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Abstract 20 

Road network vulnerability analysis is helpful in the improvement of vulnerable links with 21 

proper maintenance investments and management strategies. This paper addresses issues that 22 

received limited attention in past studies: the estimation of travel demand after the link 23 

disruption, and the analysis of accessibility variation. An Activity-Based Model was used to 24 

estimate travel demand changes due to link closure, and link importance is evaluated with a 25 

set of vulnerability indicators; accessibility changes induced by link closure are presented and 26 

discussed. The vulnerability analysis has been conducted to the road network of the 27 

municipality of Dolo, northern Italy. Considering spatial distribution of activities and trips, 28 

results obtained with Activity-Based Model are more reliable than those obtained with Fixed 29 

Demand Model, which has unrealistic assumptions of unchanged travel demand after network 30 

degradation. These findings are relevant for appropriate resource allocation strategies, which 31 
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depend on correct link vulnerability analysis and ranking.  32 
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Introduction 33 

Transportation networks are lifelines which support services essential to society, and 34 

need to be preserved in their functionality in case of disruptions caused by events which 35 

originate within (e.g. traffic accidents and technical failures) or outside the transport system 36 

(e.g. debris-flows, floods, earthquakes, storms, etc.). Authorities and agencies face the need to 37 

prioritize the allocation of (generally) limited resources to guarantee the proper serviceability 38 

of transport networks, and road networks in particular. For these reasons, network 39 

vulnerability has emerged as a significant field of research in transport analysis and planning 40 

in the past decade. Results of vulnerability analysis can be helpful in the improvement of 41 

vulnerable links with ordinary and extraordinary maintenance investments and proper 42 

management strategies. 43 

According to several authors (Faturechi and Miller-Hooks 2014; de Oliveira et al. 44 

2016; Reggiani et al. 2015), the vulnerability concept still lacks a consensus definition, and it 45 

depends on the application context (Caschili et al. 2015; El-rashidy and Grant-muller 2014). 46 

The first formalization of the concept in transport analysis can be found in Berdica (2002), 47 

who defines “vulnerability” as “a susceptibility to incidents that can result in considerable 48 

reductions in road network serviceability”, where serviceability of a link/route/road network 49 

is interpreted as “the possibility to use that link/route/road network during a given period”. 50 

Other concepts related to vulnerability are robustness and reliability (D’Este and Taylor 2003; 51 

Faturechi and Miller-Hooks 2014; de Oliveira et al. 2016; Reggiani et al. 2015; Rupi et al. 52 

2015b): robustness focuses on the impacts of the disturbance (e.g. decrease of network 53 

performance), reliability focuses on the frequency of occurrence of the disturbance, that is on 54 

its probability. For other authors (Bono and Gutiérrez 2011; Husdal 2004; Luathep et al. 55 
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2011), reliability is a measure of network stability, and vulnerability should be a measure of 56 

the consequences of a network element collapse (or underfunctioning) (Cai et al. 2017; 57 

Faturechi and Miller-Hooks 2014). 58 

In this paper the risk theory framework was adopted to represent degraded scenarios as 59 

a list of “triplets”, each consisting of a description of a particular scenario, the probability of 60 

that scenario occurring, and the impact of the scenario (Jenelius and Mattsson 2015). 61 

The vulnerability analysis conducted in this research focuses on the assessment of 62 

network impacts produced by the disruption of a given element (a road network link), 63 

independently of the type of event and the probability of occurrence of such event.  64 

Following past studies approach (Jenelius, 2009; 2010, Jenelius and Mattsson, 2015; 65 

Rupi et al., 2015b), the “importance” was used to measure the impacts of link disruption. In 66 

practice, link importance is commonly estimated with vulnerability indicators, which compare 67 

network performance before (current network) and after (“degraded” network) the link 68 

closure. The most common indicators are based on total system cost (often, the travel time) 69 

(Balijepalli and Oppong 2014; Carturan et al. 2013; Dalziell and Nicholson 2001; Dehghani et 70 

al. 2017; Guo et al. 2017; Hu and Ho 2013; Jenelius et al. 2006; Jenelius 2007, 2009, 2010, 71 

Jenelius and Mattsson 2012, 2015; de Oliveira et al. 2016; Rupi et al. 2015a, 2015b; Scott 72 

2006; Taylor et al. 2006; Wang et al. 2016); others refer to accessibility measures (D’Este and 73 

Taylor 2001; Kermanshah and Derrible 2016; Lu et al. 2015; Miller et al. 2015; Taylor 2008; 74 

Taylor et al. 2006; Taylor and Susilawati 2012), connectivity (Scott et al. 2006; Zanini et al. 75 

2017), topological measure of dispersiveness/concentration (Sakakibara et al. 2004), distance 76 

travelled, link flow and capacity (Balijepalli and Oppong 2014; Chen et al. 2012; Guo et al. 77 

2017). 78 
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In the literature link importance is generally estimated with a vulnerability scan 79 

approach (Chen et al. 2012; El-rashidy and Grant-muller 2014; Knoop et al. 2012; de Oliveira 80 

et al. 2016; Scott et al. 2006; Wang et al. 2015), which consists in removing one link from the 81 

network, and analysing the effects using some vulnerability indicators. The analysis can be 82 

done for each link in the network (full-scan approach), or a subset of selected links, according 83 

to a set of criteria (partial-scan approach) (Cats et al. 2016).  84 

In both cases, the literature review highlighted that the majority of authors adopted the 85 

inelastic (or fixed) demand assumption for traffic simulation (Balijepalli and Oppong 2014; 86 

