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Secrecy Analysis of Finite-Precision Compressive
Cryptosystems

Matteo Testa, Tiziano Bianchi, and Enrico Magli

Abstract—Compressed Sensing (CS) has recently emerged as
an effective and efficient way to encrypt data. Under certain
conditions, it has been shown to provide some secrecy notions.
In theory, it could be considered to be a perfect match for
constrained devices needing to acquire and protect the data with
computationally cheap operations. However, theoretical results
on the secrecy of compressive cryptosystems only hold under the
assumption of infinite precision representation. With this work,
we aim to close this gap and lay the theoretical foundations to
support this practical framework. We provide theoretical upper
bounds on the distinguishability of the measurements acquired
through finite precision sensing matrices and experimentally
validate them. Our main result is that the secrecy of a CS cryp-
tosystem can be exponentially increased with a linear increase in
the representation precision. This result confirms that CS can be
an effective secrecy layer and provides tools to use it in practical
settings.

Index Terms—Compressed Sensing, Compressive cryptosys-
tem, Quantization, Finite-precision, Secrecy, worst-case bounds.

I. INTRODUCTION

A. Motivation

Compressed Sensing (CS) [1], [2] has been extensively
studied over the last decade as an attractive way to perform
dimensionality reduction. According to CS theory, signal ac-
quisition and compression can be jointly performed by means
of random projections allowing for sub-Nyquist acquisition
rates [3], [4]. In more detail, a K-sparse signal, i.e. a signal
with K non-zero entries, can be exactly recovered with over-
whelming probability from its random linear measurements if
some assumptions on the sensing matrix are satisfied [2], [4],
[5]. The ability of performing low complexity and low energy
consumption acquisition is one of the main reasons behind the
rise of CS in the last years. Works such as [6]–[8] showed its
advantages over traditional acquisition methods. Furthermore,
in [9] the authors consider the specific application of CS to
different Internet of Things (IoT) scenarios.

It has then become evident that, because of its structure, CS
could also provide some notions of secrecy [10]. If the sensing
matrix is not known, the original signal cannot be recovered
and the CS framework acts as a private key cryptosystem.
In this regard, the sensing matrix entries are the secret key,
thus only shared among trusted parties, the original signal
is the plaintext and the measurements are the ciphertext; the
encryption is performed by means of CS acquisition while the
decryption corresponds to CS recovery.
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and Telecommunications, Politecnico di Torino, Turin, 10129 ITALY e-mail:
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This means that all applications making use of CS can
also provide some kind of privacy, with little or no added
cost. This is extremely advantageous for the wide range of
low complexity devices which may acquire sensitive data, e.g.
in the internet of things scenario, and might not be able to
cope with standard encryption schemes such as AES [11].
Moreover, these devices are oftentimes heavily constrained in
terms of representation precision, see e.g. [12]. Furthermore,
it has to be highlighted that any practical system in which
the sensing matrix has to be stored, automatically implies
that its entries are represented with finite precision. If the
sensing matrix entries are sub-Gaussian, then also its finite-
precision counterpart will follow a sub-Gaussian distribution.
In turn, this implies that a sparse or compressible signal
acquired with such sensing matrix and enough measurements
can be recovered with high probability. Nevertheless, if we
focus on the security aspects, it is not clear how fast the
secrecy may decrease when the representation precision is
reduced. This indeed motivates us to explore the secrecy of
CS cryptosystems exploiting sensing matrices under finite-
precision representation.

B. Our contribution

Starting from the preliminary experimental results on the
secrecy of finite-precision sensing matrices presented in [13],
with this work we formalize and extend the results from a
information-theoretic perspective. This will allow us to address
the gap existing in literature between the secrecy provided
by CS cryptosystems exploiting sensing matrices under in-
finite precision representations and more practical scenarios
requiring finite precision. To the best of our knowledge, this
is the first work in literature dealing with finite precision
representations lying on a larger-than-binary alphabet.

More specifically, we prove that a CS cryptosystem exploit-
ing quantized and truncated Gaussian entries can achieve a
secrecy which is a function of the available representation
precision. Next, we show that the same result can also be
extended to the case of sensing matrices with i.i.d. entries
drawn from a discrete Gaussian distribution.

More in detail, we derive upper bounds for the secrecy (in
terms of θ-distinguishability [14]) in the worst case scenario of
cryptosystems employing 1) quantized and 2) discrete Gaus-
sian sensing matrices. If equal energy signals are considered,
then we show that there exists a regime condition for which
the secrecy exponentially increase with the number of bits
employed for the quantization of the sensing matrix entries. On
the other hand, in case of signals having arbitrary energy, we
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prove that the secrecy is not only related to the representation
precision of the sensing matrix entries, but it also depends on
the energy mismatch and derive an upper bound on this latter
term.

Lastly, the validity of the obtained bounds is evaluated
through extensive experimental simulations.

As a remark, it is important to consider that the results of
this paper can also be exploited in works which rely on known
secrecy properties of specific sensing matrices constructions.
As an example, in [15], where the focus is put on practical
and secure sensing matrix generation schemes, the results are
based on the assumption of using sensing matrices for which
the secrecy has already been proven.

C. Relation to prior work

The seminal paper of Rachlin and Baron [10] was the first
study related to the secrecy capabilities of CS. Further studies
such as [16] focused on the asymptotic secrecy properties of
compressive encryption, showing that measurements of equal
energy signals become indistinguishable as the size of the
original signals tends to infinity. Non-asymptotic analysis of
the distinguishability of measurements sampled from Gaussian
i.i.d. sensing matrices was carried out in [14]. In this latter
work, the authors show that normalizing to unit energy the
signal leads to perfect secrecy under the assumption of one
time sensing (OTS) acquisition, i.e. the sensing matrix is re-
generated at each encryption. A similar analysis was also ex-
tended to the case of circulant sensing matrices in [17], where
the authors characterize the increased information leakage of
the measurements due to the structured nature of the sensing
matrix. Further, a more comprehensive review on the secrecy
properties of different classes of sensing matrices and signals
was given in [18].

From all the above works, it has emerged that, because of
the linearity of the sensing process, the measurements will
always reveal at least the energy of the original signal. The
best case, in which only the original signal energy is leaked
in the non-asymptotic case, is that of sensing matrices made
of real-valued Gaussian i.i.d. entries. In order to overcome
this problem, proposed solutions consider either to normalize
the signal to unit energy as in [14] or to obfuscate the
energy as in [19]. In this latter work, the authors propose a
method to obfuscate the energy of the original signal through
scalar multiplication, avoiding the encryption and transmission
burden related to the transmission of plaintext energy. Inter-
estingly, the authors show that this method also allows trusted
parties to perform basic signal processing operations in the
encrypted domain, i.e. anomaly detection. Differently, in [20]
the author considered the effect of the energy mismatch in
case of compressive cryptosystems employing both Gaussian
and Bernoulli sensing matrices. In more detail, they obtain
Total Variation bounds on the measurements distinguishability
and show that in the case of signals with unequal energy, the
measurements are nearly distinguishable based on the system
parameters.

