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ABSTRACT 

The current work deals with the development of contact modelling capabilities in the framework 

of the Carrera Unified Formulation (CUF), which is a generalised framework for the 

development of advanced structural theories. The current modelling approach uses 1D 

elements with Lagrange polynomials being used to enhance the cross-section kinematic field, 

leading to a layer-wise model and involving purely displacement degrees of freedom. Such a 

modelling approach results in 3D-like accuracy of the solution, at a significantly reduced 

computational effort compared to standard 3D – FEA. The current work considers normal, 

frictionless contact with a node-to-node discretisation, and the penalty approach is used to 

enforce the contact constraints. The resulting nonlinear analysis is implicitly solved using the 

Newton-Raphson method. The use of layer-wise modelling in CUF results in a high-fidelity 

solution which is capable of accurately evaluating the interlaminar stress fields, as well as 

accounting for transverse stretching. The development is extended to the case of dynamic 

contact, which uses a combination of node-to-node discretisation and Lagrange Multiplier 

constraints to model contact. Initial assessments consider elastic impact between two bodies 

and demonstrate the capability of CUF models in accurately modelling contact/impact. 

 

Keywords: High-order modelling, CUF, contact modelling, impact  

1 INTRODUCTION 

Mechanical systems frequently involve physical contact among their various components, for 

instance the meshing of gear teeth. Contact can also occur in processes such as sheet metal 

forming, and in material characterisation tests such as indentation and three-point bending. 

Contact mechanics thus plays an important role in structural analysis, and by extension, in 

computational mechanics, where it still remains a challenging issue [1]. 

 

The earliest analytical formulation for contact was developed by Hertz, who applied the theory 

of elasticity to model contact between two elastic spheres [2]. Analytical solutions to contact 

problems are limited [3] and hence, over the past few decades, research has been focused on 

numerical approaches to contact modelling. Contact modelling techniques can be classified 

based on the discretisation used for the contact surface. The earliest solutions to contact analysis 

were based on node-to-node algorithms, where the contact constraints were enforced at a nodal 

level [4]. Such methods however have limited applications due to requirements of mesh 

compatibility at the contacting surface. The issue of compatibility requirements was alleviated 

by the development of node-to-surface contact algorithms, where a slave node is prevented 

from penetrating a master surface [5-8]. The limitation of such methods is that they do not place 
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constraints on master nodes penetrating the slave surface. This can be overcome by the use of 

two-pass methods i.e. running the node-to-surface algorithm twice and switching the master 

and slave definitions, but often leads to an over-constrained system. Recent efforts have been 

focused on the development of surface-to-surface contact algorithms, where the contact 

constraint is enforced in a weak or integral form over the contact surfaces [9-12]. 

 

The present work deals with the development of contact modelling capabilities in the Carrera 

Unified Formulation (CUF) [13]. CUF is a generalised framework to develop advanced 1D and 

2D structural theories. Expansion functions are used to enhance the kinematic field across the 

cross-section and through the thickness for 1D and 2D models, respectively, which results in 

3D-like quality of results without incurring a corresponding computational expense [14]. The 

current work deals with cases involving normal, frictionless contact, and a node-to-node contact 

algorithm has been implemented with the penalty method of contact enforcement, to solve the 

contact problem. 

 

The paper is structured in the following manner. The CUF framework and an overview of 

contact mechanics and its implementation in CUF have been presented in Section 2. The 

numerical assessments and results are discussed in Section 3, followed by the conclusions in 

Section 4. 

2 METHODOLOGY 

2.1 Carrera Unified Formulation 

 
Figure 1: Beam element aligned in the CUF coordinate system 

 

Consider a 1D element, shown in Figure 1, which is aligned in the CUF coordinate system. The 

generalized displacement field can be written as 

 

 𝑢(𝑥, 𝑦, 𝑧) = 𝐹𝜏(𝑥, 𝑧)𝑢𝜏(𝑦), 𝜏 = 1,2, … , 𝑀 (1) 

 

where Fτ(x, z) is an expansion function described across the beam cross-section, uτ is the 

generalized displacement vector, and M is the number of terms in Fτ(x, z). The expansion 

function and the number of terms M can be arbitrarily chosen and is a user input. The present 

work exploits the Component-Wise (CW) approach, where 2D Lagrange polynomials are used 

to enrich the cross-sectional kinematic field of 1D finite element. Such a formulation results in 

a layer-wise modelling of the structure and consists of only displacement degrees of freedom. 

