. Depending on the given command, the second layer activates the proper
state machine to execute the task required by the user. The third layer receives the
results of the state machines, which are interpreted and communicated to the user
in a user-friendly fashion. The state machine container is the element that provides
flexibility to the entire architecture. It is possible, in fact, to embed new state
machines for executing tasks. We implement all state machines using SMACH.
In Section 4.2.3 we present the semantic navigation framework we designed as an
underlying layer to the entire robot architecture.

<?xml version="1.0" encoding="utf8"?>

<rooms>

  <room name="R2">

    <location name="bed" 

               isPlacement="False"/>

    <location name="wardrobe" 

               isPlacement="True"/>

  </room>

</rooms>

(a) Environment Object Collection

Name   Type      X         Y         Th

R1,    corner,   0,        0,        0

R1,    corner,   0,        3,        0

R1,    corner,   6,        3,        0

R1,    corner,   6,        0,        0

R2,    bed,      7.2,      0.75,   1,5708

 

(b) Environment Coordinates

Figure 4.2: (a) Example of a file, in xml format, containing the rooms-locations re-
lationship. (b) Example of a file, in csv format, containing the associations between
rooms/locations and coordinates in the map.

4.2.3 Semantic Navigation Framework
For the path planning we rely on the ROS global and local path planners.

These modules receive the desired coordinates in the space and convert them into
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commands to move the robot. Using the ROS navigation stack built-in Hector-
SLAM algorithm [39] we can create a map describing the environment and the
obstacles. This map allows the robot to receive coordinates and reach specific
locations by automatically choosing an optimal path free of obstacles. However,
semantic navigation requires a richer description of the environment to convert
human understandable locations (e.g., the kitchen table) into suitable coordinates
for the robot. As a consequence, additional information needs to be added to the
map to improve the knowledge about the environment. We propose a framework
for creating and managing semantic maps. This framework works as an interface
layer, converting the location sent by the user to a location understandable by the
motion planning module. Using RVIZ5 we manually associate coordinates in the
path planner map to human understandable locations. The coordinates to location
associations are stored as metadata into an xml and a csv files.

We manage two different types of entities in the environment: Rooms and Loca-
tions. A room is a portion of the map identified by walls or boundaries. Locations
are places inside a rooms. Each room can contain multiple locations. A room en-
tity is identified by its name and it is represented by a list of corners, arranged as
a polygon, plus a room center. To manage polygons and coordinates we use the
python package matplotlib.path. A location, on the other hand, is represented by a
location name, its coordinates in the map and some attributes describing the place
(e.g., “isStorage” is a Boolean attribute stating if the location is a storage area).

Figures 4.2a and 4.2b are examples of the files we use to store the semantic
information. The hierarchical relationship between rooms and locations are stored
in xml format while the room and location names with their respective coordinates
are stored in csv format.

R1

R3

R4

R5

D1

D2

D3

D4

R2

Bed
X

Y

(0,0)

Figure 4.3: Example of a map for the navigation environment, with rooms (R),
doors (D), and locations (Bed).

5RVIZ is a tool for displaying sensor data using ROS.
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Figure 4.3 is a graphical representation of a possible environment map, where
R1 to R5 indicate rooms and D1 to D4 indicate doors. The position of elements in
the map is retrieved with respect to the drawn reference system. The origin of the
Cartesian system is the robot initial position, from where the entire process starts.

The semantic navigation framework is also used for completing other tasks, such
as localizing a person or an object, and it offers several methods such as:

• List locations by attributes.

• Save a key location at the user’s command.

• List locations in a given room.

• Coordinate to location name conversion.

To gain planning stage flexibility, we also developed a way-points based navigation
approach. This way, in order to simply move between two points (i.e., locations) in
the map, we can force the robot to also follow intermediate points not belonging to
the optimal path. This is particularly useful to test motion in specific parts of the
scenario, or to reach specific places during the trajectory (e.g., to force the robot to
pass through a specific door). The path between intermediate points is computed
by the ROS path planner too. A dictionary data structure is used to represent
way-points paths: The keys are entity pairs (i.e., the source and the destination
in the map), and the values are the list of places to reach while navigating. The
way-points dictionary is stored as a json file. The way-points based navigation is
activated if the pair source-destination is present in the dictionary. Figure 4.4 is
an example of dictionary to reach each room in Figure 4.3, starting from room R1
and using doors as way-points.

