
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Service-Agnostic Software Framework for Fast and Efficient In-Kernel Network Services / Miano, Sebastiano;
Bertrone, Matteo; Risso, FULVIO GIOVANNI OTTAVIO; VASQUEZ BERNAL, Mauricio; Lu, Yunsong; Pi, Jianwen;
Shaikh, Aasif. - STAMPA. - (2019). (Intervento presentato al convegno 15th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS '19) tenutosi a Cambridge (UK) nel September 2019)
[10.1109/ANCS.2019.8901880].

Original

A Service-Agnostic Software Framework for Fast and Efficient In-Kernel Network Services

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ANCS.2019.8901880

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2751672 since: 2021-10-11T18:44:00Z

IEEE

A Service-Agnostic Software Framework for Fast
and Efficient In-Kernel Network Services

Sebastiano Miano∗, Matteo Bertrone∗, Fulvio Risso∗,
Mauricio Vásquez Bernal∗

∗Department of Computer and Control Engineering
Politecnico di Torino, 10129, Italy

name.surname@polito.it

Yunsong Lu†, Jianwen Pi, Aasif Shaikh
†Futurewei Technologies, Inc.

Santa Clara, California
yunsong.lu@futurewei.com, jianwpi@gmail.com,

acloudiator@gmail.com

Abstract—This paper presents Polycube, an open-source soft-
ware framework based on eBPF, that enables the creation of
arbitrary and complex network function chains. Each function
can include an efficient in-kernel data plane and a flexible user-
space control plane with strong characteristics of isolation, persis-
tence (e.g., across server reboots) and composability. In addition,
a generic model for the control and management plane of each
network function simplifies the manageability and accelerates the
development of new network services. We validate the framework
by creating different network services and benchmarking their
performance in a complex scenario, namely a network provider
for Kubernetes. Results show that Polycube programs are about
20x shorter than equivalent programs implemented with vanilla-
eBPF.

Index Terms—eBPF, XDP, Linux, NFV, Service Chaining

I. INTRODUCTION

Network Functions Virtualization (NFV) enables network
services to be transformed in pure software images that are
executed on standard servers. This technology guarantees
lower costs thanks to the reduction of the number of phys-
ical appliances [1] and to the possibility to rely on (cheap)
commodity hardware. At the same time, it enables more agile
services thanks to the click-and-play nature of the software.

The most common approach to NFV is through a set
of (chained) VMs or containers, connected by means of a
virtual switch [2]. This often includes heterogeneous appli-
cations, built from different vendors, with diverse character-
istics e.g., in terms of configuration protocols and life-cycle
management, which complicates day-by-day operations [3].
This heterogeneity impairs also on the possibility to achieve
higher throughput through cross-VNF optimizations, as each
application operates in isolation. For instance, even simple
approaches, such as zero-copy or shared memory between
cascading functions (e.g., [3]–[6]), are often very difficult to
deploy in practice. Furthermore, advanced features such as
service decomposition [7], fault-tolerance [8], high availabil-
ity [9], [10], should be provided separately per each VNF,
complicating the design of the control plane and making
the system more complex [11]. Finally, the computational
requirement for the above VNFs is often huge, due to the
number of different components involved (e.g., hypervisors,
VMs with their guest operating systems, vSwitch, etc.) not to
mention the cost in moving a packet during its journey, due

to the many components traversed and the several transitions
between kernel and user space.

In this paper we present a novel software architecture
that simplifies the creation, deployment and management of
in-kernel network functions. In particular, it offers (i) the
possibility to implement complex functions on the data plane,
(ii) enables the creation of arbitrary service chains, hence
simplifying the creation of complex services through the
composition of many elementary components and (iii) offers
a service-agnostic interface that decouples the control and
management logic (which is generic and valid for all services)
from the actual service logic, hence enabling the dynamic
and seamless deployment of arbitrary network services. In
summary, this paper makes the following contributions:

• We show the design and architecture of Polycube (sec-
tion III).

• We provide a description of the APIs and abstractions
provided to the developers to simplify the development
of new services (section IV).

• We demonstrate the practical benefits and of the Polycube
programming model with a complex application, namely
a network provider plugin for Kubernetes (section V).

Polycube source code, documentation and implementations
of the various network services are available at [12].

II. CONTEXT AND MOTIVATION

We now provide a set of desired properties for a network
application and motivate the choice of using eBPF as under-
lying technology; then, we describe the challenges that need
to be addressed by Polycube to enable this new design.