Dehghani et al. 2017; Erath et al. 2010; Hu and Ho 2013; Jenelius et al. 2006; Jenelius 2007, 87 

2009, 2010, Jenelius and Mattsson 2012, 2015; Kermanshah and Derrible 2016; Lu et al. 88 

2015; Luathep et al. 2011; de Oliveira et al. 2016; Wang et al. 2016). This means that travel 89 

demand is independent of changes in network level of service and traffic models may 90 

represent route choice changes (detour), but changes in trip mode, destination or time period 91 

may not be considered. 92 

Since disruptive events cause variations in travel demand (Kontou et al. 2017), this 93 

paper adopted an Activity-Based Model, which allows simulating users’ responses to changes 94 

in network configuration, modifying travel demand according to spatial accessibility 95 

variations. These aspects have been considered in few studies (Chen et al. 2007, 2012; 96 

Dalziell and Nicholson 2001; El-rashidy and Grant-muller 2014; Guo et al. 2017; Miller et al. 97 

2015; Taylor 2008) but still need to be developed and further analysed. Investigating the 98 

effects of Desert Road closure in New Zeland, Dalziell and Nicholson (2001) considered 99 

travel demand elasticity and assumed that some trips might not be performed if the increase of 100 

travel cost due to link closure exceed a certain value. In order to evaluate travel demand 101 
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changes in detail, Taylor (2008) and Miller et al. (2015) used an Activity-Based Model, and 102 

Chen at al. (2007) and Du, Xiaowei and Cheng (2017) adopted a Combined Travel Demand 103 

Model. However, in these papers models were limited to a single link or few links analysis 104 

(Chen et al. 2007; Taylor 2008) or they were related to specific scenarios (such as earthquake 105 

damage scenarios (Miller et al. 2015)). 106 

As stated by Reggiani, Nijkamp and Lanzi (2015), “transport is a largely derived 107 

demand, so that accessibility analyses, by including socio-economic elements, seem to be 108 

crucial for the study of the resilience/vulnerability impacts from transport networks to socio-109 

economic-environmental networks”. Therefore, network degradation significantly affects 110 

users’ accessibility (D’Este and Taylor 2001). Unlike the classical definition of accessibility, 111 

which consider only characteristics on the supply side of a transportation system, Taylor 112 

(2008) adopted a combined measure which considers also the demand side and travel 113 

behavior of users. Fixed Demand Model is not suitable for such definition of accessibility, 114 

therefore Activity-Based Model was adopted by several authors (Miller et al. 2015; Taylor 115 

2008). 116 

According to this perspective, this paper extended previous studies investigating the 117 

roles of accessibility and travel demand changes in urban road network vulnerability, which 118 

have received limited attention in the past. In order to evaluate these variations this paper 119 

adopts an Activity-Based Model. The link importance is evaluated with a set of vulnerability 120 

indicators adopting a vulnerability scan approach. In order to define a general methodology, 121 

which can be largely adopted in any vulnerability analysis, no assumptions about the type and 122 

the probability of occurrence of the event which produces the link closure are considered. The 123 

Activity-Based Model evaluates accessibility and travel demand changes, and network 124 
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performance produced by link closure, providing realistic and, therefore, solid and reliable 125 

results, which are useful to identify critical links. Moreover, by testing the proposed 126 

methodology on a real urban network in Italy, this paper contributes to perform vulnerability 127 

analysis for European case studies, which are very limited in previous works.  128 
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Material and methods 129 

The vulnerability scanning approach was adopted to identify the most critical elements 130 

of the system, whose degradation had the largest impacts on accessibility and vulnerability 131 

indicators. 132 

The basic scanning procedure follows these steps (de Oliveira et al. 2016; Taylor and 133 

Susilawati 2012): 134 

Step 1. Compute the vulnerability indicators for the base scenario (current network). The 135 

Activity-Based Model is run to produce base travel demand (OD matrices) and network 136 

performance; accessibility and vulnerability indicators are calculated.  137 

Step 2. Identify candidate critical links to evaluate. They can be all the links of the network 138 

(full-scan), or those for which there are ‘reasonable’ finite probabilities of use (partial-scan). 139 

Step 3: Simulate the closure of each candidate link and compute the vulnerability indicators 140 

for each new scenario (degraded network). The Activity-Based Model is run on the degraded 141 

network generating modified travel demand (OD matrices) and network performance; 142 

accessibility and vulnerability indicators are calculated. 143 

Step 4: Determine accessibility and vulnerability indicators’ changes, and identify the most 144 

critical links. 145 

The same procedure has been applied with a Fixed Demand Model: the performance 146 

for degraded networks was calculated with the travel demand estimated in step 1. Results 147 

obtained with the two models are compared and discussed. Details about Activity-Based 148 

Model and performance indicators are presented in the following sub-sections. 149 
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Activity-Based Model 150 

In transport systems, supply changes may induce travel demand variations; in order to 151 

simulate these effects, the vulnerability analysis has been conducted with an Activity-Based 152 

