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Summary
Modern controllers for Software-Defined Networks (SDN) enable the execution of
arbitrary SDN applications (e.g., NAT, traffic monitors) that may be exploited by an
overarching set of services (e.g., application-layer orchestrators) to build even richer
services. To this purpose, the above overarching services require a mechanism that
allows reading the run-time state and writing the configuration of arbitrary SDN
applications, possibly through an uniform API. Unfortunately, most SDN applica-
tions are not designed/implemented by taking into account the possibility to be used
as part of higher level service workflows (e.g., a complex Intrusion Prevention Sys-
tem that leverages multiple elementary services as individual components), hence
they may not provide an adequate interface that would allow overarching services to
exploit their features. This paper addresses this problem by proposing an approach
to represent the run-time state of arbitrary applications, where data are exported
according to high-level model-based structures. Furthermore, the mapping from the
high-level data model to the actual data representation within the SDN application
is enabled by a suite of algorithms that are generic enough to operate independently
of the actual source code of the application, thus avoiding undesired and invasive
modifications to existing applications. The paper also presents a software framework
and a prototype implementing the proposed approach, characterizes the resulting
performance, and discusses pros and cons of the proposed approach.

KEYWORDS:
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1 INTRODUCTION

Modern controllers for Software-Defined Networking (SDN), such as ONOS1 and Open Daylight2, offer high-level program-
ming abstractions that allow to develop software programs (i.e., SDNapplications, or SDNApps in this paper) to perform arbitrary
network-related tasks going beyond forwarding, routing or topology discovery operations, such as application-based traffic mon-
itoring, firewall, NAT, deep packet inspection. This paradigm enables the creation of programmable network environments able
to address the emerging communication requirements (e.g., QoS, security) of modern application services (e.g., Smart City,
Cloud Robotics) operating on top of a distributed and dynamical environment of networked smart systems (e.g., sensors, smart
terminals and buildings) to provide high-value and cooperative services to users.
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These smart environments are featured by highly-changing and heterogeneous contexts of users, resources, and networks that
require punctual and reactive network and service management operations to adapt systems to context changes and to assure and
preserve proper levels of user experience3. In this respect, the use of multiple SDNApps in the scope of composite workflows
(even executed in different SDN controllers) can lead to the delivery of richer added-value applications enabled by control and
coordination tasks performed by higher-level service control applications (shortened as ServiceApps in this paper). In particular,
ServiceApps may be in charge of collecting context information (e.g., user location, device capabilities, service availability)
and, accordingly, taking coordinated actions (e.g., issuing of configuration commands) in order to prevent/recover from service
corruptions or degradations. For instance, in the area of security and authorization, a ServiceApp could be an access control
system extended with the capability of detecting anomalies while users make use of resources under control (i.e., usage control
systems)4. In case of network environments, such an usage control system (acting as a ServiceApp) may focus on tracking the
usage of bandwidth capacity. Thus, it may be interested in the retrieval of data throughput on per-user flow basis by leveraging
an SDNApp (e.g., traffic monitoring analytics tool). If a misuse is detected according to a set of policies (e.g., violation of
SLA in terms of data throughput), the usage control system can promptly take countermeasures by leveraging other SDNApps
(e.g., traffic shapers) to keep resources usage within the agreed terms (e.g., traffic profile reconfigurations to shrink usable data
throughput).
In more general terms, in the envisioned scenarios a ServiceApp may need to actively interact with diverse (set of) SDNApps

both to collect their current run-time state and to modify previously established configurations1. Unfortunately, SDNApps may
not consider the possibility to be used as part of an higher level service workflow. First, SDNApps generally offer only a partial
view of their state, such as a NAT that exports its global configuration but hides the run-time information available in the NAT
table. Furthermore, SDNAppsmay keep data (e.g., configuration and run-time state) in completely arbitrary structures, as well as
expose such information through arbitrary APIs, exploiting diverse protocols such as NETCONF5, RESTCONF6 andmore. This
introduces lack of flexibility in ServiceApps, which must then be designed to work with specific SDNApps implementations.
For instance, to interact with two different firewalls, a ServiceApp may need to use two different APIs, which are defined by
those applications; the support for a third firewall might then require an extension of the ServiceApp since, very likely, such a
firewall will use a third API different from the other two. Ultimately, this heterogeneity in SDN application implementations may
prevent ServiceApps from being effectively able to take run-time decisions based on the current context of underlying network
layer, or at best, makes their implementation more difficult as they may need to handle different southbound interfaces, with the
consequent additional complexity and possible portability issues when required to select a different implementation of the same
network function.
To cope with the aforementioned challenges, this paper presents an abstraction layer enabling ServiceApps to dynamically

inspect the run-time state and/or change the current configuration of any SDNApp based on implementation-agnostic data-
models, i.e., model-based abstraction layer, also enabling ServiceApps to promptly react to any event occurring in the controlled
infrastructure, exploiting even services (e.g., network control) that were not originally engineered to export their data to an
external consumer (e.g., application service orchestrators). Indeed, the proposed methodology can be easily applied, under few
assumptions, to all existing SDNApps, introducing almost no changes in the original code of the application nor appreciable
overhead, hence bringing the benefits of cross-application state inspections to a large set of existing services.
More specifically, the contribution of this paper is twofold.
First, we propose an overarching software architecture that enables novel ServiceApps to leverage information (including the

run-time state) exported bymultiple infrastructure-specific applications (SDNApps), with the aim of creating complexworkflows
spanning across multiple infrastructure domains (e.g., possibly managed with different SDN controllers), and independent from
the actual implementation of any given network application. The proposed architecture leverages an abstraction layer based on a
YANG7 data model associated with each SDNApp, which describes the configuration and run-time state of such an application
in an implementation-independent way, and a set of application-agnostic high-level APIs that are used by an external module
(e.g., the ServiceApp) to access such data. The latter will support multiple communication patterns that enable either direct
communication between the involved parties (e.g., through HTTP REST8 operations), or a publish/subscribe paradigm (e.g.,
through a message broker) for more detached operations such as solicitations/advertisements.
Second, we define a set of application-agnostic mapping algorithms (and the companion prototype implementation) that map

incoming requests for a specific data, that are specified according to the high-level YANG-based service abstraction, into a
read/write operation of the actual run-time internal variable(s) of the SDNApp. These mapping algorithms are general enough to
be independent from the specific SDNApp logic (and source code). Moreover, they can be put into operation without requiring

1In the reminder of the paper, the expression “access the run-time state”, referred to an SDNApp, will be used to indicate both these operations.
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the application developer to create specific code to provide access to the selected data. In fact, to enable the ServiceApp to
access any internal variable of arbitrary SDNApps, developers can simply include our application-agnostic mapping module in
the SDNApp code as an external linked library.
Finally, the paper presents numerical results validating the approach and featuring the performance of the proposed software

architecture and mapping algorithms in terms of execution time of both read and write operations as well as in terms of notifica-
tion latency. Moreover, the paper assesses the performance of our approach under specific use cases and evaluates its overhead
with respect to a direct access to the applications variables. Results show that the execution of the proposed software framework
introduces a relatively low overhead and provides insights on how to optimize notification performance. Results also confirm
that the overall latency introduced by our approach is strictly related to the nature of the operations executed in every adopted use
case. Finally, the paper presents a discussion about the advantages of the proposed approach against the requirements SDNApps
have to fulfill to be part of the proposed software framework.
This paper is structured as follows. Section 2 analyzes related works. Section 3 presents some use cases that highlight possi-

ble deployments where the solution presented in this paper can be adopted. Section 4 presents the overall software architecture.
Section 5 describes the algorithms that transparentlymap the SDNApps variables in a YANG-based structure. Validation, includ-
ing both mapping algorithms and the complete architecture, is carried out in Section 6. Finally, Section 7 discusses the main
lessons learned while prototyping and validating this approach, and Section 8 concludes the paper.

2 RELATEDWORKS

This section presents the state of the art in main related research areas and highlights the contribution of this paper in comparison
with the reported works.
A number of recent researchworks address themanagement of SDN application state9,10,11. In particular, OpenState9 and P410

propose modern data planes that allow instantiating stateful flow rules whose output may change based on previous processed
traffic. In11, instead, authors address the problem of consistency between control plane and a stateful data plane. However,
these works focus on the limitation of standard SDN data planes (usually OpenFlow) rather than considering the problem of
exposing the application state to an external and generic service, that has not been pre-defined in advance, in order to enable
dynamically-established service workflows.
Generic modeling of SDN applications has been introduced in the Open Daylight controller2, starting from version 2.0