The displacement field is obtained in the following manner 

 

 
𝑢𝑥 = ∑ 𝐹𝑖(𝑥, 𝑧)𝑢𝑥i(𝑦)

𝑛

𝑖=1

 
(2) 
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where x denotes the displacement component of a node, and i is the node number. More 

information on the use of Lagrange polynomials as expansion functions can be found in [15]. 

 

Finite Element Formulation 

 

The stress and strain fields are given by 

 

 𝛔 = {σxx σyy σzz σ𝑥𝑦 σ𝑥𝑧 σyz} 

 

(3) 

 

 𝛆 = {εxx εyy εzz εxy εxz εyz} (4) 

 

The linear strain-displacement relation is given by 

   

 𝛆 =  𝐃𝐮 

 

(5) 

 

where D is the linear differentiation operator. The constitutive relation is given by 

 

 𝛔 = 𝑪𝛆 (6) 

 

where C is the material stiffness matrix. Using 1D elements along the beam length, with shape 

functions Ni (y), the 3D displacement field is written as 

From the principle of virtual displacements, 

 

where δWint is the virtual variation of the internal work and δWext is that of the external work 

due to the applied forces. The virtual variation of the former is given by 

where l represents the beam length and Ω is the beam cross-section. The fundamental nucleus, 

which is a 3x3 matrix, can now be formulated based on Equations 5-8 and is given below 

Looping through the four indices {i, j, τ, s} results in the element stiffness matrix, which is then 

assembled to obtain the global stiffness matrix of the structure. A comprehensive overview of 

the fundamental nucleus and its role in CUF can be found in [13]. 

 

 

 

 

  

 𝐮(x, y, z) = Fτ(x, z)Ni(y)𝐮τi (7) 

 

 δWint = δWext 

 

(8) 

 

 
δWint = ∫ ∫ δ𝛆T𝛔

Ω

dΩdl
l

 

 

(9) 

 

 
𝐤ijτs = ∫ ∫ 𝐃T(Ni(y)Fτ(x, z))𝑪𝐃(Ni(y)Fτ(x, z))dΩdl

Ωl

 

 

(10) 
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2.2 Contact modelling in CUF 

 
Figure 2: Two discrete bodies coming into contact under an applied deformation 

 

Consider two discrete bodies, Ω1 and Ω2, as shown in Figure 2. The points X1 and X2 on the 

boundaries of the respective bodies come into contact due to an applied deformation ϕ. The 

current position of the points is given by 

 

 𝐱𝐢 = 𝐗𝐢 + 𝐮𝐢,  i = 1,2 (11) 

 

where ui is the displacement of the point Xi. At the moment of contact, the two distinct points 

X1 and X2 become coincident in the deformed configuration i.e. x1 = x2. Such a case of contact 

can be modelled using geometric constraints such as the non-penetration condition. This 

requires a gap function, defined below as 

 

 gN = (𝐮𝟐 − 𝐮𝟏) ⋅ 𝐧𝟏 + ginit ≥ 0 

 

(12) 

 

where n1 is the normal to the body Ω1, and ginit is the initial gap between the bodies, given as 

  

 𝑔init = (𝐗𝟐 − 𝐗𝟏) ⋅ 𝐧𝟏 

 

(13) 

 

The variational form of the contact BVP is given by 

 

 δ𝐿𝑖𝑛𝑡 ≥ δ𝐿𝑒𝑥𝑡 + δ𝐿𝐶   
 

(14) 

 

where  δ𝐿𝐶 is the variational work due to contact. Considering the penalty approach for the 

enforcement of the contact constraint, the work due to contact be written as 

 

 
𝐿𝐶 =

1

2
∫ ϵ𝑁𝑔𝑁

2 𝑑𝐴
∂Ω𝐶

  

 

(15) 

 

with its virtual variation given by 

 

 
δ𝐿𝐶 = ∫ ϵ𝑁𝑔𝑁δ𝑔𝑁𝑑𝐴

∂Ω𝐶

 

 

(16) 

 

where ϵ𝑁 is the penalty parameter. In the case of node-to-node contact, the constraints are 

enforced at a nodal level. Using the penalty approach, the global equilibrium equation becomes 

 

 [𝑲 + 𝑲𝒑]𝑼 = 𝑭̅ 

 

(17) 
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where Kp is the global contact penalty stiffness matrix, and is obtained by assembling the 

penalty stiffness ki for a given node pair i, defined below as 

 

 𝒌𝒊
𝒑

= ϵ𝑁𝒏𝒊
𝑻𝒏𝒊  

 

(18) 

 

where ni is the normal between the node pair i. Similarly, the contact force between the node 

pair i is given by 

 