A. Desired properties for NFs

In-kernel packet processing. Current options to build NFs
rely on either kernel bypass approaches, implementing all
the functionality in user-space, or in-kernel processing where
packets are entirely handled within the kernel context. Al-
though the former approaches bring unquestionable perfor-
mance improvements, they (i) take the ownership of one (or
more) CPU cores, thus permanently stealing precious CPU
cycles to other tasks [13] and (ii) require to re-implement the
entire network stack in userspace [14].

1

Specialization. Typical kernel implementation result limited
and general to reduce the number of changes required when
adding a new feature [2]. A desirable property for a NF would
be to let the user defining the behavior of the program, making
it specialized for the current applications and workloads.

Easy development process. To introduce greater programma-
bility and additional functionality inside the kernel, current
approaches rely on custom kernel modules (e.g., OvS), which
may, however, result difficult to maintain and distribute [2],
[15]. A kernel application should instead follow the same
development process of userspace applications, which may
improve the delivering of new functionality and diversify the
existing implementations.

Integration with other kernel subsystems. With the recent
changes in the data center workloads, applications are now
running on the host operating system that is then shared
between different applications. These application often rely
on existing kernel functionality to accomplish their tasks. It
is then important that kernel network application can easily
interact with other kernel-level data structures (e.g., FIB or
neighbor table) and leverage kernel functionalities (e.g., TSO,
skb metadata, etc.).

B. Extended Berkley Packet Filter (eBPF)

The extended Berkeley Packet Filter (eBPF) [16], [17],
recently introduced in the Linux kernel, can be used to
create network functions while guaranteeing the above desired
properties. First of all, eBPF can process a packet entirely
in kernel space, without context switches or packet copies
between kernel and user space [13]. Second, it leverages a set
of features that are already present in a modern Linux kernel,
without requiring additional kernel modules that are difficult
to create and maintain. Third, the possibility to compile and
inject the code at runtime paves the way to a context-based
customization of each network function. Last but not least,
eBPF programs can cooperate with the kernel TCP/IP stack,
possibly complementing existing networking features.

C. Challenges

Creating network functions with eBPF is sometimes com-
plex given the lack of a common framework that provides
useful abstractions to developers to solve common problems
or known limitations [18]. In fact, even though eBPF allows
more complex data plane processing than OpenFlow [19], it
is not Turing-complete. As a consequence, it cannot support
truly arbitrary processing, making the implementation of some
common services (e.g., ARP handling in a router) challenging.
Furthermore, no abstractions current exist to implement the
(complex) control plane of a service, hence forcing developers
to dedicate a considerable amount of time to handle com-
mon control plane operations (e.g., user-kernel interaction).
This motivates us to rethink how those network functions
are designed and managed. We envision a novel software
architecture, called Polycube, wherein eBPF based network

eBPF VM
Encapsulator/
Decapsulator

polycubed

Fast path
(eBPF Program)

Kernel space

User space

Kernel abstraction layer

Service
Controller

R
P

C
lib

Service
ProxyR

EST A
P

I

Service module

Management Interface

Service
Instance #1

Mgmt/Ctrl

Slowpath

Fig. 1: High-level architecture of the system

services are consolidated to run on the same host, and managed
in a logically centralized manner.

III. ARCHITECTURE OVERVIEW

This Section introduces first the main ideas that inspired the
design of Polycube; then it will present the resulting software
architecture and the most significant implementation details.

A. Unified point of control

All Polycube network functions feature a unified point of
control, which enables the configuration of high-level direc-
tives such as the desired service topology. In addition, it
facilitates the provisioning of cross-network function optimiza-
tions that could not be applied with separately managed ser-
vices. Polycube supports this model through a single, service-
agnostic, userspace daemon, called polycubed, which is
in charge of interacting with the different network function
instances. Each different type of virtual function is called
Cube, which are similar to plugins that can be installed and
launched at runtime. A new Cube can be easily added to
the framework by a specific registration phase, in which the
service sends the information required for its identification
within the framework, such as the service type (i.e., local or
remote, Section III-B3) or the minimum kernel version. When
the service is registered, different instances of it can be created
by contacting polycubed, which acts mainly as a proxy;
it receives a request from a northbound REST interface and
forwards it to the proper service instance, returning back the
answer to the user.