(Helium), with a technology called Model-Driven Service Adaptation Layer (MD-SAL), which is available also in other propri-
etary software such as Cisco Network Services Orchestrator12. MD-SAL is an extensible middleware component that provides
messaging and data storage functionality based on data and interface models defined by application developers (i.e. user-defined
models), which rely on the YANG language. In this paper we also present a similar abstraction layer with data models based
on YANG. However, the approach we propose is applied at a different level, i.e., on top of SDN controller and applications.
Moreover, the proposed abstraction layer is agnostic with respect to the employed network controller (e.g., ONOS, ODL) and
the logic of involved applications, also not requiring any ad-hoc modification of their code. These features overcome the major
problem of the OpenDaylight Helium which required already deployed applications to be substantially rewritten with respect
to their northbound interface. Furthermore, the software architecture we present in this paper is based on the publish-subscribe
messaging pattern and, in particular, the proposed approach can be applied to any existing SDNApp by just patching it with few
statements.
The problem to handle the run-time state of an application is also tackled in other fields different from SDN. In fact, some

target-specific usage of the run-time application state can be seen in works such as13,14,15, which investigate the problem of
automatic Virtual Network Function (VNF) scaling and/or creating (either hot or cold) standby copies of a given network service
instance. More specifically, with respect to the problem of handling the state, Pico14 proposes an approach to move and/or
duplicate portions of state among replicas; state is managed in a flow-centric way through FreeFlow13, which models the state
of a VNF as a flow table (where each line is usually identified by the TCP/IP five-tuple) and requires a per-VNF agent able to
get, put and migrate flows. OpenNF15 defines a northbound interface oriented to the use case of moving state between multiple
instances. Although in this work authors mention the problem of VNFs, that do not provide APIs to access their run-time state,
their focus is on possible race conditions when migrating (pieces of) state among different instances of the same VNF. All the
works listed above address the problem of moving the state on new VNFs instances that are analogous to the original one,
omitting the case in which the state has to be shared among applications that feature different purposes. Moreover, these works
are oriented to the particular case of a flow-based state (that is typical in middle-boxes), i.e., the state can always be modeled
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as a table where a row (or a set of) concerns a precise traffic flow. Instead, our paper addresses a more general problem, as we
provide an approach to model any state of the application, not only flow-based states. Furthermore, the above approaches are
limited to the applications they had in mind and for the purposes of their services (scaling in/out, hot/cold standby replicas),
without considering the necessity to offer state handling capabilities to generic SDNApps and for arbitrary ServiceApps. Finally,
we focus on SDN applications that, being software bundles running within the environment an SDN controller (e.g., exploiting
the OSGi technology), they may have implementation constraints that prevent from trivially exposing the desired configuration
interface through ad-hoc agents.
In the area of service orchestration, also including network state monitoring and control, a number of research works are

devoted to create integrated workflows across application and network layers. In16, a network-aware service composition and
delivery solution is presented, which leverages network function virtualization mechanisms and programmable traffic steering
capabilities from SDN to generate service chains according to user requirements and dynamic context. More specifically, authors
focus on the architectural aspects in line with Service-Oriented Architecture to mainly address multi-domain requirements while
leveraging intent-based SDN abstractions to steer the traffic along service chains. In this paper a different target is addressed
aiming at the generalized use of SDN application state from application layers to build composite workflows in agnostic way.
Another related research work has been carried out within the EU H2020 SELFNET project17 focusing on an autonomic net-
work management framework based on the Self-Organized Networks (SON) paradigm to achieve self-organizing capabilities
in managing network infrastructures, thereby significantly reducing operational costs and improving user experience. However,
this project pursues this goal with a different approach compared to what we propose in this paper. In fact, it proposes the deploy-
ment of a set of sensors with the aim of dynamically identifying possible issues that are then solved by a set of actuators. While
the above architecture fits nicely with the final goal of keeping QoS under control, it may not be suitable for a broader scope,
such as to enable generic services and applications to communicate and share arbitrary information as this work does. Indeed,
this paper presents a first, partial implementation of a possible 5G Operating System (5GOS) is presented in18, which extends
to a distributed network infrastructure the concept of “everything as a service” presented in19. In this direction, this paper pro-
vides a detailed proposal of such architecture and a first set of answers to the problems that emerged from its implementation,
such as the necessity to enable existing applications to be part of the new service-oriented architecture.
Ultimately, the analysis of the state of the art reveals a lack of solutions to enable SDNApps to effectively share their internal

run-time state and to communicate with upper-layer functionalities (i.e., network services or application-layer orchestrators)
and, thus, to be part of composite and dynamically-established workflows. In this direction, this work proposes a software
architecture with an abstraction layer to enable the real-time exposition and modification of SDNApps internal variables, where
data are exported according to high-level model-based structures. The mapping from the high-level data model to the actual
data representation within the SDNApps is enabled by a suite of algorithms that are generic and independent from the specific
source code of the SDNApp, thus avoiding undesired and invasive modifications to existing applications.

3 USE CASES

The capability to collect the run-time state of a running SDNApps and modify it transparently at run-time (either by issuing
the proper configuration commands or by crafting its state, if needed) brings important advantages in several use cases. Some
possible examples are provided below.
SDN-based Intrusion Prevention System (IPS). In this first use case (Figure 1 ), an IPS (acting as an ServiceApp) coordi-

nates a workflow involving the current status of an SDN-based Intrusion Detection System (IDS) and/or additional information
collected by other SDNApps (e.g., network monitors) to feed an SDN-based firewall with the proper policies to block incoming
attacks or suspicious traffic patterns. For instance, the IPS may need to observe the run-time state of the IDS (e.g., the internal
variables that keep the list of policy violations) and of a networkmonitor to become aware of any anomalous state change and thus
to detect anomalous traffic patterns (e.g., spikes in non-working hours). As soon as one among a set of particular changes occurs
(i.e., a threat is detected by the IDS or an anomalous traffic is observed through the network monitor), the IPS service triggers
the creation of the required firewall rules that are then injected in the target SDNApp to protect the network infrastructure.
Migration Service. Another common use case is the migration of a running SDNApp, e.g., a NAT, to a new location, for

instance, to follow user movements20. In this case, a Migration Service (i.e., ServiceApp) may need to acquire the run-time state
of the existing SDNApp instance to properly bootstrap the new instance with the current/correct state, which in case of a NAT,
consists in the network address translation table. This technique avoids to copy the entire memory of the SDNApp such as in
the traditional Virtual Machine migration approach21 and it exploits the idea of moving only semantically rich information as
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FIGURE 1 Use case example: an Intrusion Prevention System service (ServiceApp) requiring the access to the run-time state
of multiple SDN applications (SDNApps).

proposed in15. In this respect, an application-agnostic Migration Service, which can operate on whatever application internal
data structure is used while copying only semantically relevant information, is possible only thanks to the capability of inspecting
dynamically the run-time state of the SDNApp under consideration.
Service Orchestrators. This use case refers to the deployment and lifecycle management operations carried out by a Network

Service Orchestrator (e.g., ETSI NFV MANO22) to take care of the coordinated set-up and management of a set of VNFs that
jointly realize a Network Service, e.g., Virtual Evolved Packet Core. As for network service deployment the Network Service
Orchestrator leverages infrastructure managers (e.g., WAN Infrastructure Managers acting as SDNApp) to perform resource
configurations (e.g., virtual links set-up connecting VNFs). During service lifecycle, the Network Service Orchestrator may
leverage data analytics tools to derive given performance indicators to optimize Network Service management operations or
to prevent SLA violations. Indeed, data analytics tools run applications (i.e., SDNApps) that collect monitoring data from the
underlying cloud (e.g., VNFs and virtual links) or network resources (e.g., OpenFlow switches and links) and then aggregate
them to derive consolidated performance data indicators (e.g., user data flow throughput)23. These data may be used by compo-
nents of a Network Service Orchestrator acting as ServiceApp (e.g., NFVOrchestrator or the SLAManager in the ETSIMANO)
to maintain an up-to-date view of resource usage and/or performance offered by the underlying infrastructure to promptly react
in case of service degradations due to concurrent usage of resources frommany different Network Services or due to any adverse
event (e.g., service outages, network congestions, improper usage of VNFs). In this context, application-agnostic data models
may foster composite and comprehensive service lifecycle workflows where both cloud and network resource status information
are considered to offer high-quality services and highly effective resource utilization.

4 ARCHITECTURE

This section presents the software architecture we designed to enable ServiceApps to read and/or modify the run-time state
of SDNApps, while being agnostic to the implementation-specific data structures they use internally. The overall architecture
is depicted in Figure 2 . According to the figure, ServiceApps are envisioned to run on top of SDNApps and/or custom SDN
controllers while relying on the following main components: (i) a YANG-based data model associated with each SDNApp and
describing SDNApps run-time state through high-level and application-independent structures (Section 4.1); (ii) a communi-
cation infrastructure enabling interactions between the ServiceApp and the SDNApps where exchanged information and the
communication API depend on the YANG data models associated with SDNApps (Section 4.2); and (iii) a To Yang (ToY) Agent
running in each SDNApp and enabling ServiceApps to access and refer their SDNApps run-time state according to the specified
implementation-independent YANG-based data model (Section 4.3).The remainder of this section details the above components.
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FIGURE 2 Overall software architecture. ServiceApps (on top) relies on a northbound interface (composed by the Pub/Sub
message bus and on the Rest-based channel) to perform get, set and subscribe operations on the run-time state of SDNApps.
The latter are accessible through this northbound thanks to the YANG-based mapping performed by ToY Agents.

