
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Policy-Based Architecture for Container Migration in Software Defined Infrastructures / Tao, Xu; Flavio, Esposito;
Sacco, Alessio; Marchetto, Guido. - ELETTRONICO. - (2019), pp. 198-202. (Intervento presentato al  convegno 2019
IEEE Conference on Network Softwarization (NetSoft) tenutosi a Parigi nel June 2019)
[10.1109/NETSOFT.2019.8806659].

Original

A Policy-Based Architecture for Container Migration in Software Defined Infrastructures

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/NETSOFT.2019.8806659

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2752093 since: 2019-09-17T11:09:54Z

IEEE



A Policy-Based Architecture for Container
Migration in Software Defined Infrastructures

Xu Tao∗
Politecnico di Torino, Italy
xu.tao@studenti.polito.it

Flavio Esposito
Saint Louis University, USA

flavio.esposito@slu.edu

Alessio Sacco
Politecnico di Torino, Italy

alessio sacco@polito.it

Guido Marchetto
Politecnico di Torino, Italy
guido.marchetto@polito.it

Abstract—Software-Defined Networking (SDN) is a paradigm
that enables easier network programmability based on separation
between network control plane and data plane. Network Function
Virtualization (NFV) is another recent technology that has en-
abled design, deploy, and management of softwarized networking
services. The vast majority of SDN and NFV based architectures,
whether they use Virtual machines (VMs) or Lightweight Virtual
Machines (LVMs), are designed to program forwarding, probably
the most fundamental among all network mechanisms.

In this paper instead we demonstrated that there are other (as
important) networking mechanisms that need programmability.
In particular, we designed, implemented and extensively tested
an architecture that enables policy-programmability of (live)
migration of LVMs. Migration is used for maintenance, load
balancing, or as a security mechanism in what is called Moving
Target Defence (a virtual host migrates to hide from an attacker).
Our architecture is based on Docker and it is implemented within
a Software-Defined Infrastructure. Migration mechanism can be
set easily by means of configuration file, to make a novel policy-
based architecture. We evaluated the performance of our system
in several scenarios, over a local Mininet-based testbed. We
analyzed the tradeoff between several Load Balancing policies
as well as several Moving Target Defense solutions inspired by
network coding.

Index Terms—software defined networking, container migra-
tion, moving target defense.

I. INTRODUCTION

The recent surge in popularity of Cloud Computing and
Internet of Things (IoT) has resulted in a number of IoT
networks, widely deployed. As new technologies showing
up, today’s network is much harder and more complex to
manage and monitor. Thus, new network solutions come up.
For instance, Software Defined Networking (SDN) is the latest
network paradigm to solve the complexity of networking. It
provides the benefits by detaching networking control layer
and data layer, providing the possibility to use powerful central
commands to meet the requirements of underlying demand
data planes. Instead, Network Functions Virtualization (NFV)
is a new method to design, deploy, and manage networking ser-
vices. Virtual Machines (VMs) are widely used to implement
NFV. Despite VMs, Lightweight Virtual Machines (LVM),
such as Dockers, are a more efficient solution. The Docker
technology allows the true independence between application,
infrastructure, developers, and IT Ops. It enables creating a
model for better collaboration and innovation.

This work was done in the Computer Science Department at Saint Louis
University, USA.

Why a policy-based programmable migration mecha-
nism is needed? Based on these new network solutions,
migration is a new solution widely used in cloud network
structure and data center. Migration is the movement of a
virtual machine from one physical host to another, it happens
without the awareness of end users. It can achieve networking
maintainance, load balancing, network failure repair for pro-
viding an always available system. Apart from these, it can
also be used as a security moving target defense strategy.

Nowadays migration solutions mostly focus on VMs [1],
and Virtual Routers (VR) [2]. Besides, they are usually in ad-
hoc environment, concerning a specific policy of the migration
mechanisms; for instance, loading balancing [3] or energy
optimization [4]. There is less concern on container migration.
The container is known as the lightweight virtual machine. It
does not virtualize only the hardware, but also the operating
system. Comparing with the virtual machine, it is much lighter.
If there is a high requirement with respect to the speed for
migration, container migration could be a good solution.

Virtualization is a way that enables network programmabil-
ity, and software defined networking is a good example. Above
control plane, it is flexible and easy to develop applications
such as routing, access control, etc. But it is only good for
forwarding mechanism. In addition, network protocols are
usually designed in the ad-hoc fashion. Different versions of
TCP or routing exist, some of them are suitable for bandwidth
sensitive applications, some are for delay sensitive applica-
tions, some aim to achieve security, some aim to provide
better performance. There is no one-size-fits-all, a policy-based
programmable migration mechanism is needed.