Model (ABM). This model focuses on individual choices, assuming travel demand as derived 153 

from the need to participate in activities (Scott 2006) and elastic (Ortuzar and Willumsen 154 

2011), i.e. responsive to transport system changes (accessibility, in particular). The model 155 

framework is based upon the work of Bowman and Bradley (2005), who developed and 156 

applied an econometric activity-based microsimulation model for the Sacramento (California) 157 

Area Council of Governments. In particular the disaggregated model simulates full-day 158 

activity and travel schedule for each resident in the study area (Bowman and Bradley 2005). 159 

The implemented ABM can be subdivided in the following sub-models (Figure 1). 160 

(1) The Population Synthesizer generates the population in the study area from detailed 161 

attributes of a sample of households and zonal characteristics (e.g. number of persons 162 

living in a traffic zone). This sub-model expands disaggregate sample data (such as 163 

gender, income, size) in order to match aggregate households’ characteristics with an 164 

Iterative Proportional Fitting process (Bowman et al. 2006; Bowman and Bradley 165 

2005; Ortuzar and Willumsen 2011). 166 

(2) The Activity and Travel Simulator simulates long term households’ choices (e.g. work 167 

and school location, number of cars owned) and personal daily activities, that is a 168 

sequence of tours and trips carried out by each person belonging to the synthesized 169 

population. Choices are simulated with a Nested Logit framework (Bowman et al. 170 

2006; Bowman and Bradley 2005), according to population and accessibility 171 

characteristics (zonal characteristics and transport network levels of service). In 172 
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particular, first a car ownership model is run for each household, and then, the full day 173 

activity schedule is calculated for each household member according to the following 174 

structure of the Nested Logit: decision to travel or not, purposes, time period and 175 

intermediate stops of the tours, and, for trips thus generated, choices of destinations 176 

and mode. 177 

(3) The Trip Aggregator sub-model produces Origin-Destination matrices (by purpose, by 178 

time period of day and by mode) conveniently aggregating daily activity lists into 179 

Traffic Analysis Zones (TAZ). 180 

(4) The Network Traffic Assignment sub-model assigns Origin-Destination matrices to the 181 

network and produces link flows with a Deterministic User Equilibrium model. This 182 

model assumes that users have a perfect knowledge of network travel costs, that is 183 

users are informed of link closure before they schedule their daily activities. 184 

(5) The Accessibility sub-model produces TAZ accessibility values (active and passive), 185 

to be used by the Activity and Travel Simulator. Accessibility depends on 186 

attractiveness measures (such as number of employees, students and retail outlets), 187 

network level of service (e.g. minimum travel time to reach a zone), trip attributes 188 

(time period of day, mode, purpose, away from or return to TAZ) and zonal 189 

characteristics (e.g. presence of toll parking). In particular, active accessibility 190 

considers the number of workplaces and commercial activities in TAZs that a person 191 

can reach (residents’ perspective), and passive accessibility  considers the number of 192 

residents in the TAZ (reachability of economic activities) (Cascetta et al. 2013; Papa 193 

and Coppola 2012).  194 
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The updated levels of service are iteratively used by the Activity and Travel 195 

Simulator, until the equilibrium is reached (i.e. when travel demand is consistent with 196 

network levels of service). 197 

The ABM was implemented in Citilabs Cube Voyager transport software and it 198 

considers: 199 

 3 travel modes (Single Occupancy Vehicles, High Occupancy Vehicles, Walk) 200 

 4 time periods (AM-peak period, MD period, PM-Peak period, Off-Peak period) 201 

 6 trip purposes (Work, School, Work-Based, Intermediate Stop, At Home, Other). 202 

Vulnerability and Accessibility indicators 203 

The vulnerability analysis was conducted adopting a set of vulnerability and 204 

accessibility indicators, introduced in this section. Accessibility can be considered as a more 205 

complete and useful indicator for vulnerability, since it captures spatial importance variability 206 

by means of economic variables, allowing the analysis of individual, communities and 207 

demographic groups consequences and topological connectivity (Miller et al. 2015; Reggiani 208 

et al. 2015). 209 

Difference in Mean Accessibility per Person (MAP) 210 

Difference in Mean Accessibility per Person for a degraded network, generated from 211 

the original one by removing link 𝑒, was proposed by Taylor (2008) and Miller et al. (2015). 212 

This indicator is highly correlated to user’s need to participate in out-of-home activities and 213 

reflects the complex interaction between travel demand and supply. In particular it is defined 214 

as: 215 
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 𝑀𝐴𝑃(𝑒) =

∑ 𝐴𝑠
(𝑒)

𝑠(𝑒)

𝑠(𝑒) −
∑ 𝐴𝑠

(0)

𝑠(0)

𝑠(0)

∑ 𝐴𝑠
(0)

𝑠(0)

𝑠(0)

 (1) 216 

where 217 

 𝐴𝑠 = 𝑙𝑛 ∑ 𝑒𝑉𝑠,𝑑𝐷
𝑑=1  (2) 218 

𝑠(0) and 𝑠(𝑒) are the flows of persons in the time period considered in the analysis who make 219 

a trip in current and degraded network, respectively; 𝑑 is the set of destinations that person s 220 

can reach from his/her own home; 𝑉𝑠,𝑑 is the systematic utility, the mean or expected value of 221 

utility perceived by persons having a choice set D, which depends on individual, zonal, and 222 

network parameters derived from the Network Traffic Assignment sub-model through a 223 