4.1 A data model for SDNApps
To avoid ServiceApps to be aware of each SDNApp internal data structures and proprietary APIs to access these data, we define
an high level model-based API. ServiceApps can rely on this model to have uniform access to run-time state of SDNApps,
regardless of their implementation. This interface provides data through common syntax and modular structures defined by
formal models written using the YANG modeling language7. Through the data model abstraction, an SDNApp developer can
arbitrarily decide the portion of the internal state that has to be exposed to external services, e.g. omitting critical data such as
authentication details. Each SDNApp is associated to its own data model, which is used to describe: (i) which data is exposed
by the SDNApp, (ii) how to access such data with the desired granularity and (iii) how exposed data is structured. The way
we represent these information within the data model is defined below. An example of data model, associated with a NAT
application, is shown on the left of Figure 3 .
Each node (e.g., module, container, leaf) of the data model represents a resource, which is uniquely identified through an

identifier called YANG path. The YANG path associated with each resource is generated from the data model using rules derived
from RESTCONF6 and shown in Table 1 . Particularly, rows #1 to #7 of the table represent the basic rules, which can be
combined as shown in row #8 to specify any element of the data model. According to the table, the YANG path is an URI
built as an ordered list of YANG labels, namely of the names of all the YANG elements that enclose that resource, from the
most external to the resource itself, separated by the character “/”. For instance, in the data model provided in Figure 3 , the
container private is enclosed in the container interfaces, which is in turn enclosed in the module nat; therefore, the resource
“private” is identified by the YANG path /nat/interface/private. YANG paths may enclose predefined portions (e.g.,
/nat/nat-session) and parametric portions (e.g., /{uuid}). The latter are needed since lists in the data model produce
multiple resources with the same structure. Each of these resources is identified by a YANG path that includes a parametric
label characterized by braces (Table 1 , rows #5 and #7); this label corresponds to the value of the key leaf in the list node
description, as it is unique. In other words, to identify a precise element of the list, the parametric label must be replaced with
the value of the key leaf in that list item. As an example, referring again to the data model of Figure 3 , each element of the
nat-session is identified by a YANG path in the form /nat/nat-session/{uuid}; thus, to identify a specific element of
the nat-session, the parametric label {uuid}must be replaced by the instance value of the uuid field of the desired element,
e.g., 0x26 as in Table 1 .
Each element is associated with a config statement that indicates whether a resource is writable (config true) or read-only

(config false). For instance, the resource name in Figure 3 , which in this case represents the name of a network interface,
cannot be modified by an external entity (i.e., by a ServiceApp). Moreover, inspired by recent works in IETF24, we associate a
resource with a new advertise statement (defined as a YANG extension) indicating in which situations the SDNApp advertises
the current resource value to the outside world: onchange, advertised any time the value changes; onthreshold, advertised
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container interfaces {

container private {

advertise onchange;

leaf name { 

config false; 

type string

}

leaf address {...}

leaf netmask{...}

}

container public {...}

}

module nat {

leaf name {…}

leaf-list authors{…}

list nat-sessions {

key “uuid“;

config false;

advertise periodic;             

advertise-period 1;

advertise-unit s;

leaf uuid {...}

leaf protocol {...}

leaf src_ip {...}

leaf src_port {...}

leaf public_ip {...}

leaf public_port {...}

}

[…..]                       }

YANG path: /nat/interfaces/private

Instance node:

{

“name”: “if0”,

“address”: “192.168.1.254”,

“netmask”: “255.255.255.0”              

}

FIGURE 3 On the left, a YANG data model for the NAT application. On the right, an example of YANG path (the one of the
“private interface” container highlighted in the model) and an instance node showing a possible run-time value.

TABLE 1 Deriving the YANG path from the YANG data-model.

# YANG element YANG path Example from Figure 3

1 Entire data-model /module-name /nat
2 Container [...]/container-name [...]/interfaces
3 Leaf(/Anydata) [...]/leaf-name [...]/name
4 Entire leaf-list [...]/leaf-list name [...]/authors
5 Element in a leaf-list [...]/leaf-list/{value} [...]/authors/Castellano
6 Entire list [...]/list-name [...]/nat-session
7 Element in a list [...]/list-name/{key-field} [...]/nat-session/0xa26

8 Generic element /element1/.../elementN

/nat/interfaces
/nat/interfaces/private
/nat/nat-session
/nat/nat-session/0x26
/nat/nat-session/0x26/dst_ip

just when the value exceeds a specific threshold; periodic, advertised with a certain frequency, regardless of whether it has
changed or not (this is the case of the nat-session resource shown in Figure 3 ); ondemand, which is never advertised, hence
the value must be explicitly requested by the caller. Additionally, each resource can be accessed ondemand (which represents
the default setting) regardless the value of advertise.
High level ServiceApps use YANG paths to subscribe/get access to SDNApps resources. As an example, if a ServiceApp

wants to modify the address and the netmask of the private interface of the NAT, it may use the YANG path associated with
the resource “private” (shown in the right of Figure 3 ), thus selecting the specific resource (i.e., the private interface) and
provides to the SDNApp the new data as a JSON. The JSON structure is derived from the data model, as shown on the bottom
right of Figure 3 . In the remainder of this paper, a JSON formatted according to (a piece of) the YANG data model is called
instance node. It may contain either the new values to be assigned, in the SDNApp, to the resource identified by the YANG
path (i.e., a new configuration, as in the example above), or the current value of such a resource in the application itself (e.g.,
the run-time state exported by the SDNApp to the ServiceApp).
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Command: publish (notify res. value)

Topic: /nat/nat-session

Content (instance node):

{

“nat-sessions” : [

{

“uuid”: “0xa26”,

“protocol”: “TCP”,

“src_ip”: “10.0.0.1”,

“src_port”: “2526”,

“public_ip”: “130.192.225.79”,

“public_port”: “5678”

},

…

]

}

Command: get (read resource value)

URL: base/nat/interfaces/private

Answer to get @ URL: 

base/nat/interfaces/private

Content (instance node):

{

“name”: “if-0”,

“ipv4-address”: “10.0.0.1”,

“netmask”: “255.255.255.0”

}

REST-based channel

SDNApp - NAT

Message Bus channel

Message Bus

Command: post (set resource value)

URL: base/nat/interfaces/private

Content (instance node):

{

“name”: “if-0”,

“ipv4-address”: “10.0.0.1”,

“netmask”: “255.255.255.0”

}

Answer to post @ URL:    

base/nat/interfaces/private

Content: OK

Request from ServiceApp

Response to ServiceApp

Service Applications

Command: subscribe

Topic: /nat/nat-session

FIGURE 4 Example of messages sent on the message bus (in the left) and on the REST-based channel (in the right), defined
according to the data model of Figure 3 .

4.2 Communication infrastructure
To enable SDNApps to receive configurations from ServiceApps and to expose their own run-time state in accordance with
the data model, we define a logical communication infrastructure that offers two types of connections: a direct (REST-based)
communication channel and a shared message bus based on the publisher/subscriber (pub/sub) paradigm.
Direct channel. This channel, which relies on a set of REST APIs, enables a point-to-point connection between a client and a
server. Particularly, according to Figure 2 , ServiceApps act as clients, while the ToY Agents running in the SDNApps play the
role of servers. The direct channel is used by a ServiceApp to send get() and set() commands to the ToY Agent in the proper
SDNApp, to explicitly retrieve or add/change resources described in the data model associated with the SDNApp itself.
Shared message bus. This channel is instead shared between entities that can publish() messages that are associated with
topics, as well as they can subscribe() to topics; the message bus then brings a message to all the subscribers for the topic
associated with the message itself. In our proposal, ServiceApps act as subscribers, while the ToY Agents are the publish-
ers. Particularly, they publish notifications on updates of resources marked as onchange, onthreshold or periodically in
the data model (e.g., notifications may enclose the new value, the fact the resource has been deleted, and more); each mes-
sage is published on a topic corresponding to the YANG path associated with the resource related to the message itself, as
shown in the example in the left of Figure 4 . Since subscriptions are managed in a hierarchical way, when a ServiceApp
subscribes on a given resource, it will also receive updates about nested resources (e.g., a subscription to the resource iden-
tified by the YANG path /nat/interfaces/private of Figure 3 will also receive updates for any change in resource
/nat/interfaces/private/address).
As shown in Figure 4 , in both channels the URI to be used by a ServiceApp to access a specific resource is dynamically

derived from the YANG path associated with the resource of interest, becoming either aURL in the direct channel, or topic in the
shared message bus. Moreover, the data provided (in case of set() command) or retrieved (in case of get() or subscribe()
command) by the ServiceApp is organized according to the YANG data model itself.

4.3 To Yang Agent
The To Yang (ToY) Agent is the core component of the proposed architecture. It is imported by each SDNApp as an external
module, in order to (i) handle the mapping of (high level) resources described in the YANG data model on (low level) run-time
application variables and (ii) manage the interaction between the SDNApp and the communication infrastructure. Using the
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terminology introduced in Section 4.1, the ToY Agent takes care of setting the configuration and fetching the run-time state of
the SDNApp, providing to the ServiceApps an interface based on YANG paths and YANG-modeled instance nodes (as shown
in Figure 4 ). We designed the ToY Agent to be agnostic with regard to the different SDNApps, to operate without introducing
invasive modifications on them.
The remainder of this section focuses on how this agnostic module works and is structured as follows. First we provide a

description of structures and mechanisms used by the ToY Agent to map run-time application state into YANG-modeled data;
then we present the architecture of the ToY Agent, hence detailing all the components that implement the above mechanisms.
Finally, we describe the steps required to extend an existing SDNApp with our ToY Agent, also providing an overview of the
application bootstrap workflow.