Our contribution. We designed a policy-programmable
container migration architecture based on Docker. The policy-
based architecture allows us to change policies with a simple
configuration file, so programming the migration mechanism
is easy. Second, we test security and load balancing policies
within our SDN-based prototype over Mininet. Third, we
designed and evaluated novel Moving Target Defense (MTD)
solutions inspired by network coding.

The policy-based migration system can do software defined
measurement based on the network traffic statistics obtained
through SDN controller. We developed our algorithms to make
migration decision and applied it on two use cases. The first
is Load Balancing that we feature with 3 policies: bandwidth-
based, shortest path, random. The second is Moving Target



Defense, where novel solutions are inspired by network cod-
ing, that we feature also with three policies: Shamir, Digital
Fountain, and Pseudo Random function.

The paper is organized as follows. In section II, we discuss
related migration solutions. Section III describes our migration
system architecture. In section IV we present two use cases:
load balancing, moving target defense. Section V illustrates
the experimental validation results we obtained. In the end,
the work is concluded in Section VI.

II. RELATED WORK

Several network migration solutions exist nowadays, and
a considerable work has been done concerning live VM
migration [5]–[7]. In addition, there are a set of papers in
which the authors compare and analyze the possible factors
that could affect the migration performance. In [8]–[10], the
authors examined the major issues of virtual machine live mi-
gration with some metrics, e.g downtime, total migration time,
also classifying the techniques and comparing the different
solutions. However, containers (lightweight virtual machine
(LVMs)) are showing up as recent virtualization technique,
they don’t virtualize only the hardware infrastructure but also
the operating system. Recently, new attempts to use containers
instead of VMs have been proposed [11]. They focus on
reducing migration time, with no concern about the network
traffic situation. In our work, we concentrate on container
migration, because compared to VM it is lighter and the
migration can be faster than migrating a virtual machine.
Our policy-based system performs migration adapting different
application needs by just changing a configuration file. This
is the first attempt, to the best of our knowledge, to build a
architecture to enable programmable migration mechanism.

Moving Target Defense (MTD) is a new security paradigm.
Instead of defending unchanging infrastructure by detecting,
preventing, monitoring, tracking and remedying threats, mov-
ing target defense makes the attack surface dynamic. Many
attempts have been proposed to achieve security through MTD.
For instance, U-TRI adopts a randomly changing identifier
to replace the original static data link layer address [12].
They defend traffic privacy by obfuscating the identifiers in
network and transport layer. A different approach is used in
WebMTD, that randomizes certain attributes of web elements
to differentiate the application code from injected code and
disallow its execution [13]. Besides, a more general solution
is Mutated Policies [14]. It is an attribute-based defense
strategy for access control that carefully selects the attributes
that uniquely identify the entities involved. Then it randomly
mutates the original access policies over time by adding
additional policy rules constructed from the newly-identified
attributes.

In our migration system, we move the container from one
host to another one, to guarantee that the hosted machine
IP address keeps changing. Then, we improve different algo-
rithms existing with information of the network, integrating
polynomial concept with a novel algorithm such as digital
fountain mechanism.

Fig. 1: System Architecture and Components, the green blocks
are our contribution.

III. ARCHITECTURE DESIGN

In this section, we focus on the system architecture design
and the function of each component. We built a programmable
policy-based migration system, to provide flexibility for adapt-
ing different application needs by just changing one parameter
in the configuration file. Besides, the system is designed to
collect network traffic statistics leveraging an SDN controller,
which applies software-defined measurements on the basis
of these statistics. Thus, a more accurate migration decision
is made by adding information about the network. As a
consequence, a container can be migrated from a source
host to a destination host within a cloud-edge network with
a programmable policy-based mechanism. A well-designed
migration system should be able to answer three questions:
(i) which container should be migrated, (ii) when migration
should happen, (iii) where to migrate. Following those ques-
tions, we designed our system architecture.

