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ABSTRACT
Many applications aim to make smarter the indoor environ-
ments where most people spend much of their time (home,
office, transportation, public spaces), but they need long-
term low-cost human sensing and monitoring capabilities.
Small capacitive sensors match well most requirements, like
privacy, power, cost, and unobtrusiveness, and, importantly,
they do not rely on wearables or specific human interactions.
However, long-range capacitive sensors often need advanced
data processing to increase their performance. Our ongoing
research experimental results show that four 16 cm× 16 cm
capacitive sensors deployed in a 3m× 3m room can tag-
lessly track the movement of a person with a root mean
square error as low as 26 cm. Our system uses a median
and low-pass filter for sensor signal conditioning before an
autoregressive neural network that we trained to infer the
location of the person in the room.

CCS CONCEPTS
•Human-centered computing→Ambient intelligence.

KEYWORDS
indoor localization; capacitive sensing; neural networks; tag-
less indoor localization

1 INTRODUCTION
Indoor environments where most people spendmuch of their
time (home, office, transportation, public spaces) are rarely
aware of the presence, activities, or needs of persons, unless
the persons actively interact with the environment through
switches, knobs, etc.
Most current indoor person sensing solutions rely on de-

vices or tags that are carried by people to become visible to
the localization system [13]. But most recent applications
that aim to make smarter or intelligent indoor environments
would benefit significantly if they can sense person presence
and activities in any conditions, even if they do not wear
specific tags or devices, nor actively interact with the system
through physical or voice commands and controls. Most ap-
plications also require unobtrusive sensors (e.g., that can be
installed behind room objects, without a direct line of sight),

which do not rise privacy concerns (unlike image-based sen-
sors, even when are using blurred visible or infrared im-
agery), with low equipment and deployment cost, and with
reduced maintenance needs (e.g., low energy consumption to
extend battery duration or to make possible wireless supply).

Capacitive sensing of conductive and dielectric properties
of human body can be used for indoor person sensing [2, 3],
identification [4, 6], and localization [1, 5, 7, 9]. They can be
small, can be concealed behind non-conductive objects, can
consume few energy, do not raise privacy concerns, and can
be easy to install and maintain.
Yet, the capacitive sensors′ strongly-nonlinear distance-

capacitance dependency, as well as their operation close or
below noise level (for long-range sensing), require advanced
processing techniques to improve the sensor performance
[8, 10]. In particular, we present in this work some promising
preliminary results of our exploration of sensor signal filter-
ing combinations and machine learning algorithms, such as
multilayer perceptron and autoregressive neural networks
(NNs) trained on the abstract signatures of movements of a
person in our experimental room.

2 MAIN CONTRIBUTIONS
Previously, we showed that long-range capacitive sensors
can be used to accurately classify the position of a person
among 16 possible locations within a 3m× 3m room using
specific signal filtering and machine learning processing
[9, 12] (see Figure 1).
In this work, we use similar sensors but a modified sig-

nal processing chain to track the location of a person that
is moving freely within the room. To increase movement
tracking accuracy, we increase the sensor data rate from 1Hz
(used previously [9]) to 3Hz using an improved sensor data
discretization and acquisition algorithm (see Figure 2). To
decrease noise, the sensor uses higher sampling frequency,
24Hz, and downsamples it to 3Hz before transmitting.
Additionally, along the capacitive sensor data, we also

acquire the position of the person in the room using an ultra-
sound-based localization system (shown in Figure 3), which
we use as ground truth.

Furthermore, the system can consider now the dynamics
of person′s movement. For this, we use an autoregressive



Figure 1: Conceptual layout of roomwith sensors. Combina-
tion of capacitive sensors would be able to estimate coordi-
nates of a person inside room.
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Figure 2: The acquisition and processing chain for capacitive
sensor data includes sensor analog data acquisition and dig-
ital conversion block, and a digital preprocessing (filtering)
block, before entering the neural network block for training
or inferring.

neural network to which we provide, for both training and
inference, a segment of the person′s past trajectory, from
which it can characterize the movement in terms of, e.g.,
speed, direction, or acceleration.

3 METHODOLOGY
Figure 2 shows the experimental workflow, which is:

• collect timestamped capacitive sensor data labelled
with accurate room position of the person (ground
truth);

• preprocess (filter) the sensor data;
• use filtered data to train, test, and optimize an autore-
gressive neural network.

As shown in Figure 1 and Figure 3, four 16 cm× 16 cm
capacitive sensors are installed in the middle of each room
wall, roughly at the height of person chest. The accurate
person location is synchronously acquired using a commer-
cial ultrasound-based localization system, with four anchor
sensors placed high in the four room corners and the fifth,
mobile, attached to the person.