Other works shifted the emphasis on the encryption models.
In [21], similarly to standard private key cryptosystems, modes

of operation for compressive encryption are introduced which,
along with the use of Bernoulli sensing matrices, make the
considered scenario suitable for practical implementations. On
a similar line, in [22] different encryption models, including a
model based on optical imaging, are discussed. In addition, the
authors also show how a practical parallel compressed sensing
scheme with random permutation can achieve asymptotical
spherical secrecy. Lastly, in [23] the authors discuss how the
secrecy notions of CS can be effectively used in applications
such as multimedia, cloud computing and IoT.

Regarding practical systems, other works targeted a specific
case of practical sensing matrix: the one made of Bernoulli dis-
tributed entries. As an example, in [16], [24], the authors also
consider Bernoulli sensing matrices and prove their asymp-
totical spherical secrecy. However, higher dimensional finite
alphabets were only considered in [13] from an experimental
perspective.

D. Organization

The remainder of this paper is organized as follows. In
Section II we provide some background and notation about
compressed sensing, the finite-precision Gaussian distributions
and the secrecy metrics we will adopt for the rest of the paper.
The main results of this work are presented in Section III. The
experimental results and their discussion are shown in Section
IV.

II. BACKGROUND

A. Compressed Sensing

Given a signal x ∈ Rn×1 being K-sparse, thus having at
most K non-zero entries, i.e. ||x||0 ≤ K, and Φ ∈ Rm×n
with m� n being the sensing matrix, then the CS acquisition
process can be written as

y = Φx, (1)

where y is the measurements vector. As long as m ≥ 2K, we
have that x can be exactly recovered from y by solving the
following minimization problem

x̂ = arg min
x
||x||0 s.t. y = Φx.

However, the above problem is NP-hard. To overcome this
problem, it can be shown that if sensing matrix entries are i.i.d.
drawn from a sub-Gaussian distribution, then we can recover
the original signal with overwhelming probability by relaxing
the `0-norm by the `1-norm as

x̂ = arg min
x
||x||1 s.t. y = Φx, (2)

for sufficienly large m. It is worth noting that different
algorithms designed to solve the above problem are available
in the literature. Among the most efficient ones, which follow
a greedy approach, we can identify the Orthogonal Matching
Pursuit [25] and CoSaMP [26], and thresholding algorithms
such as [27]–[29]. Furthermore, if higher reconstruction ac-
curacy is needed, though more computationally demanding,
convex-based algorithms which solve (2) can be employed,
see [30]–[33]. Lastly, let us highlight that oftentimes, natural
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signals are compressible in some basis rather than exactly
K-sparse in the original domain. The compressibility implies
that, in some basis, the coefficients of the signal, when sorted,
rapidly decrease to values close to zero; hence can be well
approximated by a K-sparse signal. Even though in the case of
compressible signals there is not guarantee to exactly recover
the original signal, an accurate recovery is possible for fast
decaying coefficients and enough measurements. Although
compressible signals are of interest in many applications, for
the sake of simplicity, in the following we will specifically
consider the case of K-sparse signals. Nevertheless, in Sec.
III we provide an intuitive explanation of the behavior of such
compressible signals within the considered cryptosystems.

B. Finite-precision Gaussian distributions

As will become clearer in the following, in order to derive
our results at first we need to consider the statistical distance
between a quantized Gaussian distribution and a discrete Gaus-
sian distribution. Both these distributions can be defined over a
one-dimensional lattice rΛ = {rz : r ∈ R, z ∈ Z}, however
without loss of generality and to improve the tractation, unless
differently specified from now on we consider Λ to be a
lattice defined by r = 1 which corresponds to consider the
integer set Z. We can now define the two distributions we
will consider throughout this work. A zero-mean quantized
Gaussian distribution over a lattice Λ can be defined as

GΛ,σ(z) =

∫ z+1/2

z−1/2

1√
2πσ2

e−
t2

2σ2 dt with z ∈ Λ.

Conversely, a zero-mean discrete Gaussian distribution over a
lattice Λ is defined as

DΛ,σ(z) =
ρσ(z)

ρσ(Λ)
with z ∈ Λ,

where ρσ(z) = exp(−z2/2σ2) and ρσ(Λ) =∑
z∈Λ exp(−z2/2σ2) is the normalization factor.
It is important to note that we are taking into account

the physical limitations of a practical system which employs
finite precision representations. Since we obtain samples from
a quantized Gaussian distribution, these limitations translate
into tails truncation. In more detail, given a fixed amount
of bits Nb we consider to truncate the tails at kσ where
σ = (2Nb−1 − 0.5)/k is a function of the number of
available bits. We denote as ΛC ⊂ Λ the finite set of all
the elements of Λ which fall inside the truncation interval
[−kσ, kσ]. Moreover, without loss of generality we assume
that kσ = 0.5 + l, l ∈ Z to provide a truncation which is
consistent with the quantization intervals. We can now define
the truncated quantized Gaussian distribution as

GΛC ,σ(z) = wGΛC ,σ(z) with z ∈ ΛC ,

where w = (1 − gT )−1 is a normalization factor and gT =

2
∫ +∞
kσ

1√
2πσ2

e−
t2

2σ2 dt. In a similar fashion, we also define the
truncated discrete Gaussian distribution as

DΛC ,σ(z) =
ρσ(z)

ρσ(ΛC)
with z ∈ ΛC .

C. Security model

The private key cryptosystem we will consider throughout
the paper is defined as follows. The signal x is the plaintext,
the measurements y are ciphertext, and the sensing matrix Φ
is the secret key. The encryption eΦ(x) is performed through
CS acquisition as defined in (1) and the decryption dΦ(y)
corresponds to any CS recovery algorithm which can be used
to solve the minimization problem in (2).

The model we consider is based on the one-time sensing
(OTS) setting, namely the sensing matrix is re-generated at
each encryption. This assumption makes the cryptosystem
resistant to both known ciphertext attacks (KPA) and chosen
ciphertext attacks (CPA). In the first attack, the attacker tries
to break the system given the knowledge of a number of
plaintext-ciphertext (x,y) pairs. This approach cannot succeed
under OTS since to solve the mn linear system of equations
defined by Φ the attacker would require n pairs acquired
through the same sensing matrix. Concerning the CPA, an
attacker may choose the canonical basis vectors as x and
obtain, at each encryption, a column of the secret key Φ. As
before, this attack cannot succeed under OTS since it would
require n ciphertexts performed with the same sensing matrix
in order to obtain the secret key Φ.

D. Security metrics

Given the cryptosystem we defined above, different metrics
can be used to characterize its security properties. From an
information theoretic perspective, a cryptosystem is said to be
perfectly secure if

P [y|x] = P [y],

where y denotes the ciphertext and x denotes the plaintext.
Namely, the posterior probability of the ciphertext given
plaintext is independent of the plaintext. This implies that an
attacker cannot be more successful than random guessing the
plaintext. In spite of this very strong definition, another widely
used definition is that of computational secrecy. In this case, a
cryptosystem is said to be computationally secure if breaking
the system corresponds to solve an NP-hard problem.

The information theoretic approach is stronger than the
computational one since it characterizes the amount of in-
formation an attacker can have access to. If no sufficient
information is available, then even with unbounded compu-
tational capabilities the attack cannot succeed. This, and the
fact that we want to characterize the information leakage are
the reasons behind our choice to proceed with an information
theoretic approach.