(R1, R2)

(R1, R3)

(R1, R4)

(R1, R5)

D1

D1

D1

D1

D2

D3

D3 D4

KEY VALUE

Figure 4.4: Dictionary representing paths based on way-points.
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4.3 Automata model for a unified framework
Detecting, opening and navigating through doors is a complex problem that

involves many algorithms. This section provides an overview of our framework
by describing the hierarchical automata we designed to control the robot and the
relationships among its elements. For a better understanding of this problem in a
real context, we first present a possible application scenario in Section 4.3.1 and
then explain the opening procedure in Section 4.3.2.

4.3.1 “Help Me Carry”: Our framework context
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Figure 4.5: Automaton representing the “help me carry” task. It shows the problem
of door opening in the context of a more complex task, which involves human
interaction and navigation.

To work in a realistic scenario we decided to study the door opening problem by
solving the “Help Me Carry” task extracted from the Robocup 2018 competition.
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The selected task massively involves navigation and interaction with the environ-
ment. To complete this task, the robot has to be able to memorize locations, to
move following user commands and indications, to avoid obstacles and to open
closed doors. The task description is as follows: The robot’s user went to do some
shopping, and once back at home, he needs the robot’s help for bringing inside all
the shopping bags. The scenario begins with the bags in a specific location in the
environment while the robot’s owner is facing the robot asking for its help, in a
different room. Although the scope of this project includes only the navigation and
door opening problems, here we present the entire task for the sake of providing
context. The sequence of actions to complete to solve the task are:

1. Follow the owner to the bags.

2. Memorize the bags location.

3. Understand the owner’s command to bring the bags to a specific location.

4. Bring all bags to the specified location.

The automaton designed to perform the task is shown in Figure 4.5. We used the
following notation to represent it. Blue circles indicate operational states, green
ones are initial states, and yellow ones represent ending states. The red color is used
to identify the error recovery state. Black and red dashed arrows, instead, indicate
transitions between states and transitions between a state and the error recovery
state, respectively. The red lines are bi-directional because after the error handling
the control may be given back to the calling state. The text on the arrows represent
the event causing the transition. Each state is implemented as an automaton, hence
the overall architecture is a hierarchical state machine. For the sake of readability,
we did not used the double border notation to identify nested state machines. This
structure is flexible and it is easy to maintain.

As an example of behavior, the robot is activated in the state named “Wait
Cmd”. In this state the robot simply waits for commands coming from the user.
If the command for following the user is received, the state machine transit to the
“Track People” state. Otherwise, if the command cannot be correctly interpreted,
the state machine transits to an error recovery state. The general policy of the
“Error Recovery” state is that, if the error is rectified, the control is given back to
the incoming state. If the error cannot be rectified, the state returns the control to
a higher level state machine or directly interacts with the user asking for help.

4.3.2 Door Opening: A state machine approach
Door opening is a complex problem that involves several of the robot’s abilities.

In our approach, we decomposed the problem into different stages. The flowchart in
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Figure 4.6: The operational flowchart for door opening. It comprises the flow from
the detection of a door, until the robots crosses the door or realizes the door is
locked.

Figure 4.6 describes the algorithmic approach we followed. Each block involves dif-
ferent technologies and techniques. The top part represents the overall door/handle
detection and the door parameters estimation. The door type (pulling or pushing)
is checked in the central part, whereas the opening phase is executed at the bottom
part. In summary, the robot autonomously recognizes the door, it localizes the
handle for grasping, and it decides the opening action (i.e., pulling or pushing). To
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Figure 4.7: Our automaton for door opening. The name over the red dashed line
indicates the type of transition between a state and the Error Recovery state.

open the door, the robot needs to know two parameters:

• The opening direction (pushing or pulling).

• The door width.