4.3.1 Path Mapping Table and Mapping Mechanism
While the YANG data model (together with all the derived YANG resources) provides a logical, implementation-independent
view of the application, each SDNApp has its own internal data structure that may be only loosely related to the logical view.
Figure 5 shows a possible internal structure of a NAT application that can be modeled through the YANG in Figure 3 . By
comparing the two structures, we can easily notice, for instance, that some common fields have a different name (e.g., the
nat-session list becomes sessionList) or a different “location” (e.g., the leaf public_ip is no longer a value inside the
session list, but is stored in the publicAddress variable). In general, there may be arbitrary differences.
Then, since the ToY Agent communicates with ServiceApps through the high-level YANG abstraction (i.e., YANG paths

and instance nodes), it needs a mechanism to understand, each time, which variables in the SDNApp code must be accessed
to accomplish a request or publish data updates. For example, if a ServiceApp performs a get() request regarding the
YANG path /nat/nat-session/0x26/public_ip, the ToY Agent needs to know that this value is stored in a certain vari-
able, e.g., in the publicAddress attribute of natData object in Figure 5 . Instead, if the request refers to the YANG path
/nat/nat-session/0x26, it needs to know where all needed nested values (protocol, src_ip, src_port, etc. in Figure 3 )
are stored within the application code.
This information is different from case to case, hence it cannot be embedded in the ToYAgent itself, since wewant this module

to be agnostic with respect to both the SDNApp implementation and the data model. For this reason we defined a data structure
called Path Mapping Table (PMT), that describes each association between a YANG resource and the corresponding variable
in the application source code. The ToY Agent, once imported in a particular SDNApp, accesses this structure as an external
information and exploits it to learn, at run-time, how variables of that SDNApp are structured and how they are associated to
the high-level YANG resources.
Particularly, as shown in Table 2 , the PMT maps the YANG paths derived from the data model to the proper object path

within the application object tree. We define object tree the structure of all the variables (i.e., all objects and their attributes)
in the application source code. For instance, the box in the center of Figure 5 reports the object tree corresponding to the
source code of the box on the left. It is worth noting that, unlike the data model, that can be associated with all the SDNApps
implementing the same functionality (e.g., NAT), the object tree is specific for a given implementation, since it depends on
the source code of the application itself. The first element of the object tree is called root object, and corresponds to the most
external object/variable that we have access to (e.g., the object mainApp in Figure 5 ). Each element of the object tree (i.e.,
an application variable) is identified by an object path that begins with the root (character “/”), followed by an ordered list of
attributes built as already described in Section 4.1 in case of YANG path. The right side of Figure 5 shows the object paths
corresponding to the object tree depicted in the central box of the figure.
Since an SDNApp may feature a source code structure that is very different from the high-level view presented in the YANG

model, this originated the necessity of supporting a complex syntax for the PMT records. In the following we present some of
the mapping cases we encountered in our work, using them to intuitively describe how the PMT and its records are formatted.
The most common mapping case is for application variables that are associated to YANG resources having simply a different

name (e.g., sessionList is mapped to the nat-session resource). An other case is when application variables do not have
any mapping to a resource in the data model. An example is given by the variable mac in the object tree show in Figure 5 , which
does not have any correspondence with a resource in the data model of Figure 3 (in fact, no entry involving such a variable
can be found in the PMT of Table 2 ). In some cases, resources that are inside the same parent element in the data model may
correspond to variables located in different objects in the object tree, or vice versa. For example, the resources nat-session and
interfaces (rows #2 and #6 in Table 2 ) are children of the nat node in the data model of Figure 3 , while their corresponding
objects, namely sessionList and ifs, are attributes of two different objects in the object tree of Figure 5 . All the previous
cases leads to the necessity of a record for any possible YANG path within the PMT.
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Object mainApp (root)

+--- Object natData

+--- String publicAddress

+--- List sessionList

|      +--- Object <list element> [+]

|             +--- String sessionId

|             +--- String privateAddr

|             +--- Integer privatePort

|             +--- Integer publicPort

+--- […]

+--- Object networking

+--- List ifs

|      +--- Object <list element> [+]

|             +--- String ifname

| +--- String mac

|             +--- Object ipv4

|                    +--- String address

| +--- […]

+--- […]

Generated object paths:

/

/natData

/natData/publicAddress

/natData/sessionList

/natData/sessionList /{sessionId}

/natData/sessionList /{sessionId}/sessionId

/natData/sessionList /{sessionId}/sessionId

/natData/sessionList /{sessionId}/sessionId

/natData/sessionList /{sessionId}/sessionId

[…]

/networking

/networking/ifs

/networking/ifs/{ifname}

/networking/ifs/{ifname}/ifname

/networking/ifs/{ifname}/mac

/networking/ifs/{ifname}/ipv4

/networking/ifs/{ifname}/ipv4/address

[…]

Class Session {

String sessionId;

String privateAddr;

Integer privatePort;

Integer publicPort;

[…]

}

Class Nat {

String publicAddress;

List<Session> sessionList;

[…]

}

Class Interface {…}

Class NetInfo {

List<Interface> ifs;

[…]

}

Class mainApp {

Nat natData = new Nat(…)

NetInfo networking = new […]

void run() {…}

}

FIGURE 5 From run-time variables (in the left) to object paths (in the right).

A frequent mapping case is when items of a YANG list have a direct correspondence with items of a collection object (e.g.,
an array, a list, a set or a map). An instance of this mapping is realized with rows #3, #4 and #5 of Table 2 . To distinguish
resources in /nat/nat-session, the parametric label {uuid} is used in the YANG path, since the uuid leaf is the key for the
items of the nat-session list according with the YANG model of Figure 3 . To map each resource in this list with a specific
object of sessionList in the object tree, the attribute sessionId is used as parametric label of the object path, since its value
corresponds to the YANG key field (although the application source code does not indicate in any way that such a variable is a
key in the list).
Finally, we encountered some occasional cases where a non-list resource in the data model is mapped to a specific item of a

collection (e.g., a list) in the object tree (or vice versa). This is the case of the private resource in the data model of Figure 3 ,
which corresponds to a specific element of the list ifs in the object tree of Figure 5 ; to describe this mapping we need rows #7
and #8 of Table 2 . Particularly, in row #8 the parametric label in the object path is replaced with the specific value “if0”, the
one of the object corresponding to the resource identified by the YANG path /nat/interfaces/private. Moreover, row #7
maps a dummy resource (called noresource in Table 2 ) within YANG data model, into a generic element (identified by the
parametric label) of the collection in the object tree. This way, the ToY Agent knows that the parametric label of ifs is ifname
and, e.g., if0 is the instance value of the corresponding variable ifname in the application code.
To make the ToY Agent agnostic with respect to the data model and independent from the particular SDNApp internal vari-

ables structure, the PMT must be coupled with a set ofMapping Algorithms that exploit this data structure and enable both read
and write access to the configuration and run-time state starting from its high level representation. Particularly, given a PMT, a
YANG data model and the associated SDNApp, the mapping algorithms both retrieve and set the SDNApp variables, converting
YANG-modeled structures into application objects (and vice versa). As we do not want to introduce overhead on the SDNApps
code by implementing an ad-hoc mapping for each of them, those algorithms are application-agnostic and just rely on the PMT
and on the data model. Our mapping algorithms, described in detail in Section 5, provide the following elementary operations,
which are implemented by the ToY Agent: (i) resolve the association between a YANG path and an object path and vice versa,
through a lookup on the PMT; (ii) fetch an object starting from its object path; (iii) get the value of a given object and write it
into the corresponding instance node (e.g., JSON), according to the YANG data model and the PMT (the YANG data model is
used to derive the structure of the instance node, while the PMT shows how to map application variables into YANG resources);
(iv) set the value of application objects starting from the corresponding instance node (e.g., JSON), according to the PMT.

4.3.2 ToY Agent Architecture
Figure 6 details the architecture of the ToY Agent. According to the figure, such a component is linked to the original SDNApp
and must be configured with both the data model and the PMT associated with the SDNApp itself. The ToY Agent architecture
has been designed to work on top of any SDNApp implementation; it is described below through a top-down approach.
The northbound interface of the ToY Agent consists of two YANG-based modules that connect to the communication infras-

tructure, namely the YANG Based Publisher and the YANG based REST API, which implement respectively the shared
message bus publisher and the HTTP REST server described in Section 4.2.
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TABLE 2 Excerpt of PMT, referred to the data model of Figure 3 and to the object tree shown in Figure 5 .

# YANG path Object path

1 /nat /

2 /nat/nat-sessions /natData/sessionList

3 /nat/nat-sessions/{uuid} /natData/sessionList/{sessionId}

4 /nat/nat-sessions/{uuid}/src_ip /natData/sessionList/{sessionId}/srcAddr

5 /nat/nat-sessions/{uuid}/public_ip /natData/publicAddress

6 /nat/interfaces /networking/ifs

7 /nat/interfaces/{noresource} /networking/ifs/{ifname}

8 /nat/interfaces/private /networking/ifs/if0

9 /nat/interfaces/private/address /networking/ifs/if0/ipv4/address

The On-Demand Access Handler manages get() and set() commands coming from the ServiceApps through the REST
API, relying on the get_node and set_node core primitives provided by the Mapping Library. Instead, the Object Listener
implements the monitoring procedure needed to recognize and notify updates on the SDNApp state. It performs the following
operations: (i) identify, through the data model, the YANG path of resources that should be exported (and when to export them);
(ii) rely on the Mapping Library to convert these YANG paths into objects (map_path and fetcho primitives); (iii) build the
corresponding instance node (using get_node primitive) and export it through the YANG Based Publisher on the message
bus whenever the condition specified in the YANG data model for that resource (onchange, onthreshold or periodically)
is satisfied. Nodes that must be exported onchange/onthreshold are inspected periodically through a polling mechanism.
Performance is analyzed and discussed in Section 6.
TheMapping Library is the core module of the ToYAgent, as it represents the bridge between the high level YANG interface

and the low level object-based structure of application variables. It can access to both the PMT and the YANG data model,
and relies on the Reflective Library to implement the mapping procedures introduced in 4.3.1, thus providing the following
primitives: map_path, converts a YANG path to an object path through the PMT; fetcho, returns an object starting from its
object path; get_node, returns the instance node (e.g., a JSON structure) of the requested YANG resource, reading values from
the application variables; set_node, modifies the application variables based on the input YANG resource instance. In Section 5
we provide a detailed description of four algorithms that implement these procedures.
The Reflective Library is the component that directly interacts with the original application and is in charge of actually

accessing to application variables to perform the classical CRUD (Create, Read, Update, Delete) operations. Particularly, it
allows to examine and modify application variables at run-time through the use of reflection25 (a.k.a. introspection), a feature
that is required since the ToYAgent knows attribute names just during its execution, e.g., when a particular request is performed,
deriving them from the object path retrieved in the PMT2. This approach enables the Mapping Library of the ToY Agent
to operate without having an a-priori knowledge of the SDNApp internal structure. Through the run-time introspection of
application objects, the Reflective Library provides an interface built with the following primitives (also shown in Figure 6 ):
get_attribute(), get_by_attribute(), set_attribute() and append_new(). These are the only procedures that have
direct access to the original SDNApp execution environment (Figure 6 ). For example, the ToY Agent may receive a get()
request for the resource /nat/nat-sessions/0x26/public_ip; then, through the PMT it learns that it has to access to the
object identified by the object path /natData/publicAddress (Table 2 , row #5). At last, the primitive get_attribute is
used to actually access this object. This function accepts an object reference (in this case, object natData) and the name of an
attribute of that object (in this case, the string “publicAddress”), and returns the object reference to that attribute. In Section 5
all reflective functions are exhaustively defined.
It is worth noting that, since the ToYAgent directly accesses to application variables, race conditionsmay derive from possible

situations in which the ToY Agent sets a variable value on which the SDNApp itself is working on it (or even read a temporarily
inconsistent piece of state). To avoid this problem, we assume that SDNApps are thread safe, i.e., that critical regions are properly
protected so that the ToY Agent is prevented from modifying variables during critical operations or read inconsistent data.