B. Structure of Polycube services

Each Polycube service is made up of a control plane
and a data plane. The data plane is responsible for per-
packet processing and forwarding, while the control and
management plane is in charge of service configuration and
non-dataplane tasks (e.g., routing protocols). Although this
separation between the control and data plane is common
in many network functions architectures, Polycube provides
a clear separation between these components; each service
is composed of a set of standard parts that make it easier
for the programmers to implement the desired behavior, while
Polycube takes care of creating all the surrounding glue logic,

handling all the interactions and communications between the
different components.

1) Data plane: The data plane design of a Polycube service
is characterized of a fast path, namely the eBPF code that is
injected into the kernel, and a slow path, which handles pack-
ets that cannot be fully processed in the kernel or that would
require additional operations, slowing down the processing of
the other packets.

Fast path. The data plane portion of a network service is
executed per packet, with the consequent necessity to keep its
cost as small as possible. When fired, the fast path retrieves the
packet and its associated meta-data from the receive queues,
then it executes the injected eBPF instructions. Typical opera-
tions are usually very fast, such as packet parsing, lookups in
memory (e.g., to classify the packet), and map updates, such as
storing data in memory (e.g., statistics), for further processing.
When those operations are carried out, the fast path returns a
forwarding decision for that particular packet or send it to the
slow path for further processing.

Slow path. Although eBPF offers the possibility to perform
some complex and arbitrary actions on packets, it suffers
from some well-known limitations due to his restricted vir-
tual machine, which however are necessary to guarantee the
integrity of the system. Those limitations may impair the
flexibility of the network function, which (i) may not be able
to perform complex actions directly in the eBPF fast path or
(ii) could slow down its execution, adding more instructions
in the fast path to handle exceptional cases. To overcome
those limitations, Polycube introduces an additional data plane
component that is no longer limited by the eBPF virtual
machine and it can hence execute arbitrary code. The slow
path module is executed in userspace and interacts with the
eBPF fast path using a set of components provided by the
framework. The eBPF fast path program can redirect packets
(with custom meta-data) to the slow path, similar to Packet-
In messages in OpenFlow. Similarly, the slow path can send
packets back to the fast path; in this case, Polycube provides
the possibility to inject the packet into the ingress queue of
the network function port, simulating the reception of a new
packet from the network, or into the egress queue, hence
pushing the packet out of the network function.

2) Control and management plane: The control plane of
a virtual network function is the place where out-of-band
tasks, needed to control the data plane and to react to possible
complex events (e.g., Routing Protocols, Spanning Tree), are
implemented. It is the point of entry for external players (e.g.
service orchestrator, user CLI) that need to access service’s
resources, modify (e.g., for configuration) or read service
parameters (e.g., reading statistics) and receive notifications
from the service fast path or slow path. Polycube defines a
specific control and management module that performs the
previously described functions. It exposes a set of REST APIs
used to perform the typical CRUD (create-read-update-delete)
operations on the service itself; these APIs are automatically
generated by the framework starting from the service de-

scription, removing this additional implementation overhead
to the programmer. To interact with the service, an external
player has to contact polycubed, which checks the service
to which the request is directed to and dispatches it to the
corresponding service control path, which in turn serves the
request modifying its internal state or reflecting the changes
to the service data path instance.

3) Remote vs Local services: The separation between the
data and control plane allows to execute the two components
separately, not necessarily on the same server. While the
former is running in the server, the latter can be executed
either locally or remotely. Polycube may support both local
services, installed as local applications on the same server of
polycubed and whose interaction is through direct calls,
and remote services, possibly running on a different machine
and communicating with polycubed through RPC mech-
anism. When a new service is plugged into the framework,
it communicates to polycubed if it is local or remote.
In the first case, the path to the service executable (i.e.,
a dynamic library file) is specified and polycubed loads
the library at runtime, forwarding the requests to the service
control path as a normal function call. In the second case the
service is registered by providing the remote RPC endpoint;
in that case all subsequent requests for that service will be
redirected through the RPC channel. Polycube provides a
management interface that allows to control any service data
plane, regardless of the service type and structure, hence being
agnostic to the control plane location. It allows to get access
to any registered service in the same way from its REST
interface, facilitating the service developer who does not have
to deal with the low-level details of the communication with
the daemon.

