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Summary

The topic of this thesis is applications of set membership identification to
Design of Experiments (DoE) and fault detection. DoE is a fundamental step in
system identification. Regardless of the chosen model structure and identification
method, the quality of the DoE determines an upper bound on the accuracy of
the identified model. One of the greatest challenges in this context is to design
an experiment which gives the maximum information about the dynamics of the
system of interest.

The first main contribution of this thesis is a novel DoE algorithm for input-
constrained MISO nonlinear systems. A key element to design a proper DoE al-
gorithm is understanding which are the regions of the regressor space where the
model is most uncertain. Set membership identification allows us to properly quan-
tify the uncertainty of the identified model in a deterministic manner. Therefore,
we formulated the DoE problem in a set membership framework and proposed a
quasi-local nonlinear set membership approach that results in less conservative un-
certainty bounds compared to the global approach. However, knowing where the
model is most uncertain is not sufficient. Since the unknown system is dynamic,
the DoE algorithm has to be able to generate an input sequence such that the
system moves toward those uncertain regions of the regressor space, in order to
take new measurements. For this reason, we propose a novel adaptive Set Mem-
bership Predictive Control (SMPC) algorithm to move the system toward the most
uncertain regions of the regressor space and take new informative measurements.
Finally, a Set Membership DoE (SM-DoE) algorithm for input-constrained MISO
nonlinear dynamic systems is proposed which is aimed to minimize the so-called
radius of information, a quantity giving the worst-case model error. The proposed
SM-DoE algorithm is able to guarantee any desired worst-case error larger than
the measurement error in a finite-time experiment. Applications of the proposed
method are clearly most useful in areas where experiments are expensive and/or a
very accurate model is desired. Two numerical examples and a case study in the
automotive field are also presented, showing the effectiveness of the approach and
its potential in view of real-world applications.
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The second main contribution of this thesis is an innovative approach to fault
detection for nonlinear dynamic systems, based on the introduced quasi-local set
membership identification method, overcoming some relevant issues proper of the
“classical” techniques. The approach is based on the direct identification from
experimental data of a suitable filter and related uncertainty bounds. These bounds
are used to detect when a change (e.g., a fault) has occurred in the dynamics of
the system of interest. The main advantage of the approach compared to the
existing methods is that it avoids the utilization of complex modeling and filter
design procedures since the filter/observer is directly designed from data. Other
advantages are that the approach does not require to choose any threshold (as
typically done in many “classical” techniques) and it is not affected by under-
modeling problems.
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violation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xii



Chapter 1

Introduction

In many technological areas, obtaining an accurate model of a dynamic system
of interest is a fundamental step for any system analysis and/or design operation.
However, building an accurate model using the physical laws governing the system
may not be possible in several situations, due to the fact that these laws are not
sufficiently well known or they are too complex, requiring a computationally expen-
sive model that may be difficult to analyze or to use for design purposes. In this
view, data-driven system identification approaches can be crucial in a wide range
of applications.

Data-driven system identification can be seen as the science of building mathe-
matical models of dynamic systems, using data and a “weak” prior physical knowl-
edge. For example, the physical laws governing the system of interest may be not
known but some less detailed information may be available, regarding its block
structure, the type of involved dynamics, the type of involved nonlinearities, the
system order, etc. Typically, the identification process consists of the following
main steps (not necessarily in the order reported here): 1) design of experiment
(DoE); 2) selection of a suitable parametrized model structure; 3) identification of
the model parameters (usually done through an optimization problem); 4) evalu-
ation of the model quality through some validation analysis. In this process, the
command input signal is the only means that can be used in the DoE phase to
influence the information content of a dataset to be used for identification (this
set is called identification dataset or training dataset). Regardless of the chosen
model structure and identification method, the quality of the DoE determines the
accuracy that can be achieved by any identified method.
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1 – Introduction

The first topic that is addressed in this thesis is designing a DoE algorithm
for nonlinear dynamic systems. One of the greatest challenges in this context is
to design an experiment giving the maximum information about the system to be
identified [22, 36]. Most of the studies carried out so far have mainly focused on
linear systems [25, 77, 68, 17, 66] and static systems [14, 64, 28]. On the other side,
very few studies regarding nonlinear dynamic systems are available [47, 10, 21, 23].
In fact, nonlinear systems are characterized by a significantly higher complexity
than linear systems. While for linear systems the excitation properties of an input
signal essentially depend on the signal frequencies, for nonlinear systems they also
depend on the signal amplitudes [47]. For example, a white noise input signal is
known in general to be appropriate for the identification of a linear system of any
order. On the other side, it may not be suitable to allow an accurate exploration
of the regressor domain of a nonlinear system, and this may lead to a low model
accuracy.

Currently, the most popular DoE methods for nonlinear dynamic systems are
classified in two main categories: model-free and model-based methods [10, 76, 9,
24]. The idea of these methods is to parameterize a pre-defined excitation signal,
and then optimize the signal parameters, called the design points, according to
different criteria. In model-free DoE, no assumptions on the model and/or input
structure are made. The typical approach is to distribute the design points in the
input domain as much uniformly as possible. This DoE approach is also known as
space-filling DoE. In model-based DoE, after assuming a particular model struc-
ture, the idea is to distribute the design points in the input domain, in such a way
that the estimation of the model parameters is as much insensitive as possible to
the measurement noise. In both model-free and model-based DoE, after designing
the distribution of the design points in the input space, they are used as the pa-
rameter values of the pre-defined excitation signal. However, both methods provide
no information about the optimal sequence of the design points. Although these
methods are simple and adequate to capture the steady state behavior of a system
of interest, they don’t take into account the dynamics of the system. Therefore,
by using these methods, capturing the nonlinear dynamic behavior of the system
in the whole regressor domain is a heuristic/arbitrary process. In general, as far as
the authors are aware, no DoE method for nonlinear dynamic systems can be found
in the literature, which can ensure the exploration of the relevant regressor domain
of a nonlinear system and, consequently, guarantee a desired model accuracy.

Due to the presence of disturbances and measurement noise, in general, no
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1 – Introduction

identification process can result in a model that perfectly corresponds to the true
system. Any identified model is always affected by some uncertainty. Understand-
ing which are the regions of the regressor space where the model is most uncertain
is a key element to design a proper DoE algorithm. However, knowing where the
model is most uncertain is not sufficient. Since the unknown system is dynamic, the
DoE algorithm has to be able to generate an input sequence such that the system
moves toward those uncertain regions of the regressor space, in order to take new
measurements.

The second topic that is addressed in this thesis is fault detection for nonlinear
dynamic systems. A “classical” approach to fault detection is to identify a model of
the system and to design a filter/observer on the basis of the identified model. The
designed filter/observer is then used to generate online a suitable residual signal.
The fault is detected when the residual exceeds a given threshold, see e.g. [78, 53,
20, 55, 29, 15, 35, 63, 8, 54]. However, the design of the filter/observer may be
hard in the presence of nonlinear and/or uncertain dynamics. Indeed, designing an
optimal filter from a nonlinear model is in general not possible, and approximate
filters only, such as the extended Kalman filters, can be actually obtained. These
kinds of filters may often be inaccurate and not even guarantee the estimation
error stability. Moreover, the choice of the threshold may be critical, especially
when poor prior information on the system is available. Another relevant issue
is that, in real-world applications, the system is unknown and only approximate
models can be identified from finite data; evaluating the effects of the modeling
error on the estimation error of the filter designed from the approximated model is
a largely open problem.

In the last three decades, there has been an increasing interest and research,
formulating the identification problem in Set Membership (SM) framework [39,
67, 44, 43, 42, 49, 52, 41, 7]. The main reason is the fact that SM identification
allows us to properly quantify the uncertainty of the identified model in a deter-
ministic manner. In SM nonlinear identification, no assumptions on the structure
of the unknown system are required. Instead, two basic assumptions are made.
An assumption on the regularity of the system, given by bounds on its gradient,
and another assumption on the noise boundedness. Then, an optimal estimate,
with minimal guaranteed identification error and tight uncertainty bounds, is de-
rived. This nonlinear SM approach does not require any iterative minimization
and thus avoids the issue of local minima. Since no optimization problems have to

3



1 – Introduction

be solved, nonlinear SM identification is particularly suitable for adaptive identi-
fication, making the model more accurate over time by adding new measurements
collected online. Because of these features, the applications of SM in robust control,
experiment design, and fault detection is a promising research area [67].

1.1 Outline and Contribution

In this thesis, a novel online DoE algorithm for nonlinear dynamic MISO sys-
tems is proposed, that is able to reduce the worst-case model error while considering
input constraints of the system. The proposed DoE algorithm is able to guarantee
any desired worst-case error larger than the measurement error in a finite time
experiment. The main contributions are the following. First, a so-called quasi-
local nonlinear SM identification method is presented, that is characterized by less
conservative bounds with respect to the global version of [39] and is simpler with
respect to the local version of [39]. The second contribution is a novel adaptive
Set Membership Predictive Control (SMPC) algorithm, that is able to drive the
system toward the most uncertain regions of the regressor space. And finally, the
third contribution is the online DoE algorithm itself. The effectiveness of the pro-
posed DoE algorithm is illustrated in two simulation examples and compared to
other DoE methods taken from the literature.

