
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

APRON: an Architecture for Adaptive Task Planning of Internet of Things in Challenged Edge Networks / Ventrella,
Agnese V.; Flavio, Esposito; Sacco, Alessio; Flocco, Matteo; Marchetto, Guido; Srikanth, Gururajan. - ELETTRONICO. -
(2019), pp. 1-6. (Intervento presentato al convegno 2019 IEEE 8th International Conference on Cloud Networking
(CloudNet) tenutosi a Coimbra, Portugal nel 4-6 November 2019) [10.1109/CloudNet47604.2019.9064091].

Original

APRON: an Architecture for Adaptive Task Planning of Internet of Things in Challenged Edge Networks

Publisher:

Published
DOI:10.1109/CloudNet47604.2019.9064091

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2752092 since: 2020-08-26T11:40:31Z

IEEE

APRON: an Architecture for Adaptive Task
Planning of Internet of Things in Challenged Edge

Networks
Agnese V. Ventrella? Flavio Esposito? Alessio Sacco† Matteo Flocco?

Guido Marchetto† Srikanth Gururajan?
?Saint Louis University, USA †Politecnico di Torino, Italy

Abstract—Recently, the growth of Internet of Things (IoT) de-
vices combined with edge computing opened many opportunities
for several novel applications. Typical examples are Unmanned
Aerial Vehicles (UAV) that are deployed for photogrammetry,
surveillance, disaster rapid response and environmental monitor-
ing. A common challenge across all these networked applications
is the ability to provide a persistent service — a service able to
continuously maintain a high level of performance — responding
to events that may change the state of the network, e.g., nodes
or link failures. To cope with this challenge, in this paper
we propose APRON, an edge cloud-assisted architecture for
distributed and adaptive task planning management in a network
of IoT devices, e.g., drones. APRON uses a novel planning
strategy that, leveraging a Jackson’s network model, supports
monitoring and control operations while the states of the (edge
or cloud) network evolve. By using APRON, edge computing
application programmers can design and implement a wide range
of IoT task management policies leveraging different protection
methodologies across several failure models.

I. INTRODUCTION

Distributed applications for a network of drones or Internet
of Things (IoT) devices that independently need to accomplish
a mission —set of tasks— are opening many opportunities
for new business models and applications. Typical examples
of such applications are urban mobility-on-demand systems,
networks of unmanned vehicles for rapid disaster response and
environmental monitoring, and systems to provide connectivity
to ground stations [1]. Autonomous and semi-autonomous
drones will surely continue to help humans in accomplishing
many tasks, spanning from industrial inspection to survey
operations, from rescue management systems to military or
first responder support. The role of drones and IoT has the
potential to become even more prominent in the future as they
enable, improve, and optimize novel and existing services.

While drone and IoT applications flourish, the challenges
of keeping such devices well-functioning increase, especially
under the challenging conditions imposed by a disaster sce-
nario [2], [3]. Although delay and disruption tolerant protocols
and architectures exist [4], the problem of maintaining an
acceptable quality of service with stringent delays for these
networks depends not only on the quality of the connectivity,
but also on the dynamic nature of the tasks that the drones are
required to accomplish.

Both centralized [5], [6] and distributed [7], [8] approaches
that allow an edge network of IoT, drones or robots in
general to provide a persistent and adaptive service already
exist. Some of them focus on the resilient mission planning
problem [8], others on agents’ health-aware solutions [7].
Others yet [6] focus on the problem of enabling multi-agent
teams to autonomously tackle complex, large-scale missions,
over long time periods in the presence of actuator failures.

These solutions have sound design, and they address differ-
ent failure models under specific applications, but a unique
solution that ensures a resilient drone mission execution,
under all possible failure models and applications probably
cannot exist. To this end, we propose an Architecture for the
Programmability of RObotic Networks (APRON). The archi-
tecture enables the programmability of different mechanisms
involved in the mission execution problem of UAV or other
edge cloud-based distributed agents. APRON is a software
layer that sits between the (robotic) operating system (e.g.,
ROS) [9]) and any IoT software application, and contains
classical network management mechanisms, such as network
monitoring, repair and control operations e.g., neighbor dis-
covery, as well as mechanisms specific to the resilient mission
execution problem, e.g. adaptive control, and neighbor failure
estimation.