Deterministic User Equilibrium model. In this paper, these parameters were: number of 224 

employees in each sector and TAZ, presence of toll parking, minimum distance and travel 225 

time to reach a destination, number and age of household members, total household income 226 

and owned cars, tour purpose and time period of day. Coefficients of utility functions differ 227 

according to 3 travel modes, 4 time periods of the trip, 6 trips purpose, 4 household income 228 

classes and number of household cars (greater or less than 0); therefore the number of utility 229 

functions adopted is 576. For example, for car travel mode, AM – Peak period, work trip 230 

purpose, household income less than 33400 $ and more than 0 household cars, the utility is 231 

calculated as (Bowman and Bradley 2005): 232 

𝑉𝑠,𝑑 =  −0.03𝑡𝑜.𝑑 − 0.25𝑑𝑜,𝑑 − 0.25𝑡𝑜𝑙𝑙𝑑 (3) 233 
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where 𝑡𝑜.𝑑 and 𝑑𝑜,𝑑 are the minimum distance and travel time to reach a destination, 234 

respectively; 𝑡𝑜𝑙𝑙𝑑 is the parking toll. Observing Equation 3 one can note that all coefficients 235 

are negative, reducing users’ utilities. 236 

Difference in Total System Travel Time (TT)  237 

This indicator has been largely adopted to evaluate network performance variations 238 

(Jenelius et al. 2006; Rupi et al. 2015b; Scott et al. 2006): 239 

 𝑇𝑇(𝑒) = ∑ ∑ 𝑥𝑖𝑗
(𝑒)

𝑡𝑖𝑗
(𝑒)

𝑗≠𝑖𝑖 − ∑ ∑ 𝑥𝑖𝑗
(0)

𝑡𝑖𝑗
(0)

𝑗≠𝑖𝑖  (4) 240 

where the indices 𝑒 and 0 refer to degraded (with the removal of link 𝑒) and current network, 241 

respectively; 𝑥𝑖𝑗 is the travel demand from traffic zone 𝑖 to zone 𝑗 and 𝑡𝑖𝑗 is the corresponding 242 

minimum travel time, which includes intersection delays, and it was calculated in the Network 243 

Traffic Assignment sub-model through a Deterministic User Equilibrium model. 244 

Link Importance Index (LI) 245 

According to Jenelius, Petersen and Mattsson (2006) links which cause isolation of 246 

some centroids, if removed, are called cut-links and generate unsatisfied demand. Link 247 

Importance Index was proposed by Rupi et al. (2015a, 2015b) to quantify the importance of 248 

link 𝑒 for cut-links and non-cut-links. It is defined as: 249 

 𝐿𝐼𝑒 = 𝛽𝐹(𝐴𝐷𝑇𝑒) + (1 − 𝛽)𝐺(∆𝐶𝑒) (5) 250 

The index consists of two parts, whose relative weights are given by the parameter 𝛽, 251 

which ranges from 0 to 1 and is fixed by the analyst: 𝐹(𝐴𝐷𝑇𝑒) is the “local importance”, 252 
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which considers the link level of usage (measured by Average Daily Traffic, ADT), and 253 

𝐺(∆𝐶𝑒) is the “global importance”, which considers the effects of link closure in the network.  254 

In this paper, the former (𝐹(𝐴𝐷𝑇𝑒)) has been calculated as: 255 

 𝐹(𝐴𝐷𝑇𝑒) =
𝐷𝑇𝑒−𝐷𝑇𝑚𝑖𝑛

𝐷𝑇𝑚𝑎𝑥−𝐷𝑇𝑚𝑖𝑛
 (6) 256 

where 𝐷𝑇𝑚𝑎𝑥 and 𝐷𝑇𝑚𝑖𝑛 are respectively the maximum and minimum daily traffic (DT) 257 

among all the links of the current network, as estimated by the model. 258 

The latter (𝐺(∆𝐶𝑒)) has been calculated as: 259 

 𝐺(∆𝐶𝑒) =
𝑔𝑒−𝑔𝑚𝑖𝑛

𝑔𝑚𝑎𝑥−𝑔𝑚𝑖𝑛
 (7) 260 

where 𝑔𝑚𝑎𝑥 and 𝑔𝑚𝑖𝑛 are respectively the maximum and minimum values among the links in 261 

the network, and 𝑔𝑒 is: 262 

 𝑔𝑒 = ∆𝐶𝑒 + 𝛼𝑑𝑖𝑗
𝑒  (8) 263 

where ∆𝐶𝑒 is the travel time total variation after the closure of link e (with respect to the 264 

current network configuration); 𝑑𝑖𝑗
𝑒  is the corresponding unsatisfied demand from i to j; and 265 

parameter 𝛼 is determined to obtain higher values of 𝑔𝑒 after removing a cut-link than 266 

removing a non-cut-link. 267 

Case study 268 

The road transport network of the municipality of Dolo, in the province of Venice, 269 

northern Italy, was used to illustrate the vulnerability analysis under different scenarios using 270 

the proposed methodology and model. The results of the analysis were used by local 271 
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authorities in the urban traffic planning process, to define proper maintenance investments 272 

and management strategies, basing their decision on realistic and reliable results. 273 