Following many other approaches, these values could be annotated in advance in the
environment description. However, we want to achieve a flexible and completely
autonomous interaction with the door. Therefore, our robot computes the door
width and the opening direction at runtime. The automaton implementing our
door opening approach is shown in Figure 4.7. This state machine is nested in the
automaton designed for the overall “help me carry” task shown in Figure 4.5. The
door opening state machine is launched when the robot detects a closed door. In
the first state the current location is memorized. The following states complete the
entire process described in the flowchart. The automaton has 3 ending states:

• Door Opened: Reached when the door is open.

• Door Locked: Reached if the door is locked.
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• Error Not Recovered: Reached if an error that prevents door opening occurs.

If the Door Opened or Error Not Recovered states are reached, the door can not
be opened. This situation is managed by the state machine working at a higher
hierarchical level (i.e., Figure 4.5). Our error recovery approach plays an essential
role to reach robustness and flexibility against unexpected situations. First of all,
the error is handled locally within the state in which occurs. For the sake of
usability, the robot should not rely on human help for solving minor issues. Thus,
in our framework, each state stores enough knowledge of the situation to handle
minor problems. Examples of minor errors are: A wrong handle recognition in
the 3D space, a grasping failure, a wrong location spelling from the user, etc. If
local error correction is not possible, the control flow jumps to the the previous
(higher) hierarchical level, in which the error recovery state tries more drastic error
rectification procedures. Only after the system has attempted all error recovery
procedures, the robot will ask for help from the human operator.

Next, Section 4.4 describes the process of detecting a door and navigating to-
wards it, and Section 4.5 describes the process of actually opening the door and
traversing it.

4.4 Door Detection while Navigating
This section explains how the robot finds the door and gets ready to open

it, while navigating an unknown environment. This process does not include any
physical interaction with the door.

4.4.1 Door and Handle Detection
For the door and handle detection we use a deep learning approach. Several

deep neural networks have been proposed for object detection and more specifically
for door and handle recognition. Among the state of the art networks, we decided
to exploit the Single Shot MultiBox Detector (SSD) neural network [81]. Authors
proved that this network outperforms other well know networks, like Yolo [56] and
Faster R-CNN [57] in terms of speed and accuracy. Moreover, since SSD performs
better on embedded systems, the network can work correctly at runtime, and it
guarantees a fast interaction with the environment. Compared to other single shot
methods, SSD provides a much better accuracy, even with a smaller input image
size. The input to SSD is a monocular color image, and the output is a list of
bounding boxes containing the detected objects in the image, namely, the top left
angle of each detected object plus its height and width (object detection part). Each
detected object has an associated label indicating which class the object belongs to
(object recognition part).
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In our version of SSD, the object recognition part is based on the VGG16 [72]
model pre-trained on the ILSVRC CLS-LOC dataset [61]. Then, we trained the
object detection part, and fine-tuned the object recognition part, by constructing
our own dataset, the “MIL-door” dataset. The “MIL-door” dataset consists of
images of “doors” and “handles” crawled from Google Images. After filtering the
erroneous results, MIL-door contains 462 images of doors and 318 images of handles,
for a total of 780 images. The height and width of the images range from 400 to
1200 pixels. For each image, we manually annotated bounding boxes delimiting
the area corresponding to doors and handles. Annotations are not inserted on top
of the images, but stored in a separate text file. Figure 4.8 shows three example
images extracted from our annotated dataset.

Figure 4.8: Sample Images from the “MIL-door” dataset.

When training our SSD network with the MIL-door dataset, we performed data
augmentation on the training data, namely, 90 degrees rotations and horizontal
flips. This increases the size of our dataset eight times, for a total of 6240 images.
Considering that the object detection part of the original SSD was trained with the
9963 images for 20 object classes, we believe our data size is reasonable for our 2
object class detection problem.

As training parameters, we used the following configuration (please refer to [81]
for more details on these parameters): Batch size 32, maximum iterations 120000,
learning rate 0.001 (the original learning rate is decayed by 10 at iterations 80,000,
100,000 and 120,000), weight decay 0.0005, γ 0.1, momentum 0.9.