C. Management and Control

The capability to add (or remove) a network function
dynamically (even from a remote server) into polycubed
provides several advantages such as the possibility to update
an existing service, adding functionality without modifying
the network functions currently deployed and running. To
support this model, the Polycube core (i.e., polycubed) has
been designed to be completely independent from the type
of network function that is installed; it has no idea of how
the network function is composed internally or what are its
functionalities, polycubed only takes care of forwarding the
request to the proper service instance. This approach does
not require changes to polycubed whenever changes to
the individual service are needed; when the service is being
updated, it is unplugged from the framework, updated and
plugged-in again without affecting existing services. On the
other hand, it complicates the service design, which has to
define the interface to the outside (i.e., the REST APIs). To
simplify this process, Polycube uses YANG [20] models, each
one describing a specific service, to automatically synthesize
the REST interface of the service.

Model-driven service abstraction. The YANG data modeling
language allows to (i) model the structure of the data and the
functionalities provided by the Polycube service, (ii) define
the semantic of the service data and their relationship and (iii)
express their syntax, which will be used to interact with the
service itself. When a new service is registered, polycubed
reads the provided YANG model and generates an internal
representation of the service data together with a specific
path mapping table used to access those data from outside.
Whenever a new request for that service arrives, polycubed
validates it (e.g., checking the correct format of an IP address,
ports in a given range) according to the information specified
in the YANG model, without having to rely on the service itself
for those “ancillary” tasks.

D. Functional Service Decomposition

The data plane architecture of Polycube supports the com-
position of micro-functional blocks in more complex data path
structures. In particular, the data plane of a single Polycube
service can be created by stitching multiple eBPF programs
together that are controlled and injected separately from the
control plane using the Polycube service-independent APIs.
This set of eBPF micro-blocks, called micro-cubes (µCubes),
are part of a single Cube instance and are handled by an
unique control plane and slow path module, as opposed to
different Cube instances that have their own controllers. This
modular design introduces the necessity to specify an order
of execution of the µCubes inside the NF; in fact, when a
packet reaches a Cube composed of different micro-blocks,
Polycube has to know the first module to execute, which in
turn will trigger the execution of the others µCubes within
an arbitrary order based on its internal logic. To do this,
Polycube introduces the concept of MASTER and SLAVE
µCubes. The MASTER µCube, which is unique within the
Cube itself, represents the entry point of the entire service
and its execution is triggered upon the reception of a packet
in a port. Subsequently, there are multiple SLAVE µCubes,
whose execution is triggered only through a direct call from
another µCube. Having a different set of eBPF programs, each
one performing a specific function, is useful in particular for
two reasons. First, it allows the developer to handle each
feature separately, enabling the creation of loosely coupled
services with different functionalities (e.g., packet parsing,
classification, field modification) to be dynamically composed
and replaced; each single µCube can be substituted at runtime
with a different version or can be directly removed from the
chain if its features are not needed anymore. Second, it can
be useful to overcome some well-know eBPF limitations such
as the maximum size of an eBPF program or the inability to
create unbounded loops in the code.

IV. APIS AND ABSTRACTIONS

Polycube provides a set of high-level APIs and abstractions
to the developers to simplify the writing of a new service, both
from the control plane and the data plane point of view. It bases
upon the BPF Compiler Collection (BCC) [21], extending the

above abstraction with additional helper functions targeted to
networking services. For example, it adds useful abstractions
to manage special packets, to cope with special processing
that may complicate (and slow down) the fast path, or to react
to special events such as timeouts. Table I shows some of
the main helper functions introduced by Polycube at different
levels of the network service code, i.e., the eBPF fast-path,
the slow path and the control and management plane.

Transparent port handling. A Polycube network service
instance is composed by a set of virtual ports that are
uniquely identified through a name and an index inside the
service itself. Every port of the service can be attached to a
Linux netdevice or to another service port by means of the
peer parameter. When the fast path of the service decides
to redirect the packet to a specific output port it can use
the pcn_pkt_redirect() function to send the packet to
the next hop whether it is a net-device or another Polycube
service. Although the implementations for the above two types
of next hops are quite different, Polycube hides this difference
by providing a generic helper that receives the virtual index
of the output port and, if the port is connected to a netdevice,
redirects the packet to the attached netdevice, otherwise jumps
directly to the next Polycube network function in the chain.