A. System Architecture Overview

Figure 1 shows the general architecture and key components
of the system. There are 4 main component blocks designed
for migration system: Database & Virtual Information Base
(VIB), Software defined measurement, Migration Manager,
and Migration Daemon.
(1) Database & VIB is designed to store the network traffic

statistics. (2) Software Defined Measurement collects network
traffic statistics through an SDN controller (Floodlight) and
stores the data in an SQL-based database. We use two data
collectors, one for bandwidth and one for packet aggregate.
The Bandwidth collector is used to measure the bandwidth
consumption per switch port. On the other hand, the Ag-
gregate collector is used to get the number of packets per
switch. Both measurements are collected at a customizable
standard frequency. We use these measurements as input of
our controller to detect traffic or switch overloads and start
a migration process. We also use the information collected in
the database to decide what is the destination for the migrating
LVM, according to a programmable policy. Software defined



Fig. 2: System design and protocol used to exchange infor-
mation. Migration Engine asks for network information and
decide the migration parameters.

measurement system enables the simplicity and flexibility in
collecting network traffic statistics. (3) Migration Manager
monitors the process and makes migration decisions. In a
configuration file, we specify a set of threshold parameters and
the policy name. In our prototype we implemented two sets
of policies for two use cases: Load Balancing and Moving
Target Defense. Users can, however, easily implement their
own policies. This component includes a Migration Brain,
which executes the policy specified in the configuration file.
(4) Migration Daemon is the process running on hosts, and
handles the migration process. We use the Docker API to
create, start, stop, take the memory and storage snapshot
of the current container status. A schema of our prototype
implementation is shown in 2.

B. Migration Model and Protocol

Migration manager makes the migration decision and com-
municates the destination host to the source host. When the
source receives the command and the migration destination IP
address, it starts the migration process. We defined a Migration
Protocol used to execute such migration. First, Migration
Manager makes migration decision and communicates it to
the Source Host with a “MIGRATE” command. At this point,
Migration Source Host takes the snapshots and stores the
image files of the current running container (docker check-
point). After that, it transfers the container image files to the
Destination Host. During this communication, the source host
does not stop providing the service. The communication be-
tween Source and Destination Host starts with a “RESTART”
command sent by the source. This message is followed by the
information about container image files. Once Destination has
received all the required details, it restart the container. After
the service starting, Destination sends “SUCCESS” command
to the migration source host. Then, the TCP connection will be
closed between all the parties involved. Also, source host stops

the container providing the service. In the end, the routing is
redirected to the migration destination host.

Our programmable migration framework enables to chose
the destination host according to different criteria. In such a
way an administrator is able to choose different policies for
different use cases.

IV. MIGRATION POLICY TRADEOFF AND USE CASES

In this section, we explain our migration system on two
use cases: Load Balancing and Moving Target Defense. The
policies used in each use case will be listed and compared.

A. Use Case 1: Load Balancing

This application allows migration by monitoring the net-
work traffic. The destination host is selected according to
different criteria, and we focused on three policies to select
the destination:
Random: destination host is selected at random.
Bandwidth-based: destination host is the host with the max-
imum available outgoing bandwidth. We define this value as
the minimum link capacity of the links in the path.
Shortest Path: leveraging Floodlight controller we are able to
get the network topology and compute the shortest path for
each couple of nodes.

B. Use Case 2: Moving Target Defense

Moving Target Defense is a paradigm whose idea is to
make the attack surface more dynamic. During the setup phase,
(private) key(x,y) and a lookup table are distributed to each
host. The lookup table is encrypted with a master secret for
protecting the migration destination host. This table is an hash
table associating to each index the destination host IP address.
At the migration stage, our system provides to the source host
a random number R to combine with the key as the input of
a hash function:

hash(x) = Hash(R+X ∗ Y )%(N + 1), (1)

where N is the number of hosts, R is the random number,
(X,Y ) is a key represented as a point and % is the modulo
function . The value obtained from the hash function is the
index of the lookup table. Here, three policies are used to
share a secret:
Shamir: This policy is inspired by Shamir’s method [15]: a
secret is divided into K parts, and each participant has its own
unique part. To get the secret key, a host needs to authenticate
with some or all other hosts. The migration source host has
to ask K disjoint hosts for K different keys to reconstruct
the key and decrypt the lookup table. K is specified in the
configuration file.
Digital Fountain: The migration source host needs to ask to
K hosts for K keys, not necessarily disjoint. In our imple-
mentation we pick these K hosts probabilistically, using the
following formula:

P (i, k) =

1
latency(i,k)∑n

j=1
j 6=i

1
latency(i,j)

, (2)



Fig. 3: Network topology with heterogeneous link capacity

where i is the source host, k is the random host, and P (i, k) is
the probability that host k is selected for asking the key. The
host which has a smaller latency has a higher probability of
being selected. This means that closer hosts may be contacted
multiple times for the key.
Random: The destination host is selected by using a pseudo
random function. We use this policy as a benchmark.