From [14] is it known that, under the assumption of Φ being
made of i.i.d. Gaussian entries, and y obtained through eq. (1),
the following holds

P [y|x] = P [y|εx],

where εx is the energy of x. This means that only the energy
of the original signal is leaked through the measurements, and
that if x is normalized to have unit energy, then it is possible
to achieve perfect secrecy.
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However, the distributions we consider for the entries of
Φ are not Gaussian. This means that perfect secrecy, at
least in non-asymptotic sense, cannot be achieved. Thus,
it is important to characterize the information leakage. To
achieve this goal, we employ another metric, introduced in
[14], which is the θ-distinguishability. This metric, which is
defined by means of a detection experiment, is inspired by the
distinguishability definitions commonly used in cryptography.
Given two signals x1,x2 we consider a simple detection test
in which the attacker, by using a detector D(y), has to guess
whether y comes from P [y|x1] or P [y|x2].

Therefore, we will say that CS measurements are θ-
indistinguishable if, for every possible detector D(y), Pd −
Pf ≤ θ, where Pd and Pf are the probability of detection
and false alarm of the detector, respectively. It is evident that
θ = 0 corresponds to perfect secrecy, namely no detector can
distinguish the two signals better than guessing at random.
As shown in the following, evaluating θ boils down to the
evaluation of a distance measure between the measurements
distributions. Thus, let us recall two important distance mea-
sures which will be used in the following.

Definition II.1. The Total Variation (TV) distance between
two discrete probability distributions P and Q is defined as

δTV =
1

2
||P −Q||1.

Definition II.2. The Kullback-Leibler (KL) divergence be-
tween two discrete probability distributions P and Q is defined
as

δKL =
∑
i

P (i) log
P (i)

Q(i)
.

At this point, in order to evaluate the value of θ, we can
rely on the following Lemma.

Lemma II.3. (Lemma 4 in [14]) OTS measurements are at
least δTV(Φx1,Φx2)-indistinguishable with respect to two
signals x1 and x2, where δTV(·, ·) corresponds to the TV
distance.

Thanks to the above Lemma, in order to derive the distin-
guishability of two signals under the quantized OTS setting,
it is sufficient to evaluate the TV distance between their prob-
ability distributions. Nonetheless, when it is not possible to
explicitly derive the TV distance, it can be upper bounded with
the Kullback-Leibler (KL) divergence through the Pinsker’s
inequality [34]. In this case we have that CS measurements are
at least

√
0.5 · δKL(p(y|x1), p(y|x2))-indistinguishable w.r.t.

x1,x2, where δKL(·, ·) corresponds to the KL divergence.
Throughout this paper we will use both TV distance and KL
divergence in order to evaluate the θ-distinguishability.

III. MAIN RESULTS

A. Preliminaries

Before starting the derivation of our main results, it is
important to highlight that throughout the paper we will
consider the signal to be acquired having integer entries, i.e.
x ∈ Zn. This assumption, which can be made without loss

of generality, is necessary since we are considering a finite
precision cryptosystem.

We can now present some useful lemmas relating the
probability distributions of truncated quantized and truncated
discrete Gaussian distributions with that of a discrete Gaussian
distribution.

Lemma III.1. Let X ∼ GΛC ,σ and Y ∼ DΛ,σ and z ∈ ΛC

then
P [X = z] ≤ (1 + δQ,σ)DΛ,σ(z),

where there is a regime of Nb, k for which δQ,σ approaches
zero exponentially fast as the number of bits Nb →∞.

Proof. The proof is presented in the Appendix.

From this first lemma it is possible to see that, as Nb
increases, a truncated quantized Gaussian distribution can
approach a discrete Gaussian distribution exponentially fast.
Because of the relationship existing between the truncation
factor k and Nb, the exponential behavior is valid under a
specific regime which holds for

k∗ = {k : k2 = βNb},

where β is a positive constant. As an example, the regime
condition is satisfied for k =

√
Nb. Let us remark that, in

the following, when referring to the exponential behavior of
δQ, even if not specified, we will refer to the above regime
condition.

In a similar fashion, it is possible to relate a truncated dis-
crete Gaussian distribution with its non-truncated counterpart
as described in the following Lemma.

Lemma III.2. Let X ∼ DΛC ,σ and Y ∼ DΛ,σ and z ∈ ΛC

then
P [X = z] ≤ (1 + δT,k)DΛ,σ(z)

where δT,k approaches zero exponentially fast as the trunca-
tion factor k increases.

Proof. The proof is presented in the Appendix.

In this case we have that, because of the exponential
relationship, the discrete and truncated discrete Gaussian dis-
tributions can be made arbitrarily close for a sufficiently large
value of k.

We can now use these results in order to characterize
the distribution resulting from a linear combination of two
truncated and quantized Gaussian distributions.

Lemma III.3. Let φ = [φ1 φ2]ᵀ be made of two in-
dependent random variables distributed as GΛC ,σ . Assume
σ >

√
2(x2

1 + x2
2)ηε(Λ) holds for negligible ε, where ηε(Λ) is

the smoothing parameter of Λ as defined in [35]. Moreover, let
us define σ1 = |x1|σ and σ2 = |x2|σ. Then, y = φᵀx where
x = [x1 x2]ᵀ ∈ Z2 is statistically close to D

GΛ,
√
σ2
1+σ2

2

, i.e.

P [Y = y] ≤ (1 + δQ)2(1 + δD)D
GΛ,
√
σ2
1+σ2

2

(y),

where G = gcd(x1, x2) is the greatest common divisor
between x1 and x2, and δQ, δD approach zero exponentially
fast as Nb increases.
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Proof. The proof is presented in the Appendix.

This result allows us to establish a relationship between a
linear combination of two quantized and truncated Gaussian
random variables and a random variable distributed as a
discrete Gaussian distribution. Interestingly, this bound is a
function of the system parameters Nb and k and can be made
arbitrarily tight.

With the following lemma we show that the above result can
be extended to an arbitrary linear combination of truncated
and quantized Gaussian distributions weighted by integer
coefficients.

Lemma III.4. Let Y = φᵀx with x = [x1 . . . xK ]ᵀ ∈ ZK
and φ = [φ1 . . . φK ]ᵀ be mutually independent random
variables sampled from GΛC ,σ . Moreover, suppose that σ >√

2||x||2ηε(Λ) holds for negligible ε. Then Y is statistically
close to DGΛ,||x||σ , i.e.

P [Y = y] ≤ (1 + δQ)K(1 + δD)K−1DGΛ,||x||σ(y),

where G = gcd(x) is the greatest common divisor among the
elements of x and δQ, δD approach zero exponentially fast as
Nb →∞.

Proof. The proof is presented in the Appendix.

The above Lemma states that a linear combination of
quantized Gaussian random variables is close to a Discrete
Gaussian distribution lying on a different lattice whose struc-
ture depends on the weights of the linear combination. It
becomes evident that, as we are interested in assessing the
distinguishability of two linear combinations of quantized
Gaussian distributions, if they do not share the same support,
they can always be distinguished based on this information.
For this reason, it is necessary to re-quantize these linear com-
binations with a suitable and common quantization scheme.
The following Lemma provides a bound on the distribution
of a re-quantized discrete Gaussian distribution in terms of a
suitable discrete Gaussian distribution over a different lattice.