The total population of Dolo is 14982 with 624 per km
2
 density (ISTAT 2011). The 274 

road network model consists of 83 traffic zones (65 internal and 18 external zones), 2389 one-275 

way links and 1121 nodes, including connectors and different road types as shown in Figure 276 

2. The model also includes 523 intersections, represented by Cube Voyager sub-model, which 277 

provides representation of intersection geometry and signal phasing (signalized and un-278 

signalized intersections, roundabouts), and calculates delays suffered by network users. BPR-279 

type travel time functions were adopted for simulations, according to road types. 280 

The vulnerability analysis was conducted to a subset of 52 links (candidate links in 281 

Figure 2), to reduce the computational burden due to ABM’s runs (on a Dual Core Intel 282 

Pentium D Processor 3.2 GHz with a 2 GB RAM, the ABM took about 15 minutes per 283 

scenario) and to ease the comparison of results. In particular, links were selected according to 284 

the following criteria: 285 

1. After an analysis of flow in the current network, road links with the largest traffic 286 

flows were identified. These links belong to main corridors, whose closures would 287 

have major effects on the network; 288 

2. The most congested nodes were observed and arcs belonging to the most important 289 

intersections were selected; 290 

3. Links in Dolo downtown area was considered, since few detours exist in case of 291 

their closure; 292 

4. The most vulnerable links from a structural perspective, such as bridges, were 293 

selected. 294 
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The list of candidate links thus obtained was proposed and approved by technicians of Dolo 295 

local authority. 296 

The link closure was simulated by excluding the link from the routes calculation in the 297 

assignment phase; in few cases the simulation produced cut-link conditions, that is the 298 

isolation of some centroids and unsatisfied demand. This result appears unrealistic, but this is 299 

due to the case-study network model configuration, since in practice users may take detours 300 

outside the study area. These simplifications did not affect the overall validity of the analysis 301 

and gave the chance to analyse the cut-links cases, which can occur in other contexts. The 302 

ABM model can be applied to larger networks, adjusting model parameters with proper 303 

calculators in order to reduce the computational burden; e.g. Miller et al. (2015) tested an 304 

ABM on a real network with more than 32000 links and 11900 nodes. 305 

Although other modes might be introduced and modelled in the ABM, such as public 306 

transport and bike, in this phase they were not considered since the primary aim is to test the 307 

application of the proposed model in the vulnerability analysis. This means estimating 308 

inconveniences of users that, using car in the current scenario, are not able to perform their 309 

trip any more or they are compelled to change route, destination or period of their trips and 310 

activities, due to degradation of network performances after link closure. Since negative 311 

impacts evaluated though the ABM are defined as the users’ inability to perform trips and 312 

activities as they scheduled with the travel mode chosen (car) in the current scenario, only car 313 

mode was considered. 314 

Model Implementation 315 

To obtain a realistic representation of daily activity, the ABM was implemented with 316 
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some assumptions, discussed in the following paragraphs. 317 

Data collection and socio-economic characteristics 318 

The ABM needs detailed input data, which were collected at different level of aggregation 319 

by Italian agencies (e.g. municipalities, Italian National Statistics Institute): 320 

 For each traffic zone: 321 

o Number of households living in the zone; 322 

o Number of students (high- and middle-school enrolment); 323 

o Number of employees, grouped in three sectors: service, retail, other. 324 

 For each household: 325 

o Total household income (four income classes); 326 

o Number of household members. 327 

 For a sample (5.3 %) of households, household members personal data (from a 328 

specific households survey):  329 

o Age; 330 

o Employment status. 331 

Mandatory activities 332 

Mandatory activities (i.e. work, school) estimated by the ABM in the base scenario 333 

(current network) were constrained to be preserved in the degraded conditions; this means that 334 

persons do not change their destination after link removal. Other types of activities may be 335 

done in other zones or not be carried out any more. 336 
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Relationships with external traffic zones 337 

Unlike previous studies, (Bowman et al. 2006; Shan et al. 2013; Zhang et al. 2013) the 338 

ABM applied in this work includes the modelling of internal-external trips, which in many 339 

cases may represent a relevant portion of travel demand in a study area. It was assumed that 340 

opportunities outside the study-area (e.g. jobs, service areas) can represent feasible 341 

alternatives to current choices for persons living in the area and therefore must be represented 342 

in the model. The following procedure was implemented to model this aspect: 343 

(1) From households survey data, internal-internal and internal-external trips were 344 

selected and categorized according to their purpose (work, school, retail, service, 345 

other); 346 

(2) For internal-external trips selected in step 1, each trip destination (outside the study 347 

area) was recoded to match the corresponding external TAZ; 348 

(3) For each purpose and for each internal TAZ, the rate between the number of 349 

opportunities (e.g. employees, students) and the number of internal-internal trips was 350 

determined; 351 

(4) The total amount of opportunities in the external TAZs (employees, students) 352 

