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Abstract: Global navigation satellite system (GNSS)-reflectometry is a type of remote sensing
technology and can be applied to soil moisture retrieval. Until now, various GNSS-R soil moisture
retrieval methods have been reported. However, there still exist some problems due to the complexity
of modeling and retrieval process, as well as the extreme uncertainty of the experimental environment
and equipment. To investigate the behavior of bistatic GNSS-R soil moisture retrieval process,
two ground-truth measurements with different soil conditions were carried out and the performance
of the input variables was analyzed from the mathematical statistical aspect. Moreover, the feature
of XGBoost method was utilized as well. As a recently developed ensemble machine learning
method, the XGBoost method just emerged for the classification of remote sensing and geographic
data, to investigate the characterization of the input variables in the GNSS-R soil moisture retrieval.
It showed a good correlation with the statistical analysis of ground-truth measurements. The variable
contributions for the input data can also be seen and evaluated. The study of the paper provides some
experimental insights into the behavior of the GNSS-R soil moisture retrieval. It is worthwhile before
establishing models and can also help with understanding the underlying GNSS-R phenomena and
interpreting data.

Keywords: global navigation satellite system (GNSS)-reflectometry; soil moisture retrieval;
signal-to-noise ratio (SNR); XGBoost

1. Introduction

The global navigation satellite system (GNSS), including the US GPS, Europe Union GALILEO,
Russia GLONASS, and China BeiDou system has achieved great success with an unprecedented impact
on all positioning-related areas. It can not only provide spatial information for global users with
navigation, positioning information, speed measurement, timing, but also have the opportunity of
L-band microwave signals with high time-resolution. As further development of GNSS, the target’s
reflected signal can be received and utilized [1–3]. Then the way of utilizing the GNSS reflected signals
were employed to detect the targets. This is a new concept of remote sensing called GNSS-reflectometry
(GNSS-R), featured with no special radar transmitter. Besides, it is a low-cost option with wide
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global coverage, a large amount of data acquisition, and can also be a powerful complement to other
traditional remote sensing methods.

GNSS-R can be regarded as a bi-static radar concept system. In the past 20 years, theoretical [4] and
experimental [5] studies using GNSS-R have demonstrated the potential of GNSS-R in remote sensing
measurements. There are mainly two types of GNSS-R applications: Altimetry and scatterometry. This
GNSS-R technique was firstly proposed for ocean altimetry [5], which is one of the main applications.
The altimetry makes use of propagation delay of the reflected signals (from waveform or carrier phase)
to measure the surface elevation [6,7]. Another main GNSS-R application is scatterometry that was
proposed by Hall and Cordey [4], which used the power/shape information of the waveform (or DDM)
to characterize the surface roughness or reflectivity for wind speed retrieval [8–11], soil moisture
measurement [12,13], or sea ice detection [10,14]. In addition, with the continuous development of
GNSS-R remote sensing technology, it has been widely used in many fields such as measuring the snow
depth [15], tsunami [16], vegetation biomass [17], flooding inundation [18], and inland water [19,20].
The experimental platform has also evolved from ground-based experiments [21] to aircraft [12],
balloons [22], and the latest low-orbit satellite [23] platform for measuring hurricanes.

In 2002, NASA took the lead in launching a series of soil moisture remote sensing flight experiments
(SMEX02-03) using GPS reflection signals. The entire system effectively measured the signal power that
varies with the soil moisture content [12]. Based on the bistatic radar configuration, two antennas were
used respectively to receive the direct signal from the satellite and signals reflected from the ground. A
right-hand circularly polarized antenna (RHCP) was oriented toward the sky, and a left-hand circularly
polarized (LHCP) antenna (single-polarized) or added a right-hand circularly polarized antenna
(constituting dual-polarization) perpendicular to the ground [21]. The dielectric constant was solved by
using the soil reflectivity and the bistatic radar equation. Then, the soil water content can be obtained
by various permittivity inversion models (permittivity–soil moisture). As an extension of the earlier
work, a calibration process was added to the subsequent soil moisture remote sensing experiment, and
a new reflectometer was used to record the data from the satellite with a high elevation angle (greater
than 65◦) in the visible range. The results showed that the received calibrated soil reflectivity could
be detected and used to estimate the expected relationship between the dielectric constant and soil
moisture [24].

After that, researchers proposed another interference pattern technique (IPT) to retrieve the soil
moisture content [25]. A left-hand circularly polarized antenna or a vertically polarized antenna, which
oriented towards the horizontal, was used to receive the interference signals from dual paths of direct
and reflected. The ground receiver SMIGOL reflectometer was used to measure the instantaneous
power that is from the interference of the direct and the reflected signal from the ground. Then, the soil
moisture was determined by the position of the point (the notch point) where the amplitude fluctuation
of the instantaneous power is the smallest.

Another similar approach used GPS multipath reflection signals to perform soil content retrieval
and is presented with only one antenna and a classical GNSS receiver [26–28]. A representative
result [29] is from the University of Colorado, USA. The experiment used a right-hand circularly
polarized antenna pointing to the sky and a GPS receiver featured with a geodetic characteristic to
receive the direct signals and land-surface reflected signals that caused multipath effects. By measuring
the signal-to-noise ratio of the received signal, soil moisture content can be obtained, and the method
can be applied to sensing other different objects, such as inverted barometer and storm [30].

At present, various types of space-based, on-board observation experiments are vigorously carried
out, and many countries are vigorously promoting related applications [31]. Following the launch of
the UK-DMC satellite carrying GPS reflected signal receiving equipment in the UK in 2003 [32], the
international exploration of GNSS-R spaceborne observations has developed rapidly. For example,
the UK TDS-1 satellite launched in Kazakhstan in 2014 is equipped with SGR-ReSI (Space GNSS
Receiver–Remote Sensing Instrument) sensors for GNSS-R measurements [33] are currently used for
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soil moisture inversion studies [34]. NASA has launched the CYGNSS observation constellation in
December 2016.