The increasing demand for higher torque, reduced fuel consumption, and emis-
sions has led to more complex engine and after-treatment system designs with more
actuators and sensors which are more difficult to model, calibrate and control. Con-
sidering the expensive operating costs of the engine/after-treatment test benches,
and increasing demand for accurate dynamic models, DoE plays a critical role in
automotive applications. In this thesis, a simulation case study regarding Lean
NOx Trap (LNT) has been performed and a novel approach for regeneration timing
control of LNTs is proposed. This approach, named data-driven model predictive
control, does not require a physical model of the engine/trap system but is based on
a model, directly identified from data. In this way, all problems due to the fact that
LNTs are highly complex systems difficult to model are overcome. However, acquir-
ing the data necessary for identification is very challenging due to highly nonlinear
dynamics of the after-treatment system. Therefore, we implemented the proposed
Set Membership Design of Experiments for the LNT which was able to capture
nonlinear behavior of the system in a short experiment. The regeneration timing is

4



1.1 – Outline and Contribution

then computed through an optimization algorithm, which uses the identified model
to estimate and predict the LNT behavior.

Regarding the second topic of this thesis, an innovative approach to fault
detection for nonlinear dynamic systems is proposed, based on the introduced quasi-
local set membership identification method, overcoming some relevant issues proper
of the “classical” techniques. The approach is based on the direct identification
from experimental data of a suitable filter and related uncertainty bounds. These
bounds are used to detect when a change (e.g., a fault) has occurred in the dynamics
of the system of interest. The main advantage of the approach compared to the
existing methods is that it avoids the utilization of complex modeling and filter
design procedures since the filter/observer is directly designed from data. Other
advantages are that the approach does not require to choose any threshold (as
typically done in many “classical” techniques) and it is not affected by under-
modeling problems. The set membership fault detection approach can also be
made adaptive which is very useful in systems where the dynamics change over
time.

This thesis is organized as follows. In Chapter 2 the identification problem
is formulated in the nonlinear SM framework and the quasi-local approach is in-
troduced. In Chapter 3, a static DoE algorithm and a SM predictive controller
are proposed, which are then used in the dynamic SM-DoE algorithm. Then, the
proposed SM-DoE algorithm is tested in two simulation examples. In Chapter 4,
a simulation case study has been performed regarding regeneration timing con-
trol of the LNT using the proposed SM-DoE algorithm to identify a model of the
LNT. Finally, in Chapter 5, following the set membership philosophy, an innova-
tive approach to fault detection for nonlinear dynamic systems is proposed and an
experimental study regarding fault detection for a drone actuator is presented to
demonstrate the effectiveness of the proposed approach.

5
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Chapter 2

Nonlinear Set Membership
Identification

2.1 Introduction

The aim of system identification is to build accurate mathematical model of a
dynamic system where the knowledge of the laws governing the system is too com-
plex or not sufficiently known. The usual approach is to consider that the dynamic
system belongs to a finitely parameterized set of functions called basis functions.
Then, estimate the parameters of the functions using measured data. Proper choice
of the parametric family of the functions, which is typically realized by some search
on different functional forms (linear, polynomial, sigmoid, wavelet, etc.), may be
quite time consuming and the effects of such approximations on identification er-
rors appear at present to be a largely open problem. Another critical point is that
the estimate of the parameters is usually obtained by a prediction error method
which requires minimization of an error function. This optimization problem is
convex with respect to the parameters only if the basis functions are not depen-
dent on tuneable parameters i.e. fixed basis functions. However, it is well known
that the fixed basis functions suffer from the “course of dimensionality”. In other
words, the number of basis functions required for obtaining an approximation in-
creases exponentially with the dimension of the regressor space. On the other side,
tuneable basis functions such as neural networks or wavelets, have much power-
ful approximation properties, requiring only polynomial growth [2, 26]. However,
such basis functions are not convex with respect to the parameters, giving rise to

7



2 – Nonlinear Set Membership Identification

possible deteriorations in approximation, due to trapping in local minima during
its minimizations. Other problems also arise in giving a measure of identification
error. Under the standard assumption that the noise affecting the measurements
is a stochastic process, the measure of the quality of the identification, or in other
words, the uncertainty of the identified model is probabilistic.

In order to overcome such problems, In the last three decades, there has been
an increasing interest and research formulating the identification problem in Set
Membership (SM) framework [39, 67, 44, 43, 42, 49, 52, 41, 7]. The main reason is
the fact that SM identification allows us to properly quantify the uncertainty of the
identified model in a deterministic manner. In SM nonlinear identification, no as-
sumptions on the structure of the unknown system are required. Instead, two basic
assumptions are made. An assumption on the regularity of the system, given by
bounds on its gradient, and another assumption on the noise boundedness. Then,
an optimal estimate, with minimal guaranteed identification error and tight uncer-
tainty bounds, is derived. which is a bounded identification uncertainty description
given by the set of all possible models that are all equally probable. This nonlinear
SM approach does not require any iterative minimization and thus avoids the issue
of local minima. Since no optimization problems have to be solved, nonlinear SM
identification is particularly suitable for adaptive identification, making the model
more accurate over time by adding new measurements collected online. Because of
these features, the applications of SM in robust control and experiment design is a
promising research area [67].

Even though nonlinear set membership is a quite powerful method, in some
situations a global constant bound on the gradient of the function is too conserva-
tive, resulting in high uncertainty bounds. Computation of uncertainty bounds and
radius of information is discussed in detail in [38]. In this chapter a quasi-local Non-
linear Set Membership (NSM) identification method is presented. In this approach,
instead of a global constant bound on the gradient of the function, a quasi-local
bound is assumed. Therefore, the uncertainty bounds are less conservative. Also
unlike the local NSM presented in [39], this quasi-local approach does not require
a preliminary estimate of the function. In Chapter 3 this quasi-local approach is
used to develop a DoE algorithm. Also in Chapter 5, it is used for set membership
fault detection.

This chapter is organized as follows. In section 2.2, the identification prob-
lem is formulated in set membership framework, defining the type of assumptions
considered, the optimality concept and guaranteed identification error. Section 2.3

8



2.1 – Introduction

and 2.4 are directly taken from [39, 49] and slightly modified for notation consis-
tency and reported here for the ease of the reader. In section 2.5, the quasi-local
nonlinear set membership approach is proposed. For estimation of set membership
parameters, two algorithms are given in section 2.7. And finally, in section 2.8, an
algorithm is presented for adaptive nonlinear set membership models.

9



2 – Nonlinear Set Membership Identification

2.2 Problem Formulation

Consider a nonlinear discrete-time dynamic system in regression form:

yt+1 = fo(wt)
wt = [yt . . . yt−ny+1 ut . . . ut−nu+1].

(2.1)

where yt ∈ R , ut ∈ Rm , fo : Rn → R, n = ny + mnu and the superscript is used to
indicate the time index t ∈ Z. Suppose that the function fo is unknown but a set
of noise corrupted data called measurement dataset generated by the system (2.1)
is available.

D .=
{
ỹt+1, w̃t

}T −1

t=1
(2.2)

Then,
ỹt+1 = fo(w̃t) + dt, t = 1, . . . , T. (2.3)

where the term dt accounts for the fact that y and w are not exactly known, due
to possible disturbances and noises affecting the system.

The aim is to derive an estimate f̂ of fo from the available measurements D,
using a suitable identification algorithm.

An identification algorithm can be seen as a sequence of operations, providing
some estimate f̂ of the unknown function fo from the available measurements D.
Clearly, the algorithm should be chosen to give a small (possibly minimal) iden-
tification error e(f̂) = ∥fo − f̂∥p, where ∥·∥p is the functional Lp norm, defined
as

∥f∥p ≡ ∥f(·)∥p

.=

⎧⎨⎩[
∫
W |f(w)|p dw]1/p, p ∈ [1, ∞)
ess supw∈W |f(w)| , p = ∞

(2.4)

being W a compact and connected set in Rn.

This error is not known since, from the available data, it is only known that
fo ∈ F̃ , where F̃ is the set of all functions that could have generated the data.
If no assumptions are made on fo, this set, even in the case of exact measure-
ments, is unbounded. Whatever identification algorithm is chosen, no information
on the identification error can be derived, unless some assumptions are made on
the function fo and the noise d. The typical approach in the literature is to assume

10



2.2 – Problem Formulation

a finitely parameterized structure for fo (linear, polynomial, neural network, etc.)
and a statistical model for the noise, see [65]. In the set membership approach,
different and somewhat weaker assumptions are taken, not requiring the choice of
the parametric structure for fo, but related to its regularity. Moreover, the noise
sequence {dt}T

t=1 is only supposed to be bounded.

Assumption 1. The noise sequence d = (d1, d2, ..., dT ) is unknown but bounded:

∥d∥q ⩽ µ, (2.5)

where ∥·∥q is the vector ℓq norm. A general formulation is developed in the
following, allowing us to deal with the most important cases (i.e. q = 2, ∞) in
a unified framework. As well known, the ℓ2 norm is related to the energy of the
considered signal, while the ℓ∞ norm to its amplitude. The choice of this norm can
be carried out on the basis of the prior knowledge on the energy or amplitude of
the involved noise (if available) or by means of a trial and error procedure.

Differently from [46], where fo is assumed to be parametrized by a finite set of
basis functions, a mild regularity assumption is made here on fo, not requiring any
knowledge on its parametric form. In particular, we assume that the function fo is
Lipschitz continuous on W :

Assumption 2. The function fo is Lipschitz continuous on W .

fo ∈ F (Γ) (2.6)

for some Γ < ∞, where

F (Γ) .= {f : |f (w) − f (ŵ)| ⩽ Γ ∥w − ŵ∥2 , ∀w, ŵ ∈ W}.