Fast-slow path interaction. If the packet currently processed
in the eBPF service fast path requires additional inspections
or further processing, it can be sent to the slow path module
of the service by means of the pcn_pkt_redirect_-
controller() helper. This function receives as parameters
the reason why the packet has to be sent to the slow path
and, optionally, additional meta-data fields. Polycube hides
the implementation details of the communication between the
eBPF fast path program and the service slow path; it sends
the packet to an eBPF control module (the Decapsulator and
Encapsulator shown in Figure 1), that will copy the packet
and its meta-data to userspace, where they will be received
by the Polycube daemon, which will call the packet_in()
function of the associated service’s slow path. On the other
side, when the slow (or control) path decides to send a packet
out on a given port, it can use the send_packet_out()
function, indicating the output port and the direction where
to send the packet, which can be the INGRESS or EGRESS
queue of the chosen port.

Debug mechanism. Polycube provides a debug helper that
can be used in both fast and slow/control path to print debug
messages. Although this feature is quite common for userspace
programs, it is not the same for the eBPF programs, which
are executed in the kernel context. Similar to kernel modules,
eBPF programs use the bpf_trace_printk() function to
print debug messages; once the program is loaded, the verifier
checks whether program is calling this function and allocates
additional buffers, which may slow-down the processing of the
function. Polycube uses a more efficient mechanism through
the pcn_log() helper; when called, this helper uses a perf
ring buffer to send debug messages to polycubed, which

TABLE I: Helper functions provided by Polycube at different level of the NF.

Level Helper function Arguments Description
Fast path (eBPF) pcn_pkt_redirect md, out port Redirect a pkt to an VNF interface (either physical or virtual)
Fast path (eBPF) pcn_pkt_controller reason Send a pkt to the slow-path with a given reason
Fast path (eBPF) pcn_pkt_controller_md md, reason Send a notification to userspace with a specific reason
Fast path (eBPF) call_ingress_program index Call the µCube at a given index attached to the ingress pipeline
Fast path (eBPF) call_egress_program index Call the µCube at a given index attached to the egress pipeline
Slow path (user) packet_in pkt, md, reason Callback executed when a notification is sent to userspace
Slow path (user) send_packet_out pkt, dir Send a packet out to the ingress or egress pipeline
Control plane reload code, idx Reload the µCube at a given index with the new code
Fast/slow path pcn_log level, txt Print debug messages with a given verbosity level

redirects them to the current log file, as for the slow and
control path. This allows also to introduce additional network-
specific custom modifiers (e.g., %I, %M, %P) that can be used to
print IP, MAC addresses or port numbers in a human readable
format. Finally, using different log levels, polycubed is
able to dynamically remove all the references to the debug
messages under the specified log level, reloading the service
fast path to reflect the changes.

Table abstractions. To store the network function state across
different runs of the same program or to pass configuration
data from the control path to the fast path, a Polycube service
uses eBPF tables, which are defined into the service fast
path and are created when the program is loaded. Every
eBPF table has a scope into the system, which expresses
the possibility to read and/or modify the table content from
another eBPF program. Polycube introduces the possibility
to define PRIVATE tables, which are only accessible from
the same µCube where they have been declared and PUBLIC
tables, which are instead accessible from every µCube running
in the machine. In addition, since Polycube supports the
possibility to compose the network function data path as a
collection of µCubes (i.e., simple eBPF programs), we added
the concept of SHARED tables, where a table can in fact be
shared between a given set of µCubes. In this case, when the
table is instantiated, it is possible to specify the namespace
within which this table will be shared.

V. EVALUATION

In this section we first evaluate the overhead imposed by
Polycube programming model when compared to baseline
programs written using the vanilla eBPF (section V-A). Then,
we evaluate a use case that show both the performance
advantages of eBPF-based NFs and how Polycube enables the
creation of complex network services by chaining different
modules together (section V-B).

A. Baseline performance

To measure the baseline performance and the overhead
introduced by the Polycube abstraction model to a single NF,
we implemented the same operations performed by the xdp_-
redirect application, available under the Linux samples, as
a standalone NF inside the Polycube framework (i.e., pcn-
simplefwd). The application receives traffic from a given
interface and, after swapping the source and destination L2

TABLE II: Comparison between vanilla-eBPF applications
and a Polycube network function.