We used a low learning rate to assure convergence during training. Finally,
the learning rate value was chosen empirically. We evaluated our door and handle
detection with our MIL-door dataset using a 10-fold cross-validation setting. We
consider that the door (or handle) has been correctly detected if the intersection
over union (IoU) between the estimated bounding box and the annotation is greater
than 85%. The detection accuracy in this controlled setting is of 94.7% for doors,
and 86.3% for handles. However, during the evaluation in a real setting, the IoU
recognition accuracy was slightly lower than using the dataset images. This was
mainly due to three factors: The large diversity of doors that exist in the real world,
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the small size of some handles, and sporadic image quality loss due to poor lighting
conditions.

Since there are cases in which the door is detected but not the handle, we
designed an error recovery algorithm to add robustness: if a door is detected but
not the handle, the robot moves slightly forward, backwards, and laterally to change
the perspective until the recognition succeeds. If the handle is not detected after
a certain number of trials (5 in our case), the error is passed to the above error
recovery in the hierarchy.

4.4.2 Door Width Computation
The door width is an important parameter to estimate the robot’s trajectory

correctly. To compute it, we combine the door size in the image, taken from the
robot camera, and the door to robot distance computed using the depth camera.
Assuming that the object width on the image is widthimage, and the detected dis-
tance is d we can obtain the relative size in the real world using the following
formula:

widthreal = widthimage · d. (4.1)
However, Equation 4.1 measures the door size using the pixels as measurement
unit. To transform the computed value from pixel into centimeters we calibrated
our camera and computed a conversion factor conversioncoeff empirically. The
door width, expressed in length units (cm), is given by:

widthreal cm = d · conversioncoeff · widthimage. (4.2)

We measured the quality of our method by comparing our estimated widths against
ground truth values, on four different types of doors. These doors differ in terms of
color, surface material, and shape. We also varied the distance of the robot from the
door from 1m to 3m, measures that are somehow reasonable in a home environment.
We used the Root Mean Square Error metric to measure the evaluation error. Our
results show that we reached an average error of ± 6cm. As observed in our
experiments, this value does not affect the door opening noticeably.

4.4.3 Door Opening Direction Understanding
To open the door, the robot should move backwards from left to right if the

hinges are on the right, and viceversa. Our handle and door detector provides the
handle location with respect to the door, and thus, inferring the opening direction is
straightforward. The opening direction is used to calculate the opening trajectory
in both pulling and pushing doors (Sections 4.5.3 and 4.5.4, respectively).
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4.4.4 Closed Door Understanding
The door detected in the door recognition phase may be already open. To

check this, we use HSR’s RGB-D sensor, the Xtion PRO LIVE. First, we obtain
the depth image corresponding to the frame where the door has been located, and
then we take two horizontal rows (e.g., one in the lower half and one in the upper).
Then, we compute the Sobel derivative [29] along the horizontal direction of these
lines, and we check if it contains values above a certain threshold t. This allows
our method to detect if there are edges where the depth suddenly increases, which
translates into the door being open.

We experimentally determined that the door can be considered open if the log10
of the derivatives exceed a threshold t = 3.5.

4.5 Door Opening and Traversing
This section explains the part of our framework in which the robot interacts

physically with the door, that is, opening and traversing.

4.5.1 Handle Grasping and Unlatching
With the handle detection results, and knowing the distance to the door d, the

robot can approach the handle close enough to get a more precise measure of its
location with the depth sensor. If some error occurs while computing the handle
position, we retrieve a new depth measurement from the sensor to get the right
location. The robot, with its grip open, gets in front of the door, and when it
reaches the handle location, the grip closes and grasps the handle. To unlatch
the handle, we combine the robot hand rotation with a downward movement. We
rotate the hand 20 degrees, and move it downwards 10cm. This allows a robust
unlatching even if the handle is not grasped perfectly at its end or its surface is
slippery (e.g., metallic). We empirically found that HSR does not have a strong grip
and a rotation plus a downward movement can improve the pressure that the hand
can apply to the handle. This guarantees a stronger holding and, as a consequence,
a more robust manipulation.