 𝑭𝑖
𝒄 = 𝜖𝑁𝑔𝑁𝒏 

 

(19) 

 

The righthand side of Equation 17 can now be written as 

 

 𝑭̅ = 𝑭𝑪 + 𝑭𝑒𝑥𝑡 

 

(20) 

 

3 NUMERICAL RESULTS 

3.1 3-point bending of a laminated beam 

The current numerical assessment considers a laminated composite beam subjected to a 3-point 

bending test. The test setup has been schematically shown in Figure 3. The laminated beam is 

composed of 8 layers, with a stacking sequence of [0/90]2s. The material system used is IM7-

8552, whose properties have been listed in Table 1. A prescribed displacement uz = -1.0 mm 

has been applied on the central roller. 

 

 
Figure 3: Schematic representation of the laminated beam under 3-pt bending 

 

 

E11 

[Gpa] 

E22 

[Gpa] 

E33 

[Gpa] 
ν12 ν13 ν23 G12 

[Gpa] 

G13 

[Gpa] 

G23 

[Gpa] 

165.0 9.0 9.0 0.34 0.34 0.5 5.6 5.6 2.8 
Table 1: Material properties of the IM7/8552 system 

 

The above structure has been analysed using the CUF-LW modelling approach, and reference 

numerical solutions have been developed using ABAQUS-3D. Modelling information related 

to the two approaches has been reported in Table 2. The results have been reported in the 

following: Figure 4(a) shows the vertical deflection uz along the line joining [5.0, 0.0,4.0] and 

[5.0, 250.0, 4.0], i.e. the longitudinal axis of the top surface of the beam. The axial stress σyy 

along the same line has been plotted in Figure 4(b). The axial strain εyy and axial stress σyy, 

through the thickness of the laminate at the midspan, have been plotted in Figures 5(a) and 5(b), 

respectively. The axial strain εyy and axial stress σyy distribution through the cross-section, at 

the beam midspan, have been shown in Figure 6 and Figure 7, respectively. 
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Model 

 

Beam Discretisation 

 

Total DOF 

 

Analysis Time [s] 

 

ABAQUS – 3D 

 

27,200 C3D8R, 3 

elements per layer 

 

399,366 

 

1313 

 

CUF - LW 

 

20 B4 – 32 L9 

 

34,236 

 

326 

Table 2: Mesh information for the various numerical models of the laminated beam  

 

 

       
Figure 4: (a) Vertical displacement uz, and (b) axial stress σyy along the axis of the beam 

 

    
Figure 5: Axial stress σyy through the thickness of the beam at its midspan 

 

 

 
Figure 6: Distribution of the transverse strain εzz through the cross-section at [y = 150] 

 

 
Figure 7: Distribution of the transverse shear stress σyz through the cross-section at [y = 150] 
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The following comments are made 

 

1. The current approach is capable of modelling an arbitrary number of structural entities, 

and accounts for contact interactions among them. 

2. The layer-wise modelling approach results in accurate stress fields through the thickness 

and can account for transverse stretching. 

3. The CUF – LW model requires over 11x fewer degrees of freedom and about 4x less 

computational time than the 3D-FE model, for comparable quality of results. 

3.2 Impact between two elastic rods 

 

 
Figure 8: Schematic representation of impact between two elastic rods 

 

The current numerical example constitutes an initial assessment of the capability of CUF in 

modelling dynamic contact and impact. Two elastic rods are considered, as shown in Figure 8, 

and one rod impacts the other under a prescribed initial velocity v0 = -0.1 [unit/s]. Both rods 

have the following material characteristics: Young’s modulus E = 100.0, and Poisson’s ratio ν 

= 0.30. The CUF analysis is performed in an explicit dynamics solver based on the central 

difference scheme, using CUF theories for the structural modelling. Reference numerical 

solutions have been developed using ABAQUS -3D/Explicit. A time period T = [0, 1.0] has 

been considered for the analysis, with a time step Δt = 5.0e-4. Numerical damping has not been 

considered in the current analysis. The axial displacement uy at the centre of the contact zone, 

as a function of time, has been plotted in Figure 9. The results of the initial assessment 

demonstrate the capability of CUF in modelling problems involving dynamic contact and 

impact. 

 

 

 
Figure 9: Axial displacement at the centre of the contact zone  
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4 CONCLUSION 

The focus of the current work is on the development of contact modelling within the CUF 

framework. Node-to-node contact discretisation with the penalty approach to contact 

enforcement was considered, and the resulting nonlinear problem was implicitly solved using 

the Newton-Raphson method. The structural modelling was done using 1D CUF models with 

Lagrange polynomials being used to enrich the cross-sectional kinematics, resulting in a high-

fidelity layer-wise model. Numerical assessments were performed to demonstrate the contact 

capabilities in CUF, and the results suggest that 

 

1. The CUF solutions are in very good agreement with reference 3D-FEA, thus verifying 

the capability of the current framework in modelling contact. 