In this paper, we overview the components of our APRON
architecture (Section II), we present in details its Controller
component and its failure estimator component (Section III),
that leverages a Jackson’s network model to support moni-
toring and control operations while the states of the network
evolve. The estimator computes a close form of the average
number of the tasks in a mission. This, in turn, can be
manipulated by application programmers to determine the
utilization of each agent. Such information can then be used
(in conjunction with our APRON API) to design controllers
that adapt to specific applications.

We built a Mission Allocation Simulator [10], to test the
scalability of our approach, and a virtual network testbed to
evaluate the practicality of APRON. We also created a possible
use-case in which APRON can be exploited, a system of
drones extremely useful for quickly locating survivors and
identifying emergent threats following earthquakes or other
natural (or man-made) disasters that render structures damaged

and potentially unsafe to enter (Section IV).
Our initial results (Section V) focus on a few failure protec-

tion policies, but with our APRON fully developed prototype,
programmers will be able to leverage our architecture and
API to design failure protection strategies for a wide range of
(distributed) drone applications. Then, we describe the details
in a use case study in which we used our API to implement
an agent application (Section IV).

II. APRON ARCHITECTURE

In this section, we describe our proposed management archi-
tecture, depicted in Figure 1. APRON is a management layer
that sits between the IoT application and the operating system,
for example the Robotic Operating System (ROS) [9]. APRON
mechanisms allow establishment and monitoring of network
connectivity, estimations of failures, and enable adaptivity
of the mission by a re-planner based on the customizable
controller logic. Application programmers can leverage the
provided API to customize the logic of such controllers,
adapting to different failure models, as well as to customize the
mission planning logic, in a centralized or distributed fashion.

We summarize the common network management mecha-
nisms, the API, and the agent mission planning components,
while we give more attention to the mission replanning com-
ponent in the next section.
Network Monitoring and Addressing. Similar to most net-
worked systems, APRON has a connectivity management
component that runs a network discovery protocol, and a
watchdog process running a heartbeat protocol to monitor alive
connections.
State Cache Manager. This component is a handler for the
partially replicated database maintaining network states. The
cache contains static states i.e., states that depend solely
on the agent and dynamic states i.e., states that depend on
the network and on other agents such as configurations and
connectivity. The state cache may also store application states
for logging statistics for example for IoT device battery usage.
Secure Identity Manager. Each agent may belong to multiple
overlays and hence may require to be authenticated prior to a
connection establishment. This APRON component manages
agent identities across multiple overlay networks and provides
secure connectivity with the Transport Layer Security (TLS)
library.
Message Parser and Object Model. To define our APRON
management object model, as well as to implement the logic
of message delimiting, serializing and deserializing, we use
Google Protocol Buffers [11], since it is more efficient than
other text-based abstract syntax notation languages as JSON.
APRON API. We are implementing support for a set of API to
customize three main components: (i) the logic of the mission
planning algorithm, in a centralized or distributed fashion,
(ii) the logic of the controllers, adapting to different (failure)
scenarios, and (iii) the Planning Logic.
Mission Planning Controller. APRON supports a class of
basic controllers to customize the mission replanning rate R(t)
of the network of IoT devices, e.g. drones. Our architecture

APRON Management Layer

Mission Planning Logic
Utility Generation

Mission Agreement

Failure Estimator
Adaptive Naive (AN)

Adaptive Additive
and Multiplicative

(AAM)

Controller Logic

Link Failure
Estimator

Agent
Failure

Estimator

Network
Monitoring

SSL Socket
& Identity
Manager

State
Cache

APRON API (AAPI)