2We validated our proposal through Java-based SDNApps, then we exploited the JAVA Reflection API to access and manipulate run-time objects.
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FIGURE 6 Architecture of the ToY Agent.

// Import the ‘‘ToY Agent’’ module into this application
import sdnapp.ToYAgent;

// This is the code that has to be added in the ‘‘bootstrap method’’ of the SDNApp
// Instantiate the ToYAgent, providing it a reference to the root object, the PMT and the data model
public ToYAgent tya = new ToYAgent(this, pmt, yangModel);
// Start the ToYAgent and let’s forget about it
tya.start();

FIGURE 7 Steps required to include the ToY Agent in an existing application.

4.3.3 Embedding Mechanism and Operating Workflow
Mapping mechanism used by the ToY Agent, as well as its architecture itself, have been designed to keep the ToY Agent
independent from the particular SDNApp (from both its implementation and its data model). This way, we reduce the overhead
of the SDNApp developer, which must not write an ad hoc ToY Agent for each new application, thus allowing the inclusion of
any SDNApp in our configuration framework almost without introducing any changes in the application code.
Figure 7 shows the steps that an SDNApp developer is required to carry out to make its software compatible with our

framework. Basically, he/she is just expected to: (i) include the ToY Agent module in the SDNApp; (ii) initialize the ToY Agent
at the application bootstrapping, by providing it a reference to the root object (the most external object that can be accessed from
the outside), the Path Mapping Table and the YANG data model; (iii) start the ToY Agent3.
At the bootstrapping, the ToY Agent performs the following preliminary operations (which are hidden to the SDNApp devel-

oper): (i) notifies the SDNApp identifier and the YANG data model through the message bus, so that external ServiceApps are
enabled to exploit the new application; (ii) analyzes the data model to identify the way in which the value of each resource
defined in the model itself must be exported (i.e., onchange, onthreshold, periodically or ondemand); (iii) reads the PMT
to understand how to map YANG resources into application objects; (iv) starts an Object Listener (Figure 6 ) that monitors
and exports objects associated with resources to be notified onchange, onthreshold, whenever the conditions defined in the
data model are satisfied, and periodic, whenever the appropriate timer expires; (v) enables the REST-based communication
channel to allow any ServiceApp to explicitly access the SDNApp run-time state.

3We based our prototype on SDNApps Java-based OSGi bundles running on top of ONOS; then, we implemented the ToY Agent as a library included in the Main
class, instantiated during the SDNApp activation and initialized with the reference to that class instance as root object.
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5 MAPPING ALGORITHMS

In this section, we detail the algorithms used to map the object-oriented internal state of an SDNApp into the high level YANG-
modeled state, and vice versa. We identified four elementary operations (i.e., those introduced in Section 4.3.1), implemented by
as manyMapping Algorithms: map_path(), fetcho(), get_node() and set_node(). These algorithms are independent from
both the SDNApp and the YANG model, thus enabling implementation-independent access to run-time variables of arbitrary
SDNApps.
The operations implemented by the algorithms presented in this section constitute the Mapping Library, the core module of

the ToY Agent presented in Section 4.3.2.
In the first part of this section we present the notation that will be used in the rest of the section to give a complete and formal

description of our mapping algorithms.

5.1 Structures and Function Notations
Table 3 presents formal notation for data structures that will be considered during the description of the mapping algorithms.
For the sake of cleariness, besides its formal description, every notation is accompaigned with an example that illustrates it
within the NAT use case shown in Figure 3 . Additionally, mapping algorithms rely on the functions below.
Label Functions. Given a resource � ∈ Y , the function labely returns the label �y ∈ Ly of that resource, i.e., the name of

the corresponding YANG node in the model. Given an object o ∈ O, the function labelo returns the label �o ∈ Lo, i.e., the
name of that variable/attribute in the run-time application environment.
Parametric Label Functions. Since, as described in Section 4.1, resources in a list are identified by a YANG path that ends

with a parametric label (namely, the name of the key field in the model), we use function param_labely ∶ Lny → Ly to know
the parametric label of a list resource. Analogously, we use function param_labelo ∶ Lno → Lo for collection objects.
For instance, in Figure 3 , param_labely(“/nat/nat-sessions”) = “hash”. Note that this function can be easily

implemented through an inspection on the PMT.
Instance Node Helpers. Given a key-value instance node � ∈ Nkv and a label �y ∈ Ly, we use (i) the function

get_element(�, �y) to get the node �i ∈ �, and (ii) the function put_element(�, �y,x) to set �i to an input value x ∈ N ,
where �i is the node nested in � with key �y (in symbols key(�i) = �y). Given a list instance node � ∈ Nl, we use (iii) function
append_element(�, �i) to add the instance node �i ∈ N to the list �.
For example, lets � be the instance node in Figure 3 ; then, get_element(�, “name”) = “if0”.
Reflective Library Functions. As described in Section 4.3.2, Mapping Library relies on the Reflective Library. It provides

some functions that, given an object o ∈ O, allow to read or modify the value of any oi ∈ o (i.e., any of its child objects). On
ordinary objects, i.e., o ∈ Oo, oi is an attribute of o; thus, the library provides (i) function get_attribute(o, �oi), that returns
attribute named �oi ∈ Lo of object o ∈ Oo, and (ii) function set_attribute(o, �oi ,x), that sets attribute named �oi ∈ Lo of
object o ∈ Oo to value x ∈ O. On collection objects, i.e., o ∈ Ol, oi is an item of the collection o; thus, the library provides (iii)
function get_by_attribute(o, �oi , x), that returns the first item of collection object o ∈ Ol whose attribute named �oi ∈ Lo
is equal to value x ∈ O, and (iv) function append_new(o, �oi , x), that appends to collection object o ∈ Ol a new item, whose
attribute named �oi ∈ Lo is initialized to value x ∈ O.
For example, let o be the object natData of Figure 5 ; then a call to get_attribute(o, “public_Address”) returns the value
stored in natData.publicAddress.
Fetch Resource Function. Given a YANG path �y ∈ Lno , to retrieve the corresponding resource � ∈ Y we use the function

fetchy ∶ Lno → Y .
Note that fetchy can be easily implemented through a simple lookup in the YANG model.

5.2 Algorithms Description
In this section, we describe the algorithms that perform the bidirectional map between run-time application variables and
resources defined by the YANG data model. They constitute the Mapping Library module of the ToY Agent (Section 4.3.2).
Since mapping algorithms exclusively rely on the content of the PMT and the YANG model, they enable the ToY Agent to be
agnostic regarding the particular SDNApp implementation. The description of all mapping algorithms is provided below.
Map Path Algorithm. This algorithm establishes a link between YANG resources and application objects, since it converts
a YANG path �y ∈ Lny to the corresponding object path �o ∈ Lmo , according with information stored into the Path Mapping
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TABLE 3 Data structures formal notation used in the description of the algorithms.

Notation Description Example

Y = Yco ∪ Yli ∪ Yle ∪ Yll Set of all YANG nodes in the data model, i.e., mod-
ules and containers (Yco), lists (Yli), leafs (Yle) and
leaf-lists (Yll)

nat and interfaces (Figure 3 )
belong to Yco, while nat-session
belongs to Yli

� ∈ Y YANG resource, i.e., each node of a YANG model In the YANG of Figure 3 , each ele-
ment in bold represents a resource

�i ∈ � Resource �i is a node directly nested in resource �
(child resource)

Container private is a child resource
of container interfaces (Figure 3 )

�root ∈ Y The root resource in Y The nat module in Figure 3
Ly Set of all YANG labels, i.e., the name of all YANG

nodes in Y
For the YANG in Figure 3 ,
Ly={“nat”, “name”, “authors”,
...}

�y ∈ Lny YANG path of a given resource � ∈ Y The YANG path of the resource
highlighted in Figure 3 is
/nat/interfaces/private

O = Oe ∪ Ol ∪ Oo Set of all application variables, i.e., “elementary
objects” (Oe), e.g., integers, strings, booleans, “col-
lection objects” (Ol), e.g., list, maps, “ordinary
objects” (Oo) e.g., instances of custom classes

In Figure 5 , networking belongs to
Oo, ifs belongs to Ol and ifname to
Oe

o ∈ O Application object, i.e., each variable/attribute in
the SDNApp execution environment