Lemma III.5. Let us assume P [Y = y] ≤ (1 + δ)DGΛ,σ(y)
for |y| ≤ k′σ and P [Y = y] = 0 for |y| > k′σ. Let Z =
QH(Y ) = dY/Hc be the same random variable re-quantized
with a scalar quantizer over bins of size H ≥ G, then

P [Z = z] ≤ (1 + δ)(1 + δR)DHΛ,σ(z),

where δR approaches zero exponentially fast as Nb increases.

Proof. The proof is presented in the Appendix.

B. Equal-energy signals

We are now ready to state our first main result. It allows us
to quantify the statistical distance between two linear combi-
nations of equal-energy signals whose entries are weighted by
means of quantized Gaussian sensing matrices. As previously
discussed, non unit-energy signals cause an information leak-
age through the measurements which is directly proportional
to their energy. For this reason, in the following theorem we
consider signals lying on the surface of a unitary hyper-sphere;

this allows us to explicitly consider only the secrecy loss due to
the finite precision representation of the sensing matrix entries.

Theorem III.6. Let x1,x2 ∈ ZK be two equal-energy signals
with ‖x1‖0 = K1 and ‖x2‖0 = K2. Then, define Y1 = φᵀx1

and Y2 = φᵀx2 with φ be made of independent random vari-
ables sampled from GΛC ,σ . Moreover, let us assume that Y1

and Y2 are re-quantized as Z1 = QH(Y1) and Z2 = QH(Y2),
where H = max(gcd(x1), gcd(x2)). Then, the statistical
distance between Z1 and Z2 can be upper bounded as

δ(Z1, Z2) ≤ (K1 +K2)δQ + (K1 +K2 − 2)δD + 2δR + ε,

where δQ, δD, δR approach zero exponentially fast as Nb →
∞ and ε = o(δQ) + o(δD) + o(δR). Moreover, if gcd(x1) =
gcd(x2), then δR = 0.

From Theorem III.6 it can be seen that as long as the
Gaussian random variable is quantized with enough bits and
it is truncated for small tails, then the statistical distance
between two linear combinations of quantized Gaussian ran-
dom variables can be made arbitrarily small. It can also be
noted that the bound linearly increases with the sparsity of the
two signals. However, the statistical distance should linearly
decrease with K1,K2. In fact, since the entries of the sensing
matrices are i.i.d., as the size of the linear combination of
i.i.d. elements increases, the result will tend to a Gaussian
distribution. In the case of the limit K1,K2 →∞, two signals
will result in equally distributed measurements and thus their
statistical distance will approach zero. Thus we can state that,
while tight for Nb, k, the bound of Theorem III.6 is not very
tight with respect to sparsity of the original signals because of
the successive approximation employed in its derivation. This
behavior is showed in detail in the experimental section.

At this point, we can employ the results of Theorem III.6
to derive the following corollary which provides a bound
on the θ-distinguishability for measurements vectors of two
equal-energy signals acquired by means of quantized Gaussian
sensing matrices.

Corollary III.6.1. Let Φ ∈ ΛC
m×n be a quantized sensing

matrix whose entries are distributed according to GΛC ,σ(z).
Also, let x1,x2 be two signals having the same energy
||x||2 which are encrypted by means of the linear operator
y{1,2} = Φx{1,2}. Then, assuming that the measurements have
been quantized as in Theorem III.6, the θ-distinguishability as
defined in [14] is upper bounded as

θΦ(x1,x2) ≤m(K1 +K2)δQ +m(K1 +K2 − 2)δD

+ 2mδR + ε,

where δQ, δD approach zero exponentially fast as Nb → ∞
and ε = o(δQ) + o(δD) + o(δ′Q).

Proof. The proof follows by the use of Theorem III.6 and the
fact the the elements of y1,y2 are i.i.d.

In light of the above results we can say that the secrecy
of a CS cryptosystem under finite precision representation
exponentially increases with the number of employed bits Nb.
This is an important result because it means that, in the worst
case scenario: 1) Bernoulli sensing cryptosystems achieve the
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highest possible distinguishability under finite precision rep-
resentation and 2) the secrecy can be exponentially improved
by using additional bits in the representation.

C. Arbitrary signals

Up to this point, we considered the signals to be unit-energy
in order to isolate the security loss effect due to the finite
precision representation. Nevertheless, if we assume that two
signals x1,x2 are represented with finite precision, then the
constraint of having unit-energy might not be satisfied. For
this reason we start by evaluating the energy mismatch due to
the quantization of two unit-energy signals. In fact, a practical
scenario may involve signals which lie on the surface of the
same Rn hypersphere and which are then quantized. The result
is an energy mismatch which is characterized by the following
Lemma.

Lemma III.7. Let x̄′, x̄′′ ∈ Rn be two signals having the same
energy. Then, assume that these signals are quantized with Nx
bits into x′ and x′′ respectively. Then, the energy mismatch on
the quantized signals qe =

∣∣||x′||2 − ||x′′||2∣∣ ≤ t||x′||2 with
probability 1− δ(t,Nx), where there is a regime of t,Nx for
which t and δ(t,Nx) approach zero exponentially fast in Nx.

From the above Lemma it can be seen that the energy mis-
match qe can be made arbitrarily small with high probability
for large enough Nx. More in detail, it tends to zero with
probability approaching 1 exponentially fast in t,Nx under a
regime condition which holds for

t∗ = {t : t ≤ 2−αNx , t222Nx = βNx},

where α and β are positive constants. As an example, by
letting t =

√
Nx2−Nx the regime condition is satisfied.

The following Theorem generalizes Corollary III.6.1 and
provides a characterization of the distinguishability of signals
which have different energy in both a more general case and
in the specific one of quantized unit-energy signals.

Theorem III.8. Let x1,x2 ∈ Zn be two signals with ‖x1‖0 =
K1 and ‖x2‖0 = K2 and their energies be ||x1||2 and ||x2||2.
Then, define y1 = Φx1 and y2 = Φx2 with Φ having size
m × n be made of independent random variables sampled
from GΛC ,σ . Then, assuming that the measurements have been
quantized as in Theorem III.6, the θ-distinguishability between
x1 and x2 can be upper bounded as

θΦ(x1,x2) ≤m(K1 +K2)δQ +m(K1 +K2 − 2)δD

+ 2mδR +mδM + ε

where exists a regime for Nb, k for which δD, δQ, δR
approach zero exponentially fast in Nb and ε =
o(δQ) + o(δD) + o(δR). Moreover, we have that δM =√

1
2 log ||x1||2

||x2||2 + εM + C ||x2||2−||x1||2
2||x2||2 where εM → 0 expo-

nentially fast for Nb → +∞ and C ≈ 1. If we consider
the specific case in which x{1,2} is quantized as described
in Lemma III.7, then δM < t with probability 1 − δ(t,Nx),
where there is a regime of t,Nx, Nb for which t and δ(t,Nx)
approach zero exponentially fast as Nx and Nb increase.

We showed that under some reasonable assumptions the
secrecy of a compressive cryptosystem can be made arbitrarily
high. In more detail, the parameters of a practical imple-
mentation which directly affect the secrecy of compressive
cryptosystem are the number of bits Nb and the Gaussian
truncation parameter k which can be used to make the θ-
distinguishability as small as desired when considering trun-
cated and quantized Gaussian sensing matrix entries. In the
following we show that these results can be extended to the
case of sensing matrices made of truncated discrete Gaussian
random variables.