Especially, some significant results have been found utilizing space-borne data for the soil moisture
content (SMC) application. For instance, the sensitivity of GNSS-R observables and SM was studied
well in detail using TDS-1 data [35]. The sensitivity of the calibrated GNSS-R reflectivity to surface soil
moisture was found to be ~0.09 dB/% at an incident angle of ~30◦ and decrease as the angle of incidence
increased. In another study concerning the first global-scale assessment of GNSS-R, soil moisture
active passive (SMAP) mission for soil moisture and biomass determination and scattering properties
over land were evaluated and the results showed that the sensitivity to the effects of the Earth’s
topography and above ground biomass (ABG) was even over that of Amazonian and Boreal forests [36].
For the CYGNSS mission, the influence of the GNSS satellites’ elevation angle on the reflectivity of
LHCP, as a function of soil moisture content (SMC) and effective surface roughness parameter was
revealed [37]. Also, the relationship between forward scattered L-band global navigation satellite
system (GNSS) signals, recorded by the CYGNSS constellation and SMAP soil moisture (SM) was
studied [38]. It showed the sensitivity of CYGNSS to SM that varies spatially and can be used to
convert reflectivity to the estimates of SM. The unbiased root-mean-square difference between daily
average CYGNSS-derived SM and SMAP SM is 0.045 cm3/cm3 and is similarly low between CYGNSS
and in situ SM. The development of space-borne sensors was greatly promoting the related study on a
global scale.

In the meanwhile, many empirical and electromagnetic bistatic models were evolved [39–41],
enriching the knowledge of the scattering effects taking place in GNSS-R soil moisture retrieval.
It is crucial to choose features that have the greatest impact on the results so as to reduce the
number of variables when building a model, which is occasionally overlooked. Apart from that,
most of the researches only focus on the studies of the soil moisture retrieval algorithm. Besides, the
existing methods of soil moisture retrieval using GNSS-R technology are mostly based on analytical and
semi-empirical models, which often need plenty of experimental data and are deficient in generalization
ability. Moreover, the complex modeling process and uncertainty of the experimental environment
(such as the inconsistency of the direct and the reflected receiving channel, the noise of the signal
receiver, and so on) have a direct influence on the accuracy of the soil moisture estimation. Therefore,
there is an urgent need to evaluate the contribution and sensitivity of the input variables, which could
be quite significant in doing experiments and interpreting behavior.

The soil moisture retrieval using GNSS-R can be regarded as a nonlinear regression problem and
received data can be taken as many input features (variables). Besides the traditional methods, the
latest XGBoost based on the Boosting algorithm [42], which is good at variable importance estimation
was introduced here to evaluate the variable contribution in GNSS-R.

The Boosting algorithm is a popular and effective integrated learning algorithm in the field of
data mining. By weighting and superimposing each weak classifier to form a strong classifier, the
prediction error is effectively reduced and the classification results with higher accuracy are obtained.
Based on the boosting algorithm, an algorithm called Gradient Boosting was proposed to continuously
reduce the residuals and further reduce the residuals of the previous model in the gradient direction to
obtain a new model. After that, an improved Gradient Boosting algorithm, Extreme Gradient Boosting
(XGBoost) was proposed in 2015 [42].

In recent years, XGBoost has been widely used in-store sales forecasting, hazard risk prediction,
power load forecasting, and other fields [43–45]. The most important reason for its success is that it
is scalable in all scenarios. The scalability of XGBoost is determined by the optimization of several
important models and algorithms, including a new tree learning algorithm for processing sparse
data and a reasonable weighted quantile sketch process. The weight of the instance is allowed to be
processed in the learning of the approximate tree. At the same time, parallel and distributed computing
can continuously improve the learning rate of the tree, thus exploring a faster model. More importantly,
XGBoost utilizes non-core computing, enabling the user to process hundreds of millions of samples.
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Different from the traditional decision tree algorithm, XGBoost adds regular terms such as leaf
node weight and tree depth to the cost function. On one hand, it can control the complexity of the
model; on the other hand, it can prevent over-fitting phenomenon [46]. At the same time, it uses a
second-order Taylor expansion approximation to the cost function, which makes the approximation
of the objective function closer to the actual value, thus improving the prediction accuracy. In recent
years, the XGBoost algorithm has achieved excellent results due to its high operational efficiency and
prediction accuracy in the field of machine learning and data mining [47].

In this paper, XGBoost learning method is aided to understand the behavior and the contribution
of the input variables of GNSS-R. By utilizing the XGBoost algorithm to evaluate the contribution
of the input variables (such as SNR, receiver noise . . . ), the sensitivity of the input variables to the
retrieval results is shown. In addition, the results of ground-truth measurements (corresponding to
two typical soil types and different soil conditions) are used to confirm the analysis performed with
XGBoost learning method and investigate the performance of GNSS-R retrieval. The variation rate
of the retrieved results with respect to input variables is analyzed. This knowledge can help the
soil moisture retrieval and modeling process. The paper is organized as follows: In Section 2, the
GNSS-R soil moisture retrieval and XGBoost algorithm are presented. Section 3 is focused on the
results performed by XGBoost and shows the statistical data analysis obtained from ground-truth
experiments. Finally, discussions of the results and conclusions are drawn in Section 4.

2. Theory and Methods

2.1. The Bistatic GNSS-R Soil Moisture Retrieval Method

The GPS satellite, ground surface, and receiver constitute a bistatic radar system as described in
Figure 1. The right-handed circularly polarized antenna receives the direct signal and the left-handed
circularly polarized antenna receives the reflected signal. The soil reflectivity is obtained by measuring
the power of the reflected GPS signal. In the meanwhile, the surface roughness causes scattering from
a glistening zone that contributes to non-coherent power around the specular reflection point. As
the roughness increases, the scattering occurs and the incoherent component of the reflected signal
increases. For perfect flat surfaces, Fresnel reflection is satisfied and the received power are coherent.
As we assumed a smooth surface in this study, the power we received is predominated with LHCP
coherent component. Then the soil moisture retrieval method using reflected signal power is based on
the inversion of the bistatic radar equation:

Pc
lr =

PtGt

4π(Rst + Rrs)
2

Grλ2

4π
Γlr (1)

where subscript lr represents the scattering when the satellite incident signal is right-hand polarized
and inverts the polarization to LH after surface reflection, Pt is the power of the transmitted signal,
Gt is the transmitter antenna gain, Gr is the gain of the receiver antenna, and λ is the wavelength
(19.042 cm for GPS L1 signal). Rrs and Rst is the distance between the receiver, the specular point, and
the satellite respectively. Γlr is the power reflectivity of the reflecting surface.
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The term Γlr in Equation (1) (smooth surface) decreases due to increasing roughness, which can
be written as [48]:

Γlr(θ) =
∣∣∣Rlr(θ)

∣∣∣2χ(z) (2)

where Rlr is the Fresnel reflection coefficient, χ(z) is the probability density function of the surface
height. In the condition of the flat surface χ(z) = 1, the reflectivity Γlr becomes the amplitude squared
of the Fresnel reflection coefficient Rlr.