“available for internal users” was estimated multiplying the rates obtained in step 3 by 353 

the number of internal-external trips; 354 

(5) The total amount of opportunities was assigned to each external TAZ proportionally to 355 

the number of internal-external trips obtained through steps 1 and 2. 356 

Other types of trips (external-internal and external-external) were assumed as 357 

exogenous input data, taking values from pre-existing matrices (for the same study-area), 358 
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generated by household and intercept (external cordon) surveys, properly adjusted with traffic 359 

count data. Since the aim of this paper is to evaluate inconveniences of people living in the 360 

study area, only internal-internal and internal-external trips were simulated through the ABM; 361 

however, since external-internal and external-external trips were not negligible, and, in order 362 

to obtain realistic results in terms of network performances, this type of demand was added to 363 

the corresponding matrices at each iteration of the ABM. 364 

Model Calibration and Validation 365 

One of main interests of this paper was proving the capabilities of the ABM in 366 

vulnerability analysis, inspecting the effects of users’ activities and accessibility changes due 367 

to link disruption (i.e. in relative terms). The model adopted for the analysis was based on 368 

parameter values obtained in other contexts (Bowman et al. 2006) and partially modified to 369 

better represent Italian application conditions. Specific and more detailed model calibration 370 

for the Italian context will be developed in a second phase of the present work. 371 

The validation process was conducted, as done by other authors (Bowman et al. 2006; 372 

Siripirote et al. 2015; Vuk et al. 2015; Zhang et al. 2013), comparing the demand estimated 373 

with the ABM (base scenario) and the current demand observed for the same study-area. The 374 

comparison was satisfactory, since the population living in the study area estimated by the 375 

model is 1.1% lower than the current one on base year; furthermore the estimated trips with 376 

internal origin and destination was 3% lower than the trips observed in the study area for the 377 

AM-Peak period, and 15% higher for the PM-Peak period; in addition the trip distribution in 378 

time periods is similar to the current case. 379 
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Results and discussion  380 

The analysis of results considered mean indicator values for each scenario in a full 381 

workday period (24 hours) for car travel mode. For sake of brevity, results are reported only 382 

for worst scenarios. 383 

Results with Activity-Based Model 384 

Table 1 reports Mean Accessibility per Person (MAP), System Total Travel Time 385 

(TT), Average travel time per person (ATTP) and Link Importance Index (LIe) for some 386 

values of β, obtained for worst candidate links disruption.  387 

Observing Table 1 one can note that link closure affects link performance depending 388 

on link type (cut-link or non-cut-link); moreover, observing each indicator, different effects 389 

can be shown. The most vulnerable links seem to be link 100409 for non-cut-links and link 390 

110106 for cut-links. Both links belong to main corridors: link 100409 is a bridge on the 391 

north-south urban corridor, and link 110106 is a rural link in the main east-west corridor. 392 

Moreover when removing a non-cut-link, TT and ATTP increase and MAP decreases, since 393 

the network changes reduce global accessibility and users are forced to make long detour; on 394 

the contrary when removing a cut-link, TT and MAP decrease, since accessibility decreases 395 

and travel demand loaded onto the system is reduced by network disruption (before the 396 

assignment). 397 

The results for indicator LIe depend on the value of parameter β adopted, that is the 398 

relative weight given to local and global importance. A sensitivity analysis was performed, 399 

increasing the parameter β from 0 to 1. It was found that for values of 𝛽 equal to 0.25 and 400 

0.50, link 110106 (cut-link) is the most vulnerable; for 𝛽 equal to 0.75 it is link 100409 (non-401 
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cut-link). In conclusion link rankings are similar, but not identical, since indicators are based 402 

on different factors, such as network performance and users’ characteristics. 403 

To better compare rankings of 52 candidate links, Spearman’s rank correlation 404 

coefficient ρ was calculated. Results show that TT-MAP correlation is quite high (ρ=0.68), 405 

and that TT-LIe and MAP-LIe correlations increase as the value of parameter 𝛽 increases, 406 

even if they are lower than TT-MAP correlation (for 𝛽=0.75, TT-LIe ρ=0.58 and MAP-LIe 407 

ρ=0.66). This confirms that rankings change when considering different importance indexes. 408 

To understand the complex effects due to travel demand changes, variations in tours 409 

characteristics were further analyzed;   410 



22 

 

Table 2 reports percentage differences between damaged and base scenarios. The 411 

results suggest that link closure produces changes in users’ activities (trip chains), since 412 

average trips per person and average trips per tour vary in degraded networks. Furthermore, 413 

when removing a non-cut-link, average distance and average time per tour increase, since 414 

users are forced to make long detour. Number of tours and trips (total and per person) may 415 

vary for each scenario; on the contrary when removing a cut-link, average distance, average 416 

time, the number of tours and trips decrease. These reductions are due to less persons 417 

travelling in the network as a consequence of unsatisfied demand. 418 

The results were consistent to ABM framework. Link closure produces network 419 

performance decay, that users perceive as a reduction of utilities associated with activities 420 

conducted in some zones of the study area. As the utilities decrease in these zones, zonal 421 

accessibility decreases and affects the scheduling of daily activities. The analysis of O/D 422 

matrices shows that spatial and temporal tour configuration changes in degraded networks: 423 

users choose new destinations and modify their trip chains, with tours longer than current 424 

ones. 425 

In particular, high vulnerability of link 100409 is consistent with study area 426 

characteristics, since this link is one of three bridges crossing the river in the area and its 427 

closure forces users to long detours. 428 

Comparison with Fixed Demand Model 429 

The same vulnerability indicators were calculated with a Fixed Demand Model (FDM) 430 

and reported in Table 3 for worst candidate links.  431 
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According to the results, one can observe some differences between FDM and ABM. 432 