Agent Application

Operating System

Customizable
Controller

Message Parser

Fig. 1. APRON Architecture: a management layer between the IoT application
and the operating system to establish and monitor network connectivity, to
estimate failures and to adapt the task (re-)planning based on the customizable
controller logic.

is however modular and could support other user-defined
controllers. By controller, we mean a feedback controller, not a
Software Defined Network (SDN) controller. Some controllers
are herein proposed. Note that n̂(t) is the estimated number
of tasks currently into the network and discussed in section
III.
Adaptive Naive (AN) controller. The replanning rate varies
with the ratio between n̂(t) and ń that represents the desired
number of tasks in the system at the steady state, according
to the following equation:

R(t+ 1) =
n̂(t)

ń
R(t) (1)

Adaptive Simple (AS) controller. The replanning rate varies
with n̂(t) and n′ according to the following equation:

R(t+ 1) = k(n̂(t)− ń) (2)

where k is the gain term.
Adaptive Additive and Multiplicative (AAM) controller.

The replanning rate varies with ñ and m̂ that are number of
completed tasks and estimated number of tasks missing the
deadline at time t, respectively:

R(t+ 1) =

{
k m̂(t)
ñ(t)+1 m̂/(ñ+ 1) > 0

−α otherwise
(3)

where α is a positive constant.

III. MISSION PLANNING VIA NETWORK OF QUEUES

Failure models are dependent on the IoT application; a
failure model that would fit all scenarios probably cannot
exist. Instead of predicting the failure of links or agents, we
use this APRON component to compute the probability of
having a given number of tasks still to be completed. Our
goal is to obtain the average number of tasks, whether they
are queued or in execution. This in turn can be manipulated
by application programmers to determine the instantaneous
utilization of each agent, and the mean throughput queuing
time (both waiting and execution time) for each task. Such
information can then be used, in conjunction with our APRON
API, to design a controller that adapts to the application.

pik

pki

�k

�i

nk

ni

i

kµk

µi

+

+

pkk

pii
ri

rk

(a)

v2

v1

v3

t1

t4

t6

t5

t7

t2

t3

t8

t9

t10

(b)
Fig. 2. (a) Example of open Jackson queue with two agents (e.g. drones):
tasks belonging to failing agents are reassigned. (b) Mission planning paths
followed by three drones to complete their tasks.

We model the network of potentially failing agents with a
Jackson’s network of queues [12]. We model the effects of
an agent failing with the migration of each of its tasks to a
different queue. In case of drone agents, the waiting time of
the first completed task by a non-failing agent is merely the
traveling time of such an agent. We assume that the sequence
of execution times each agent spends traveling and performing
the task are independent identically distributed (i.i.d.) random
variables. If a task is executed by an agent after n other tasks,
its completion time depends on the waiting time that the task
spends in the queue. When an agent fails, all its tasks still to be
executed are reassigned. In general, a task can be reassigned
multiple times to failing agents. A task assigned to a failing
agent has therefore a completion time that depends on the time
it has spent in all the queues of the failing agents, plus the
time spent in the queue of the agent that executes it (holding
time).

We model each agent with a single queue that stores all
the tasks to be executed. We consider a network of Q queues,
where the nodes are agent’s queues, and there is a (directed)
edge from queue i to queue q if a task “migrates” to agent q af-
ter agent i’s failure (Figure 2a.) We assume our system to be an
open task replanning process consisting of Q = {1, 2, . . . , Q}
agent’s queues, a vector n = {n1, n2, . . . , nQ} defining the
number of tasks belonging to each of the Q queues, and an
operator Tii′ on n:

Tii′ = (. . . , ni − 1, . . . , n′i + 1, . . .) (4)
that removes one element from the agent’s queue i and adds
it to queue i, or exits the system. The term open indicates that
tasks can enter or exit the system. The vector n is assumed to
be a Markov process with state space:

N = {n : nq ≥ 0, q = 1, . . . , Q} (5)
and transition rates given by:

q(n, Tii′(n)) = pii′ , (6)
where pii′ is the probability of a task to migrate from agent’s
queue i to queue i′ after agent i’s failure. The Markov process
n is irreducible for n > 0, that is, it is possible for each
task to be migrated from one agent’s queue to any other
queue, and aperiodic, that is, an agent can be only temporarily
unavailable, and hence a task can return to a state i at any
(irregular) time. We were able to show that, at the steady state,
the distribution of number of tasks in each queue, or being
executed obeys the “product form” distribution, i.e., it can be

Ground Control System (GCS)

Drone Fleet

Storage

Cloud

Monitoring

Monitoring

Audio Processing

WAN Connection

Personal Device

Feature Extraction

NIC

NIC

Video Processing

Fig. 3. Overview of the drone system realized exploiting the APRON
underlying architecture. The computation is offloaded to the Ground Control
System (GCS) that performs computationally intensive task.

written as the product of the probability function depending
on the single agent’s queues:

Proposition III.1. For each agent q, the average arrival rate
of a task in its queue is given by Λq = λq +

∑Q
k=1 pkqΛk. In

addition, if we denote with p(n1, n2, . . . , nQ) the steady state
probability that there are nq tasks in the qth agent’s queue for
q = 1, 2, . . . , Q, and if Λk < µq for q = 1, 2, . . . , Q, that is,
we assumed that each agent can execute at most one task at the
time, and that the arrival rate is smaller than the departure
rate of task from the system, and so there is a steady state
distribution, then such steady state probability is computed
as:

p(n1, n2, . . . , nQ) = p1(n1)p2(n2) · · · pQ(nQ), (7)

where pq(nq) is the steady state probability that there are
nq tasks in the qth agent’s queue, if such queue is treated as a
M/M/1 queuing system with an average arrival rate Λq , and
average task execution time 1

µq
for each agent. Furthermore,

each agent’s queue q behaves as if it were an independent
M/M/1 queuing system with average arrival rate Λq .

Proof. Proposition III.1 is a straightforward corollary of the
Jackson’s theorem [12], when there is a single server per
queue.

Using Proposition III.1 and Little’s law [13], we can esti-
mate the number of tasks in each queue at the steady state to
be: n̂ = E[ni] = ρi

1−ρi , where the utilization factor ρi of agent
i’s queue is defined by: ρi = λi

µi
.

This result means that when the utilization of each queue
becomes too low (compared to the average in the system), an
agent may request a task migration from other agents. When
instead the (global or local) queue utilization becomes too
high, or it is estimated to be too high, i.e. the system of agents
is experiencing a high failure rate, a (distributed) replanning
algorithm can proactively increase the replan frequency to
redistribute the load.

IV. AGENT APPLICATION

Since APRON exposes control of the operating system layer
to edge computing application programmers through an API,
we have designed and begun implementing an application that

leverages this architecture and API to give users a straightfor-
ward way to control a drone or a distributed set of drones.
In this system, a human may control a drone or swarm of
drones using speech instead of a physical drone controller
or computer. The program utilizes Natural Language Pro-
cessing (NLP) and Natural Language Understanding (NLU)
techniques to discover the intent behind users’ words. The user
speaks directly to the personal device, e.g., mobile phone, and
the audio is sent to the Ground Control System (GCS) that
elaborates it and sends the proper commands to the selected
drone. The drone receives the commands and starts a new task
for performing the desired operation.

This application is extremely useful because it reduces the
technical barriers involved in piloting drones. Rather than
learning how to use multiple physical controllers, humans can
converse with a single application to manage the whole fleet
in challenged networked environments that often necessitate
intuitive and quickly-deployed IoT devices. One such example
includes rapid response missions following a natural disaster.
In cases where drones are used to predict and assess disaster
[14] or supply emergency commodities [15] to survivors, it is
essential that operations proceed as quickly and efficiently as
possible. In these circumstances, the drones record the video
and the audio of the environment continuously and send it to
the GCS asking to process them and detect human presence
and locate the position. The stream of data generated this
way is collected by this node, where applications perform
preliminary analytic before sending aggregated data to the
Cloud.