Every Java object in Figure 5

oi ∈ o oi is an attribute of o (child object) In Figure 5 publicAddress is a
child of the object natData

oroot ∈ O Root object in O The root object of the object tree in
Figure 5 is mainApp

Lo Set of all object labels, i.e., the name of all run-time
variables of an SDNApp

For the example in Figure 5 ,
Lo = {natData, publicAddress,
sessionList, ...}

�o ∈ Lmo Object path of a given object o ∈ O The object path of the list “ifs” in
Figure 5 is /networking/ifs

N = Ne ∪Nl ∪Nkv Domain of all the possible instances (e.g., JSON)
of resources described by a data model. They can
be elementary nodesNe (i.e., nodes without nested
nodes), list nodes Nl and key-value nodes Nkv

The instance of a container resource is
a key-value node, while the instance of
leaf resource is an elementary node

� ∈ N Instance node of a resource � ∈ Y , i.e., a piece of
data that is structured as defined by the portion of
YANG model associated with the resource �

An example of (key-value) instance
node is the JSON data in Figure 3

�i ∈ � Node �i is directly nested in node � (child node) In Figure 3 , node “name” is directly
nested in the example instance node

Table. This path mapping is implemented by the function map_path∶ Lmo → Lny, whose algorithm is omitted since it is a trivial
key-value lookup in the PMT, that retrieves the proper object path based on the input YANG path.
Fetch Object Algorithm. Algorithm 1 shows the fetcho procedure, which, given an object path �o, retrieves the reference
to the corresponding object. To do this, it performs an iterative access to run-time variables in the object tree, fetching, at
each iteration, the object associated with the next label of the path �o given as input (Algorithm 1, line 2). For each label,
the next object is fetched through the function get_attribute, in case the previous object is not a collection (line 7), while
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Algorithm 1 fetcho for object path �o
Input: �o ∈ Lno
Output: o ∈ O
1: o = oroot
2: for all �i ∈ �o do
3: if o ∈ Ol then
4: �pi = param_labelo(sub_path(�o, i))
5: o = get_by_attribute(o, �pi , �i)
6: else
7: o = get_attribute(o, �i)
8: end if
9: end for
10: return o

get_by_attribute is used otherwise, passing the parametric label as attribute (lines 4-5). Both these functions are provided
by the Reflective Library (as described in Section 5.1).4
Example: Referring to the object tree in Figure 5 , lets consider object path �o = /networking/ifs/if0 as an input to

the fetcho procedure. The algorithm iterates over the three labels of �o (i.e., “networking”, “ifs” and “if0”) to access,
each time, the next nested object until the reference to the last one (“if0”) is finally fetched. At the first iteration, the attribute
networking of the root object is accessed (Algorithm 1, line 7), then, at the second iteration attribute ifs of the object
networking is accessed. Since ifs is a list, during the third and last iteration the procedure performs a lookup on the PMT
to discover its parametric label �pi , i.e., ifname (Table 2 , row 7); the parametric label is then used to fetch the correct object
inside the list ifs, namely, the one whose attribute ifname is equal to “if0” (Algorithm 1, lines 4-5). Since “if0” is the last
label of the object path, finally the fetcho procedure returns a reference to this object (Algorithm 1, line 10).
The two main operations needed to map the SDNApp run-time variables (that represent configuration and run-time state) into

an high-level YANG-modeled structure (and vice versa) are described by the recursive algorithms get_node and set_node.
Get Node Algorithm. Each time the ToY Agent receives, from a ServiceApp, a get() command related to a given YANG
path �y, it uses procedure get_node to create and return the corresponding instance node (i.e., JSON data). It is (i) structured
according to the piece of datamodel associated with the resource � = fetchy(�y) and (ii) filled with current values of application
variables. To fill the instance node with proper values, a series of recursive calls to get_node are performed (for readability,
recursive calls are marked with underscores in Algorithm 2). At each recursion step, the algorithm relies on map_path and
fetcho procedures (line 1) to fetch the object o that, according with the PMT, is mapped on the resource identified by the input
YANG path �y. The algorithm starts building the node instance of the resource identified by the input YANG path �y. Then,
at each recursion step, this path is extended in order to build and fill all inner nodes (Algorithm 2, lines 6 and 13); these inner
nodes are then added to the parent node (lines 7 and 14)5. Each recursion branch stops when a leaf resource is reached; the
corresponding (elementary) instance node is filled with the value of the object fetched in that recursion (lines 16-17).
Example: We now provide an example of the get_node procedure, using as reference the YANG in Figure 3 and sup-

posing that a ServiceApp needs to retrieve the resource identified by the YANG path �y = /nat/interfaces/private. In
Algorithm 2, line 1, the get_node procedure retrieves the object path �o = /networking/ifs/if0 through a lookup into the
PMT (Table 2 , row #8). Then, in the same line, it gives this object path as input to the fetcho procedure, in order to get the
reference to the corresponding object o (as described in the previous example). After the object o has been fetched, the same is
done for the corresponding resource � (line 2) through the YANG model, which is needed to know how the instance node must
be structured. Since in our example the resource /nat/interfaces/private is a container, a key-value instance node is ini-
tialized (Algorithm 2, line 4). Then, for each child resource, the algorithm is repeated recursively and the resulting child-node is
appended using its label as key (lines 6-7). For instance, let’s consider the child resource with label “address”; the path �y is
extended with this label (i.e., /nat/interfaces/private/address) and get_node is called again. At this point, the object
path obtained through the lockup into the PMT is /networking/ifs/if0/ipv4/address. Thus, fetcho accesses to the inner
objects, i.e., first ipv4, then address, thus returning the last one, whose value is the IP address of the private interface. Since

4Algorithm 1 uses an helper function sub_path to truncate a path to the position given as input (position is considered from the root for positive inputs, from the last
label for negative ones). For instance, sub_path(“/natData/sessionList/0x26”,−1) = “/natData/sessionList”.

5Algorithm 2 uses an helper function add_path to extend the YANG path with the label given as input.
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Algorithm 2 get_node from a YANG path �y
Input: �y ∈ Lny
Output: � ∈ N
1: o = fetcho(map_path(�y))
2: � = fetchy(�y)
3: if � ∈ Yco then
4: � = dict_node()
5: for all �i ∈ � do
6: �i = get_node(add_path(�y, labely(�i)))
7: put_element(�, labely(�i), �i)
8: end for
9: else if � ∈ Yli ∪ Yll then
10: � = list_node()
11: for all oi ∈ o do
12: �pi = param_labelo(map_path(�y))
13: �i = get_node(add_path(pathy(�y, �

p
i )))

14: append_element(�, �i)
15: end for
16: else
17: � = o
18: end if
19: return �

Algorithm 3 set_node � in object associated with �y
Input: �y ∈ Lny, � ∈ N
1: �o = map_path(�y)
2: o = fetcho(�o)
3: if � ∈ Nkv then
4: for all �i ∈ � do
5: set_node(add_path(�y, key(�i), �i)
6: end for
7: else if � ∈ Nl then
8: for all �i ∈ � do
9: idi = get_element(�i, param_labely(�y))
10: append_new(o, param_labelo(�o), idi)
11: set_node(�i, add_path(�y, idi))
12: end for
13: else if � ∈ Ne then
14: oparent = fetcho(sub_path(�o,−1))
15: set_attribute(oparent, labelo(o), value(�))
16: end if

the resource � (i.e., address) of the current recursion is a leaf, this value is directly used to fill the node � (line 17). The just
filled instance node is then returned to the caller (line 19) so that it can be appended to the parent node (lines 7 or 14) The same
is done for other children resources of /nat/interfaces/private, namely name and netmask. At the end of all the recursion
steps, the just built JSON node will be equal to the one shown in Figure 3 ; at last, it can be returned by the ToY Agent to the
ServiceApp as response to the get() command.
Set Node Algorithm. The set_node procedure (Algorithm 3) is used by the ToY Agent to modify the configuration of an
SDNApp each time the ToY Agent receives a set() command from a ServiceApp. It takes a YANG path �y and an instance
node � (e.g., JSON) as input, and configures the SDNApp modifying its run-time variable according to the data in the instance
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node. To configure all run-time variables with value stored in the instance node, a series of recursive calls to set_node are
performed (for readability, recursive calls are marked with underscores in Algorithm 3). Similarly to get_node, the algorithm
starts by fetching the object corresponding to the input YANG path �y; this is configured through functions append_new or
set_attribute (lines 10, 14), provided by the Reflective Library. At each recursion step, the base YANG path is extended
with the label of each child resource, in order to fetch and configure all inner objects. If a new object must be created as element
of a list (lines 8-11), first its unique ID (attribute corresponding to the parametric label) is initialized according to the value of
the instance node (the attribute initialization is implemented by the function append_new of the Reflective Library); then, it is
in turn configured through a recursive call to set_node (line 11). Also in this case, each recursion branch stops when a leaf
node in the YANG data model is reached; its instance value is used to configure the corresponding object (lines 14-15).6
Example: Lets suppose that instance node � of Figure 3 is used to configure an application having the object tree in

Figure 5 . The YANG path �y = /nat/interfaces/private is given as input to set_node, together with the instance
node �. Algorithm 3 lines 1-2 fetch object o and resource �. At this point, since the instance node is a key-value structure
(condition in line 3 is verified), the YANG path is extended once for each inner node (lines 4-5), in order to continue the recur-
sion. For instance, for the inner node with key “address”, the input YANG path /nat/interfaces/private is extended as
/nat/interfaces/private/address; this is used, together with the inner node value “192.168.1.154”, to call again the
set_node procedure (line 5). With this new input, due to the mapping into the PMT (Table 2 , row #9), object o returned by
fetcho in line 2 is the string attribute privateAddress (Figure 5 ). Since � is now an elementary node, object o is set to its
value “192.168.1.154” (Algorithm 3, line 15). In the same way, set_node is called recursively also for other child resources
of /nat/interfaces/private, namely name and netmask.
The performance of the algorithms presented above are analyzed and discussed in the next section.