First TT increases for non-cut-links, because original demand is assigned to a degraded 433 

network, and decreases for cut-links, because of travel demand unassigned to the network. 434 

Absolute values are greater than those obtained with ABM, since the demand did not change 435 

in the degraded networks. Second MAP does not vary in the degraded network, since travel 436 

demand is assumed fixed; and LIe absolute values are generally lower than those obtained 437 

with ABM. 438 

As obtained with ABM, the most vulnerable links are link 100409 for non-cut-links 439 

and link 110106 for cut-links, but the link ranking changes, as confirmed by the analysis of 440 

Spearman’s rank correlation coefficient ρ for candidate links. Analysis shows that correlation 441 

between FDM and ABM is very high (ρ=0.98) for TT, but low for LIe, ranging from ρ=0.20 442 

(𝛽=0.25), to ρ=0.48 (𝛽=0.75).  443 

Results obtained with ABM seems to be more reliable those obtained with FDM, 444 

which did not take into account spatial distribution of activities and trips, due to unrealistic 445 

assumptions of unchanged travel demand after network degradation. 446 

Spatial Analysis of Accessibility 447 

For the two worst scenarios previously identified, the analysis was extended 448 

considering the impact of link disruption on accessibility, which has a significant role in the 449 

ABM. Figure 3 shows the variation in Mean Accessibility perceived by persons living in each 450 

TAZ due to link closure. In particular, people living in TAZ with dark colors experience 451 

lower utilities in carrying out activities in other TAZ, respect to the current scenario; 452 

therefore, their perceived accessibilities towards other TAZ are very low. Observing this 453 
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figure, one can note that for the worst non cut-link (100409, left), MAP always decreases, in 454 

particular for persons living in southern TAZs, who usually use the link to move towards 455 

northern TAZs. Similarly for the worst cut-link (110106, right), MAP strongly decreases for 456 

TAZ 12, which is isolated after link removal. For persons living in TAZ 77, there is a slight 457 

increase in MAP, due to network performance improvements after travel demand reduction. 458 

Again, since ABM simulates spatial and temporal variations in users’ daily activities, 459 

modifying users’ travel utilities, results obtained with this model are more reliable than those 460 

obtained with FDM, which does not take into account accessibility and tour changes after 461 

network degradation. This fact represents a strong limitation to apply FDM in the evaluation 462 

of socio-economic effects in vulnerability analysis.  463 
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Conclusions 464 

In this paper road network vulnerability was evaluated by the analysis of link 465 

degradation effects on accessibility and network performance, considering travel demand 466 

changes. An Activity-Based Model was used to overcome unrealistic assumptions of fixed 467 

travel demand; relationships with external traffic zones, and spatiotemporal constraints 468 

connected with mandatory activities were considered and modelled properly. Link importance 469 

was evaluated with a set of vulnerability indicators, and specific analysis was carried out to 470 

underline effects of accessibility changes on travel demand.  471 

The proposed methodology was applied to a real road network, simulating link closure 472 

effects independently of the type of event which causes it, building an approach that can be 473 

adopted for any disruptive event. The results of the analysis were significant for local 474 

authorities to define proper management strategies in the urban traffic plan.  475 

Results produced by Activity-Based Model are consistent and significant. The model 476 

takes into account spatial distribution of activities and trips, due to changes in accessibility 477 

perceived by users.  478 

In particular, results obtained with Activity-Based Model are more reliable than those 479 

obtained with Fixed Demand Model, which has unrealistic assumptions of unchanged travel 480 

demand after network degradation. Therefore, this methodology can be adopted to generate 481 

strong and consistent bases, useful for decision makers to allocate limited resources in 482 

prioritizing interventions on vulnerable links. 483 

In the specific case study, the most vulnerable links are the same applying both 484 

models, but link ranking is not the same. For investments and management strategies this fact 485 
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is relevant and must be considered by authorities, since the best allocation of resources may 486 

change depending on link ranking. 487 

According to the above results, this study could be extended in various ways: 488 

extension of Activity-Based Model calibration to better represent users’ behavior in Italy, 489 

complete validation of the model, by the comparison with the effects observed in case of link 490 

closure in real road networks, and a deeper analysis of Activity-Based Model results, 491 

including temporal distribution of activities, modal split modifications, equity effects of 492 

accessibility changes. Furthermore, the Activity-Based Model might be applied to a larger 493 

network, by modifying model parameters; the associated computational burden might be 494 

reduced by adopting proper calculators and/or focusing on a subset of links identified through 495 

automated selection criteria. Further detailed data are required to extend the network 496 

including external zones and, therefore, modelling trips originated in these zones. Moreover, 497 

the research can be extended considering other travel modes beyond car, in order to evaluate 498 

the modal shift caused by network degradation and, in particular, to test how the Activity-499 

Based Model can simulate how users might decrease their inconveniences by changing their 500 

mode. An authors’ research is currently evaluating model transferability to other study areas 501 

with proper data for the calibration phase. 502 

To sum up, respect to Fixed Demand Model, the Activity-Based Model produces 503 

reliable and significant results which contribute to create sound bases to transportation 504 

planners and local authorities. On the other hand, it requires higher computational time and a 505 

lot of detailed data to be calibrated due to its complexity. However, once created, its model 506 

structure can be adopted and modified to identify critical infrastructure and proper policy 507 

interventions to prevent traffic congestions and other disadvantages. 508 
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Figure captions 669 