Corollary III.8.1. Let Φ ∈ ΛC
m×n be a quantized sensing

matrix whose entries are distributed according to DΛC ,σ(z).
Then, the results of Theorem III.6 and III.8 hold, respectively
as

θΦ(x1,x2) ≤m(K1 +K2)δT +m(K1 +K2 − 2)δD

+ 2mδR + ε,

and

θΦ(x1,x2) ≤m(K1 +K2)δT +m(K1 +K2 − 2)δD

+ 2mδR +mδM + ε,

where δT approaches zero exponentially fast as the truncation
factor k increases and ε = o(δT ) + o(δD).

Proof. This proof easily follows by the application of Lemma
III.2 to the proofs of Theorems III.6 and III.8.

Lastly, it is important to recall that throughout the above
derivations we considered the case of K-sparse signals. How-
ever, as hinted in Sec. II most of natural signals are com-
pressible rather than exactly sparse. In this regard one may
wonder how the secrecy of sparse signals encrypted by means
of quantized Gaussian CS cryptosystems compares with that of
compressible signals. Given that the recovery process of CS
will recover the K-sparse approximation of a compressible
signal, we can write the compressible signals as c = x + n,
where x is a K-sparse signal and n is a noise term. Similarly,
we can write the measurements of c as yc = yx + yn where
yx are the measurements of the sparse approximation and yn
are those of the noise term. Given this processing chain, by
invoking the data processing inequality, we can state that the
mutual information between yc and x is smaller with respect
to that between yx and x. As a result, the noise term which
accounts for the fact that the signal is not exactly K-sparse
leads to a secrecy increase. In light of the above, our results
also guarantee the secrecy of the K-sparse approximation
when compressible signals are acquired.

IV. EXPERIMENTS

In this section we validate the bounds we obtained in the
previous section by providing some numerical results on the
distinguishability of signals which are encrypted by means of
CS using quantized sensing matrices.
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A. Methods
Let us start with a simple detection experiment which

we will use as a benchmark to evaluate the performance
of a cryptosystem. Given two signals x1,x2 we consider
a simple detection test in which the attacker, by using a
detector D(y), has to guess whether y comes from P [y|x1]
or P [y|x2]. According to the Neyman-Pearson (NP) lemma,
and a given probability of false alarm Pf = α, we have that
the maximizer of the probability of detection Pd is given by
letting D(y) = x1 if

γ(y) =
P [y|x1]

P [y|x2]
≥ θ,

where P [γ(y) ≥ θ|x2] = α. Moreover, as we already
highlighted before the entries of y are i.i.d.; this allows us
to rewrite the NP-test as

γl(y) =

m∑
i=1

(log(P [yi|x1])− log(P [yi|x2])) ≥ θl.

In order to find P [yi|x], we can notice that yi is a linear
combination of n sensing matrix entries φ and thus, its
characteristic function can be written in product fashion as

φyi|x(t) =

n∏
k=1

φ̃(xkt), (3)

where φ̃(t) is the characteristic function of a truncated and
quantized Gaussian distribution. According to [36], the char-
acteristic function of a truncated Gaussian distribution whose
realizations are quantized through area sampling can be written
as

φ̃(t) =

+∞∑
l=−∞

φT (t+ lΨ)sinc

(
q(t+ lΨ)

2

)
,

where Ψ = 2π
q , φT (t) is the characteristic function of a

truncated Gaussian distribution and q is the width of the
quantization bin. Lastly, we can write

φT (t) = φG(t) ∗ sin (2TRt)

2TR
,

where 2TR is the truncation interval and φG(t) is the char-
acteristic function of a Gaussian distribution. At this point,
we can compute p(yi|x) for a given x1 and x2 by using
(3) and performing the inverse Fourier transform. Lastly, as
done in [14], though hard to be obtained analytically the
error probability for the detector described above can be upper
bounded by the TV distance between p(yi|x1) and p(yi|x2)
as

Pd − Pf ≤ δTV(p(yi|x1)− p(yi|x2)).

B. Experimental results
The experiments we discuss in the following are performed

by considering two different scenarios, namely worst-case and
average-case. More in detail, we follow a twofold approach: at
first, we validate the proposed upper bounds under the worst-
case scenario for equal energy signals and next, we show
the results for approximately equal energy signals under the
average-case scenario.

1) Worst-case scenario: Let us recall that, since the bound
obtained in Corollary III.6.1 is an upper bound that does
not depend on the sensed signal, it holds in the worst case
scenario, i.e., for every possible x1, x2 pair. In the first
experiments we analyze the worst case scenario by evaluating
the θ-distinguishability through its upper bound (TV distance)
and compare the results with those of the bound in Corollary
III.6.1. More in detail, we consider two equal energy signals
of length 64 whose entries can be represented with Nx = 3
and sparsity K1 = 1 and K2 = 64: x1 has a single entry
with value 8 and x2 has 64 entries with value 1. Besides, the
measurements are re-quantized over Nb bits, so as to ensure
that the distributions of the two sets of measurements are
defined on the same support.

As depicted in Fig. 1, it can be seen that the general
trend is an exponential decrease of the θ-distinguishability as
the value of Nb increases. Furthermore, it can be noted that
this trend is, in practice, limited by the employed truncation
factor k; if k it is not large enough with respect to Nb
the θ-distinguishability reaches a plateu due to the truncation
error and cannot decrease. More in detail, as expected, as the
number of bits employed for the quantization of the sensing
matrix Nb is increased, a larger truncation factor k is required
in order to reach the optimal θ-distinguishability for that
specific configuration. This effect can also be appreciated in
Fig. 2 where the distinguishability is shown for different Nb
in function of the truncation factor k. It can be seen that small
values of k limit the achievable distinguishability from below:
the error term due to the truncation is higher than the one
corresponding to the employed number of bits.

It has become evident that Nb and k act on the θ-
distinguishability in a joint fashion. As discussed in Corollary
III.6.1, there exists a regime for k,Nb such that the decrease of
the θ-distinguishability is exponential. In Fig. 3 this behavior
is depicted for k = 2

√
Nb. It is immediate to notice that, if

the regime condition is satisfied, then the θ-distinguishability
exponentially decreases in Nb.

Lastly, let us consider how the derived bound compares
with the obtained results. It can be seen that, though being
loose for small Nb, the bound tightens to the simulated TV
distance as Nb increases. As a matter of fact, because of their
derivation, the bounds do overestimate the θ-distinguishability
for the cases in which 2Nb is small. Nevertheless, as can be
seen e.g. in Fig. 1, the bound is tight for reasonably small
values of Nb.

2) Average-case scenario: Up to this point, we performed
a numerical validation of the bounds we obtained in the worst
case under the assumption of equal energy signals. For the
following experiment, we consider the average case scenario,
namely we numerically evaluate the θ-distinguishability of
randomly drawn signals. Since we do not make any equal en-
ergy assumption, the values of θ depicted in Fig. 4 also include
the effect of the energy mismatch. Furthermore, because of
unequal energy signals can be immediately distinguished based
on their energy, we consider the specific case of approximately
equal energy signals, as discussed in Lemma III.7.