Combining (1) and (2), the processed SNR of peak power can be written as:

SNRre f l
peak =

Pc
lrGp

Pn
=

Pt
rGtGrλ2Gp

(4π)2(Rst + Rrs)
2Pn
|Rlr|

2 (3)

where Pn is the noise power and GP is the processing gain due to the de-spread of the GPS C/A code.
The Fresnel reflection coefficient Rlr can be expressed as linear polarization modes [49]:

Rlr = Rrl=
1
2
(Rvv −Rhh) (4)

where Rhh and Rvv are the Fresnel coefficients for horizontal and vertical polarization [50]:

Rhh(θ) =
cosθ−

√
εr − sin2 θ

cosθ+
√
εr − sin2 θ

(5)

Rvv(θ) =
εr cosθ−

√
εr − sin2 θ

εr cosθ+
√
εr − sin2 θ

(6)

where θ is the incident angle, in which εr is the dielectric constant of the surface, εr = ε/ε0 − j60λσ.
ε0 is the free-space permittivity, σ is the electric conductivity, and λ is the wavelength. In the case of
dry terrain or almost dry, the imaginary part of the permittivity can be neglected [51,52]. With this
hypothesis, the real part of the permittivity can be obtained from Equations (3)–(6), when the reflected
signals are received [51]. Here the input variables are SNRpeak

re f le, Pn, Gr, θ respectively as shown in
Figure 2.
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retrieval procedure.

In Figure 2, the soil reflectivity is obtained by calculating the correlation power of both the reflected
signal and the direct signal. In this study, a coherent integration (1 ms) was determined by the length of
the GPS PRN (pseudorandom noise) code sequence. Generally, due to the attenuation of signal power
caused by surface reflection and the presence of fading noise introduced by surface scattering, 1 ms of
integration is not enough to get the correlation peak, consecutive 1 ms coherent correlations must be
averaged. This process is known as non-coherent integration. There is not a defined rule governing
the choice but it should only be determined by the specific application and by its own situation. In
this study, 500 ms of non-coherent integration time is used since it is examined to be long enough to
eliminate the effects of speckle noise and short enough to have a good resolution of the surface by
multiple experiments. After that, the reflectivity is used to obtain the permittivity through the bistatic
radar equations [53]. We must note that the permittivity is strongly related to the soil moisture content.
The relationship between soil permittivity and soil moisture is given by the soil permittivity models.
Due to its complex structure, simplified empirical or semi-empirical models are used as a function of
permittivity in practical applications [54–56].

The performance of GNSS-R soil moisture retrieval is an important issue, which is determined
by many factors: (1) The geometric and physical characteristics of the reflected surface, such as
the statistical distribution of the ground height, the composition of the soil, etc., which impact the
received SNR. (2) Parameters of the GNSS-R system, such as the behavior of the transmitting and
receiving antennas (Gr, Pn), and the elevation angle (θ), etc. Except for the above-concerned parameters
(input variables), some random factors, the appearance of the surface roughness, vegetation, e.g., leaf
orientation, height of the vegetation, etc., may influence the signal collection in the real case. Due to
the complex interaction of these parameters, the retrieval of soil moisture content using GNSS-R is
commonly based on semi-empirical models. The random factors can be regarded as system noise and
suppressed by machine learning methods. Here we considered the retrieval procedure as a nonlinear
regression problem with the input variables (SNR, Pn . . . ) and output variables (permittivity, soil
moisture) based on the early work [46] as shown in Figure 2.

2.2. XGboost

XGBoost is an improved algorithm based on the gradient-enhanced decision tree, which can
effectively construct enhanced trees and run parallel computing. Compared with the traditional
GBDT (gradient boosting decision tree) algorithm that only uses the first-order derivative information,
the XGBoost performs the second-order Taylor expansion on the loss function and provides higher
efficiency of solving the optimal solution [44].
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The flowchart of the XGBoost algorithm [42] is summarized in Figure 3.
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Advantages of XGBoost [44]:

(1) Using the second-order Taylor expression to approximate the objective function, making it easier
to find the optimal solution;

(2) It can handle sparse and missing data;
(3) Generating a decision tree using the structural score;
(4) The split node uses the candidate set so that the algorithm runs fast;
(5) Define the complexity of the tree and apply it to the objective function to grasp the complexity of

the model;
(6) Over-fitting can be prevented by samplings of column features.

The XGBoost also has some disadvantages: The complexity is slightly higher for using XGB to do
the feature importance sorting because XGB uses level-wise to generate decision trees. It splits the
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leaves of the same layer at the same time, thus performing multi-thread optimization, which can avoid
overfitting. The traversal selects the optimal segmentation point. When the amount of data is large,
the method is time-consuming [57,58].

2.3. XGboost for the Variable Importance Assessment

The feature selection of XGBoost is based on the initial feature set to establish the classification
model, to examine the performance of the feature in the model, and to obtain the importance of the
feature. According to the degree of variable importance to search and evaluate the feature subset, an
optimal subset will be generated. It is a kind of embedded and filtered feature selection method [57].

The core of the algorithm is to optimize the value of the objective function. The gradient
enhancement construct is enhanced by the tree to intelligently acquire feature scores, indicating the
importance of each feature to the training model. In an enhancement tree, the more times a feature is
used to make a critical decision, the higher its score. The algorithm calculates the importance by “gain”,
“frequency”, and “coverage”. Gain is the primary reference factor that determines the importance of a
branch feature. Frequency is the simplification of gain, as measured by the number of occurrences of a
feature in all construction trees. Coverage is the relative value of feature observations. In this study,
the feature quantity was determined by the “gain” [47].

When doing the feature selection using the XGBoost algorithm, feature importance calculation is
integrated into the classification process. A new tree is created in each iteration of the round, and the
branch node of the tree is a feature variable. Feature importance is based on a feature can be selected
as the split node of the tree. Each time a feature is added to the tree as a split node, all possible split
points are enumerated using the greedy method, from which the best split point is selected [58].

The best split point corresponds to the maximum gain, and the gain Gain is calculated [47].
Good features and splitting points can improve the squared difference on a single tree. The more
improvements, the better the splitting point, the more important this feature is. When all the trees
are established, the calculated node importance is averaged in the forest. The more times a feature is
selected as a split point, the higher the importance.