Application Through. LoC (FP) LoC (S/CP)
xdp redirect 4.7Mpps 64 176
tc redirect 1.48Mpps 53 56
pcn-simplefw (XDP) 4.0Mpps 17 0
pcn-simplefw (TC) 1.31Mpps 17 0

addresses of the packet, redirects it to a second interface.
We installed the application into a server equipped with an
Intel Xeon Gold 5120 14-cores CPU @2.20GHz (hyper-
threading disabled) 19.25 MB of L3 cache and two 32GB
RAM modules. We used Pktgen-DPDK to generate 64-bytes
UDP packets from another server and to count the received
packets; in fact, each server has a dual-port Intel XL710
40Gbps NIC, directly connected to the corresponding one of
the other server. Both servers run Ubuntu 18.04.1 LTS, with
the DUT running kernel 5.1.3 and the eBPF JIT flag enabled.

Results. Table II shows a comparison between two very simple
vanilla eBPF applications and a Polycube NF that performs the
same operations, attached to either XDP or Traffic Control
(TC) hooks. As we can notice, Polycube introduces a small
(fixed) overhead to every NF, which is required to provide
the abstractions mentioned before (e.g., virtual ports); in fact,
this requires additional processing before and after calling
the fast path of the NF, which is totally hidden to the NF
developer. As result, the number of LoC for both the fast-path
(FP) and the slow and control path (S/CP) is considerably
reduced, allowing the developer to focus on the core logic of
the program and leaving the common tasks and the possible
optimizations to the Polycube daemon. Note also that the
sample vanilla applications that we are taking into account are
extremely simple; for more complex applications, a developer
using vanilla-eBPF has to implement, for example, the entire
fast-slow path interaction, which requires a non-negligible
amount of effort.

B. Use case

In this subsection, we present a real world use case that can
be implemented within Polycube and the type of performance
improvements that we can expect.

1) K8s Network Provider: To demonstrate the capability
of Polycube to facilitate the creation of complex applications

Datacenter network (L3)

Node 1Node 1

Pod1 PodN

192.168.1.3/24

App1 App1

Physical node IP
130.192.225.143/24

Node 2 Node 2

Node 3 Node 3

VxLAN
overlay
networkLinux

networking
stack

(Routing +
Natting)

192.168.1.1

eth0

Bridging and
Routing

NodePort
Discriminator

Load Balancer and
Address Translation

192.168.1.X/24

1
9

2
.1

6
8

.1
.0

/2
4

1
9

2
.1

6
8

.2
.0

/2
4

1
9

2
.1

6
8

.3
.0

/2
4

Fig. 2: Architecture of the Polycube K8s plugin.

created by chaining different network functions together, we
implemented an CNI plugin for Kubernetes [22], one of the
most important open source orchestration system for container-
ized applications. Figure 2 shows the resulting architecture that
is composed of different independent Polycube services that
are chained together to support the main operations required
by k8s network plugin interface. Tests were carried out on a
3-node cluster, a master and two workers with Linux kernel
v4.15, Intel Xeon CPU E3-1245v5 @3.50GHz with dual-
port Intel XL710 40Gbps NIC cards connected point-to-point.
TCP throughput was measured with iperf3 with default
parameters; the server was always running in a Pod, while
the client was either in a physical machine or in another Pod
depending on the test.

Results. In Figure 3 we asses the performance of our Polycube
network provider comparing it with the other existing solu-
tions. In particular, we consider the Pod-to-Pod1 connectivity
and the Pod-to-ClusterIP2 connectivity. Results show that the
Polycube k8s plugin reaches 15-20% higher throughput than
other solutions in the case server and client are on the same
node. When pods are on different nodes, the advantage of
the plugin becomes less evident, but still better than other
solutions.
Note: Although our k8s plugin achieves better performance
than the others in the two cases under consideration, it is
not comparable in terms of functionality with the existing
solutions, which are both more stable and complete. The
purpose here is to demonstrate the generality of the Polycube
programming model and the performance benefits that can be
obtained from eBPF-based NFs.

VI. CONCLUSIONS

This paper presents the design and architecture of Poly-
cube, a framework to build network services that can be

1A Pod is the smallest manageable unit in a k8s cluster and is composed
of a group of one or more containers sharing the same network.

2A ClusterIP is a type of service that is only accessible within a Kubernetes
cluster through a virtual IP. When a Pod communicates with this virtual IP, the
request can be mapped to an arbitrary Pod running within the same physical
host or into another one.