In the following sections, the problem of deriving from the available data an
approximation f̂ of fo and evaluating tight estimate bounds on fo is considered. The
approximation is required to be accurate on the whole domain W . The accuracy is
measured by means of the following approximation error:

e(f̂) .= ∥fo − f̂∥p. (2.7)

For a given estimate f̂ , the related Lp error is given by (2.7). This error cannot

11



2 – Nonlinear Set Membership Identification

be exactly computed since fo is not known. It is only known that fo ∈ FFST ,
where FFST is called the Feasible Function Set, that is, the set of all possible
functions consistent with the available prior information and measured data. The
formal definition of FFST will be given in the next sections, for three relevant
specific cases. This motivates the following definition of identification error, often
indicated as worst-case or guaranteed error.
Definition 1. Worst-case approximation error of f̂ :

EN(f̂) .= sup
f∈F F ST

∥f − f̂∥p. □ (2.8)

An optimal approximation is defined as a function fop which minimizes the
worst-case approximation error.
Definition 2. An approximation fop is optimal if

EN(fop) = inf
f̂

EN(f̂) .= RI .

The quantity RI , called the radius of information, gives the minimum worst-case
error that can be guaranteed by any estimate, based on the prior and experimen-
tal information available up to time T . In other words, RI is a measure of the
uncertainty associated with the identification process, for the given dataset and
prior information. A reduction/minimization of RI can be obtained by a suitable
experiment design procedure, as shown in Chapter 3. □

Finding optimal approximations may be hard or not convenient, and sub-
optimal solutions can be looked for. In particular, approximations called interpo-
latory are often considered in the literature, see e.g. [71], [44].
Definition 3. An approximation fI is interpolatory if

fI ∈ FFST . □

A fundamental property of an interpolatory approximation is that it guarantees
a worst-case error degradation of at most 2, [71], [44]. An approximation with this
property is called almost-optimal.
Definition 4. An approximation fao is almost-optimal if

EN (fao) ⩽ 2 inf
f̂

EN(f̂). □

12
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In this chapter, the following problem is considered.

Problem 1. From the dataset (2.2), find an approximation f̂ of fo

(i) optimal or almost-optimal;
(ii) equipped with tight interval estimates f, f for fo. □

Remark 1. In the set membership and approximation theory literature, two opti-
mality concepts are typically considered: local and global optimality, [71, 39]. The
worst-case error (2.8) is a local error since it depends also on the function fo and
the data D, i.e. EN(f̂) = EN(f̂ , fo,D). A global identification error is also often
considered, defined as:

EN g(f̂) .= sup
fo∈F(Γ)

D∈{d:∥d∥q⩽µ}

EN(f̂ , fo,D).

An approximation fg is called globally optimal if EN g(fg) = inf
f̂

EN g(f̂). This
is the optimality concept usually investigated in the set membership context and
approximation theory literature, [71]. Note that a locally optimal algorithm fop

is globally optimal, but fg is not in general locally optimal. Therefore, the local
optimality concept investigated in this chapter is stronger and thus less conservative
than the global optimality concept investigated in the above mentioned literature.

13
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2.3 Global Approach

As mentioned earlier, a key role in set membership framework is played by the
Feasible Function Set, the set of all functions consistent with prior information and
measurement data.

Definition 5. The Feasible Function Set is

FFST .=
{
f ∈ F : ∥ỹ − f(w̃)∥q ⩽ µ

}
. (2.9)

where ỹ = (ỹ1, . . . , ỹT ) and f (w̃) .= (f(w̃1), . . . , f(w̃T )). □

The feasible function set FFST summarizes all the information on the mech-
anism generating the data that is available up to time T . If the prior assumptions
hold, then fo ∈ FFST , that is an important property for evaluating the accuracy
of any estimate.

In the set membership framework, the validation of prior assumptions is a
fundamental step. It is usual to introduce the concept of prior assumption valida-
tion as consistency with the available data: the prior assumptions are considered
validated if at least one estimate consistent with these assumptions and the data
exists, i.e. if FFST is not empty, see e.g. [44, 7].

Definition 6. Prior assumptions are validated if FFST /= ∅ □

The following theorem gives a necessary and a sufficient condition for the
validation of prior assumptions.

Let us define the following functions:

f(w) .= min
t=1,...,T

(ht + Γ∥w − w̃t∥2),

f(w) .= max
t=1,...,T

(ht − Γ∥w − w̃t∥2).
(2.10)

where h
t .= ỹt + εt and ht .= ỹt − εt.

Necessary and sufficient conditions for checking the validity of the assumptions
are now given.

Theorem 1. (i) A necessary condition for prior assumptions to be validated is:
f(w̃t) ⩾ ht ,f(w̃t) ⩽ h

t, t = 1, . . . , T .

14
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(ii) A sufficient condition for prior assumptions to be validated is: f(w̃t) > ht

,f(w̃t) < h
t, t = 1, . . . , T .

Proof. See [39].

Note that the fact that prior assumptions are validated, i.e., that they are
consistent with the present data, does not exclude that they may be invalidated
by future data. In the remainder of the chapter, it is assumed that the sufficient
condition hold. If not, values of the constants appearing in the assumptions on
function fo and on the noise dt have to be suitably modified. The above validation
theorem can be used for assessing the values of such constants so that sufficient
conditions holds.

Now let the function fc be defined as:

fc(w) .= 1
2[f(w) + f(w)]. (2.11)

where f(w) and f(w) are given in (2.10). The next result shows that the estimate
fc is optimal according to Definition 2 for any Lp norm.

Theorem 2. Assume that:
(i) The noise affecting the measurements D is bounded according to (2.5).
(ii) The function fo is Lipschitz continuous according to (2.6).
Then, for q = ∞ and for any p ∈ [1, ∞]:
(i) The approximation fc defined in (2.11) is optimal.
(ii) The worst-case approximation error of fc is given by

E(fc) = 1
2∥f − f∥p = inf

f̂

EN(f̂) = RI . (2.12)

Proof. See [39].

2.3.1 Interval estimates

The interval estimates f, f of the unknown function fo are now given for the
cases where the noise is bounded in ℓ∞ norm (i.e. q = ∞ in (2.5)). Indeed, from
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the FFST definition, it follows that fo(x) is bounded as

f(w) ⩽ fo(w) ⩽ f(w), ∀w ∈ W (2.13)

where
f(w) = sup

fo∈F F ST

f(w),

f(w) = inf
fo∈F F ST

f(w).
(2.14)

Theorem 3. Assume that:
(i) The noise affecting the measurements D is bounded according to (2.5).
(ii) The function fo is Lipschitz continuous according to (2.6).
Then, for q = ∞ and for any w ∈ W, fo(w) is tightly bounded as

f(w) ⩽ fo(w) ⩽ f(w). (2.15)

Proof. See [39].

f and f are also called optimal bounds since they are tightest upper and lower
bounds of fo.
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2.4 Local Approach

Suppose that a preliminary approximation f∗ of the function fo has been ob-
tained using any method. This approximation is of the form

f∗ (x) =
N∑

i=1
aiϕi (w) (2.16)

where ϕi : W → R are Lipschitz continuous basis functions and ai ∈ R are pa-
rameters identified by means of some suitable algorithm (two algorithms will be
presented in Section 2.4.2). The choice of the basis functions ϕi is clearly an im-
portant step of the identification process, see e.g. [65, 28, 51]. In several cases of
practical interest, the basis functions are known a priori to belong to some “large”
set of functions, see e.g. the example presented in [46]. The sparse approxima-
tion algorithms presented below can be applied in these cases to select within this
“large” set the functions which are important for providing an accurate description
of the system under investigation. In other cases, the basis functions are not known
a priori and their choice can be carried out considering the numerous options avail-
able in the literature (e.g. gaussian, sigmoidal, wavelet, polynomial, trigonometric).
See [65] for a discussion on the main features of the most used basis functions and
for indications for their choice.

Define the following residue function:

f∆(w) .= fo(w) − f∗(w). (2.17)

From (2.6) and from the Lipschitz continuity of ϕi, it follows that f∆ is Lipschitz
continuous over the set W :

f∆ ∈ F (Γ∆) . (2.18)

for some Γ∆ < ∞. Note that the Lipschitz constant Γ∆ can be estimated by means
of the algorithm presented in Section 2.7.

Remark 2. The inclusion (2.18) corresponds to assume a global maximum rate of
variation for f∆ but a local maximum rate of variation for fo. Indeed, for every
w, ŵ ∈ W , the following inequalities hold:

−Γ∆ ⩽ f∆(w)−f∆(ŵ)
∥w−ŵ∥2

⩽ Γ∆

f∗(w)−f∗(ŵ)
∥w−ŵ∥2

− Γ∆ ⩽ fo(w)−fo(ŵ)
∥w−ŵ∥2

⩽ f∗(w)−f∗(ŵ)
∥w−ŵ∥2

+ Γ∆.
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We can observe that, as expected, the maximum rate of variation of f∆ is constant
and equal to Γ∆ for any ŵ ∈ W . Instead, the maximum rate of variation of fo is Γ∆

plus a quantity that depends locally on the point ŵ. For this reason, when f∗ = 0
and thus f∆ = fo, the approach is called global set membership approach which was
discussed in Section 2.3. Otherwise, the approach is called local set membership
approach.

Under the above assumptions and, in particular, under (2.5) and (2.18), we
have that fo ∈ FFST , where FFST is the Feasible Function Set defined as follows.