6 VALIDATION

To validate the approach proposed in this paper, we set up a testbed consisting of a Mininet virtual network, controlled by an
instance of the ONOS SDN controller (Junco version 1.9.0)7. Our evaluation focuses on two major sets of results. We first
measure the overhead introduced by the ToY Agent for individual read and write operations, together with update notifications;
performance obtained with an ad-hoc manipulated SDNApp are used as comparison reference. Then we analyze the applicability
of our approach over each use case presented in Section 3.

6.1 ToY Agent Evaluation
To evaluate the delay introduced by the ToYAgent, we used an existing application called “SSSA-analytic-tool”, which has been
validated in previous works of authors to serve network orchestration functions within SDN domains26. Since this application
has been developed independently from this work, it does not natively provide any interface to allow an external service (e.g.,
network service orchestration) to access its state. Indeed, the above-mentioned network orchestration functions could only be
carried out by referring to implementation-specific data formats and API.
To enlarge the scope of applicability of the SSSA-analytic-tool, this SDNApp has been extended by integrating it in the

software architecture presented in this paper. Thus, we simply included the generic ToY Agent module (the source code of our
prototype is available at27) and initialized it on bootstrap by merely invoking its “start” method. Additionally, to evaluate
the ToY Agent overhead against traditional ad-hoc approaches, we conducted our tests also on a second version of the SSSA-
analytic-tool, that has been modified by means of a REST interface that enables direct access to run-time data. In this case, the
JSON representation is strictly dependent on the application itself (it follows the same structure of the SDNApp variables) and
there is no higher level common abstraction.
Measurements have been taken considering the variation of the depth parameter, i.e., the maximum length among the YANG

node branches starting from the node that has to be set/retrieved by the operation to perform. For instance, all leafs have depth 0,
the instance node of the private interface in Figure 3 has depth 1 (since it contains only elements with depth 0), and so on. The
maximum depth of an instance node of the YANG in Figure 3 is 3 (we then say that the depth of the YANG model itself is 4).
For validation purpose, a YANGmodel with depth 9 has been used (≈ 1000 resources), together with a PMT to associate YANG

6Note that, to modify the value of a leaf object, Algorithm 3 needs to fetch the reference to the parent object.
7In our tests we deployed ONOS, Mininet, and all modules of our architecture on a Linux debian 4.14.13-1-amd64, on top of a physical machine with 16 GB of RAM

running an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz.
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FIGURE 8 (a) Partial times needed to (i)map YANG paths into Object paths and (ii) fetch an object reference starting from its
path, for different depth levels. (bc) get_node (b) and set_node (c) total times for different depth levels; values are compared
with direct ad-hoc access. Upper and lower quartils are plotted along with errorbars.
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FIGURE 9 (a) Time overhead introduced by the ToY Agent for read and write operations, at different depth levels. (b) Addi-
tional lines of code needed to enable read and write access to SDNApp variables for different depth levels. (c) ToY Agent CPU
consumption and notification delay for different polling periods (upper and lower quartils are plotted along with errorbars).

resources with the SDNApp variables.8 Higher levels of depth have not been considered since rarely widespread data-models
exceed a depth of 6.
Access Time Evaluation. We performed some get()/set() operations on the variation of the depth parameter. Partial times
of each algorithm described in Section 5.2 have been measured to test the performance of each of them. Results taken over
thousand samples for each depth level are shown in Figures 8 (a-c).
In particular, Figure 8 a shows the partial times required by the map_path and the fetcho procedures. The partial time taken

to convert a YANG path into the corresponding object is almost constant (about ten microseconds) with the depth growing,
since this operation corresponds to a lookup on the PMT. The fetcho procedure time has the same order of magnitude, but its
value slightly increases with the increase of the depth (with a slow linear growth).
The graph in Figure 8 b depicts the entire time needed by the ToY Agent to perform read (get_node) operations. As the

graph shows, even if the curve features an exponential trend (as expected from the use of recursive algorithms), for depth levels
below 6 it still grows almost linearly. This is a significant result since widespread data-models usually feature data model with
far smaller depths. Additionally, values are compared with those of the ad-hoc manipulated application. For depth levels below
7, despite the ToY Agent overhead, the total time still sticks below a couple of milliseconds, that is reasonably low for read
operations of a whole SDNApp state. Similar considerations can be done for write (set_node) operations (Figure 8 c), which
in general require slightly higher times.

8The YANG model and the PMT used are not shown here for space reasons. A big data model has been prepared ad-hoc to measure performance to a very high (and
uncommon) level of depth. For the same purpose, the SSSA-analytic-tool application itself has been extended with a significant amount of additional variables.
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Figure 9 a depicts the proportionate delay overhead introduced by the ToY Agent normalized on the baseline direct access
to SDNApp variables. The graph shows that, especially for write operations, there is no direct connection between the pro-
portionate overhead and the depth level of the accessed node, i.e, increasing the depth level does not necessarily leads to an
higher percentage of overhead. This is explained by noting that, despite being noticeable faster, also the ad-hoc approach fea-
tures exponential trends with the node depth (Figures 8 b-c). Indeed, this is the expected trend for object parsing/serialization.
The variations in Figure 9 a are instead the symptoms that the algorithm is more susceptible to the particular nature of the data
that each request has to manipulate (e.g., differences between the YANG and the internal representation, data structures used to
implement object collections, etc.).
Finally, please note that this overhead does not refer to any particular application, since it is based on measurement taken

using a large data model that features arbitrary data structures. The correlation between the overhead and the specific use case,
along with considerations about the involved data structures, will be analyzed in Section 6.2.
Programming Overhead Evaluation. The overhead in terms of additional line of codes that the two approaches introduce to
the original SDNApp is shown in Figure 9 b. In Section 4.3.3 we have already shown that 3 lines of code are enough to import
and run our ToY Agent into an existing SDNApp. On the other hand, the “ad-hoc” application has been extended with a minimal
Jersey REST server that is managed by ONOS. This required some few extra classes with a considerable amount of additional
code, over than some modification in the original SDNApp source code. Ad-hoc modifications are detailed below.
For the REST interface we needed two small classes plus the implementation of a controller object, whose length depends

on the depth level of the run-time state, as it needs to implement two different methods for every single object and variable
that have to be exported. In our implementation, we needed 9 lines of code on the REST controller for each minimal get()
operation and 15 for each set(). Of course this grows exponentially with the depth level (for our setup, we implemented just the
methods needed to measure the performance, i.e. two for each depth level). Since ONOS manages the REST service through an
inversion of control paradigm, no additional code has been required to run it. However, getter/setter methods have been added to
the attributes of the root class, to allow the REST controller to access them (a total of 32 lines for 4 attributes). Most important,
all existing classes have been extended with two custom methods to perform custom JSON parsing and serialization (≈ 25 lines
per class, depending on the number of attributes to be exposed). Totals for each depth level are shown in Figure 9 b. Since the
code overhead in the ToY Agent is extremely low and constant (3 lines of code), the graph also takes into account the lines of
the PMT, despite being this completely external and not an application invasive modification. The figure clearly assesses that,
from the application maintainer point of view, the programming overhead to enable read and write access through our approach
can be considered negligible compared with an ad-hoc manipulation of the SDNApp.
Notification Delay Evaluation. As presented in Section 4.2, ServiceApps may subscribe to desired resources to be notified
when something on them changes. Since variables are monitored with a polling mechanism, we measured the notification delay
together with the CPU consumption of the system, on the variation of the polling frequency9. Figure 9 c summarizes the results
taken over hundred samples. The graph shows how, obviously, with a growing polling period, the time needed to receive the
notification increases, while the CPU consumption decreases (CPU consumption values are shown in the vertical axis on the
right side). Measured values show that, with a polling period of ≈ 0.8s or greater, CPU consumption remains almost constant
(with a slow decrease from ≈ 0.2% to ≈ 0.1%), while the notification latency starts to grow (with an overall logarithmic trend,
but the curve slope is very high until a polling period of 5s). A good compromise, therefore, is a polling period of 0.8s, that
provides low CPU consumption (≈ 0.2%) with a reasonable average notification latency of ≈ 0.5s.

6.2 Use Cases Evaluation
In this subsection, we compare the performance of the ToY Agent against the ad-hoc application under some specific scenarios,
to discuss the delay overhead introduced by this component for different use cases. For this purpose, in Figure 10 , we describe
the workflows of the use cases presented in Section 3 which detail the list of operations that the ServiceApps execute on the
SDNApps (i.e., read/write operations).
IPS workflow. In Figure 10 a we assume that the ServiceApp (IPS) periodically performs read operations toward the IDS and
the Network Monitor SDNApps to collect, analyze and aggregate the network status. Once an intrusion is detected (e.g., a threat
or an anomalous traffic), the IPS performs a write operation on the SDNApp (i.e., firewall in this case) to install a new rule to
protect the network infrastructure.

9Measurements still refer to our validation YANG model with depth 9 and ≈ 100 resources.
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FIGURE 10 Use case workflows for (a) IPS (b) Service Migration and (c) Service Orchestration scenarios.