For a tree T with J branch nodes, if J is selected as the split variable on this tree, the sum of the
mean squared errors on all branch nodes t is calculated, e.g., the importance of feature j on this tree
is [42]:

Î2
j (T) =

J−1∑
t=1

Î2
j P(vt = j) (7)

where Î2
j is the improvement of squared error of a node t. Set yl and yr with the predicted mean values

of the left and right subtrees respectively, and wl and wr are the weights of the nodes of the left and
right subtrees respectively [42].

I2(Rl, Rr) =
wlwr

wl + wr
(yl + yr)

2 (8)

By summing the importance of the features t on each tree and making an average, the final
importance can be obtained for forests with M trees [42]:

I2
t =

1
M

M∑
m=1

I2
t (Tm) (9)

3. Results and Analysis

In this section, we show the GNSS-R soil moisture retrieval performance analysis from two
different points of view. The first one is to utilize the XGBoost algorithm to analyze the importance of
the input variables. The input variables in GNSS-R are taken as different input features in XGBoost
algorithm. The simulated data set are shown considering the GNSS-R bistatic soil moisture retrieval
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equations in the case of flat surface. Then, the variable importance of the input variables is shown and
analyzed by means of three different parameter issues. To investigate the contribution of the different
input variables to permittivity and soil conditions (including two typical soil types) respectively. For the
second part, it focuses on ground-truth measurements. Two different soil compositions and moisture
terrain were chosen to do GNSS-R experiments. Some input variables are analyzed mathematically to
validate the results obtained by XGBoost, and the performance of GNSS-R soil moisture retrieval is
analyzed in details.

3.1. GNSS-R Soil Moisture Retrieval Data Set

The data set was simulated and trained to analyze the performance of the input variables of
GNSS-R by using XGBoost. We considered the soil moisture content and the permittivity had a positive
correlation, and some established soil permittivity models [54,55] could be used to retrieve the soil
moisture from permittivity, so the permittivity is the output variable that we obtained firstly using the
bistatic radar equations for observation, under the assumption of a flat surface [53].

The simulated training set mainly consists of the following input vectors:

1. θ, Elevation data (from 35 degrees to 85 degrees);
2. Gr, Receiver Gain (from 2.5 to 3.5 dB);
3. SNRrh, the signal to noise ratio from the reflected channel (from 2 to 26 dB);
4. Pn, the total noise power of the receiver (from −130 to −150 dB).

The range of the input vector was set with the idea of staying as close as possible to the experimental
situation. Those variables (θ, Gr, Pn, and SNRrh) were the observables for the variable importance
analysis. Other input vectors, such as Rr (distance from the transmitter to a specular point), Pt

(transmitted power from GPS satellite), Gt (transmitter antenna gain), and Gpr (signal processing gain)
were constant numbers that depend on the GNSS-R system and were not shown here.

With the GNSS-R retrieval procedure as shown in Figure 2, the simulated data were obtained and
shown in order to understand the relationship between the SNR, elevation angle, and the permittivity
in Figure 4. The dataset of Figure 4 contained 1000 samples. With the increment of the elevation angle
and SNR, the permittivity was also increased as shown in Figure 4.
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Figure 5a shows the relationship between the SNR and the permittivity when the elevation angle
was a constant number (e.g., 84◦). Figure 5b considers the relationship between the elevation angle and
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the permittivity when the SNR was a constant value (20 dB). It is noted that the obtained permittivity
was computed from the formulas that comprise the variables SNR and elevation angle [53]. In Figure 5,
it was possible to observe a significant result that the permittivity increased with the increment of the
SNR when the elevation angle was a constant value. On the other hand, the permittivity was quite
constant for elevation angle ranging between 50◦ to 85◦ when we fixed the value of the received SNR.
The reason is that higher elevation angles lead to higher signal power received. In case of receiving the
same SNR (Figure 5b), a surface with lower permittivity (lower soil moisture content) requires a signal
from a higher elevation angle, compared with a higher permittivity surface.
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3.2. Sensitivity to the Number of Estimators and Samples

XGBoost was performed on the data set, considering the input vectors (SNRrh, Gr Pn, and θ) and
the output vectors (permittivity). Estimators are number of trees to fit and samples n are the numbers
of data used. Often the hardest part of solving a machine learning problem can be finding the right
estimator for the job. Different estimators are better suited for different types of data and different
problems. The figures illustrate the behavior of variable importance estimation for different estimators
(500, 4000) and samples, in order to check if the variable importance is still stable when the estimators
and the samples n are changed. The samples n were set to 2000 and 5000 (Figure 6).
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In Figure 6, the value of the variable SNRrh was the highest in these two plots. With the increase
of numbers of estimators from 500 to 4000, the value of SNRrh decreased slightly. Pn and θ increased.
We increased the samples n from 2000 to 5000. The variable SNRrh shows the same behavior, and Pn, θ
increased slightly. Compared Figure 6a,b, each column with the same samples n, Pn, and θ increased,
and the value of SNRrh became lower, but it was still the highest among the variables with a value of
0.4 (40%). In addition, the value of θ increased when the number of the estimators and the samples
increased but it was still the lowest with a value below 0.1 (10%). In any case, the order of the variable
importance was clear and it shows the same importance in those four figures. This phenomenon
reports that the value of the variable θ (elevation angle) was much lower than Pn (receiver noise)
and Gr (receiver gain), which was around 0.1 (10%), indicating that the elevation angle made less
contribution to the permittivity retrieval than the other variables. Furthermore, the received SNR was
a predominant variable with a contribution over 40% during the permittivity retrieval.