These situations also require resilient mission systems
to manage tasks in case of failure. Nonetheless, managing
mission resiliency is not efficient for humans, especially in
challenging environments. Users who control UAVs should not
be concerned with managing or ensuring a resilient distributed
system; rather, they may only want to focus on the ordering
and completion of high-level tasks. The application leverages
APRON’s network monitoring and failure estimator compo-
nent to address this problem. When failures occur, the program
senses its immediate impacts and reassigns tasks effectively.
Then, the conversational application can update the user of
any changes to the mission and its estimated effects on other
UAVs.

We claim that the level of abstraction provided by APRON
enables programmers to rapidly prototype UAVs and resilient
IoT applications like this one. However, edge computing
applications that can benefit from APRON are not limited to
the presented application. Examples of ICT where APRON
could be helpful are Advanced Driving Assistance Systems
technologies that provide collision avoidance and driver aids,
such as night vision, driver alertness, and adaptive cruise con-
trol or even fully autonomous driving systems. These platforms
are dramatically resource-constrained with flight times of tens
of minutes, limited on-board computational capacity, power
and weight limitations for sensing, and often unreliable radio
links to ground operator stations.

V. EVALUATION RESULTS

We evaluate the performance of the proposed mission plan-
ning with the development of a C++ event-driven simulator.
As a use case, we considered a networked fleet of drones
trying to accomplish a mission, represented by a set of geo-
locations to reach. These locations could be, for example, with
the aim of exploring an area with a camera and microphone
looking for signals indicating survivors in disaster response.
Each drone estimates the threshold that triggers the migration
of its tasks by using our Jackson network model. Therefore,
all drones cooperate to complete the assigned tasks in the
shortest possible time. Figure 2b shows the task schedule of
three agents. A drone has to move from one location where
it has to complete the task to the next. For example, agent v1
originally had tasks t5 and t3 but it will complete also t7 and
t2 migrated from the drone v2.

In our simulations we considered a fleet made of 10, 50
100, or 150 drones. The average distance between two tasks,
that we considered being geolocation from a drone to visit
has been 1, 2, or 3 meters. We investigated three different task
reallocation policies: (i) no replanning (task migration): agents
(drones) do not cooperate but each one tries to accomplish
only its own tasks; (ii) random task replanning: when an
agent’s queue exceeds a set threshold, it migrates its tasks to a
randomly selected drone; (iii) closest: when an agent’s queue
overcomes the threshold, the system reassigns its tasks to the
closest agent. If two agents are at the same distance from the
task, we insert the task in the queue of the drone with fewer
tasks in its queue; ties are split at random if two queues have
the same number of tasks. We considered two scenarios: stable
conditions with no failing agents, and random agents or link
failures.

Our results show that APRON can be used as a tool to
evaluate different task reallocation policies. Consider Figure
4. A few observations when simulating scenarios without
failures are: (1) Task migration policies show shorter mission
completion time. As shown in Figure 4a, the random policy
and the closest policy allow agents to complete their tasks in
a shorter time. Task migration policies take advantage of all
the agents available without overloading them. (2) The closest
agent policy achieves lower completion time with respect to
the random task replanning policy. From Figure 4a-b, it is
possible to note that the closest migration policy allows better
exploitation of all agent geolocation hence achieving a more
efficient mission plan. (3) The task completion time decreases
with the agent travel distance. As expected, when the average
travel distance between two consecutive tasks increases, the
completion time also increases as shown in Figure 4b. In
case of agents’ random failures, the following results have
been obtained. (1) The closest agent policy achieves lower
completion time than the random task replanning policy. In
case of 10 and 50% of failures, the closest policy shows
better performance, confirming that the selection of the closest
agent produces lower completion time than the migration of
the task to a random one. This could be seen in Figure 4c.