Definition 7. The Feasible Function Set is

FFS
.= {f : f = f∗ + f∆, f∆ ∈ F (Γ∆) , ∥ỹ − f (w̃)∥q ⩽ µ}.

where ỹ = (ỹ1, . . . , ỹT ) and f(w̃) .= (f(w̃1), . . . , f(w̃T )). □

According to this definition, FFST is the set of all functions consistent with
the prior assumptions and data. In the set membership framework, the validation
of prior assumptions is a fundamental step. It is usual to introduce the concept
of prior assumption validation as consistency with the available data: the prior
assumptions are considered validated if at least one estimate consistent with these
assumptions and the data exists, i.e., if FFST is not empty, see, e.g., [44, 7].

Definition 8. The prior assumptions are validated if FFST /= ∅. □

The following theorem gives a necessary and sufficient condition for the vali-
dation of prior assumptions.

Theorem 4. FFST /= ∅ if and only if the optimization problem (2.29) is feasible.

Proof. See [49].

The following theorem shows that the approximation f∗ in (2.16) is interpola-
tory (and thus almost-optimal). The theorem also provides an explicit bound on
the worst-case approximation error.

Let us define the following functions:

f∆ (w) .= min
t=1,...,L

(δt (a∗) + εt + Γ∆ ∥w − w̃t∥2) ,

f∆ (w) .= max
t=1,...,L

(δt (a∗) − εt − Γ∆ ∥w − w̃t∥2) .
(2.19)
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f(w) = f∗(w) + f∆(w),
f(w) = f∗(w) + f∆(w).

(2.20)

where δt (a∗) = ỹt − f∗ (w̃t) (see (2.30)) and ε̂t ⩾ 0, t = 1, . . . , T .

Theorem 5. Assume that:
(i) The noise affecting the measurements D is bounded according to (2.5).
(ii) The function fo is Lipschitz continuous according to (2.6).
Then, for q = 2, ∞ and for any p ∈ [1, ∞]:
(i) The approximation f∗ defined in (2.16) is interpolatory (and thus almost-optimal).
(ii) The worst-case approximation error of f ∗ is bounded as

EN (f∗) ⩽ max
∥ε̂∥

q
⩽µ

∥ϵ̂∥
q
⩽µ

f∆ (·, ε̂) − f∆(·, ϵ̂)


p
= 2 inf

f̂

EN(f̂). (2.21)

Proof. See [49].

Suppose that ε̂∗ = ϵ̂∗ = ε, where ε = (ε1, . . . , εT ) is obtained as described in
Section 2.4.1. Now let the function fc be defined as

fc (w) .= f∗ (w) + 1
2
[
f∆ (w, ε) + f∆ (w, ε)

]
. (2.22)

where f∆, f∆ are given in (2.19). The following result shows that this function fc

is an optimal approximation of fo.

Theorem 6. Assume that:
(i) The noise affecting the measurements D is bounded according to (2.5).
(ii) The function fo is Lipschitz continuous according to (2.6).
Then, for q = 2, ∞ and for any p ∈ [1, ∞]:
(i) The approximation fc defined in (2.22) is optimal.
(ii) The worst-case approximation error of f∗ is given by

EN (fc) = 1
2
f∆ (·, ε) − f∆ (·, ε)


p

= inf
f̂

EN(f̂). (2.23)

Proof. See [39].
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In summary, we have shown that the function f∗ (w) is an almost-optimal
approximation, whereas the function fc (w) .= f∗ (w) + [f∆ (w, ε) + f∆ (w, ε)]/2 is
an optimal approximation of fo. The correction term [f∆ (w, ε)+f∆ (w, ε)]/2 can be
useful to check how close is f∗ to the optimum: The two approximations can be be
evaluated off-line on a set of data not used for identification. If the errors of the two
approximations on these data are similar, it can be concluded that f∗ is practically
optimal. Otherwise, this comparison allows us to quantify the suboptimality level
of f∗ with respect to fc.

Remark 3. A subcase of the general theory presented here is when f∗ = 0, in
which we have the so-called global set membership approach, previously presented.
Otherwise, if f∗ /= 0, we have the so-called local set membership approach. See also
Remark 2 for an explanation of this terminology.

2.4.1 Interval estimates

Interval estimate on the unknown function fo are now derived. A general
formulation is developed, allowing us to deal with the cases where the noise is
bounded in ℓ2 or ℓ∞ norm (i.e. q = 2 or q = ∞ in (2.5)).

Noise bounded in ℓ2 norm

Theorem 5 does not allow the evaluation of interval estimates since the assump-
tion that the noise sequence d = (d1, d2, . . . , dT ) is bounded in ℓ2 norm gives no
information on how the single elements dt are bounded. In order to overcome this
issue, some additional assumption has to be made on the element-wise boundedness
of the noise sequence d. This kind of assumption can be obtained as follows.

Since f∗ is an almost-optimal approximation of fo, we have that f∗ (w̃t) ∼=
fo (w̃t) and, consequently, that dt = ỹt − fo (w̃t) ≃ ỹt − f∗ (w̃t) .= δt (a∗). It is then
reasonable to assume the following relative plus absolute error bound:⏐⏐⏐dt

⏐⏐⏐ ⩽ εt .= εr
⏐⏐⏐δt (a∗)

⏐⏐⏐+ εa, t = 1, . . . , T. (2.24)

where the term εr |δt (a∗)| accounts for the fact that dt ≃ δt (a∗) and εa accounts
for the fact that dt and δt (a∗) are not exactly equal. The parameters εr, εa ⩾ 0
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have to be taken such that εrµ + εa
√

T ⩽ µ. Indeed, if this inequality is satisfied,
(2.24) is consistent with (2.5): ∥d∥2 ⩽ εrµ + εa

√
T ⩽ µ. Following this indication,

εr and εa (together with Γ∆) can be chosen by means of the procedure presented
in [39].

In order to satisfy the assumption (2.24), the following additional constraints
have to be inserted in Algorithm 1 (in particular, in (2.29) and on line 5 of (2.31)):⏐⏐⏐ỹt − Φt

(
w̃t
)

a
⏐⏐⏐ ⩽ εt, t = 1, . . . , T. (2.25)

where Φt (w̃t) is the t-th row of the matrix Φ. □

Noise bounded in ℓ∞ norm

If the noise is bounded in ℓ∞ norm, the required interval estimates can be
obtained without introducing any further assumption. Indeed, in this case,⏐⏐⏐dt

⏐⏐⏐ ⩽ εt .= µ, t = 1, . . . , T. (2.26)

□

The following theorem, holding for both the ℓ2 and ℓ∞ cases, provides tight
point-wise interval estimates for fo (w) and gives an expression of the worst-case er-
ror bound computable for any dimension nx (a computationally tractable algorithm
for this computation is presented in [38]).

Theorem 7. Assume that:
(i) The noise affecting the measurements D is bounded according to (2.24) or (2.26).
(ii) The function fo is Lipschitz continuous according to (2.6).
Then, for q = 2, ∞ and for any p ∈ [1, ∞]:
(i) The worst-case approximation error of f∗ is bounded as

EN (f∗) ⩽
f∆ (·, ε) − f∆ (·, ε)


p

= 2 inf
f̂

EN(f̂).

(ii) For any w ∈ W, fo (w) is tightly bounded as

f (w, ε) ⩽ fo (w) ⩽ f (w, ε) . (2.27)

Proof. See [49].
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2.4.2 Local Approach - identification algorithms

In this section, two algorithms for the identification of the parameters ai in
(2.16) are proposed.

In order to ensure suitable regularity properties of the approximation, limiting
well-known issues such as overfitting and the curse of dimensionality, we require the
vector a = (a1, a2, . . . , aN) ∈ RN of the coefficients in (2.16) to be sparse. Hence,
under the assumption (2.5), a solution to the identification Problem 1 could be
found by solving the following optimization problem:

a0 = arg min
a∈RN

∥a∥0

subject to ∥ỹ − Φa∥q ⩽ µ.
(2.28)

where
ỹ

.= (ỹ1, . . . , ỹT )

Φ .=

⎡⎢⎢⎢⎣
ϕ1 (w̃1) · · · ϕN (w̃1)

... . . . ...
ϕ1
(
w̃T
)

· · · ϕN

(
w̃T
)
⎤⎥⎥⎥⎦

=
[

ϕ1 (w̃) · · · ϕN (w̃)
]

,

ϕ1(w̃) .= (ϕ1(w̃1), . . . ϕ1(w̃T )), and ∥a∥0 is the ℓ0 quasi-norm of a, defined as the
number of non-zero components of a. In fact, minimizing the ℓ0 quasi-norm of
a vector corresponds to minimizing the number of its non-zero elements, i.e. to
maximizing its sparsity. On the other hand, the constraint ∥ỹ − Φa∥q ⩽ µ ensures
that the identified coefficient vector is consistent with the measured data (2.2) and
the prior assumption on noise (2.5).

However, the optimization problem (2.28) cannot be easily solved, since the ℓ0

quasi-norm is a non-convex function and its minimization is an NP-hard problem.
The classical approach to overcome this issue is to replace the ℓ0 quasi-norm with its
convex envelope, i.e. the ℓ1 norm, see e.g. [18], [72], [12]. The identification Problem
1 can thus be solved efficiently by means of the following convex optimization
problem.
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Algorithm 1 Function Identification 1
a∗ = arg min

a∈RN
∥a∥1

subject to ∥ỹ − Φa∥q ⩽ µ
(2.29)

where µ can be chosen as a positive number slightly larger than µmin, the minimum
value for which the problem is feasible (this choice is theoretically motivated by the
validation Theorem 4). Provided that µ > µmin, the value of µ can be tuned to
suitably manage the trade-off between accuracy and sparsity.

Another interesting ℓ1 algorithm, completely based on convex optimization,
is now presented. As discussed below, this algorithm provides sparser solutions
with respect to the standard algorithm (2.29), which is based on simple ℓ1-norm
minimization.