3.3. Sensitivity to the Number of Col-Sample-Tree and Samples

The optimized parameter col − sample − tree represents the portion of selecting features when
building a tree in XGBoost. The choice of the col − sample − tree can be important for the variable
importance estimation. As we showed above, the XGBoost algorithm was performed on the data set
considering the input vectors (SNRrh, Gr Pn, and θ) and the output vectors (permittivity). The figures
illustrate the behavior of variable importance estimation for different col− sample− tree (0.5, 0.6) and
samples n. We tried to check if the variable importance was still stable when the parameters were
changed in this case. The samples n were set to 2000 and 5000 (Figure 7) respectively.
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The optimization of parameters can help with differentiating the significant variable and increase
the stability of the variable importance estimation. In this case, the value of SNRrh was the highest
that was also observed in Figure 7a. When n = 2000, col− sample− tree increased from 0.5 to 0.6, SNRrh
increased to a value of 0.6. The value of Gr decreased to 0.1 (10%). The value of θ also decreased to
nearly zero. When the samples n = 5000, the variables SNRrh showed the same behavior with the case
of n = 2000, and the values of Gr and θ (nearly zero) also decreased. If we increased the samples n
from 2000 to 5000, Pn and θ increased little, and the value of SNRrh decreased little, but the variable
SNRrh still showed the highest value among the variables in those plots. Furthermore, the value of θ
is still the lowest value as mentioned before. In any case, the order of the variable importance was
clear and quite stable in those four plots. This phenomenon also reported that the received SNR was
predominate and the most sensitive parameter to the GNSS-R permittivity retrieval with the maximum
contribution of 0.6 (60%). In addition, the value of the variable θ (elevation angle) was much lower
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than Pn (receiver noise) and Gr (receiver gain), which could be nearly zero indicating that the variable
θ was not very sensitive to the output (permittivity) in this case. It also confirmed that it was a less
sensitive input parameter in permittivity retrieval of GNSS-R.

3.4. Sensitivity to Different Types of Soil Compositions

The previous cases illustrate the importance and the sensitivity of the input variables for the
permittivity retrieval in GNSS-R. The permittivity has a positive relationship with soil moisture
content [54]. The relationship between soil permittivity and soil moisture is given by the soil
permittivity models [54–56], so several static measurements were performed by the Remote Sensing
Group at Politecnico di Torino in 2016. Among them, two typical types of soils that were chosen
intentionally here to investigate the variable importance sensitivity for GNSS-R soil moisture content.

In Tables 1 and 2, the composition (volume percentage and type of sand, clay) of the soil was
reported in detail. According to the United States Department of Agriculture (USDA) Classification
System, the two types of soil belong to the loamy sand and silty clay loam textural classes,
respectively [59]. These different soil compositions that were used in the soil models for the permittivity
to retrieve the soil moisture content here, and also for the subsequent ground-truth measurement.

Table 1. Composition of the loamy sand soil (Grugliasco experiment) [53].

Coarse Sand
(%)

Fine Sand
(%)

Very Fine
Sand (%)

Coarse Silt
(%) Fine Silt (%) Clay (%) Organic

Matter (%)

15.5 50.1 16.1 5.3 8.2 4.8 1.4

Table 2. Composition of the silty clay loam soil (Agliano experiment) [53].

Coarse Sand
(%) Fine Sand (%) Coarse Silt (%) Fine Silt (%) Clay (%) Organic

Matter (%)

1.1 10.5 6.4 44.5 36.8 0.7

The parameters of the sensitivity to the permittivity retrieval were studied in the previous case
and showed that the order of the variable importance was clear and quite stable. In this case, we
illustrated the sensitivity analysis for the input variables to soil moisture retrieval. The more samples n
we had, the results were more stable and precise, so the optimization parameters were estimators = 2000,
n = 5000, regarding the parameter col− sample− tree = 0.5 and 0.6 (Figure 8) respectively. In Figure 8,
the loamy sand (a) and silty clay loam soil (b) case had similar behavior. The processed SNR was the
most sensitive parameter and the θ was the opposite. These variables in the two plots illustrated the
same order as before. The highest contribution was observed when col− sample− tree = 0.6, with the
maximum of the importance of 0.7 (70%). The same as before, the value of the variable θ (elevation
angle) was much lower than the Pn (receiver noise) and Gr (receiver gain), which denotes the minimum
value of nearly zero indicating that the variable θ was almost not sensitive to the output (soil moisture
content) in this case. It also confirms that it is a less important input parameter in soil moisture retrieval
of GNSS-R.
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3.5. Ground-Truth Experiment Data for Validation

Several ground-truth experiments were done in various test sites. Two sets of data particularly with
two different typical soil compositions and soil moisture content (dry terrain and a wet terrain) were
considered. Two ground-based campaigns with a controlled environment are shown in Figure 9. The
first site is located in Grugliasco, Torino (45◦03′58.5”N, 7◦35′33.8”E), in the Dipartimento Inter-ateneo
di Scienze Progetto e Politiche del Territorio (DIST) of Polito. In this place, a wide field of known
characteristics (mainly 50% of sand) was available. The second site was located in Agliano (44◦47′29.1”N,
8◦15′19.8”E), where it is an area of smooth hills mainly devoted to wine production. In this second
case, the composition of the soil is 50% silt and 37% clay. The details of the soil compositions for the
two sites are reported in Tables 1 and 2.
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During the experiment, GNSS-R equipment and time-domain reflectometry (TDR) setup were
used to make measurements before and after rain in bare fields. They were intentionally chosen due to
their different terrain composition. The measurements in the dry condition were done after a long
drought, and the wet condition was determined after several rainfalls. The timeline of the rainfall
and the measurements are shown in Figure 10. The TDR measurement can provide a high spatial
resolution between 1.0 and 2.0 cm for SMC between 10% and 40% [60] and reliable permittivity profiles
that would be used in the GNSS-R performance analysis [61,62].



Remote Sens. 2019, 11, 1655 14 of 25

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 26 

 

 
                            Precipitations in Grugliasco and Agliano 
 

 

 
Figure 10. Precipitations in Grugliasco and Agliano during January to March 2016. 

The GNSS-R system consists of two commercial frontends connected to two antennas and PCs 
for data acquisition. It was performed in bistatic GNSS-R configuration, which has one right-hand 
(RH) antenna pointing to the sky for receiving the direct signal and another left-hand (LH) antenna 
pointed downwards to receive the reflected signals in Figure 9. The antennas used in the 
experimental were two commercial antennas produced by ANTCOM Corp. that were able to receive 
the GNSS signals in L1 and L2 bands. Two commercial front-end SiGe GN3S v2 USB RF developed 
by the Colorado Center for Astrodynamics Research were used [63]. The front-end connected to the 
two antennas and a cable was used to transfer the sampled data to a PC. The antennas were 
mounted on a plastic tripod. The board was installed on the end of the bar that was kept horizontal 
at a height of 1.45 in both places (Grugliasco and Agliano). The acquisition of GPS data was 
performed by using N-Grab GNSS data grabber that was developed by the NavSAS group of Polito 
di Torino [64]. Then the raw data were post-processed for obtaining the SNR of each satellite. The 
reflected signals mainly contained the LH signal, and this measurement was done in the condition 
regardless of the surface roughness and incoherent components.  