10 50 100 150
Number of drones, Q

0

500

1000

1500

2000

2500

3000

Ta
sk

 c
om

pl
et

io
n

tim
e,

 [s
]

no migration
random
closest

(a)

1 2 3
Tasks' average distance, [m]

0

1000

2000

3000

4000

5000

6000

Ta
sk

 c
om

pl
et

io
n

tim
e,

 [s
]

no migration
random
closest

(b)

0 10 50 90
Node failure, %

0

200

400

600

800

1000

Ta
sk

 c
om

pl
et

io
n

tim
e,

 [s
]

random
closest

(c)

0 20 40 60 80
Time, [s]

0

0.2

0.4

0.6

0.8

1

C
D

F

random 1
random 2
closest 1
closest 2

(d)

0 50 100 150
Number of drones, Q

0

0.5

1

1.5

2

2.5

N
um

be
r o

f c
om

pl
et

ed
 ta

sk
s,

 # #104

% fail = 10, random
% fail = 50, random
%fail = 90, random
% fail = 10, closest
% fail = 50, closest
%fail = 90, closest

3

(e)
Fig. 4. Task completion time of a fleet of drones using APRON with different replanning policies: (i) no task migration, (ii) random task migration, (iii)
closest task migration. The graphs represent the task completion time at different conditions: (a) number of drones, (b) task distance, (c) percentage of node
failures; while the last two graphs depicts the (d) cumulative distribution function in case of 90% of failure, and (e) Endurance: number of completed tasks
before the first failure.

10 50 100 150
Number of drones, Q

0

20

40

60

80

L
os

tt
as

ks
,%

with APRON
without APRON

(a)

1 2 3
Task average distance, [m]

0

10

20

30

L
os

tt
as

ks
,%

with APRON
without APRON

(b)

0 10 50 90
Node failure, %

0

20

40

60

80

100

L
os

tt
as

ks
,%

with APRON
without APRON

(c)
Fig. 5. Comparison of application performance using the closest task migration replanning policies. The graphs represent the percentage of lost tasks when
500 tasks are completed at different conditions: (a) number of drones, (b) task distance, (c) percentage of node failures.

But, in case of a high percentage of failures, the two policies
show similar results. This could be seen also in the Cumulative
Distribution Function (CDF) in Figure 4d. The results of the
two simulations are plotted and they show similar performance
for both policies. (2) The completion time increases when the
drone failure increases. As shown in Figure 4c, when the num-
ber of available drones decreases, fewer agents are available
for completing the tasks, therefore the queue’s size increases,
causing an increase of the time to complete the tasks. (3) The
number of failures does not affect the performance when the
number of drones is reasonably low. The evaluation of the
number of tasks accomplished before the failure of the first
task shows that the performance does not significantly change
when the number of drones is lower than 100. Figure 4e shows
the overlapping of the confidence intervals.

Application Advantages. In addition to the estimation of the
system performance and the comparison of different policies
of APRON, we evaluate the tangible benefits for an edge
computing application. We tested specifically the proposed
application (Section IV), in case where APRON is deployed
and not. In this scenario, the drones are performing the task
of reaching a geo-location as in the previous examples, and
the audio recording task in background. Figure 5 highlights
the main 2 advantages of APRON: (i) efficient fault response,
(ii) accurate failure estimation; the management layer offered
by APRON allows a smaller number of lost tasks in different
scenarios. The presence of APRON is evident especially in
critical conditions, i.e., high percentage of node failures, a
high number of drones to control. On the other hand, the
distance between nodes does not notably affect the number
of completed tasks.