4.5.2 Door Type Checking: Pulling or Pushing?
Before computing the opening trajectory the robot has to understand the door

type, i.e., whether the door is a pulling or pushing door. To discriminate between
the two categories, after the grasping and the unlatching, the robot tries to move
backwards and forward to test the opening type. First, it attempts to pull the door
back 5cm while monitoring the force acting on the wrist torque sensor. If during
this movement, the torque on the wrist sensor grows continuously, this means that
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the door is not a pulling one. If this is true, the HSR attempts to push the door by
moving forward while monitoring the force acting on the wrist sensor. In case the
attempt the torque force does not increase in one of these attempts, the opening
phase starts (see Sections 4.5.3 and 4.5.4). On the other hand, if both pulling and
pushing are not possible, the robot assumes that the door is locked. The Error
Recovery handles this case by calling for human help.

We also considered other approaches for testing the door type. One involves
monitoring the base movement while performing the test. This approach proved to
be not successful because, even if the robot should be blocked to the door because
the arm, some movements in the base can be measured, invalidating the check.
Moreover, to measure a significant movement of the base, we have to move the
robot more than 5cm, but this can damage both the robot and the door (e.g., by
pulling a pushing door too hard).

All the checks performed in our proposed approach are performed to assure
robustness and minimize the number of errors. We emphasize the importance of
robustness in such a complicated scenario, since an error in door type recognition
could lead to hard-to-manage situations or risks for the robot or the handle and
the door integrity.

4.5.3 Door Pulling
Figure 4.9 shows the entire flow for opening a pulling door, from the moment

the robot must grasp the handle to one in which the door is open. Figure 4.10a
shows the corresponding code flow.

When the robot stands in front of the door, and before starting the door pulling
phase, the application stores the current robot position. These coordinates will be
used when the door is open as the robot will move back to the stored position to
pass through the door. The first three images (Figure 4.9a, 4.9b and 4.9c) are part
of the door type understanding process described in Section 4.5.2. In the latter
phase, the robots moves backwards 5cm to check whether the door is a pulling one.
In the affirmative case, the robot moves the handle back to its neutral position. A
visual representation is given in Figure 4.9d. This action emulates typical human
behavior, and it effectively reduces the load on the robot wrist that does not need
to hold the handle down. At this point, the robot computes the pulling trajectory
as shown in the second block of Figure 4.10a. The final trajectory is an arc-shaped
sequence of map coordinates that form an angle of 80 degrees with respect to the
door hinges. In this way, the door is opened wide enough for the robot to pass
through it. Figure 4.11 shows a possible trajectory for a pulling door. The door
width and the opening direction are reported in the geometrical representation to
emphasize their importance in the trajectory computation.

Because the HSR’s arm has less than six degrees-of-freedom (DoF), we have to
move the base and the arm together, keeping the robot hand in a fixed position,
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Visual example of our pulling door opening approach. HSR (a) grasps
the handle and (b) unlatches it, then (c) tries to move back for 5cm to pull the door.
If the door is a pulling one, (d) moves the handle back to its neutral position, and
(f) the door is opened by moving backwards and drawing an angle with respect to
the door closing position. During the entire process (Figure (e)) the door-to-robot
distance is maintained constant.

and thus, the door-robot distance is constant. In this way, we do not need to
continuously check for collision between the robot and the door. This situation
is shown in Figure 4.9e. Once the robot completes the trajectory, it releases the
handle and moves back in front of the door to continue the navigation towards the
final goal. The robot position saved in the first state is used as a target position to
cross the door.
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Figure 4.10: Schematic code flow for: (a) opening a pulling door, and (b) opening
a pushing door. The code flows are encoded as SMACH state machines, and they
are fully integrated in our software framework.
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OPENING DIRECTION

Figure 4.11: Example of a trajectory to pull a door wide open.

4.5.4 Door Pushing
Following Figure 4.6, if the robot detects that the door is not a pulling one, it

checks whether it is a pushing one, and, in this case, the pushing process starts.
The pushing door action flow is detailed in Figure 4.10b. As in the pulling door
case, our robot attempts to push the door to check the opening type. After the
handle releasing phase, the robot moves in front of the door at a fixed distance of 50
cm. Once this position is reached, the robot first extends its arm to reach the door,
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which is already open a few centimeters after pushing it to check its type. As the
robot is going to move forward, reaching the door is not strictly necessary. At the
same time, we also monitor the wrist sensor to assure that no unexpected collision
occurs. During the Door Pushing phase, the HSR moves forward, and when the
phase finishes, the robot is on the other side of the door. The last action executed
by the robot before restarting the normal navigation, is to retract its arm into its
original safer position.