At the beginning, Migration Manager distributes different
encrypted lookup table with the information required for the
algorithms to each host. The manager generates also a set
of key(x,y) for each host. Hence each host has a part of
the information to decrypt the lookup table. Then, Migration
manager sends a random number to the source host, it applies
hash(x), and the result is the migration destination host index
i. According to the policy specified in the configuration file,
different strategy are used for decrypting the table. In case of
Digital Fountain the same host can be contacted many times,
since the one which has the shorter path will have the higher
probability to be chosen. On the other hand, in Shamir the
host asks to k disjoint hosts the key pair in order to decrypt
the lookup table. After getting the k keys, the migration source
host applies the algorithm (Digital Fountain or Shamir) to get
the master secret S. Hence, the source host decrypt the lookup
table using S, get the migration destination host IP, and start
the migration process.

V. EXPERIMENTAL VALIDATION

In this section, we test our system in a Mininet testbed,
evaluating the two use cases and all the policies. The results
are obtained using a Ubuntu Intel i7-6500U @ 2.50GHZ, 8.00
GB RAM, 64-bits.

A. Use Case1: 3 policies evaluation for Load Balancing

Scenario 1: Link capacity is heterogeneous. The topology
we used as testbed is shown in Figure 3, where the link
capacity varies among the links. H1 executes a docker con-
tainer running iperf client, while H2 will be the source host
and executes a docker container running the iperf server. The
migration decision is different according to the chosen policy.

1) Bandwidth-based policy: H4 is selected as the destina-
tion host with a minimum bandwidth on its path of 10
Mbps.

2) Shortest path policy: H3 is selected as the destination
host because of just 2 switches in between.

Fig. 4: The graphs display migration source and destination
hosts bandwidth consumption collected for bandwidth-based
policy.

Bandwidth (s) Shortest Path (s) Random (s)
Heterogeneous 9.1 ± 0.15 40.1 ± 0.15 23.6 ± 7.12

TABLE I: Migration time of 3 policies in Load Balancing task
for Scenario 1 on Mininet.

3) Random Policy: the destination host is randomly se-
lected among the free hosts set: (H3, H4, H5).

Figure 4 shows the bandwidth consumption during the
migration process. Bandwidth consumption value is the sum
of sent and received bandwidth for the migration source and
destination host. In the first period (up to 125s) the migration
procession is not started yet, so on the source host (red line)
the traffic is related to the docker container running the iperf
server. After 125s the traffic on the switch is detected as
too high and the migration process starts. During this period,
the source host generates not only traffic data for the iperf
client, but also the traffic data for the container migration.
As a consequence, the destination host (blue line) starts to
receive the migration files, so bandwidth consumption starts
increasing. Then after migration process is done (150s), the
source host (red line), does not run the iperf server anymore,
so there is no more traffic. On the other hand, the destination
host (blue line) starts to run the iperf server after migration.

In order to evaluate the time necessary for the migration
process, we run 20 times the procedure for 3 the policies as
shown in Table I. The time is the sum of time to make the
decision and to make the migration.

Table I shows that bandwidth policy provides the best
trade-off between network load balancing and the migration
time. Bandwidth policy takes the advantage of the bigger
link bandwidth, so the migration time is much smaller than
shortest path policy, random policy. The confidence interval
for bandwidth and shortest path is very small. This happens
because the migration decision made for both use cases is
determinate, H4 for bandwidth policy, H3 for shortest path. On



Bandwidth (s) Shortest Path (s) Random (s)
Homogeneous 18.6 ± 0.91 17.1 ± 0.16 18.7 ± 0.91

TABLE II: Migration time of 3 policies in Load Balancing
task for Scenario 2 on Mininet.

Digital Fountain (s) Shamir (s) Random (s)
Homogeneous 36.6 ± 5.20 40.1 ± 6.60 27.2 ± 3.70

TABLE III: Migration time of 3 policies for Moving Target
Defense.

the other hand, for Random, the migration destination is not
determinate, so each run, it may choose different destination.

Scenario 2: Link capacity is homogeneous. In addition
to topology with heterogeneous capacity, we tested the same
topology where for all the link the capacity is homogeneous,
and set to 5Mbps. In this context the decisions of three policies
are as follows:

1) Bandwidth-based policy: the destination host is ran-
domly selected among the free host set: (H3, H4, H5).

2) Shortest path policy: H3 is selected as the destination
host because of just 2 switches in between.

3) Random Policy the destination host is randomly se-
lected among the free host set: (H3, H4, H5).

In this case, the bandwidth policy has multiple choices,
so the migration destination may vary every run. Table II
highlights how in this case, shortest path performs better than
bandwidth and random.