VI. RELATED WORK

The problem of providing a persistent and adaptive service
resilient to failure is crucial for any type of IoT network in
general, and robotic or drone networks in particular; so it is not
surprising that there are several proposed solutions to tackle
this problem. We cite only a few representative (centralized
and distributed) solutions to clarify our contributions to the
resilient task planning problem.
IoT at the edge. The proliferation of IoT devices led to the
generation of a massive amount of data. Processing this data
onboard inevitably drains the battery of the IoT device, while
central cloud servers are inefficient at handling all the collected
data mostly because of latency. To confront this problem,
recent solutions proposed to offload the data processing at the
edge of the network. Delivering edge computing services also
presents challenges: a few examples are the implementation
of effective offloading strategies to have an efficient workload
distribution in the system, or a reliable cooperation scheme to
handle mobility, such as frequent communication disconnec-
tion and low and predictable latency to save bandwidth [16]–
[18]. In our scenario, the Cloud is mainly used to collect
aggregated data, a delay-tolerant task.
Resilient IoT Systems. Harsh environments can be affected
by problems, such as interference, medium access conflicts,
multipath fading, shadowing, and so on, which can cause
significant packet losses. In this scenario, and in particular
in case of emergency response applications, reliability needs
to be guarantee [19]. [20] and [8] focus on the prediction
of failures, the first uses a Bayesian-inference probabilistic
to estimate failure probability for the monitored batteries,
the second establishes close feedback between the high-level
planning based on Markov Decision Processes (MDP) and

the execution level learning-focused adaptive controllers. This
feedback enables the proposed framework to plan by anticipat-
ing the failures and reassessing vehicle capabilities after the
failures. Instead of predicting the failure of links or agents,
our solution computes a close form of the average number of
tasks in a mission, that can be used to adapt to the situation
of the system.
Adaptive and persistent network services. Given the dis-
tributed nature of IoT and robotic agents, decentralized ap-
proaches have also been proposed [5]–[7], [21]. In [22] the
authors proposed a solution to the problem of task allocation
and scheduling over a heterogeneous team of human operators
and robotic agents. The human operator acts as the centralized
component that interacts with unmanned agents. Operator,
vehicle and task are selected according to a multi-objective
optimization function that depends on a reward assigned when
the task is completed, the cost of the vehicle to perform the
task, and the cost of the operator to supervise the task assign-
ment. As in [22], our solution can also be used to distribute
workload efficiently among agents, but our predictive system
is based on a Jackson network approach. Moreover, APRON
is agnostic to the agent architecture and it can be used to
manage both centralized and distributed systems of any agent,
not merely drones.
Prediction with network of queues. The robustness of
network services has been studied also in distributed (peer-
to-peer) storage networks. In [23] for example, a control
theoretical approach to model and predict data availability by
means of redundancy is proposed. To assure a given level of
availability in case of storage node failures, new redundant
fragments need to be introduced. As in [23], we also use a
network queuing model to estimate objects (tasks) that will
temporarily or permanently disappear from the agent’s (peer
to peer) network; however, our failure prediction model is
different, as we model an agent failure and the reassignment
of its task with a Jackson network of queues [12].

VII. CONCLUSION

In this paper we presented APRON, a management archi-
tecture whose design is driven by the attempt to increase
the programmability of the resilient task replanning problem
in presence of challenged edge networks. APRON leverages
a Jackson’s network queues model to estimate the number
of tasks, queued or in execution. This information can be
manipulated by application programmers to determine the
instantaneous utilization of each IoT device, and the mean
throughput queuing time (both waiting and execution time)
for each task to be executed or offloaded to the edge cloud.
Our simulations showed, with a case study of a network
of UAVs, how APRON can be an effective tool for policy
programmability of the mission replanning problem for any
IoT device deployed in challenged networked environments.
We also discussed an application using the APRON API to
remotely control a fleet of UAVs by merely using a natural
language processor.

ACKNOWLEDGMENT

This work has been partially supported by the NSF awards
CNS-1647084, CNS-1836906 and CNS-1908574.

REFERENCES

[1] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
899–922, 2016.

[2] J. Franz, T. Nagasuri, A. Wartman, A. Ventrella, and F. Esposito,
“Reunifying families after a disaster via serverless computing and
raspberry pis (demo),” in IEEE International Symposium on Local and
Metropolitan Area Networks, Washington, DC, June 2018.