The signals we consider are represented with Nx = 6 bits
and evaluated at different sparsity levels K = K1 = K2. The
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Fig. 1: TV distance simulated (solid line) and from Corollary III.6.1
(dashed line) as a function of Nb for different values of K.
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Fig. 2: TV distance simulated (solid line) and from Corollary III.6.1
(dashed line) as a function of K for different values of Nb.

values of Nb and k are chosen to be in the regime condition,
namely k = 2

√
Nb. The measurements are then re-quantized

to NR bits accordingly to different policies, namely no re-
quantization, NR = Nb and fixed NR = 10. The TV distance
is numerically evaluated over 200 pairs of randomly generated
signals and the 95 percentile of the values is computed. The
results are depicted in Fig. 4.

It is important to notice that we consider two different
values of K in order to better appreciate the effects of the
re-quantization. As will be discussed more in detail in Sec.
V, higher values of K decrease the distinguishability as the
distribution of the measurements coming from two different
signals tend to the same distribution. However, this desired
effect makes harder to isolate the effects of the re-quantization.
For this reason, along with a large value of K = 100 we also
consider a small value, namely K = 4.

Let us focus on the behavior of the distinguishability as
a function of Nb for K = 4 (solid lines in Fig. 4). If the
measurements are not re-quantized after sensing, it can be
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Fig. 3: TV distance simulated (solid line) and from Corollary III.6.1
(dashed line) as a function of Nb under k = 2

√
Nb.

immediately noticed that the distinguishability is extremely
high. As discussed in Sec. III, two encrypted signals can
be immediately distinguished if there is a mismatch in their
support. This issue can be easily addressed by re-quantizing
the measurements with a suitable number of bits NR ≤ Nb. In
the same figure, it can also be seen that if the re-quantization
is performed accordingly to NR = Nb, then the effect due
to the support mismatch is removed and the distinguishability
follows a decreasing behavior for increasing Nb.

At this point it also important to highlight that a minimum
number of bits to represent the measurements might be needed
as a requirement at decryption side in order to achieve a
lower distortion on the decrypted signal, see e.g. [37]. For
this reason, we also consider a fixed number of bits for
the re-quantization of the measurements, i.e. NR = 8. It
can be seen that, when the number of bits over which the
measurements are represented, i.e. Nb+Nx, is smaller than NR
the distinguishability is high; a support mismatch will lead to
TV distance close to 1. Conversely, when the measurement are
re-quantized over a smaller number of bits (Nb +Nx > NR),
the distinguishability decreases with Nb.

It is worth noting that, even though this experiment is
performed under the regime condition, the distinguishability
does not exponentially decrease as expected, rather it reaches
a plateau. This is due to the fact that we are considering
approximately equal energy signals and thus the contribution
of the energy mismatch between signals limits the exponential
decrease.

In order to appreciate how the energy mismatch can dras-
tically reduce the secrecy of a cryptosystem, in Fig. 5 we
plot the θ-distinguishability as a function of Nx for a fixed
Nb = 12, under the regime condition and with NR = Nb. It
can be immediately seen that the distinguishability decreases
in Nx. As shown in Lemma III.7, two equal energy signals
which are then re-quantized over Nx bits will exhibit an energy
mismatch which depends on Nx. In turn, a larger energy
mismatch will lead to a larger distinguishability (Th. III.8).
This is indeed the behavior depicted in Fig. 5 where it can be
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Fig. 4: θ-distinguishability simulated for approximately equal energy
signals under the average case scenario as a function of Nb for
different values of K and re-quantization of the measurements.
Nx = 6. K = 4 solid line, K = 100 dashed line.
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Fig. 5: θ-distinguishability simulated for approximately equal energy
signals under the average case scenario as a function of Nx for Nb =
12.

further noticed that the energy mismatch is the highest source
of distinguishability, being orders of magnitude larger than
quantization and tail truncation effects.

V. DISCUSSION

In the previous sections, we obtained and experimentally
validated the bounds under the worst case scenario, namely
for a pair of signals that result in very different distributions
of the measurements, even when the above distributions have
been constrained on the same support by using re-quantization.
Moreover, we also showed, from an experimental point of
view, the distinguishability of the measurements of quantized
Gaussian matrices in the average case scenario, i.e., for
randomly drawn pairs of signals. The most important result
is that, by just employing few more bits than the single one
needed to represent the entries of Bernoulli sensing matrices, it

is possible to exponentially increase the secrecy of a CS-based
cryptosystem.

As previously discussed, the obtained bounds are conser-
vative as they hold in the worst case scenario. However,
in practice the distinguishability can be on average much
smaller than in the worst case scenario. Let us consider the
probability p of K integer numbers chosen in [1, xmax] being
coprime, namely that their greatest common divisor is 1. Then,
considering two signals having sparsity K1 = K2 = K
and nonzero values bounded by xmax, with probability p the
support of the measurements of the two signals will be the
same even before re-quantization. Conversely, with probability
(1−p) we are in the worst case and the measurements, before
re-quantization, do not share the same support. It is a well-
known result in number theory that for large xmax we have
p ≈ 1/ζ(K), where ζ(K) is the Riemann Zeta function [38].
Interestingly, as K increases p approaches 1 and thus, for large
enough K, the probability of being in the good case is high.

Regarding the quantization of the measurements, we showed
that this is a required operation in order avoid information
leakage due to a support mismatch of the measurements.
Nevertheless, it is interesting to note that this operation, even
in the case of matching supports would still increase the
secrecy of the whole cryptosystem. As a matter of fact, be-
cause of the data processing inequality, the mutual information
between the measurements and the original signal decreases if
additional operations are performed on the measurements as
for the quantization. In turn, a decreased mutual information
means that the secrecy of the system is increased. Thus, for
these reasons, even though there is no support mismatch, re-
quantization of the measurements is always advisable. This
latter result, which we also covered in the experimental
section, indicates that as we re-quantize the measurements
with the least possible number of bits we have the highest
possible secrecy. According to the results in Sec. III, we need
to quantize the measurements with at most the number of bits
employed for the quantization of the sensing matrix in order to
avoid a complete distinguishability of the measurements based
on their support. However, if less than Nb bits are employed
during the re-quantization, the secrecy is increased.

While correct, this statements does not consider the func-
tionality of the cryptosystem as a whole. In fact, being able to
correctly recover the plaintext from the ciphertext is essential.
Indeed, when the measurements are quantized with just few
bits, the distortion of the recovered signals is increased, see
e.g. [37], [39]. This raises an important trade-off between
secrecy and recovery distortion which needs to be addressed
during the design of a compressive cryptosystem.

VI. CONCLUSIONS

In this paper, we derived upper bounds on the distin-
guishability of a compressive cryptosystem based on quan-
tized Gaussian random matrices. More in detail, the obtained
bounds, which hold in the worst case scenario, have also been
experimentally validated. The most important achievement is
that, as the number of quantization bits employed for the
sensing matrix entries is increased, the secrecy of the system
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exponentially increases. This strong result demonstrates how
a practical compressive cryptosystem can achieve very high
secrecy when finite precision is taken into account. Moreover,
we also analyzed the quantization of the measurements and
showed that this operation is necessary in order to avoid
information leakage due to possible support mismatch of the
measurements.