Without loss of generality, assume that the columns of Φ are normalized:
∥ϕi(w̃)∥2 = 1, i = 1,2, . . . , N . Define the following quantity:

ξ (a) .=
|δ (a)|1 + |δ (a)|K0

σ2 (Φ)

where K0
.= 2 ∥a∥0, σ (Φ) is the minimum non-zero singular value of Φ and

δ (a) .= ỹ − Φa

|w|K
.=
√∑

i∈IK

(wT ϕi (x̃))2,
(2.30)

being IK the set of the K largest inner products
⏐⏐⏐wT ϕi (x̃)

⏐⏐⏐. Let card(·) denote the
set cardinality.
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Algorithm 2 Function Identification 2

1. Solve the optimization problem (2.29) and set a1 := a∗.

2. Let r(a1) .=
{
i1, . . . , ij : ξ (a1) > |a1

i1| ⩾ . . . ⩾ |a1
ij

|
}

and let rλ(a1) denote the
subset of r(a1) with indices in λ. Compute the coefficient vector a∗ as follows:

for k = 1 : card(r(a1))

ck = arg min
a∈RN

∥ỹ − Φa∥q

subject to ai = 0, ∀i ∈ rλ(a1)
λ = {k, . . . , card(r(a1))}

if
ỹ − Φck


q
⩽ µ

a∗ := ck

break
end

end

(2.31)

The rationale behind Algorithm 2 can be explained as follows: In step 1,
an optimization problem similar to (2.28) is solved, where the ℓ0 quasi-norm is
replaced by the ℓ1 norm. The ℓ1 norm is the convex envelope of the ℓ0 quasi-
norm, and its minimization yields a sparse vector a1 [18], [72], [12]. However,
it is not guaranteed that all the non-zero elements of a1 are necessary to have
∥ỹ−Φa1∥q ⩽ µ. In step 2, only the elements of a1 larger than ξ (a1) are kept (indeed,
ξ (a1) discriminates between “important” and “less important” vector components,
[46]), while the remaining ones, ordered by decreasing amplitude, are progressively
included to form the vector a∗. The algorithm stops when ∥ỹ − Φck∥q ⩽ µ. The
solution provided by step 2 is thus a vector a∗ where the number of non-zero
elements is further reduced with respect to the initial sparse solution a1. The
sparse approximation is given by (2.16), with ai = a∗

i , ∀i.
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2.5 Quasi-Local Approach

In this section, the so-called quasi-local nonlinear set membership approach is
presented, capturing the advantages of the global and local approaches of Section
2.3, 2.4 and avoiding some drawbacks of these two. On one hand, the quasi-local
approach allows the derivation of significantly less conservative uncertainty bounds
with respect to the global approach of Section 2.3. On the other hand, the quasi-
local approach does not require to choose a suitable parametric form for the filter,
as done in the local approach of Section 2.4. The filter is obtained directly from
the data in a non-parametric closed form.

Based on Assumption 2, we can define the following quantity, called the quasi-
local Lipschitz parameter :

γ(w) .= sup
ŵ∈W,ŵ /=w

|fo(w) − fo(ŵ)|
∥w − ŵ∥2

. (2.32)

Obviously, the Lipschitz constant of f on W is given by

Γ = sup
w∈W

γ(w). (2.33)

Lemma 1. For any w ∈ W , a γ(w) exists, such that

|fo(w) − fo(ŵ)| ⩽ γ(w) ∥w − ŵ∥2 , ∀ŵ ∈ W .

Proof. The statement follows directly from (2.32).

Let us now suppose that the quasi-local Lipschitz parameters γ(w̃t), t =
1, . . . , T , are known or can be estimated (a method for performing such an es-
timation is given in Section 2.7). Assume also that the noise is bounded in ℓ∞

norm according to (2.5), with q = ∞ and ε
.= µ. On the basis of this information,

we can define the following function set:

Fql
.= {f :

⏐⏐⏐f(w) − f(ŵt)
⏐⏐⏐ ⩽ γ(ŵt)

w − ŵt


2
, ∀w ∈ W , t = 1, . . . , T}. (2.34)

This allows us to define the Feasible Function Set as follows.
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Definition 9. The Feasible Function Set is

FFST .=
{
f ∈ Fql : ∥ỹ − f (w̃)∥q ⩽ µ

}
. (2.35)

where ỹ = (ỹ1, . . . , ỹT ) and f(w̃) .= (f(w̃1), . . . , f(w̃T )). □

As discussed in Section 2.4, FFST is the set of all functions consistent with
the prior assumptions and data. The prior assumptions are considered validated if
at least one estimate consistent with these assumptions and the data exists, i.e. if
FFST is not empty, see e.g. [44, 7].

Definition 10. The prior assumptions are validated if FFST /= ∅. □

The following theorem gives a necessary and a sufficient condition for the
validation of prior assumptions.

Let us define the following functions:

f(w) .= min
t=1,...,T

(ht + γ(w̃t)∥w − w̃t∥2),

f(w) .= max
t=1,...,T

(ht − γ(w̃t)∥w − w̃t∥2).
(2.36)

where h
t .= ỹt + εt and ht .= ỹt − εt.

Theorem 8. (i) A necessary condition for prior assumptions to be validated is
f(w̃t) ⩾ ht ,f(w̃t) ⩽ h

t, t = 1, . . . , T .
(ii) A sufficient condition for prior assumptions to be validated is f(w̃t) > ht

,f(w̃t) < h
t, t = 1, . . . , T .

Proof. (i) we have to prove that if prior assumptions are validated, i.e. FFST /= ∅,
then, f(w̃t) ⩾ ht , t = 1, . . . , T .
Let f ∈ C1(w). From Lemma 1, it follows that for every w ∈ W , and for each t =
1, . . . , T , a γ(w̃t) exist such that f(w) ⩽ f(w̃t) + γ(w̃t)∥w − w̃t∥. From f ∈ FFST

we have f(w̃t) ⩽ ỹt+1 + εt. Then,

f(w) ⩽ ỹt+1 + εt + γ(w̃t)∥w − w̃t∥.

This holds for ∀w ∈ W and t = 1, . . . , T . Then, from (2.36) we have

f(w) ⩽ f(w), ∀w ∈ W . (2.37)
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Similarly, it can be proven that:

f(w) ⩾ f(w), ∀w ∈ W . (2.38)

From (2.37),(2.38) it follows that f(w̃t) ⩾ f(w̃t) , t = 1, . . . , T , and from (2.36) it
follows that f(w̃t) ⩾ ht, t = 1, . . . , T , then f(w̃t) ⩾ ht, t = 1, . . . , T .
The proof that f(w̃t) ⩽ h

t is similar.
(ii) Suppose that f(w̃t) > ht ,f(w̃t) < h

t, t = 1, . . . , T . We have to prove that
FFST /= ∅, i.e. that a function f ∈ F can be found such that |ỹt+1 − f(w̃t)| ⩽
ε, t = 1, . . . , T . For a given w ∈ W , let t and t be such that t = arg mint(h

t +
γ(w̃t) ∥w − w̃t∥) and t = arg maxt(ht + γ(w̃t) ∥w − w̃t∥). From (2.36) we have:
f(w) − f(w) = h

t − ht + γ(w̃t)∥w − w̃t∥ + γ(w̃t)∥w − w̃t∥.
If γ(w̃t) > γ(w̃t) we have: f(w)−f(w) ⩾ h

t −ht +γ(w̃t)∥w̃t − w̃t∥ ⩾ f(w̃t)−ht > 0
If γ(w̃t) > γ(w̃t) we have: f(w)−f(w) ⩾ h

t−ht+γ(w̃t)∥w̃t−w̃t∥ ⩾ −f(w̃t)+h
t

> 0.
Since w is an arbitrary point of W , Then

f(w) < f(w), ∀w ∈ W . (2.39)

By defining fc(w) = 1
2 [f(w) + f(w)], this inequality implies that

f(w) < fc(w) < f(w), ∀w ∈ W . (2.40)

On the other hand, from (2.36) it follows f(w̃t) ⩽ ỹt+1 + εt, f(w̃t) ⩾ ỹt+1 − εt, ∀t,
which, together with (2.40), implies ỹt+1 − εt ⩽ f(w̃t) < fc(w̃t) < f(w̃t) ⩽ ỹt+1 + ε,
∀t and then |ỹt+1 − fc(w̃t)| < εt, t = 1, . . . , T .

Let us now define the function

fc(w) .= 1
2[f(w) + f(w)]. (2.41)

where f(w) and f(w) are given in (2.36). The next result shows that the approxi-
mation fc is optimal for any Lp norm. The theorem also provides an explicit bound
on the worst-case approximation error.

Theorem 9. Assume that:
(i) The noise affecting the measurements D is bounded according to (2.5).
(ii) The function fo is Lipschitz continuous according to (2.6).
Then, for q = ∞ and for any p ∈ [1, ∞]:
(i) The approximation fc defined in (2.41) is optimal.
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(ii) The worst-case approximation error of fc is bounded as

EN(fc) = 1
2
f − f


p

= inf
f̂

EN(f̂) .= RI . (2.42)

Proof. The proof can be obtained by minor modifications of the proof of Theorem
7 in [39].

2.5.1 Interval estimates

The interval estimates of the unknown function fo are now given for the cases
where the noise is bounded in ℓ∞ norm (i.e. q = ∞ in (2.5)).