[3] D. Chemodanov, F. Esposito, A. Sukhov, P. Calyam, H. Trinh, and
Z. Oraibi, “Agra: Ai-augmented geographic routing approach for iot-
based incident-supporting applications,” Future Generation Computer
Systems, 2017.

[4] V. Cerf, S. Burleigh, A. Hooke, L. Torgenson, R. Durst, K. Scott, K. Fall,
and H. Weiss, RFC 4838 - Delay Tolerant Networking Architecture.
IETF DNT Research Group, April 2007.

[5] J.-S. Marier, C. A. Rabbath, and N. Léchevin, “Health-Aware Coverage
Control With Application to a Team of Small UAVs,” IEEE Transactions
on Control Systems Technology, vol. 21, no. 5, pp. 1719 – 1730,
September 2013.

[6] N. K. Ure, G. Chowdhary, Y. F. Chen, M. Cutler, J. P. How, and
J. Vian, “Decentralized learning-based planning for multiagent missions
in the presence of actuator failures,” in 2013 International Conference
on Unmanned Aircraft Systems (ICUAS), May 2013, pp. 1125–1134.

[7] N. K. Ure, G. Chowdhary, J. P. How, M. A. Vavrina, and J. Vian, “Health
aware planning under uncertainty for uav missions with heterogeneous
teams,” in European Control Conference (ECC), 2013.

[8] Choi, Han-Lim et al, “Consensus-based decentralized auctions for
robust task allocation,” IEEE Trans. on Robotics, Aug 2009.

[9] Robotic Operating System. http://www.ros.org/.
[10] Donato Di Paola, “The multi-agent robotic simulator (mars)

https://github.com/donatodipaola/mars ,” online, 6 2019.
[11] Google Protocol Buffers. http://code.google.com/apis/protocolbuffers.
[12] J. Jackson, “Networks of waiting lines,” Operations Research, vol. 5 (4),

pp. 518–521, August 1957.
[13] K. S. Trivedi, Probability and statistics with reliability, queuing and

computer science applications. John Wiley and Sons Ltd., 2002.
[14] M. Erdelj, E. Natalizio, K. R. Chowdhury, and I. F. Akyildiz, “Help

from the sky: Leveraging uavs for disaster management,” IEEE Pervasive
Computing, no. 1, pp. 24–32, 2017.

[15] S. Chowdhury, A. Emelogu, M. Marufuzzaman, S. G. Nurre, and
L. Bian, “Drones for disaster response and relief operations: a continuous
approximation model,” International Journal of Production Economics,
vol. 188, pp. 167–184, 2017.

[16] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, and J. Henkel,
“Computation offloading and resource allocation for low-power iot edge
devices,” in IEEE 3rd World Forum on Internet of Things. IEEE, 2016,
pp. 7–12.

[17] M. Chiang and T. Zhang, “Fog and iot: An overview of research
opportunities,” IEEE Internet of Things Journal, 2016.

[18] C. Puliafito, E. Mingozzi, and G. Anastasi, “Fog computing for the
internet of mobile things: issues and challenges,” in IEEE International
Conference on Smart Computing. IEEE, 2017, pp. 1–6.

[19] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys & Tutorials,
vol. 17, pp. 2347–2376, 2015.

[20] J. Yu, “State-of-health monitoring and prediction of lithium-ion battery
using probabilistic indication and state-space model,” IEEE Transactions
on Instrumentation and Measurement, vol. 64, no. 11, pp. 2937–2949,
2015.

[21] S. S. Ponda, H.-L. Choi, and J. P. How, “Predictive planning for
heterogeneous human-robot teams,” in InfoTech, 2010.

[22] C. J. Shannon, L. B. Johnson, K. F. Jackson, and J. P. How, “Adaptive
mission planning for coupled human-robot teams,” in American Control
Conference (ACC), 2016. IEEE, 2016, pp. 6164–6169.

[23] A. Duminuco, E. Biersack, and T. En-Najjary, “Proactive replication in
distributed storage systems using machine availability estimation,” in
CoNEXT, 2007.