Even though CS is not directly comparable with standard
cryptographic systems, with this paper we showed that it can
be used in practical systems to provide the required secrecy.
In fact, the provided bounds can help the design of a practical
compressive cryptosystem whose system parameters such as
Nb and Nx can be carefully selected in order to achieve the
required secrecy level.
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APPENDIX

1) Proof of Lemma III.1: We want to upper bound the dis-
tance between GΛ,σ(z) and DΛ,σ(z). By the triangle inequality
we have

|GΛ,σ(z)−DΛ,σ(z)|
≤ |GΛ,σ(z)− GaΛ,σ(z)|+ |GaΛ,σ(z)−DΛ,σ(z)|, (4)

where GaΛ,σ(z) is the midpoint approximation of GΛ,σ(z) =

w
∫ z+1/2

z−1/2
1√

2πσ2
e−

t2

2σ2 dt. By using the midpoint inte-
gral approximation error [40], the first term in (4)

can be upper bounded with
max

t∈[z−1/2,z+1/2]
|f ′′(t)|

24 where

f ′′(t) = − t2−σ2

σ5
√

2π
e−

t2

2σ2 is the second derivative of
the Gaussian function. Moreover, given that by as-
sumption |z| < kσ, (4) can be upper bounded by
e−

z2

2σ2

(
w σ2(k2−1)+1/4+kσ

24σ5
√

2π
e

2kσ−1/2

2σ2

∣∣∣ w√
2πσ
− 1

ρσ(Λ)

∣∣∣).
Then, rearranging the terms we have that

GΛC ,σ(z) ≤ DΛ,σ(z)(1 + δQ,σ),

where δQ,σ = w ρσ(Λ)[σ2(k2−1)+1/4+kσ]

24σ5
√

2π
e

2kσ−1/2

2σ2 +∣∣∣ρσ(Λ)√
2πσ
− 1 + gT

(1−gT )
ρσ(Λ)√

2πσ

∣∣∣.
Now, in order to analyze the asymptotic behavior of δQ,σ , let

us start by finding the leading asymptotic term of ρσ(Λ) as
σ → ∞. We can proceed to this derivation by equivalently
employing the Poisson summation formula or the Jacobi
imaginary transformation [41], we choose the second one. We

have that limσ→∞ ρσ(Λ) = limσ→∞
∑+∞
j=−∞ e−

j2

2σ2 where
the infinite summation term is a Jacobi θ3(q′, τ ′) function
of parameters q′ = 0 and τ ′ = i

2πσ2 . According to the
Jacobi imaginary transformation we can write θ3(0, i

2πσ2 ) =√
2πσ2θ3(0, 2πiσ2) and taking the first two terms of the

series, for σ → ∞ we have that the leading asymptotic term
is given by ρσ(Λ) ∼ σ

√
2π(1 + 2e−2π2σ2

). Then, considering
this asymptotic behavior for σ → +∞ and k constant, we

have that δQ,σ tends to gT /(1 − gT ) + k2 · O(1/σ2). Since
gT ≤ 2e−

k2

2 , if we set k =
√
Nb and consider σ = 2Nb−1/k,

we see that there exists a regime of k, Nb in which δQ,σ
approaches zero exponentially fast in Nb.

2) Proof of Lemma III.2: Since we are considering a trun-
cated distribution, we need to take into account a multiplicative
factor 1 + δ′T which re-normalizes the distribution to make it
consistent. More in detail, we have that δ′T = εT

1−εT , where εT
corresponds to probability of the truncated tails. We have that
DΛC ,σ(z) = (1 + δ′T )DΛ,σ(φ). From Lemma 4.4 in [42], the
tail probability can be written as εT ≤ 2e−

k2

2 . This means that

δ′T ≤ δT = 2e−
k2

2

1−2e−
k2
2

which approaches zero exponentially fast

as k increases.
3) Proof of Lemma III.3: We are interested in the sum of

two independent r.v. distributed as GΛ,σ(φ) whose probability
can be written as

P [Y = y]

=
∑
φ∈ΛC

Gx1ΛC ,σ1
(φ)Gx2ΛC ,σ2

(y − φ)

≤ (1 + δQ,σ1
)(1 + δQ,σ2

)
∑
φ∈Λ

Dx1Λ,σ1
(φ)Dx2Λ,σ2

(y − φ),

where the inequality comes from Lemma III.1.
Considering the asymptotic behavior of δQ,σ as in Lemma

III.1, we have that δQ,σ1 , δQ,σ2 ≤ δQ,σ , since δQ,σ∗ achieves
its maximum when σ∗ = ||x||σ is at its smallest value and,
since x ∈ Zn, this value is achieved for ||x|| = 1. Moreover,
as discusses in Lemma III.1 there exists a regime of Nb, k for
which it approaches zero exponentially fast in Nb.

Moreover, combining the results of Lemma 4.12 in [43] and
Lemma 2.7 in [44], we have that the probability of the linear
combination of two discrete Gaussian random variables is
upper bounded by wD

gcd(x1,x2)Λ,
√
σ2
1+σ2

2

(φ) for some scalar

w ≤ 1
1−ε independent of φ. Then, according to Lemma A.2

in [43] we can write that w ≤ (1 + δD) with δD ≤ ε
1−ε ≤ 2ε.

Since in Lemma 4.12 in [43] it is required σ > ηε(Λ) to hold,
where ηε(Λ) is the smoothing parameter, we fix ηε(Λ) = σ

2
and have that ρ 2

σ
(Λ ∗ \{0}) = ε. At this point, we have that

δD ≤ 2ε ≤ 4
∑+∞
k=1 e

−
k2σ2||x{1,2}||

2

8 ≤ 8 e−
σ2

8

1−e−
σ2
8

since this

bound is maximized for ||x{1,2}|| = 1. As it can be seen, this
bound approaches zero exponentially fast as Nb increases.

4) Proof of Lemma III.4: We prove this Lemma by induc-
tion. In case of K = 1, from the Lemma III.1 we have that
P [Y ′′ = y] ≤ (1 + δQ)Dx1Λ,||x1||σ(y). By inducing on K, let
us suppose that the Lemma holds for K − 1. Let us consider
Y ′ = φ′ᵀx′ where the last element of φ′,x′ has been pruned.
Applying the inductive hypothesis, we have that

P [Y ′ = y] ≤ (1 + δQ)K−1(1 + δD)K−2Dgcd(x′)Λ,‖x′‖σ(y),

where gcd(x′) is the greatest common divisor among the
entries in x′.

If we now apply the Lemma, it can be shown that Y = Y ′′+
Y ′ is statistically close to Dgcd(x)Λ,‖x‖σ(y), and in particular

P [Y = y] ≤ (1 + δQ)K(1 + δD)K−1Dgcd(x)Λ,‖x‖σ(y),
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where gcd(x) is the greatest common divisor among the
entries in x.