Theorem 10. Assume that:
(i) The noise affecting the measurements D is bounded according to (2.5).
(ii) The function fo is Lipschitz continuous according to (2.6).
Then, for q = ∞ and for any w ∈ W, fo (w) is tightly bounded as

f(x) ⩽ fo (w) ⩽ f(w). (2.43)

Proof. For a given w ∈ W , let t = arg mint=1,...,T (ỹt+1 + εt + γ(w̃t)∥w − w̃t∥). From
Lemma 1 we have f(w) ⩽ f(w̃t) + γ(w̃t)∥w − w̃t∥. Also let f ∈ FFST . Then we
have f(w̃t) ⩽ ỹt+1 + εt. Therefore,
sup f(w) = sup f(w̃t) + γ(w̃t)∥w − w̃t∥ = ỹt+1 + εt + γ(ŵt)∥w − w̃t∥ = fu(w)
This holds for all w ∈ W . Then, fu(w) = supf∈F F ST f(w) = f(w).
The proof that fl(w) = inff∈F F ST f(w) = f(w) is similar.

Remark 4. The point-wise bounds (2.43) provide an interval estimate of the un-
known value fo (w). Interval estimates allow us to quantify the uncertainty associ-
ated with the identification process, and are thus important in system and control
applications. Indeed, these estimates can be used e.g. for robust control design,
[59, 57], prediction interval evaluation, [40], and fault detection, see the following
chapters.

Remark 5. A study on the relation between the representativeness and length of
the available data and the quality of the approximation can be found in [38]. This
study relies on the computation of the radius of information RI (see Definition 2),
representing the minimum worst-case error that can be achieved from the available
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prior and experimental information. Based on this concept, a methodology is pro-
posed in [38], where RI is used to evaluate the “level of information” provided by a
given dataset and to obtain precise indications on the quality of the approximation
that can be obtained.

Figure 2.1: Optimal bounds: (a) global bound, (b) quasi-local bound, fo(w) red
line, measurements black cross, fc(w) blue line, f(w), f(w) grey line.

Figure 2.1 shows the comparison between the global and quasi-local set mem-
bership bounds for a nonlinear function. In Figure 2.1(a), a global Lipschitz con-
stant Γ was assumed for the function fo. In Figure 2.1(b), a quasi-local Lipschitz
parameter γ(w) was assumed. It can be noted that the resulting uncertainty bounds
are clearly tighter in the quasi-local case, especially in regions where the function
is relatively “flat”.
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2.6 Radius of Information

Let us define the following error function:

fe(w,D) ≡ fe(w) .= 1
2[f(w) − f(w)]. (2.44)

where D is the identification dataset (2.2). Here, the dependence on D is explicited,
in order to emphasize the fact that the function fe is constructed from the identi-
fication dataset. This function allows us to write the radius of information as

Rp
I = ∥fe(·,D)∥p. (2.45)

The analytical computation of ∥fe∥p is not feasible since fe is a quite “complex”
nonlinear function, defined over a multi-dimensional domain. Hence, following a
standard approach, we compute numerically the norm, evaluating fe on a finite set
of points wk and then approximating the norm as

∥f∥p ≃ ∥̂f∥p =

⎧⎪⎨⎪⎩
[∑m

k=1 ak

⏐⏐⏐f(wk)
⏐⏐⏐p]1/p

, p ∈ [1, ∞)
max

k=1,...,m

⏐⏐⏐f(wk)
⏐⏐⏐ , p = ∞

(2.46)

where ak are suitably chosen coefficients. For ak = 1/m we have the widely used
quasi-Monte Carlo algorithms [38].

The expression of Rp
I given in (2.45) and computed according to (2.46) will be

used in the next chapters, in order to develop our DoE algorithms.

2.7 Parameter Estimation

Estimates of the noise bound µ, Lipschitz constant Γ, and the quasi-local Lip-
schitz parameter γ(w) such that the assumptions are validated can be obtained by
means of two algorithms given in [13] and reported in the following. Algorithm 1 is
directly taken from [13], while Algorithm 2 is a generalization of the corresponding
one in [13].
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Algorithm 3 Noise Bound Estimation µ

1. Choose a “small” ρ > 0. for example:
ρ = 0.01maxt,k=1,...,T −1∥w̃t − w̃k∥.

2. Find the set of indexes: It
.=
{
k : ∥w̃t − w̃k∥ ⩽ ρ

}
. if It = ∅ for all t =

1, . . . , T − 1, go to step 1 and choose a larger ρ.

3. For t = 1, . . . , T − 1 compute δỹt+1 = max
i∈It

|ỹt+1 − ỹi+1|. If It = ∅, set
δỹt+1 = ∞.

4. Obtain the estimate µ̂ of the noise bound µ as
µ̂ = 1

2N

∑
t∈Q δỹt+1

where Q
.= {t ∈ {1, . . . , T − 1} : δỹt+1 < ∞} and N

.= card(Q).

Algorithm 4 Lipschitz Parameter Estimation Γ, Γ∆, γ

1. For t, k = 1, . . . , T − 1 and w̃k /= w̃t, compute

Γ̂ = max
t,k=1,...,T −1

⎧⎨⎩ |ỹt+1−ỹk+1|−2µ̂

∥w̃t−w̃k∥2
if
⏐⏐⏐ỹt+1 − ỹk+1

⏐⏐⏐ > 2µ̂

0 otherwise
(2.47)

2. For t, k = 1, . . . , T − 1 and w̃k /= w̃t, compute

Γ̂∆ = max
k,t=1,...,T −1

⎧⎨⎩ |δ̃k−δ̃t|−2µ̂

∥w̃k−w̃t∥2
if |δ̃k − δ̃t| > 2µ̂

0 otherwise.
(2.48)

3. For t = 1, . . . , T − 1 and w̃t /= w̃k, compute

γ̂(w̃t) = max
k=1,...,T −1

⎧⎨⎩ |ỹt+1−ỹk+1|+2µ̂

∥w̃t−w̃k∥2
if
⏐⏐⏐ỹt+1 − ỹk+1

⏐⏐⏐ > 2µ̂

0 otherwise
(2.49)

The following theorems show that, under reasonable density conditions on the
noise, the estimates given by these two algorithms converge to the corresponding
true values.
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Theorem 11. (Theorem 2 of [13]) Let the set {w̃t, dt}T
t=1 appearing in (2.1) be

dense on W × Bµ as T → ∞. Then,

lim
T →∞

µ̂ = µ. □

Theorem 12. (Theorem 3 of [13]) Let the set {w̃t, dt}T
t=1 appearing in (2.1) be

dense on W × Bµ as T → ∞. Then,

lim
T →∞

Γ̂ = Γ. □

2.8 Adaptive Set Membership Model

In many applications, it may happen that the dynamics of the system changes
over time or the model is not accurate enough in the whole regressor domain W .
One of the advantages of nonlinear set membership (global and quasi-local ap-
proach) is that it can be easily made adaptive since no optimization problem needs
to be solved online.

In the set membership framework, the model accuracy is defined by the radius
of information and it can be computed in a deterministic way [38]. In the global and
quasi-local approaches, the model is basically defined by the measurement dataset
D, noise bound µ and Lipschitz parameters Γ or γ(x). Therefore, the model can
be made adaptive by updating online the measurement dataset and the Lipschitz
parameters.

Suppose that a model with a desired radius of information Rd is looked for,
where Rd < RI . If, at time instant t, fe(wt) > Rd, it means that the model error in
that point (wt) is larger than the desired radius. Therefore, the new measurement
can be added to the dataset D in order to increase the model accuracy.

In the case where the dynamics of the system changes over time, a time label
can be assigned to each element of the dataset D as D(T ) =

{
ỹk, w̃k, tk

}T −1

k=1
where tk

indicates the time each measurement was taken. Then, since the model is running
online, at each time instant t, we can eliminate the measurements which were
taken at t − δt, where δt is a desired value which depends on the system dynamics
variation.
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Algorithm 5 Adaptive Set Membership Model

1. Define the measurement dataset D as D(T ) =
{
ỹk, w̃k, tk

}T −1

k=1
.

2. At time step t+1, compute the vector wt and measure the system output
yt+1.

3. If fe(wt) > Rd. Then,

D(T + 1) = D(T ) ∪
{
ỹt+1, w̃t, t + 1

}
T = T + 1.

(2.50)

4. Find the set of indexes Ik =
{
k : tk ∈ D, tk < t − δt

}
. Then,

D(T − N) = D(T ) \
{
ỹk, w̃k, tk

}
k∈Ik

T = T − N
(2.51)

where N
.= card(Ik).

5. If D is changed, update the model Lipschitz parameters according to Algo-
rithm 4.

2.9 Conclusions

In this chapter, a quasi-local nonlinear set membership identification method
was presented. In this approach, instead of a global constant bound on the gradient
of the function Γ, a quasi-local bound γ is assumed. Therefore, the uncertainty
bounds are less conservative. Also unlike the local nonlinear set membership, this
quasi-local approach does not require a preliminary estimate of the function.
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Chapter 3

Set Membership Design of
Experiments

3.1 Introduction

As mentioned in Chapter 1, one of the greatest challenges in system identifi-
cation context is to design an experiment giving the maximum information about
the system to be identified [22, 36]. Most of the studies carried out so far have
mainly focused on linear systems [25, 77, 68, 17, 66, 61, 33] and static systems [14,
64, 28]. On the other side, very few studies regarding nonlinear dynamic systems
are available [47, 10, 21, 23]. In fact, nonlinear systems are characterized by a
significantly higher complexity than linear systems. While for linear systems the
excitation properties of an input signal essentially depend on the signal frequencies,
for nonlinear systems they also depend on the signal amplitudes [47]. For example,
a white noise input signal is known in general to be appropriate for the identifica-
tion of a linear system of any order. On the other side, it may not be suitable to
allow an accurate exploration of the regressor domain of a nonlinear system, and
this may lead to a low model accuracy.