To succeed in the pushing action, the handle position is an important parameter,
as shown in Figure 4.12. When unlatching the handle, the robot faces it, but during
the pushing action, some collisions may occur. Since HSR is a left-handed robot,
the most unfavourable scenario is when the handle is on the right side of the door as
shown in Figure 4.12b. A schematic top view of this situation is given in Figure 4.13.
While pushing the door, a collision check is performed in the robot base to prevent
HSR from hitting the door frame. If a potential collision situation is detected,
the robot is moved slightly to the left with respect to the handle. If a collision is
detected, the Error Recovery stops the robot and moves it back to the start of the
pushing stage.

(a) (b)

Figure 4.12: The figure shows two ways of pushing a door depending on the handle
position: (a) Left Side Handle Pushing, and (b) Right Side Handle Pushing. Since
HSR is a left-handed robot, the most unfavourable scenario is when the handle is
on the right side of the door. To avoid a collision with the door frame, HSR should
shift its location as shown in Figure 4.13b.
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(a) (b)

Figure 4.13: Passing through a pushing door: (a) HSR may suffer a collision
when opening a pushing door with a right side handle. (b) To avoid hitting the
door frame, the sensor on the robot base is activated. If HSR detects a possible
collision, its position is slightly shifted to the left.

4.6 Experimental analysis
We evaluated our unified framework by means of two experiments. The ex-

periments were designed to verify our framework’s robustness in a real navigation
scenario, and the quality of the entire door opening process with different doors,
handles, materials, etc.

First, we evaluated the door opening process in a realistic navigation scenario
by using a simplified version of the “help me carry” task (Section 4.3.1). In this
task, the user instructs the robot to fetch an object in a specific location in a
different room and waits for it to come back. We also imposed way-points during
navigation, i.e., we force the robot to follow a different path on the way back. To
run this scenario, we arranged a house environment similar to the one in Figure 4.3.
Initially, the HSR robot is in a location within room R1. The robot is supposed
to reach room R4 by passing through doors D1, D2, and D4. Then, it should go
back to the initial position by passing through doors D3 and D1. The doors in
this task have different characteristics. When moving from R1 to R2, door D1 is
a pushing door with the handle on the left. Door D2 is open. when moving from
R5 to R4, door D4 is a pulling door with its handle on the left. On the way back,
when moving from R4 to R2, door D3 is a pulling door with its handle on the
left. Finally, when the robot moves back from R2 to R1, D1 is still open. Notice
that the door type and handle position affects the door opening process in terms of
correctness of drawn trajectories (see Figure 4.12). In order to show the flexibility
of our framework, the door and handle attributes are unknown by the robot.

We commanded the robot to execute the task 50 times. In all cases, the robot
reached R4 without navigation errors, and it successfully detected and discrimi-
nated between closed and opened doors. The accuracy of the door/handle detection
in a real scene does not vary significantly with respect to the detection accuracy
reported for our MIL-door dataset. Whenever a handle was not initially recognized,
the error recovery procedure forced the robot to move slightly forward, backwards,
and laterally to change the perspective until the recognition was successful. This
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procedure provided a recognition success rate up to 95%. In the remaining 5%, the
error persisted so the higher hierarchical automata level dealt with it. Moreover,
even if initially the location of the detected handle was not aligned perfectly, the
location was refined when approaching the handle and using depth images. Re-
garding the handle grasping, every time the HSR could not hold the grip on a
handle, the error recovery procedure reactivated the detection phase and the “door
opening” phase restarted from the beginning.