Migration workflow. The workflow related to this scenario is depicted in Figure 10 b. The ServiceApp (i.e., migration service)
waits for threshold based notifications from a monitored SDNApp (i.e., a NAT) which reports that the quality of service is
deteriorating and that a migration is necessary. At that point, the ServiceApp first performs a read operation to acquire the
current run-time state of the existing instance (the state can be modeled by the YANG model in Figure 3 ). Then, it copies the
whole state to a new SDNApp instance (a write operation is performed). We then assume that, if in the meanwhile, the status of
some SDNApp parameters changes (e.g., new entries on the NAT table), other smaller write operations will be executed, where
those parameters are updated.
Orchestration workflow. Finally, Figure 10 c depicts the workflow of the service orchestrator use case. In this scenario, the
NFVO executes some write operations to setup virtual links connecting VNFs of a Network Service. The orchestrator may set
some QoS threshold values according to negotiated SLA for a given Network Service (e.g., maximum switches throughput,
maximum links bandwidth for virtual links). When a SLA is violated (e.g., due to a congestion in the network), the NFVO
receives a notification from the Network Monitoring Tool. At that point, the NFVO first gets the current status of the network
by executing a read operation and then, through a write operation, properly configures the flow entries of the virtual link that is
suffering from the congestion, thus satisfying the SLA.
From the above descriptions, we come to the conclusion that each use case has different characteristics in terms of interactions

between the ServiceApps and SDNApps, and in terms of exchanged data. In the following, we numerically characterize the
3 use cases and we report, for each of them, the overall amount of time needed to perform all the listed operations. For what
concerns the IPS scenario, as stated in28, a tuned IDS produces an average of 3000 alerts per day, among which only 13.2%
report an intrusion. Based on these data, we can assume that, for each 7 read operations of below SDNApps each performed
every 30 seconds, 6 of them do not report an intrusion, thus tens of bytes are exchanged. Once an intrusion is detected, a slightly
bigger read that retrieves all the related information is performed, followed by the small write operation that sets the firewall
rule. These data may be modeled with depth 1 instance nodes. On the contrary, in the migration service scenario, a threshold
based notification is immediately followed by the decision of migrating the SDNApp, to avoid performance deterioration. At
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TABLE 4 Delay introduced by the ToY Agent for three dif-
ferent use cases compared with direct ah-hoc access (average
times taken over thousand samples are shown).

Use Case Direct Access [ms] ToY Agent [ms]

IPS 0.8611 1.5944
Migration 1516.41 2298.81

Orchestration 0.8131 1.1299
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FIGURE 11 Overall percentage overhead introduced by the
ToY Agent for three different use cases.

this point the ServiceApp and the SDNApp exchange huge amount of data compared to the previous scenario, to migrate the
application state (the whole NAT table in a big network may consist of around 10K of entries). The write operation which sets
this amount of data modeled with a 3-depth instance node requires hundreds of milliseconds, if the incremental overhead of all
the table entries (depth 1) is also considered. The subsequent write operations regard few entries of the table and then require
less time (tens of milliseconds). Finally, the service orchestration scenario mainly requires write operations that exchange only
few bytes (value of the threshold, flow rules parameters) and which require few time (less than one millisecond). The number of
write operations necessary to install the Network Service depends on the particular scenario. In this numerical evaluation, we
have considered the scenario described in29, where 5 virtual links are installed.
According to these assumptions, we evaluated, for each use case, the overall time necessary to execute all the operations

described above using both (i) the ToY Agent and (ii) ad-hoc manipulated applications with direct access to run-time state.
Results are reported in Table 4 . Moreover, to better evaluate the overhead that the TOY Agent introduces in each use case, we
normalized the overall delay to the baseline value needed with direct access to application variables (Figure 11 ). For all the
use cases, the ToY Agent introduces a proportionate overhead below the 100%. However, a particular high overhead has been
registered for the IPS scenario compared to the others, as it is the only one where the overhead largely exceeds a value of 50%.
It appears that the high proportion of read operations that characterizes this use case constitutes a penalty for using the ToY
Agent. In fact, as shown in Section 6.1 (Figure 9 a), mapping algorithms seem to suffer, on average, more for read operations
than for write ones, when compared to direct object access.

7 DISCUSSION

This section points out the advantages of the approach we proposed in this paper, as well as it discusses the requirements that
must be satisfied by the SDNApps for being able to exploit our run-time state inspection algorithms and the companion software
framework.
Experimental validation demonstrates that our approach achieves its objectives while guaranteeing low implementation and

execution overhead. More specifically, developers of SDNApps need to perform very few modifications to their source code to
enable automatic state inspection (i.e., only 3 lines of codes were added to the SSSA-analytic-tool application, as shown in
Figure 7 ). Furthermore, as shown in Section 6, the execution time of the above algorithms is low (i.e., units of milliseconds
for SET/GET operations). Of course, even if the overall overhead measured on reference use cases workflows is reasonable,
the percentage overhead of single read/write operations may be high in some cases. The main limitation is that the current
prototype adopts an interpreter-based approach to retrieve data from the application. Therefore, a performance improvement
may be achieved by integrating well-known dynamic code generation approaches, through which, once the data model is known,
the ad-hoc code needed to parse data can be generated.
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It is worth noticing that the proposed approach is rather general, not being limited to SDNApps. In fact, the creation of an
abstract data model for each application and the capability to provide automatic access to its internal data may be useful in other
contexts beyond SDN applications and controllers, and may be an interesting direction for our future research activities.
Our work pointed out several requirements for current SDNApps to be able to exploit the capabilities of our state inspection

library, to enable the seamless adaptation of existing applications to the new service orchestration architecture. First, it requires
SDNApps to be thread safe, e.g., to avoid that the ToY Agent modifies the value of a particular variable while the application
is executing a critical section. Second, SDNApps must be written in a language (e.g., Java, Python) that supports reflection to
access variables or a similar mechanism, such as Java Reflective APIs30. Nevertheless, this does not represent an important
limitation for SDNApps, since most important SDN controllers are developed in Java and exploit the OSGi framework, hence
support only applications developed as Java bundles.
Finally, some limitations of this approach can be envisioned as well. First, the State Agent must use polling cycles to promptly

discover any modification to a run-time variable of the SDNApp that, according to the YANG data model, has to be exported in
the onchangemode (i.e., as soon as it value change), and consequently publish the new value on the message bus. According to
our tests, this may have a negligible impact in terms of CPU cycles in case the update frequency is kept on the order of tens of
milliseconds (which looks reasonable for most of the applications), but may worsen in case higher frequencies are requested10.
An alternative solution consists in avoid the polling by modifying the application and defining a callback invoked when the
variable value changes. However, this goes against one of the objectives of our work, which aims at limiting the impact on the
source code of SDNApp to simplify the porting of existing applications to our framework.
Second, the language that has to be used to create the object path in the PMT is rather complex, hence writing the required

statements may be far from trivial. This is due to the possible very different design of the YANG data model compared to
the internal structure of the application, and the necessity to obtain the object path purely from the incoming request, which
contains only references to the data model. However, in our experience the effort required to design a YANG-native interface
and implement the required interactions with the northbound API (e.g., in case the SDNApp has to be developed from scratch) is
much higher than the one guaranteed by our approach. This was verified by implementing a YANG-based northbound interface
compatible to our software architecture in some SDNApps written in Python31, and leveraging an helper library to facilitate
the writing of the interface code; the application was obviously more optimized (e.g., when handling onchange variables), but
the development process was more time-consuming (on the order of one man/week for an application such as a NAT), which
confirmed the advantages of the approach proposed in this paper, when possible.
Third, our approach is not available as long as precompiled applications are concerned11, which may be rather common when

VNFs are deployed in a cloud-based datacenter as virtual machines, such as many network applications that are inherited from
the Linux world (iptables for NAT and firewalling, bind for DNS, etc.). However, our experience shows that also the above
applications can be ported to the proposed software architecture by using a mixture of bash scripting, monitoring of in-kernel
structures, and writing the equivalent of a wrapper ToY agent that implements the required northbound interface. For instance,
in32 an iptables-based VMwas integrated within the overarching software architecture presented in this paper. In this respect,
it is worth noticing that the mapping algorithms presented in Section 5 have been used also in this case to provide the state
inspection capabilities to traditional applications as well. This suggests that the state inspection algorithms presented in this
paper may have a general validity, hence are not subject to the requirements that refers to the SDNApps presented earlier in this
Section.

8 CONCLUSION

This paper presents an architecture that allows to makes SDN application internal state available to external Services, granting
both read and write access to run-time variables, and also the possibility to receive notifications with state updates any time
something of interest changes.
Tomodel the arbitrary, possibly complex, run-time state of SDNApps into high level structures, the YANGmodeling language

has been used. A set of algorithms maps the low level data structure of the SDNApps state into the high level YANG one,
independently from the structure itself and relying just on information kept into the SDNApp specific YANG model and Path
Mapping Table. This allows to include arbitrary SDNApps into the proposed architecture without introducing neither changes

10The polling frequency is one of the parameters of our library, which the caller SDNApp can set upon loading the ToY Agent.
11For the sake of precision, although the approach presented in this paper may be more general, this paper focuses on SDNApps that operate in an SDN controller,

which should exclude all the applications that are executed as native software in VMs.
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on the code of the application itself nor computing overload. Performance validation showed that the delay introduced by the
proposed approach and mapping algorithms scale well even for unusually big YANGmodels with high depths. By analyzing the
applicability of this approach on different use cases, it appears that that the introduced access overhead is reasonable for most
scenarios. Moreover, numerical data show that the delay overhead is widely compensated by the few programming requirements,
in terms of additional lines of code, compared with an ad-hoc manipulation of each application.
Although our validation has been carried out in the SDN context, this work can be easily extended and can accommodate

other kind of applications as well. This may allow high level services to exploit, with a modular approach, any kind of Network
Service across technologically heterogeneous infrastructures (e.g., SDN-based networks, data centers, modern CPEs). Such an
extension is left as a future work.
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