The values of the permittivity are obtained from local measurements based on time-domain 
reflectometry (TDR) technique [62]. A rod sensor (length 15 cm) Tektronix Metallic Cable Tester 1502 
manufactured by Tektronix Inc., Beaverton, OR, USA, was used in the measurements (Figure 11). 
Then the value of permittivity was obtained from the travel time of the TDR probe. In this 
measurement, the position of the TDR probe was tilted to 30° with respect to the surface, thus, only 
around 7 cm of the surface were taken into account in the TDR measurements. This was done in 
order to satisfy the TDR results with those obtained with GNSS-R that sense only the first few 
centimeters of the surface (2–5 cm). 

 
Figure 11. Tektronix Metallic Cable Tester 1502 for time-domain reflectometry (TDR) measurements. 

In the GNSS-R measurements, the major axis of the first Fresnel zone (the region surrounding 
the specular point from, which power is reflected with a phase change across the surface constrained 
to π radians, see Figure 1), for satellites in our geometrical condition (high elevation angle and a 
height of tripod of 1.5 m) was around 1 m. The TDR portable system was moved around to cover this 

Figure 10. Precipitations in Grugliasco and Agliano during January to March 2016.

The GNSS-R system consists of two commercial frontends connected to two antennas and PCs for
data acquisition. It was performed in bistatic GNSS-R configuration, which has one right-hand (RH)
antenna pointing to the sky for receiving the direct signal and another left-hand (LH) antenna pointed
downwards to receive the reflected signals in Figure 9. The antennas used in the experimental were
two commercial antennas produced by ANTCOM Corp. that were able to receive the GNSS signals in
L1 and L2 bands. Two commercial front-end SiGe GN3S v2 USB RF developed by the Colorado Center
for Astrodynamics Research were used [63]. The front-end connected to the two antennas and a cable
was used to transfer the sampled data to a PC. The antennas were mounted on a plastic tripod. The
board was installed on the end of the bar that was kept horizontal at a height of 1.45 in both places
(Grugliasco and Agliano). The acquisition of GPS data was performed by using N-Grab GNSS data
grabber that was developed by the NavSAS group of Polito di Torino [64]. Then the raw data were
post-processed for obtaining the SNR of each satellite. The reflected signals mainly contained the
LH signal, and this measurement was done in the condition regardless of the surface roughness and
incoherent components.

The values of the permittivity are obtained from local measurements based on time-domain
reflectometry (TDR) technique [62]. A rod sensor (length 15 cm) Tektronix Metallic Cable Tester 1502
manufactured by Tektronix Inc., Beaverton, OR, USA, was used in the measurements (Figure 11). Then
the value of permittivity was obtained from the travel time of the TDR probe. In this measurement,
the position of the TDR probe was tilted to 30◦ with respect to the surface, thus, only around 7 cm of
the surface were taken into account in the TDR measurements. This was done in order to satisfy the
TDR results with those obtained with GNSS-R that sense only the first few centimeters of the surface
(2–5 cm).
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Figure 11. Tektronix Metallic Cable Tester 1502 for time-domain reflectometry (TDR) measurements.

In the GNSS-R measurements, the major axis of the first Fresnel zone (the region surrounding the
specular point from, which power is reflected with a phase change across the surface constrained to π

radians, see Figure 1), for satellites in our geometrical condition (high elevation angle and a height
of tripod of 1.5 m) was around 1 m. The TDR portable system was moved around to cover this area.
Five measurements are performed with a cross scheme as shown in Figure 11 and the results are the
averages of the five (black circles).

In the following, four campaigns are discussed in detail as shown in Table 3.
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Table 3. Summary of the experimental campaign.

Date Soil Condition Location Soil Type

27 January 2016 Dry condition Grugliasco Loamy sand
5 February 2016 Dry condition Agliano Silty clay loam soil

3 March 2016 Wet condition Grugliasco Loamy sand
7 March 2016 Wet condition Agliano Silty clay loam soil

The traces of satellites in the sky during the experiment are plotted using different colors as shown
in the skyplot of Figure 12. It shows the positions of satellites in terms of elevation and azimuth. The
elevation was scaled by the concentric rings nested within one another. The outside ring was 0◦ and the
middle of the plot was a 90◦ elevation. The azimuth is the direction angle with respect to the North (0◦)
measured clockwise. The sky plot for experiments in Grugliasco and Agliano was determined before
each measurement to choose a proper system position and obtain the input variable (ϑ). Especially, for
static measurements, when the receiver is only a few meters high above the ground, the knowledge of
the positions of the satellites and the first Fresnel zone coverage is sometimes crucial for analyzing
the obtained data and provide the range of the data for comparing the results with other kinds of
measurements. Here we also added the information of the position of the receiver and the direction
that the bar was pointing to, which greatly helped with the GNSS-R retrieval analysis.
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More than that, the georeferencing specular points on the x–y plane with Fresnel zones that
relatively corresponded to each satellite, and the antenna footprint obtained at a height of 1.45 m (see
Figure 9) was depicted by a big green circle, indicating the signal coverage of the antenna. The receiver
projection was at the origin of coordinate and it was represented by a red point. The corresponding
ellipse Fresnel zones surrounded the receiver projection represented by different color ellipses. The
x-axis represents the distance in meter in West–East direction and the y-axis represents the distance in
South–North direction. The antenna footprint will change accordingly with the azimuth and elevation
angles, which makes it useful for planning a measurement aiming at receiving reflection signals from
certain PRNs. In this measurement, this information is quite useful for the GNSS-R measurement
and also indicating the location of the TDR instrument probe to precisely evaluate the permittivity as
shown in Figure 13.
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The obtained GNSS-R and TDR results with time series are shown in Figure 13. A good correlation
between the GNSS-R and the TDR measurements with a certain PRN in each case can be observed.
We have to note that the expected value is obtained from the PRN of which predicted Fresnel zones
are in the green circle of the footprint (see Figure 12). Meanwhile, the TDR measurements were also
implemented in this footprint. For the other satellites, the unexpected values could be ascribed to some
interferences caused by the relative position of this satellite and the receiving antenna.