In light of these results, we designed a second experiment with an emphasis
on the handle grasping subtask. In this experiment, the HSR has to deal with
a variety of doors and handles, which differ in the door type (pushing, pulling
and spring loaded), and the handle position (left, right) and material (slippery
or not slippery). We commanded the robot to move from room R1 to room R2
while modifying the configuration of D1. The robot starts in front of the door
ready to grasp the handle, and stops after the door is open (passing through is not
required). As above, the robot does not know the door and handle attributes. We
conducted 20 runs for each door-handle configuration. Notice that the door type
influences the robot trajectory, whereas the handle material influences the quality
of the handle grasping and, in the case of pulling doors, the quality of holding the
handle. Also, some metallic handles may cause noise in the depth image due to
reflections. We separate the door opening results for slippery handles (metallic) and
non-slippery handles (wood or plastic-like material), and their location with respect
to the door (i.e., left or right). Similarly, we also consider spring loaded doors, that
is, doors that close by themselves after they are open. We do not evaluate opening
pushing spring loaded doors since, once the robot arm releases the handle after the
unlatching, the door closes again before the HSR has the chance to push it.

Table 4.1 summarizes the results for this second experiment. The handle local-
ization using depth images proved to be robust with different handle shapes and
materials. After the handle grasping, our approach recognized in 100% of the cases
the door type, i.e., whether HSR had to pull or push the door. As the HSR grip did
not have enough strength to hold slippery handles (in particular, those in spring
loaded doors) the door opening did not always succeed. However, when an error
arose, the robot was able to retry the task by itself by following the error recovery
procedure previously described. The robot asked for human help only in a total
of 3 occasions. This results are very promising for a practical application, as the
recovery procedure is able to rectify errors in most cases. However, for the sake
of fairness, Table 4.1 considers runs as failed whenever an error arose, even if the
robot recovered from the error autonomously. Overall, we reached a 96% of suc-
cess rate for non-metal handles, and 90% for slippery metal handles. Notice that
these results are influenced not only by the robot’s grasping ability, but also by
the handle detection under different types of light reflection on the handle surface.
Regarding pulling spring loaded doors, holding the handle when opening was quite
challenging for the robot, specially in the case of slippery handles. This is due to
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the limited strength of HSR’s grip. Also, handles in the left side of pushing doors
are more challenging due to the reasons explained in Section 4.5.4.

Action Type Handle Type
T1 T2 T3 T4

Pulling non-spring loaded door 14 18 16 18
Pulling spring loaded door 12 16 16 18
Pushing non-spring loaded door 20 16 20 16

Table 4.1: Results of our door opening approach. The table presents the number
of successes out of 20 opening attempts, with 4 different handle types. T1: Slippery
handle on the door left side. T2: Slippery handle on the door right side. T3: Not
Slippery handle on the door left side. T4: Not Slippery handle on the door right
side.

A straight comparison against other proposed methods is hard to be presented.
The majority of the previous works, in fact, present their study to solve each prob-
lem in an isolated context and without considering the integration problem. Com-
paring a single stage of our pipeline can result meaningless. Given the complexity
of the problem, in fact, we rely on a smooth error recovery approach to give ro-
bustness to our system. The robot we used, moreover, is a standard platform and
it has to be able to complete tasks of different nature. For this reason we could not
act on the hardware or on the low level software algorithms we had to approach the
problem from a different perspective. The majority of the previous works, in fact,
base their success on the quality of low levels algorithms or on specifically designed
arms.

4.7 Conclusions
In this chapter we presented a unified framework for approaching, opening and

navigating through doors. We provided an automata model and its state machine
hierarchy, which includes techniques for error recovery, allowing for a robust door
opening. We proposed an approach for automatic detection of doors and handles at
runtime, which allows for semantic navigation. We trained this approach with our
image dataset of doors and handles. We implemented our framework on a Toyota
HSR, which is a standard platform and, thus, facilitates the reproducibility of our
work. We evaluated our framework for navigation and door-opening approach in
a challenging realistic scenario inspired by Robocup 2018 tasks. Furthermore, we
tested against different types of doors, and with different types of handles and
opening directions. Our results show the robustness and flexibility of our approach
and its high applicability by using a standard service robot. On the other hand,
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robots lacking some of the HSR features (e.g., a depth camera, a base sensor, a wrist
torque sensor) may not be able to implement our framework without previously
adapting the algorithms.