 

Capacitive Sensors 
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Figure 3: Our 3m× 3m experimental room includes one Ca-
pacitive sensor on each wall, and five ultrasonic sensors
which provide the ground truth (four ultrasonic sensors are
on ceiling and one is carried by the monitored person.

We preprocess the acquired capacitive sensor data using a
wide-window median filter to reduce sensor drift, followed
by a low-pass filter to remove high-frequency noise.

In these preliminary experiments, we used a fixed architec-
ture for the NN made of 64 neurons on the first hidden layer,
flattened and with 50% dropout, 32 neurons in the second
hidden layer, with 30% dropout, 8 neurons the last hidden
layer, and 2 neurons in the output layer (which output the X
and Y co-ordinates of the person in the room). The NN was
implemented using Python library Keras using the Tensor-
flow back-end. For NN training and optimization, we split
the data in three sets: 60% for training, 20% for validation,
and 20% for testing.
Top plot in Figure 4 shows the normalized output of one

sensor after preprocessing for long-term drift and noise re-
moval. We use frequency measurement as proxy for sensor
capacitance, which is roughly proportional to 1/d [2, 3], where
d is the distance between the sensor and person and is shown
in the bottom plot. Due to the strong non-linear dependence
between sensor output and the distance to person, we can see
strong sensor output variations when the person is close to
it, and flattened readings otherwise, close to noise level. The
strong non-linear sensor response increases the complexity
of accurate inference of person position.
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Figure 4: Sensor output after filtering (top) and the distance
of a person from the sensor as the person moves around the
room (below).

4 ANALYSIS AND RESULTS
To optimize the tracking accuracy of person movements in
the room, we used GNU parallel [11] to explore the effects
of several design parameters (DSE) of the processing flow
shown in Figure 2 as follows:

NN Input Window (NN-IW) which is the length, in
seconds, of the sliding segment (window) of the person′s
past trajectory that we provide in input to the NN. DSE
values of NN-IW: 2 s, 5 s, 10 s, 12 s, and 15 s. The sliding
step is always one sample.

Median Filter Window (MFW) is the length, in sec-
onds, of the sliding window of the median filter that
we use to reduce the long-term drift of the sensor
data. The drift is typically caused by slow changes
of environmental conditions, like electric potential or
humidity. DSE values of MFW: 50 s, 100 s, and 150 s.

Interpolation Frequency (IF) whichwe use to augment
the experimental data for NN training. DSE values of
IF: 3Hz (which is the actual experimental data sam-
pling rate), 10Hz, 20Hz, and 40Hz.

Data Split Order which is the order in which we split
the experimental data stream in the three sets we use
for NN training, validation, and testing. We include in
DSE all six permutations.

Table 1 shows the correlation between the best ten root
mean square error (RMSE) results of trajectory prediction
and the DSE parameters. Minimum RMSE is about 0.26m.
We note that the optimum NN-IW values are around 10–
12 s, the best MFW value is 50 s, while experimental data

Table 1: Effect of several data processing parameters on the
root mean square error (RMSE) of person position inference
accuracy: input window for the autoregressive neural net-
work (NN-IW), median filter window (MFW), and interpola-
tion frequency (IF).

RMSE (m) NN-IW (s) MFW (s) IF (Hz)

0.263 12 50 3
0.265 10 50 10
0.266 10 50 3
0.274 12 50 10
0.283 10 50 20
0.286 15 50 3
0.288 5 50 40
0.294 15 50 10
0.294 5 150 3
0.296 5 50 10

augmentation beyond its original sampling rate of 3Hz does
not seem to significantly improve the accuracy.

Figure 5 allows a visual comparison between the inferred
X (top plot) and Y (bottom plot) co-ordinates of person posi-
tion while roaming freely within the room, and the reference
X and Y co-ordinates reported by the reference ultrasound-
based localization system. They are generally very well cor-
related, except when the person reaches positions close to
any of the 3m× 3m room walls.

5 FUTUREWORK
We showed the experimental results of our preliminary ex-
ploration of some design parameters of an indoor localization
system using capacitive sensors and an autoregressive neural
network. The best RMSE accuracy, of 26 cm, is promising.

We singled out several localization accuracy limiting fac-
tors onwhichwewill focus next. First, wewill try to optimize
sensing and processing techniques to reduce sensor strong
drift and noise level, since the signal decays fast for long sens-
ing distances (10–20 times the sensor diagonal size). Second,
we plan to comparatively analyze the inference accuracy
of several NN architectures that can make better use of the
dynamics of person movement.
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