Currently, the most popular DoE methods for nonlinear dynamic systems are
classified into two main categories: model-free and model-based methods [10, 76,
9, 24]. The idea of these methods is to parameterize a pre-defined excitation sig-
nal, and then optimize the signal parameters called the design points, according to
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different criteria. For example, a widely applied excitation signal in industrial iden-
tification tasks is the amplitude modulated pseudo random binary signal (APRBS).
The APRBS signal is a sequence of N fixed steps with associated hold times Thi

and amplitudes ai ∈ [umin umax] i = 1, ..., N . Since the values of the amplitudes
are free design parameters in the following they are called design points. In Figure
3.1, a schematic APRBS signal in the time domain is plotted. Given the length T
of the signal, the hold time Thi

determines the number of steps and thus influences
the frequency characteristics of the signal. It’s important to choose an appropriate
minimum hold time Thmin

to assure that the system has a reasonable time to set-
tle. If not, only operating conditions around (umax − umin)/2 will be covered and
a model identified from such data will not be able to describe the static behav-
ior well. Besides the minimum hold time, the distribution of the design points ai

i = 1, . . . , N is essential for the quality of the excitation signal.

Figure 3.1: APRBS signal in time domain.

In model-free DoE, no assumptions on the model structure are made. The
typical approach is to distribute design points in the input domain as much uni-
formly as possible. This DoE approach is also known as space-filling DoE. The
most popular space-filling DoE technique is based on the Latin Hypercube (LHC)
distribution. To calculate an LHC distribution, the input space is divided into N
intervals. In every column and row, only one design point is placed. Figure 3.2(b)
shows an example of the LHC distribution of 50 design points for a two-dimensional
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input space.

In model-based DoE, after assuming a particular model structure, the idea is to
distribute the design points in the input domain, in such a way that the estimation
of the model parameters is as much insensitive as possible to the measurement noise.
The most popular model-based DoE is the D-optimal distribution technique. Figure
3.2(c) shows an example of the D-optimal distribution technique with 50 design
points based on a polynomial model of the third order.

Figure 3.2: Distribution of 50 design points for a two-dimensional input space.

After designing the distribution of the points in the input space, they are used
for a parameterized excitation signal, like the above mentioned APRBS signal. Both
model-free and model-based DoEs do not take into account the dynamics of the
system and do not provide any indication about the optimal sequence of the design
points. Although these methods are simple and adequate to capture the steady
state behavior of a system of interest, they don’t take into account the dynamics of
the system. Therefore, by using these methods, capturing the nonlinear dynamic
behavior of the system in the whole regressor domain is a heuristic/arbitrary pro-
cess. In general, as far as the authors are aware, no DoE method for nonlinear
dynamic systems can be found in the literature, which can ensure the exploration
of the relevant regressor domain of a nonlinear system and, consequently, guarantee
a desired model accuracy.

In the last three decades, there has been an increasing interest and research
formulating the identification problem in Set Membership (SM) framework [39, 67,
44, 43, 42, 49, 52, 41, 7]. The main reason is the fact that SM identification allows
us to properly quantify the uncertainty of the identified model in a deterministic
manner. As described in Chapter 2, In SM nonlinear identification, no assumptions
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on the structure of the unknown system are required. Instead, two basic assump-
tions are made. An assumption on the regularity of the system, given by bounds
on its gradient, and another assumption on the noise boundedness. Then, an op-
timal estimate, with minimal guaranteed identification error and tight uncertainty
bounds, is derived. which is a bounded identification uncertainty description given
by the set of all possible models that are all equally probable. This nonlinear SM
approach does not require any iterative minimization and thus avoids the issue of
local minima. Since no optimization problems have to be solved, nonlinear SM
identification is particularly suitable for adaptive identification, making the model
more accurate over time by adding new measurements collected online. Because of
these features, the applications of SM in robust control and experiment design is a
promising research area [67].

Due to the presence of disturbances and measurement noise, in general, no
identification process can result in a model that perfectly corresponds to the true
system. Any identified model is always affected by some uncertainty. Understand-
ing which are the regions of the regressor space where the model is most uncertain
is a key element to design a proper DoE algorithm. However, knowing where the
model is most uncertain is not sufficient. Since the unknown system is dynamic, the
DoE algorithm has to be able to generate an input sequence such that the system
moves toward those uncertain regions of the regressor space, in order to take new
measurements.

In this chapter, a novel online DoE algorithm for nonlinear dynamic MISO
systems is proposed, that is able to reduce the worst-case model error while con-
sidering input constraints of the system. The proposed DoE algorithm is able to
guarantee any desired worst-case error larger than the measurement error in a finite
time experiment. In the next chapter, the proposed DoE algorithm is used for a
simulation case study in the automotive field to design a data-driven controller for
Lean NOx Trap regeneration.

This chapter is organized as follows. In section 3.2, the DoE problem is for-
mulated in set membership framework. In section 3.3, a static DoE algorithm is
proposed that is able to guarantee any desired radius of information for a static
nonlinear system. In section 3.4.1, a set membership predictive controller is pro-
posed for nonlinear dynamic systems which is able to move the system toward the
most uncertain regions of the regressor space. And finally, in section 3.4, a dy-
namic Set Membership DoE (SM-DoE) algorithm is proposed. In section 3.5, the
proposed SM-DoE algorithm is tested on two simulation examples to illustrate the
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effectiveness of the proposed algorithm and compared to other DoE methods.
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3.2 Problem Formulation

Let us consider a multiple input single output (MISO) nonlinear system de-
scribed by (2.1). The system is unknown and the output is corrupted by noise. Let
Assumptions 1 and 2 hold. And, let UT

t
.=
{
uk
}T −1

k=t
be an input sequence from time

t to time T − 1. The problem considered in this section is the following.

Problem 2. Design an input sequence UT
1 that, applied to the nonlinear system

(2.1), yields a minimal radius of information Rp
I = ∥fe(w)∥p. □

Ideally, a solution to this problem is given by

U∗T
1 = arg min

UT
1

∥fe(·,D)∥p

subject to ỹt+1 = fo(w̃t) + dt, t = 1, . . . , T − 1

D =
{
ỹt+1, w̃t

}T −1

t=1

(3.1)

where dt, t = 1, . . . , T − 1 is the actual noise sequence.

However, for several reasons, this optimization problem cannot be used for
DoE in real applications: 1) it requires to know fo and the complete noise sequence
{dt}T −1

t=1 ; 2) even assuming that fo is known and the noise can be measured, the
optimization problem can only be solved at time T − 1, since at previous time
instants t < T −1, the noise samples dk are not known for k > t; 3) even in the case
that fo and the complete noise sequence are known, the optimization problem is
highly nonlinear and non-convex, and thus hard to solve analytically. Nevertheless,
in the simulations studies that will be presented in the paper, the problem (3.1)
will be solved numerically (without guarantees of finding a global minimum) and
the obtained estimate of the “ideal” optimal input sequence U∗T

1 will be used as a
term of comparison, to indicate the maximum performance that can be achieved
by any DoE algorithm.

The approach to DoE that we propose can actually be applied in real situations,
without knowing a-priori the true function and noise sequence. A key feature is that
the approach is sequential: at each time step, on the basis of the current and past
measured data, the approach individuates what is the next point of the regressor
domain that the system has to visit, in order to maximally reduce the radius of
information. In the case where the system is a static function of the input - i.e.,
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where wt = ut - the optimal input is obviously chosen equal to the individuated
next point. In the general case of a dynamic system, it may be not possible to
visit the desired point, since the system future regressor depends not only on the
current input but also on the past input and output values. Hence, once the next
point to visit has been found, a model predictive control (MPC) strategy is used
to drive the system toward that point. The proposed MPC strategy is based on a
nonlinear set membership model identified from the past data and updated at each
time step on the basis of the new measurement.

The cases of static and dynamic systems are treated in the next two sections,
respectively.

3.3 Static Set Membership DoE

Consider a static nonlinear system of the form

zt = fo(wt), wt = ut ∈ W . (3.2)

In this case, solving the experiment design problem is easier with respect to the
general case, since the system trajectory depends only on the current input and not
on the past input and output values. Hence, it is possible to obtain a measurement
of the function fo at any desired point of the regressor domain W . The static
Set-Membership DoE algorithm that we propose is the following.

41



3 – Set Membership Design of Experiments

Algorithm 6 Static Set Membership DoE

1. Choose the initial regressor w1 (e.g., the center of the regressor domain W);
Measure z̃1 = fo(w1);
Define the measurement dataset D = {z̃1, w1}.

2. While t < T , solve the optimization problem

wt
M = arg max

w∈W
f t

e(w,D);

wt ∈ wt
M

(3.3)

Evaluate z̃t = fo(wt);
Add z̃t and wt to the dataset D := D ∪ {z̃t, wt};
Set t := t + 1.

The vector wt is any point in wt
M and f t

e is the error function (2.44) computed at
time instant t.

The algorithm is iterative. At each iteration, a point in the regressor domain
where the uncertainty is maximum is considered. The optimization problem (3.3) is
nonlinear and non-convex. However, as discussed in section 2.6, we evaluate fe on a
finite set of points in the domain W , making the computation easy (thus obtaining,
in general, a sub-optimal solution). The following result holds for Algorithm 6.

Theorem 13. Let T be the number of steps in Algorithm 6 and RI(t) be the radius
of information computed at time t. Then, there exists a T such that RI(t) ⩽
µ, ∀t ⩾ T .