5) Proof of Lemma III.5: Let us assume for simplicity G =
1. We have that the distribution of Z = QH(Y ) can be written
as

P [Z = z] =

zH+H/2−1∑
y=zH−H/2

P [Y = y]

≤ (1 + δ)

zH+H/2−1∑
y=zH−H/2

DΛ,σ(y)

=
(1 + δ)

ρσ(Λ)

zH+H/2−1∑
y=zH−H/2

e−
y2

2σ2

≤ H(1 + δ)

ρσ(Λ)
e−

(|z|H−H/2)2

2σ2

≤ H(1 + δ)

ρσ(Λ)
e−

(zH)2

2σ2 e
|z|H2

2σ2

≤ H(1 + δ)

ρσ(Λ)
e−

(zH)2

2σ2 e
k′H2

2σ

≤ H(1 + δ)(1 + δ′R)

ρσ(Λ)
e−

(zH)2

2σ2

where δ′R = k′H2

2σ + o
(
k′H2

2σ

)
approaches zero exponentially

fast as Nb increases. Concerning the scaling factor ρσ(Λ), we
have that σ

√
2π − 1 ≤ ρσ(Λ) ≤ σ

√
2π + 1. Hence, we can

lower bound the scaling factor as

ρσ(Λ) ≥ H · σ
H

√
2π − 1

≥ H
(
ρσ/H(Λ)− 1

)
− 1

= Hρσ(HΛ)−H − 1

= Hρσ(HΛ)

(
1− H + 1

Hρσ(HΛ)

)
≥ Hρσ(HΛ)

(
1− H + 1

σ
√

2π + 1

)
≥ Hρσ(HΛ) (1− δ′R)

Putting all things together, we have

P [Z = z] ≤ (1 + δ)(1 + δ′R)e−
(zH)2

2σ2

(1− δ′R)ρσ(HΛ)

= (1 + δ)(1 + δR)DHΛ,σ(z)

where δR =
2δ′R

1−δ′R
.

6) Proof of Theorem III.6: It is easy to verify that P [Y1,2 =
y] = 0 for |y| > k||x1,2||1σ. Hence, combining Lemma III.4
and III.5 we can write

P [Z1,2 = z] ≤ (1+δQ)K1,2(1+δD)K1,2−1(1+δR)DHΛ,||x||σ(z).

By applying the TV distance definition it is immediate to
obtain

δ(Z1, Z2) ≤ δ(Z1,DHΛ,||x||σ) + δ(Z2,DHΛ,||x||σ)

≤ (K1 +K2)δQ + o(δQ) + (K1 +K2 − 2)δD+

+ o(δD) + 2δR + o(δR),

where the the terms approach zero exponentially fast for Nb →
+∞ as described in the proof of Lemma III.3.

7) Proof of Lemma III.7: Let us define x̄′ ∈ Rn to be
a signal which is quantized with Nx bits to x′ ∈ Zn,
moreover let us assume that |x′i| ≤ xmax2Nx and ||x′||2 ≥
nx2

min22Nx , where 0 < xmin ≤ xmax ≤ 1. Under the
high rate assumption, the quantization error can be considered
to be distributed as U(− 1

2 ,
1
2 ). Accordingly, we have that

x′i = x̄′i + ε′, where ε′ ∼ U(−1/2, 1/2). Thus, we can
write Sn = ||x′||2 − ||x′′||2 =

∑n
i=1Di with Di = 2x̄′iε

′
i −

2x̄′′i ε
′′
i + ε2i

′ − ε2i
′′, and b = arg maxiDi = 2xmax2Nx + 1/4,

a = arg miniDi = −2xmax2Nx − 1/4. Lastly, since it is
easy to show that E[Sn] = 0, by applying the Hoeffding’s
concentration inequality, we have that

P [|||x′||2 − ||x′′||2| < t||x′||2] > 1− 2e
−2t2||x′||4

n(4xmax2Nx+1
2
)2

≥ 1− 2e
−2nt2x4min22Nx

25x2max

= 1− δ(t,Nx),

where there exists a regime for which both t and δ(t,Nx)
approaches zero exponentially fast in Nx. As an example, this
condition is satisfied for t =

√
Nx2−Nx .

8) Proof of Theorem III.8: Since the entries of y1,y2 are
i.i.d we start by considering a single entry for each of the
two re-quantized measurements vectors, namely Z1 and Z2.
By definition of TV and from Lemma III.4 and III.5 we have
that

δ(Z1, Z2) ≤ δ(Z1,DHΛ,||x1||σ) + δ(DHΛ,||x1||σ,DHΛ,||x2||σ)

+ δ(DHΛ,||x2||σ, Z2)

≤ (K1 +K2)δQ + (K1 +K2 − 2)δD + 2δR + ε

+ δ(DHΛ,||x1||σ,DHΛ,||x2||σ)

where the last term can be upper bounded by the KL
divergence through the Pinsker’s inequality as

≤
√

1

2
DKL(DHΛ,||x1||σ || DHΛ,||x2||σ)

=

√√√√√ 1
2

∑
y∈HΛ

e
− y2

2||x2||2σ2

ρ||x2||σ(HΛ) log

ρ||x1||σ(HΛ)e
− y2

2||x2||2σ2

ρ||x2||σ(HΛ)e
− y2

2||x1||2σ2



=

√√√√ 1
2

[
log
(
ρ||x1||σ(HΛ)

ρ||x2||σ(HΛ)

)
+ ||x2||2−||x1||2

2σ2||x1||2||x2||2
∑
y∈HΛ y

2 e
− y2

2||x1||2σ2

ρ||x1||σ(HΛ)

]

=

√
1

2

[
log

(
ρ||x1||σ(HΛ)

ρ||x2||σ(HΛ)

)
+
||x2||2 − ||x1||2

2||x2||2
σ̃2

σ2

]
,

where σ̃2||x1||2 =
∑
y∈HΛ y

2 e
− y2

2||x1||2σ2

ρ||x1||σ(HΛ) is the variance of
DHΛ,||x1||σ . We now analyze the asymptotic behavior of the
above bound. Let us start with the term log

(
ρ||x1||σ(HΛ)

ρ||x2||σ(HΛ)

)
,
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which according to the Proof of Lemma III.1 as Nb → +∞
tends to log

(
||x1||(1+ε1)
||x2||(1+ε2)

)
= log

(
||x1||
||x2||

)
+ εM , where εM =

log(1 + ε1) − log(1 + ε2) and ε{1,2} = 2e−2π||x{1,2}||2σ2 ≤
2e−2πεmaxσ

2

, which approaches zero exponentially fast in Nb.
Moreover, we have log(1 + ε{1,2}) ≤ ε{1,2} and thus εM ≤
2e−2πεmaxσ

2

which approaches zero exponentially fast in Nb.
Next, if we now focus on the log energy ratio, sim-

ilarly to the steps above, we have that log ||x1||2
||x2||2 =

log
(

1 + ||x1||2−||x2||2
||x2||2

)
= log(1 + δ′M ) ≤ δ′M . Moreover,

when Lemma III.7 holds we have that δ′M becomes negli-
gible for large values of Nx. For the same reason, the term
δ′′M = ||x2||2−||x1||2

2||x2||2
σ̃2

σ2 becomes negligible for large values of
Nx.

Lastly, since the entries in y1,y2 are i.i.d and the θ-
distinguishability is upper bounded by their statistical distance,
we have that

θΦ(x1,x2) ≤ m ((K1 +K2)δQ + (K1 +K2 − 2)δD + δR + δM ) + ε,

where δM =
√

1
2 (δ′M + δ′′M + εM ) accounts for the en-

ergy mismatch and we have that δM < t with probability
1 − δ(t,Nx), where, thanks to Lemma III.7 and εM ≤
2e−2πεmaxσ

2

, there is a regime of t,Nx, Nb for which t and
δ(t,Nx) approach zero exponentially fast as Nx and Nb
increase.
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