2. The CUF-LW approach leads to accurate interlaminar stress fields, as well as transverse 

stretching, with about an order of magnitude reduction in the computational size and 

over a 4-fold improvement in the computational time, when compared to 3D-FEA. 

3. Initial assessments on dynamic contact and impact demonstrate the capability of the 

CUF theories in accurately modelling such phenomena. 

 

Future works include the further development of the explicit framework based on CUF, and its 

application to impact analysis of composite structures. 

5 ACKNOWLEDGEMENTS 

This research work has been carried out within the project ICONIC (Improving the 

Crashworthiness of Composite Transportation Structures), funded by the European Union 

Horizon 2020 Research and Innovation program under the Marie Skłodowska-Curie Grant 

agreement No. 721256, and the project FULLCOMP (Fully Integrated Analysis, Design, 

Manufacturing, and Health-Monitoring of Composite Structures), funded by the European 

Union Horizon 2020 Research and Innovation program under the Marie Skłodowska-Curie 

Grant agreement No. 642121. 

REFERENCES 

[1]       M. A. Puso and T. A. Laursen. A mortar segment-to-segment contact method for large 

deformation solid mechanics. Computer methods in applied mechanics and 

engineering, 193(6-8), pp.601-629 (2004). 

[2]       H. Hertz. Uber die beruhrung fester elastischer korper (on the contact of elastic solids). 

J. fur die Reine Angew. Math., 92, pp.156-171 (1881). 

[3]       P. Wriggers. Computational Contact Mechanics. Springer-Verlag (2006). 

[4]       A. Francavilla and O. C. Zienkiewicz. A note on numerical computation of elastic 

contact problems. International Journal for Numerical Methods in Engineering, 9(4), 

pp.913-924 (1975). 

[5]       J. O. Hallquist, G. L. Goudreau and D. J. Benson. Sliding interfaces with contact-impact 

in large-scale Lagrangian computations. Computer methods in applied mechanics and 

engineering, 51(1-3), pp.107-137 (1985). 

[6]       J. C. Simo, P. Wriggers and R. L. Taylor. A perturbed Lagrangian formulation for the 

finite element solution of contact problems. Computer methods in applied mechanics and 

engineering, 50(2), pp.163-180 (1985). 



Contact modelling of composite structures                                                            Nagaraj et al.                                                                                                                                 

9 

[7]       P. Papadopoulos and R. L. Taylor. A mixed formulation for the finite element solution 

of contact problems. Computer Methods in Applied Mechanics and Engineering, 94(3), 

pp.373-389 (1992). 

[8]       G. Zavarise and L. De Lorenzis. The node-to-segment algorithm for 2D frictionless 

contact: classical formulation and special cases. Computer Methods in Applied Mechanics 

and Engineering, 198(41-44), pp.3428-3451 (2009). 

[9]       F. B. Belgacem, P. Hild and P. Laborde. Approximation of the unilateral contact 

problem by the mortar finite element method. Comptes Rendus de l'Academie des Sciences 

Series I Mathematics, 324(1), pp.123-127 (1997). 

[10] G. Zavarise and P. Wriggers. A segment-to-segment contact strategy. Mathematical and 

Computer Modelling, 28(4-8), pp.497-515 (1998).  

[11] T. W. McDevitt and T. A. Laursen. A mortar‐finite element formulation for frictional 

contact problems. International Journal for Numerical Methods in Engineering, 48(10), 

pp.1525-1547 (2000). 

[12] M. A. Puso and T. A. Laursen. A mortar segment-to-segment frictional contact method 

for large deformations. Computer methods in applied mechanics and engineering, 193(45-

47), pp.4891-4913 (2004). 

[13] E. Carrera, M. Cinefra, M. Petrolo and E. Zappino. Finite element analysis of structures 

through unified formulation. John Wiley & Sons (2014). 

[14] A. G. de Miguel, I. Kaleel, M. H. Nagaraj, A. Pagani, M. Petrolo and E. Carrera. 

Accurate evaluation of failure indices of composite layered structures via various FE 

models. Composites Science and Technology, 167, pp.174-189 (2018). 

[15] E. Carrera and M. Petrolo. Refined beam elements with only displacement variables and 

plate/shell capabilities. Meccanica, 47(3), pp.537-556 (2012). 

 

 