 0

 10

 20

 30

 40

 50

 60

Same DifferentT
hr

ou
gh

pu
t

(G
bp

s)

(a) Pod to Pod traffic

polycube
calico v3.3

cilium v1.3
kube-router

romana
weavenet

 0

 10

 20

 30

 40

 50

 60

Same Different
Pod Location

(b) Pod to ClusterIP traffic

Fig. 3: Performance of different k8s network providers.

dynamically instantiated and loaded into the Linux kernel at
runtime. Polycube uses a model-driven abstraction to express
the NF behavior and syntax, and provides additionally a
set of abstractions and APIs to simplify the development
of chained network functions. We demonstrate Polycube in
practice, by demonstrating the performance benefits when
creating complex network services such as a network provider
for Kubernetes.

ACKNOWLEDGMENT

We would like to thank the many people who contributed
to this work and the anonymous reviewers for their thoughtful
feedbacks. Our thanks also to the European Commission
(project ASTRID, Grant Agreement no. 786922), which par-
tially founded this project.

REFERENCES

[1] ETSI. (2017, feb) Network functions virtualization. [Online]. Available:
http://www.etsi.org/technologies-clusters/technologies/nfv

[2] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vswitch,” in Proceedings
of the 12th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’15. USENIX Association, 2015, pp. 117–
130.

[3] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: a framework for nfv applications,” in Proceedings
of the 25th Symposium on Operating Systems Principles. ACM, 2015,
pp. 121–136.

[4] M. V. Bernal, I. Cerrato, F. Risso, and D. Verbeiren, “A transparent
highway for inter-virtual network function communication with open
vswitch,” in Proceedings of the 2016 conference on ACM SIGCOMM
2016 Conference. ACM, 2016, pp. 603–604.

[5] J. Hwang, K. K. Ramakrishnan, and T. Wood, “Netvm: high performance
and flexible networking using virtualization on commodity platforms,”
IEEE Transactions on Network and Service Management, vol. 12, no. 1,
pp. 34–47, 2015.

[6] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual ma-
chines,” in Proceedings of the 8th international conference on Emerging
networking experiments and technologies. ACM, 2012, pp. 61–72.

[7] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Transactions on Computer Systems (TOCS),
vol. 18, no. 3, pp. 263–297, 2000.

[8] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo et al., “Rollback-
recovery for middleboxes,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 45, no. 4. ACM, 2015, pp. 227–240.

[9] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” in ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4. ACM, 2014, pp. 163–174.

[10] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using sdn,” in ACM SIGCOMM
computer communication review, vol. 43, no. 4. ACM, 2013, pp. 27–
38.

[11] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “Flowtags:
Enforcing network-wide policies in the presence of dynamic middlebox
actions,” in Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking. ACM, 2013, pp. 19–24.

[12] P. Authors. (2019, January) Polycube: ebpf/xdp-based software
framework for fast network services running in the linux
kernel. [Online; last-retrieved 22-July-2019]. [Online]. Available:
https://github.com/polycube-network/polycube

[13] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The express data path: Fast
programmable packet processing in the operating system kernel,”
in Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’18. New
York, NY, USA: ACM, 2018, pp. 54–66. [Online]. Available:
http://doi.acm.org/10.1145/3281411.3281443

[14] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park, “mtcp: a highly scalable user-level {TCP} stack for multicore
systems,” in 11th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 14), 2014, pp. 489–502.

[15] Z. Ahmed, M. H. Alizai, and A. A. Syed, “Inkev: In-kernel distributed
network virtualization for dcn,” ACM SIGCOMM Computer Communi-
cation Review, vol. 46, no. 3, 2016.

[16] M. Fleming. (2017, dec) A thorough introduction to ebpf. [Online].
Available: https://lwn.net/Articles/740157/

[17] C. Authors. (2018, jul) Bpf and xdp reference guide. [Online].
Available: https://cilium.readthedocs.io/en/latest/bpf/

[18] S. Miano, M. Bertrone, F. Risso, M. Vásquez Bernal, and M. Tumolo,
“Creating complex network service with ebpf: Experience and lessons
learned,” in Proceedings of the IEEE High Performance Switching and
Routing (HPSR). ACM, 2018, pp. 1–8.

[19] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[20] M. Bjorklund, “The yang 1.1 data modeling language,” 2016.
[21] IOVisor. Bpf compiler collection (bcc). [Online]. Available:

https://github.com/iovisor/bcc/
[22] G. Inc. (2019, July) Kubernetes: Production-grade container

orchestration. [Online; last-retrieved 22-July-2019]. [Online]. Available:
https://kubernetes.io/