As our future work, we plan to extend our framework to recognize and move
away obstacles during navigation. We believe this can further improve the robust-
ness and the flexibility of our unified framework against changes in the environment.
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Chapter 5

Conclusions

In this work we analyze two different kinds of path planning problems: (1) On
one side we face a trajectory generation problem, in the context of autonomous
cars. In this scenario we propose a GPGPU-based approach to improve perfor-
mances and reliability of the generated trajectories. (2) On the other side we
propose a framework to solve indoor semantic navigation problems in the context
of service robotics. The proposed solution is based on state machines and improves
semantic navigation exploiting robot-environment interaction. The proposed ap-
proach demonstrates how to interact with closed doors and stresses error recovery
aspects to reach a high grade of autonomy of the robot. The reached results are
respectively detailed in sections 3.5 and 4.6.

Autonomous cars are supposed to become common in our daily life in the next
decade. A competitive autonomous car must acquire and fuse all data coming
from environmental sensors and find a comfortable, minimum time collision free
path in real time. Computation power and efficiency are then important issues to
have real-time applications with reduced costs. In this work we propose a GPGPU
based approach to solve the presented problem. We focus our attention on trajec-
tory generation, a module that works close to vehicle controller. For this reason,
high efficiency in terms of execution time and robustness to failures are mandatory.
Starting from a sequential algorithm we propos a parallel version proving that the
GPU is able to obtain a 5x speed-up leaving the CPU free to work on any other task
the designer may deem necessary on board. This performance improvement, also,
does not affect the quality of generated trajectories. As proven by our experiments,
in fact, the algorithm produces almost the same results in both the proposed ver-
sions. As last consequence trajectories computed by the GPGPU version are more
reliable because more trajectories can be generated at the same time, reducing so,
the unexplored region.
One of the limits of the current approach is that many parameters of the original
algorithm can be configured only in a static way. This solution works properly in
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experimental environments but lacks of flexibility when used on a real car. The
aforementioned parameters, in fact, considerably affect vehicle behavior. As a con-
sequence, as far as future works are concerned, one of the directions to improve
the overall algorithm is to adopt the GPU to dynamically select and change the
main parameters of the algorithm. Those parameters need to be better related
to the environment context, and the driving preferences, to reach safer and better
planning trajectories.
Several aspects can be taken in consideration for future works. An interesting work
can be the implementation of the trajectory planner presented in 3 as ROS module.
This could be interesting for two key aspects. From one side, in fact, the embedded
model for trajectory generation is general and could be easily substituted with the
kinematic model of any type of robots or cars. Thanks to ROS, so, many scientists
could benefit of the designed trajectory planner. On the other side, with the growth
of ROS 2, it is possible to use it to implement module for real autonomous car.

In this work we also proposed a state machine based framework to solve a
semantic navigation problem together with the robot-environment interaction. To
demonstrate the effectiveness of the proposed solution we tested our framework
in a challenging realistic scenario inspired by Robocup 2018 tasks. We provided
an automata model and its state machine hierarchy, which includes techniques for
error recovery, allowing for a robust door opening. Also, we exploited deep learning
techniques for automatic detection of doors and handles at run-time. To train our
network we also propose a dataset containing images of doors and handles. We
implemented our algorithms on a Toyota HSR, which is a standard platform and,
thus, facilitates the reproduction of our work. Our results show the robustness and
flexibility of our approach and its high applicability by using a standard service
robot. As our future work, we plan to extend our framework to recognize and
interact with different object. A better environment knowledge, together with the
ability of the robot to interact with it, can lead to more efficient and effective
navigation algorithms. There are several rooms of improvements for the presented
project. The first limitation to mention is the inability of our algorithms in handling
knobs and sliding doors limiting its applicability in real scenarios. Another required
improvement is the management of narrow spaces. The robot, in fact, could be
blocked when opening doors in corridors or in corners. This limitation is mainly
caused by the configuration of the robot we used and it can be solved easier changing
the platform. Another possible improvement that moves on a different direction is
towards the use of visual information for semantic navigation.
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