The statistical characterization of the GNSS-R and TDR estimates is shown in Tables 4–7. In the
TDR measurement of Grugliasco, an average value of 6 in the dry condition was calculated as shown.
Then the soil moisture content of 11% was estimated by considering the average value of 6 for the
permittivity and using the model reported in [61]. The value of 11% was low because the measurement
was performed after a long period of drought. The soil moisture calculated was close to the minimum
observable value in the experimental field, and was consistent with the results of [65]. After a rainy
period of one week, the value of average permittivity was 9 that corresponded to a soil moisture of 16%.
In the measurement of Agliano, the average relative permittivity evaluated with the TDR technique in
dry condition was 15. After a rainy period of one week, the average measured permittivity value was
also 22 that corresponded to a soil moisture of 28% and 36%, respectively. The standard deviation of
permittivity obtained in Agliano was obviously greater than the case of Gruglisco. One reason could
be that the roughness of the Agliano is larger than the Grugliasco (see Figure 9); another reason could
be the complex environment of Agliano site (e.g., some sand, dust, and rock may fly into the site from
the nearby high-way).

Table 4. Statistical characterization of the GNSS-R and TDR estimates on Grugliasco (dry).

Meas
Permittivity SMC

GNSS-R TDR GNSS-R TDR

PRN23 Median 5.5000 6.4579 0.0937 0.1150
Mean 5.5833 6.4114 0.0954 0.1139

Std 0.6686 0.3150 0.0150 0.0067

Table 5. Statistical characterization of the GNSS-R and TDR estimates on Agliano (dry).

Meas
Permittivity SMC

GNSS-R TDR GNSS-R TDR

PRN13 Median 14.5000 15.2620 0.2771 0.2871
Mean 14.5000 15.4418 0.2763 0.2886

Std 1.9272 1.8810 0.0252 0.0238

Table 6. Statistical characterization of the GNSS-R and TDR estimates on Grugliasco (wet).

Meas
Permittivity SMC

GNSS-R TDR GNSS-R TDR

PRN15 Median 9.0000 9.0900 0.1636 0.1651
Mean 8.8333 9.0184 0.1602 0.1634

Std 0.9374 0.9432 0.0168 0.0168

Table 7. Statistical characterization of the GNSS-R and TDR estimates on Agliano (wet).

Meas
Permittivity SMC

GNSS-R TDR GNSS-R TDR

PRN7 Median 20.0000 22.0280 0.3432 0.3648
Mean 21.0000 21.8708 0.3531 0.3624

Std 2.7080 2.5808 0.0287 0.0269
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The most traditional method of analyzing the quality of the soil moisture is the statistics methods
(e.g., linear robust fit) [35,38]. We also tested the correlation using the linear fitting function as follows:

All the elevation angles of different PRNs were taken into account so a polynomial fitting with
two input variables (three dimensional) are needed. The data of GNSS-R experiments (all elevation
angle, SNR . . . ) and the TDR measurement (Figure 13) were collected together for analyzing the
permittivity (Figure 14) and SMC (Figure 15) variation with respect to the variables θ and the SNR as
shown. In these four plots, each black point stands for one elevation angle, corresponding SNR and the
permittivity obtained from the TDR measurement of Grugliasco and Agliano. In each plot, we aimed
to obtain the slope that indicates the variation rate of permittivity and SMC to different variables (SNR,
θ) when the soil changed from dry to wet.
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In each plot, the variation rate (slope) with respect to SNR was higher thanθ. The largest sensitivity
of SNR to SMC could be observed in the case of Grugliasco (Figure 15a), which showed the sensitivity
to SM, 3.8 dB/% (slope = 0.26). This linear fitting indicates that the variable SNR was more sensitive
to SMC retrieval than the variable θ (elevation angle). The results showed good correlation with
the conclusion when the XGBoost were performed on the simulated data set. Moreover, comparing
the different soil types (loamy sand and silty clay loam), the linear equation to retrieve permittivity
and SMC from elevation had good agreement of variation and also for the SNR for both sites. The
variation rate (slope) with respect to SNR in high permittivity condition (Figure 15b) was higher than
the value in low permittivity (Figure 15a). It demonstrates that the same changes of received SNR led
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to much more permittivity variation in silty clay loam than in loamy sand soil. It also confirmed that
the permittivity had a positive relationship with the soil moisture content [56].

4. Discussion

A major focus on GNSS-R soil moisture currently is to evaluate the sensitivity of different
observables to SM. Previous work was mainly focused on satellite remote sensing of soil moisture,
concerning the dataset from the newly launched satellites UK TechDemoSat-1 (in short TDS-1) and
NASA CYGNSS (Cyclone Global Navigation Satellite System). The reflection power obtained from the
spaceborne sensors was compared to SMAP/SMOS products. A strong, positive linear relationship
was found existing between the reflective power/reflectivity and the SM [35,38], also reported in this
paper. The correlation of different GNSS-R observables to SM was found conclusive on a global scale.
Apparently, experiments of in-situ sensors with smaller spatial scale require more studies. Besides
the spaceborne mission, the ground-truth experiment is also a commonly used and favorable tool to
implement the GNSS-R application.

We focus on the evaluation of the region of interest for different types of terrains using the
ground-truth measurement, to evaluate the effect of the influence of uncertainty of received SNR and
the elevation angle to SM. From the GNSS-R bistatic retrieval perspective, the GNSS-R parameters
were regarded as input data, and the TDR data were taken as the output for the linear fit process. We
have to note that, especially, in the case of ground-truth measurement, there are some factors (e.g., the
interference of the equipment, the behavior of the radiation patterns, and the complex environmental
conditions) that will affect the received signal. The uncertainty of the input parameters (bias of the
elevation angle and SNR) may lead to some bad retrieval results that sometimes are hard to interpret.

The in-situ GNSS-R measurement was done and the data were post-processed to obtain the
permittivity and soil moisture content. We showed the correlation between the GNSS-R and TDR
results. It was found that the good correlation between the TDR and SMC retrieval results concerned
the satellite that the bar was directly pointing to. As we have mentioned before, the TDR measurements
were done in the footprint of the antenna, which just corresponded to the Fresnel zone of the satellite
that obtained the expected results. Future studies could be the evaluation of permittivity by TDR
equipment implemented, which is implemented nearby or outside the footprint, to investigate the
influence of the antenna pattern on SMC retrieval. Besides that, the differences of wave propagation,
penetration depth and attenuation factor in the two sites need to be carefully considered before
planning the ground-based measurement. The clay mineral can include “water” in its mineralogical
network. This might be the reason why you could not retrieve the expected SMC, although many of
them cause small bias. In particular, when the soil was saturated, the GPS can only sense one or two
centimeters of the soil [29].