Fig. 1. Simplified structure of the Activity-Based Model 670 

Fig. 2. Case study area. 671 

Fig. 3. Difference of MAP values from base scenario for links a) 100409 and b) 110106  672 
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Tables 673 

Table 1. Activity-Based Model. Performance indicators for worst scenarios 674 

Link Type Link Code TT ATTP MAP 

 

𝐋𝐈𝐞  

  [%] [%] [%] 𝛃 = 0.25 𝛃 = 0.50 𝛃 = 0.75 

NCL 100409 438.8 46.6 -19.066 0.448 0.599 0.750 

NCL 200131 350.5 21.4 -9.703 0.396 0.556 0.716 

NCL 100525 225.8 21.4 -9.780 0.258 0.363 0.468 

NCL 100368 71.4 3.4 -1.171 0.099 0.151 0.202 

NCL 100577 59.9 26.9 -9.195 0.180 0.320 0.460 

NCL 200058 59.8 8.4 -4.491 0.260 0.479 0.698 

NCL 100397 40.0 17.6 -10.420 0.201 0.375 0.549 

NCL 103789 29.3 8.0 -4.295 0.172 0.324 0.476 

NCL 102442 29.3 8.0 -4.295 0.172 0.324 0.476 

NCL 108431 28.1 16.6 -9.619 0.211 0.403 0.594 

CL 110105 -8.9 0.0 -0.972 0.439 0.348 0.257 

CL 110106 -25.2 1.0 -9.251 0.915 0.831 0.746 

 Note: ATTP = average travel time per person; NCL = non-cut-link; CL=  cut-link. 
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Table 2. Percent variations of tour characteristics from base scenario. 676 

Link 

Type 

Link 

Code 

Number 

of Tours 

Tours  

per Person 

Number 

of Trips 

Trips  

per Person 

Trips  

per Tour 

Average Distance  

per Tour 

Average Time 

per Tour 

NCL 100409 -0.005 -0.452 -0.001 -0.120 0.003 0.152 0.330 

NCL 100577 -0.002 -0.190 -0.001 -0.103 0.001 0.029 0.161 

NCL 200131 -0.002 -0.005 -0.004 -0.182 -0.002 0.037 0.159 

NCL 100525 -0.006 -0.260 -0.008 -0.481 -0.002 0.034 0.153 

NCL 108431 -0.001 0.087 0.001 0.323 0.002 0.153 0.145 

NCL 200036 -0.003 -0.205 -0.003 -0.198 0.000 0.061 0.120 

NCL 100397 -0.002 -0.139 -0.004 -0.282 -0.001 0.112 0.113 

NCL 100599 -0.006 -0.095 -0.001 0.379 0.005 0.028 0.091 

NCL 200058 -0.003 -0.084 -0.004 -0.165 -0.001 0.070 0.090 

NCL 102442 -0.003 -0.202 -0.004 -0.304 -0.001 0.095 0.067 

CL 100483 -0.089 -4.490 -0.090 -4.577 -0.001 -0.003 -0.002 

CL 110106 -0.153 -4.558 -0.153 -4.570 0.000 -0.034 -0.025 

Note: NCL = non-cut-link; CL = cut-link. 
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Table 3. Fixed Demand Model. Performance indicators for worst scenarios 678 

Link  Link  TT  MAP  𝐋𝐈𝐞      

Type Code [%] [%] 𝛃 = 0.25 𝛃 = 0.50 𝛃 = 0.75 

  FDM ABM FDM ABM FDM ABM FDM ABM FDM ABM 

NCL 100409 502.2 438.8 - -19.066 0.416 0.448 0.578 0.599 0.740 0.750 

NCL 200131 388.8 350.5 - -9.703 0.110 0.396 0.217 0.556 0.324 0.716 

NCL 100525 278.4 225.8 - -9.780 0.074 0.258 0.147 0.363 0.221 0.468 

NCL 100577 74.4 59.9 - -9.195 0.142 0.180 0.273 0.320 0.404 0.460 

NCL 100368 74.4 71.4 - -1.171 0.092 0.099 0.146 0.151 0.200 0.202 

NCL 200058 63.5 59.8 - -4.491 0.119 0.260 0.238 0.479 0.356 0.698 

NCL 100397 40.2 40.0 - -10.420 0.196 0.201 0.372 0.375 0.548 0.549 

NCL 108431 29.7 28.1 - -9.619 0.114 0.211 0.224 0.403 0.334 0.594 

NCL 102442 29.5 29.3 - -4.295 0.168 0.172 0.322 0.324 0.475 0.476 

NCL 103789 29.4 29.3 - -4.295 0.101 0.172 0.200 0.324 0.299 0.476 

CL 100483 -7.9 -8.7 - -0.972 0.030 0.494 0.061 0.401 0.091 0.308 

CL 110106 -30.8 -25.2 - -9.251 0.186 0.915 0.368 0.831 0.550 0.746 

Note: AB = Activity-Based Model; FDM = Fixed Demand Model; NCL = non-cut-link; CL=  cut-link;  

- = (for MAP) indicator has no variation.  
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