B. Use Case 2: Three policies evaluation for Moving Target
Defense

In addition to the Load Balancing use case, we evaluated the
cost of the system security by the application of Moving Target
Defense. We tested the migration time for the three policies
aforementioned. Looking at Table III, it is possible to observe
how Random policy is the fastest one while for Shamir the
migration time is the highest. This happens because in Shamir
policy source host asks to k disjoint hosts for k different keys,
hence far hosts can be selected. In Digital Fountain policy the
source host asks to k non-disjoint hosts for k keys. It is likely
to ask the host with small latency more times, leading to a
smaller migration time.

In essence, random policy is the fastest one, but it does not
apply any secure mechanisms, while Digital Fountain provides
the better speed-security trade-off.

VI. CONCLUSION AND FUTURE PLAN

In this paper we presented a policy-programmable con-
tainer migration architecture based on Docker within an SDN
prototype. It allows to change strategy and algorithm with
a simple configuration file. Moreover, we tested two uses
i.e., Load Balancing and Moving Target Defense, and we
applied three different policies for each use case. Based
on the results obtained we found that in different scenarios
different algorithms provide the best performance. Hence,
our policy-programmable LVM migration system guarantees

the appropriate flexibility, as such it can adapt to different
application needs by just modifying the configuration.

As a plan for the future, we want to improve the system
in several aspects. For the software defined measurement, we
could integrate the SDN controller with big data and machine
learning algorithms. In this case, the migration destination host
can be predicted. By doing this we can improve the network
management service. In addition, we could scale further the
testbed and explore the policies trade-off in different topolo-
gies, such as tree, linear, star, fully connected.

ACKNOWLEDGMENTS

This work has been partially supported by NSF CNS-
1647084 and CNS-1836906.

REFERENCES

[1] D. Kapil, E. S. Pilli, and R. C. Joshi, “Live virtual machine migration
techniques: Survey and research challenges,” in Advance Computing
Conference (IACC), 2013 IEEE 3rd International. IEEE, 2013, pp.
963–969.

[2] Y. Wang, J. E. van der Merwe, and J. Rexford, “Vroom: Virtual routers
on the move.” in HotNets, 2007.

[3] P. Lu, A. Barbalace, R. Palmieri, and B. Ravindran, “Adaptive live
migration to improve load balancing in virtual machine environment,”
in European Conference on Parallel Processing. Springer, 2013, pp.
116–125.

[4] I. S. Dhanoa and S. S. Khurmi, “Energy-efficient virtual machine live
migration in cloud data centers,” International Journal of Computer
Science and Technology (IJCST), vol. 5, no. 1, pp. 43–47, 2014.

[5] P. Kokkinos, D. Kalogeras, A. Levin, and E. Varvarigos, “Survey: Live
migration and disaster recovery over long-distance networks,” ACM
Computing Surveys (CSUR), vol. 49, no. 2, p. 26, 2016.

[6] S. Q. Zhang, P. Yasrebi, A. Tizghadam, H. Bannazadeh, and A. Leon-
Garcia, “Fast network flow resumption for live virtual machine migration
on sdn,” in 2015 IEEE 23rd International Conference on Network
Protocols (ICNP). IEEE, 2015, pp. 446–452.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd Conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association, 2005, pp. 273–286.

[8] D. Kapil, E. S. Pilli, and R. C. Joshi, “Live virtual machine migration
techniques: Survey and research challenges,” in Advance Computing
Conference (IACC), 2013 IEEE 3rd International. IEEE, 2013, pp.
963–969.

[9] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual
machine live migration in clouds: A performance evaluation,” in IEEE
International Conference on Cloud Computing. Springer, 2009, pp.
254–265.

[10] G. Soni and M. Kalra, “Comparative study of live virtual machine
migration techniques in cloud,” International Journal of Computer
Applications, vol. 84, no. 14, 2013.

[11] “Criu for process ad container migration,” http://criu.org/Main Page,
accessed: 2010-09-30.

[12] Y. Wang, Q. Chen, J. Yi, and J. Guo, “U-tri: Unlinkability through
random identifier for sdn network,” in Proceedings of the 2017 Workshop
on Moving Target Defense. ACM, 2017, pp. 3–15.

[13] A. Niakanlahiji and J. H. Jafarian, “Webmtd: Defeating web code
injection attacks using web element attribute mutation,” in Proceedings
of the 2017 Workshop on Moving Target Defense. ACM, 2017, pp.
17–26.

[14] C. E. Rubio-Medrano, J. Lamp, A. Doupé, Z. Zhao, and G.-J. Ahn,
“Mutated policies: Towards proactive a ribute-based defenses for access
control,” 2017.

[15] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979. [Online]. Available: http://doi.acm.org/10.
1145/359168.359176