The most commonly used method of analyzing the quality of the soil moisture is a linear robust
fit [35]. In order to reveal the potential relationship between incident angle, SNR and the SM, all
the incident angles of satellites with corresponding SNR were collected to do the linear robust fit to
show the dependence of the variables to SM. The input of the linear fit is the GNSS-R input data,
and the output is the TDR results. The highest sensitivity of SNR to SMC (TDR) can be observed,
being 3.84 dB/%, which was higher than reported [35] but it could be reasonable since all the satellites
were taken into account in this paper and the output TDR values were very critical for only two sites.
Unlike the previous research, the aim of this paper was to investigate the degree to which the retrieval
performance can be influenced by the uncertainty of the input data. Different from the traditional
approach, another purpose of this paper was to utilize the XGBoost algorithm for the GNSS-R data by
adopting the data mining concept. Since machine learning algorithms attempt to dig out the implicit
rules from a large amount of data, they can function as a tool to uncover a function, especially when
this function is too complicated to be formally expressed. In this case, the input is sample data, and the
output will be the expected result.
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Some existing and proven machine learning and neural networks methods have emerged to
establish the estimation model based on the correlation selected features and retrieve soil moisture
from SMOS data [66,67]. Both machine learning and neural networks are of artificial intelligence.
Machine learning and neural networks (aiming at more complex problems and big data) are methods
of implementing artificial intelligence. Machine learning is a technique for data modeling. What is
more profound is that it extracts the appropriate model from given data to explain and predict. Like
some common statistical methods, machine learning is also a form of statistical learning method. A
computer uses existing data to derive a model, and then uses the model to predict the result. We
also used the latest published Random Forest method for accessing the variable importance as in the
following figures.

The results (Figures 16–18) obtained from the latest published Random Forest method [66] were
similar to the case involving XGBoost. They also showed that SNR was the most sensitive variable
among the input variables. The difference was that the values of importance differences between
each variable from XGBoost were larger than the values from the Random Forest method. From the
algorithm mechanism point of view, one reason could be that the Random Forest uses majority voting
in the final output, while XGBoost accumulates all results from each step. Another reason may be that
the Random Forest method is not sensitive to the optimize parameter, which is good for a beginner,
and the XGBoost needs to spend time on the optimization work.
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Figure 18. Variable importance sensitivity to different types of soils, Grugliasco (a) and Agliano (b),
when estimators = 4000, n = 5000, testsize = 0.5 and 0.6.

Compared to the traditional statistics method, the machine learning algorithm is simpler and
more flexible, and it is a good tool to find the underlying rules and value of data even from vast
amounts of data. The pros of this study were to use the features of XGBoost method, which is a
recently developed ensemble machine learning method good at the variable selection in data mining
to examine the characterization of the input variables in the GNSS-R soil moisture retrieval. It showed
a good correlation with the statistical analysis of ground-truth measurements. It is worthwhile before
establishing models and can also help with understanding the underlying GNSS-R phenomena and
interpreting the data.

5. Conclusions

In this paper, the performance of the bistatic GNSS-R soil moisture retrieval was examined and
analyzed on the basis of a machine learning aided method. We took the first step to utilize the feature
of the XGBoost to analyze the input variable importance in GNSS-R, which has quite high operating
efficiency and prediction accuracy. A simulation data set was built and used for testing and training.
The range of the parameters was set as close as staying to the experimental situation. In the meaning
time, several optimization parameters (estimators, samples, and col-sample-tree), also for different
typical types of soil compositions were changed to verify the stability of the results. It was reported
that the variable SNR showed the highest contribution than the other variables (θ, Pn, and Gr) in the
GNSS-R input vectors, either when we retrieved the permittivity or obtained soil moisture content
for different soil types. It means that the received SNR is a predominant variable and much more
sensitive to the obtained permittivity and soil moisture content with the importance of minimum 40%,
and a maximum of 70%. Moreover, the variable θ showed the least importance (below 10%) in the
GNSS-R soil moisture retrieval. In some extremely case (changing the parameter of the algorithm), the
importance of variable θ is nearly zero means that it is almost not sensitive to the obtained permittivity
and soil moisture content. Whatever we adjusted the parameter of the algorithm, the order of the
variable importance is quite stable.

Here we must note one point that the variable with low importance does not mean that it is not
necessary for the retrieval procedure. For example, a variable with higher contribution and importance
means that the accuracy of the value is quite crucial for retrieving in GNSS-R and this variable is
quite sensitive and important for obtaining satisfying results. The uncertainty of a variable with high
importance causes a higher bias than the variable with low importance. From a practical perspective,
this is quite significant for interpreting data and solving the problem, particularly when doing the
GNSS-R experiment and the retrieval results are unsatisfying.



Remote Sens. 2019, 11, 1655 22 of 25

In order to further validate and discriminate the characteristics of the different input variables.
Two GNSS-R ground-based campaigns with different soil conditions and compositions were carried
out to do the performance analysis, which corresponds to the soil composition of the simulated data
set. The permittivity of the ground-truth measurement was given by TDR measurement. The figure of
skyplot provides information about the elevation angles. Combined the information of the GNSS-R
and TDR measurement, we used a polynomial regression method to fit the input variables (SNR, θ)
with the permittivity and soil moisture results respectively, for evaluating the variation rate of retrieved
results with respect to each input variable. It also showed that the input variable SNR was a quite
sensitivity parameter, which mostly impacts the soil moisture results than the variable θ. For the two
typical soil types, another conclusion was that the increasing rate of SMC (or permittivity) with respect
to SNR in silty clay loam soil (higher permittivity condition) was higher than in loamy sand soil (lower
permittivity condition).

This paper focused on the understanding of the input variables importance through the XGBoost
algorithm and the ground-truth measurement, to investigate the performance of the bistatic GNSS-R
soil moisture retrieval method. The quantification of variables importance is not only an important
issue for constructing a soil moisture retrieval model but also a critical issue in GNSS-R experiments
to interpret data and understand the potential phenomena. Particularly, since the elevation angle θ
determines the signal receiving for antennas, the finding of the paper is also helpful for the GNSS-R
receiver construction and impact analysis. This finding also increases the understanding of our
knowledge to the input variables and exploring the scope of the machine learning applied in GNSS-R.

Further studies will be conducted to monitor a region for a long period of time, to take seasonal
effect into account, and to evaluate the sensitivity of the different observables to SM on a regional scale.
Besides, more types of terrains could be added, and the areas of the experiments should be expanded.
The findings of the paper show the importance of the SNR, and further analysis of in-situ data may
provide more complete insight into how the received SNR can be used to retrieve SM [38].
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