Proof. Let us define the following set:

wt
e =

{
w ∈ W : Γ∥w − wt∥2 < fe(w) − µ

}
. (3.4)

The following inequalities hold at each iteration of the algorithm:

f t+1
e (w) < f t

e(w) ∀w ∈ wt
e, (3.5)

f t+1
e (w) = f t

e(w) ∀w ∈ W \ wt
e. (3.6)
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If wt
M ⊆ wt

e, we have f t
e(w) < f t

e(wt) ∀w ∈ W \ wt
e and from (3.6) we can

write f t+1
e (w) < f t

e(wt) = RI(t) ∀w ∈ W \ wt
e. From (3.5) we have f t+1

e (w) <

RI(t) ∀w ∈ wt
e,. Therefore, f t+1

e (w) < RI(t) ∀w ∈ W . which also means

RI(t + 1) < RI(t). (3.7)

If wt
M ⊈ wt

e, from (3.5), at each iteration we have

wt+1
M = wt

M \ wt
e. (3.8)

Since wt ∈ wt
e, wt ∈ wt

M it is evident that wt
M ∩ wt

e /= ∅. Therefore, wt+1
M ⊂ wt

M

which means wM is shrinking at each time step therefore in a finite ni steps we
have wt+ni

M ⊆ wt+ni
e . Thus from (3.7) we have,

RI(t + ni + 1) < RI(t). (3.9)

RI is a positive definite function and RI ⩽ µ if D = W . Also from (3.7),(3.9) we
can say RI is a decreasing function. Therefore, as t → ∞, Then RI(t) ⩽ µ.

3.4 Dynamic Set Membership DoE

Now Suppose that the DoE has to be carried out for a nonlinear dynamic
system, written in the general regression form (2.1). Unlike the static case (3.2),
it is not possible to evaluate the regression function at any desired point w, since
the system regressor depends not only on the current input but also on the past
input and output values. The idea that we propose is to use an algorithm similar
to Algorithm 6 to generate desired reference points wr in combination with an
MPC controller making the dynamic system visit the desired point wr. The MPC
approach that we propose is novel and is called set membership model predictive
control (SMPC).
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3.4.1 Set Membership Model Predictive Control

In recent years, there has been an increasing interest in set membership pre-
dictive control laws, designed from experimental data [4, 5, 62, 67]. However, such
approaches, implicitly or explicitly, assume that a sufficiently informative set of
data is available and do not consider the problem of experiment design. In this
section, we propose a novel MPC approach, called SMPC, able to perform together
experiment design and controller design.

To formulate the SMPC approach, a state-space-like representation of the plant
(2.1) and related models is needed. To this aim, we introduce the following pseudo-
state:

xt = [yt . . . yt−ny+1 ut−1 . . . ut−nu+1]
= [xt

(1) . . . xt
(ny) xt

(ny+1) . . . xt
(ny+nu)]

(3.10)

where W and X are bounded sets in Rn and Rn−m, respectively. In other
words, xt ∈ X is equal to wt ∈ W without the input sample at time t:

wt = [xt
(1) . . . xt

(ny) ut xt
(ny+1) . . . xt

(ny+nu)].

The state space representation of the plant and the one-step prediction of the model
are given by

xt+1 = fo(xt, ut)
fo(xt, ut) .= [fo(wt) xt

(1) . . . xt
(ny−1) ut . . . xt

(ny+nu−1)].
(3.11)

x̂t+1
c = fc(xt, ut)

fc(xt, ut) .= [fc(wt) xt
(1) . . . xt

(ny−1) ut . . . xt
(ny+nu−1)].

(3.12)

In the notation above, f(xt, ut) returns a vector of pseudo-states, while f(wt)
returns a scalar. fc is the central estimate of set membership model and ·̂ repre-
sents the estimate given by the model. From (3.11) and (3.12), it follows that

xt+1 = fo(xt, ut) = fc(xt, ut) + [et 0 . . . 0]. (3.13)

where the model uncertainty is described in terms of additive perturbation et, which
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is known to be bounded as⏐⏐⏐et
⏐⏐⏐ ⩽ fe(wt) ⩽ R∞

I ∀w ∈ W . (3.14)

The sequence of inputs {ui}t+k−1
i=t , starting from a generic time instant t, up to a

time instant t + k − 1, is indicated with Uk
t . The state of the plant at time t + k

obtained starting from a generic “initial” state xt and applying the input sequence
Uk

t is defined as

So(xt, Uk
t ) .= xt+k :

xt+n+1 = fo(xt+n, ut+n) ∀n ∈ [0, k − 1].
(3.15)

The set of all possible plant state values at time t + k that originate from a generic
“initial” state xt by applying the input sequence Uk

t to the system (3.13) is defined as

S(xt, Uk
t ) = { x̂t+k :

x̂t+n+1 = fc(x̂t+n, ut+n) + [et+n 0 . . . 0],⏐⏐⏐et+n
⏐⏐⏐ ⩽ fe(ŵt+n), ∀n ∈ [0, k − 1] } .

(3.16)

ŵt+n = [x̂t+n
(1) . . . x̂t+n

(ny) ut+n x̂t+n
(ny+1) . . . x̂t+n

(ny+nu)].

Note that this set is generated by all possible sequences {et+n}k−1
n=0 such that

|et+n| ⩽ fe(ŵt+n), ∀n ∈ [0, k −1]. Clearly, it holds that So(xt, Uk
t ) ∈ S(xt, Uk

t ). It is
also true that if R∞

I = 0 then So(xt, Uk
t ) = S(xt, Uk

t ). The size of the set S(xt, Uk
t )

can be interpreted as the uncertainty of the state at time t + k. In other words, the
uncertainty of the trajectory points, when a certain input sequence Uk

t is applied
to the system.
Recalling the idea behind our approach from section 3.2, the aim is to reduce the
radius (or diameter) of information by collecting measurements where the uncer-
tainty is maximum. Thus, suppose that we want to take a measurement at a point
wr, or its equivalent (xr, ur), where the uncertainty amplitude is fe(wr). Our ap-
proach consists in using an SMPC controller (to be defined later) to drive the plant
state xt to a neighborhood of xr, called the reference set Xr ⊂ Rn−m, defined as

Xr
.= {x : Γ ∥x − xr∥2 + µ < λfe(wr), λ ∈ (0,1]} . (3.17)

This set is a ball of radius λfe(wr)−µ
Γ , centered at xr; λ is a design parameter, allow-

ing us to change the size of the reference set. When the state of the system xt is
inside Xr i.e. xt ∈ Xr, by applying ur as input to the system and adding the new
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measurement to the dataset D, the uncertainty fe(wr) will be reduced by at least
a factor of λ.

Assumption 3. For any “initial” state xt and reference state xr, there exists a
control sequence Uk

t that moves the state from xt to xr:

∀xt, xr ∈ X , ∃K < ∞, ∃Uk
t ∈ U :

So(xt, Uk
t ) = xr for k < K.

(3.18)

Assumption 4. For any input sequence Uk
t , the state of the system (3.11) remains

inside the compact set X :

∀Uk
t ∈ U , ∀t ⩾ 0, k ⩾ 1 : xt ∈ X . (3.19)

Assumption 3 is a quite standard controllability assumption. Assumption 4 is
a mild boundedness assumption, just requiring that the system trajectory does not
tend to infinity.

Let us define the set of potential trajectory horizons from xt to xr as follows:

I(xt, xr) .= {i ∈ N : i < K, ∃U i
t such that xr ∈ S(xt, U i

t )}. (3.20)

For each element of the set I(xt, xr), there exists an input sequence such that
xr ∈ S(xt, U i

t ). Assumption 3 ensures that this set is non-empty and finite for any
initial and reference states.

The optimization problem solved in the SMPC approach is:

J∗(xt, xr, i) = max
U i

t

J(xt, xr, U i
t )

subject to U i
t ∈ U

xr ∈ S(xt, U i
t )

J(xt, xr, U i
t ) =

i∑
n=1

diam(S(xt, Un
t ))

(3.21)

where i = min {I(xt, xr)} and diam(S) is the diameter of the set S.
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3.4 – Dynamic Set Membership DoE

The controller is implemented according to a receding horizon strategy. The
control law, indicated as ut = K(xt, xr), means solving (3.21) and applying the first
element of the maximizer U i∗

t as the control action ut∗ to the system, and adding
the new measurement to the dataset D (D := D ∪ {ỹt+1, w̃t}). Then, repeating
these operations at each time t. The resulting control sequence, starting from a
generic time instant t up to another instant k is denoted as Kk

t .

Theorem 14. Let Assumptions 3 and 4 hold. Starting from any initial state xt ∈
X , the state of the system controlled by the feedback law So(xt,Kk

t ), will visit a point
inside the reference set Xr in finite time. That is,

∀xt, xr ∈ X , ∃K < ∞ :
So(xt,Kk

t ) ∈ Xr for some k < K.

Proof. Assumption 3 ensures that the set I is not empty and the optimization
problem (3.21) is always feasible for all i ∈ I. From the definition of the cost
function, the following inequality holds for all feasible solutions.

∀U i
t such that U i

t ∈ U , xr ∈ S(xt, U i
t ) :

diam(S(xt, U i
t )) ⩽ J∗(xt, xr, i)

(3.22)

From (3.22) and the fact that Xr is a ball centered at xr we can conclude that if
J∗(xt, xr, i) ⩽ diam(Xr)/2, then the set S(xt, U i

t ) is inside Xr. i.e. So(xt, U i
t ) ∈

S(xt, U i
t ) ⊂ Xr. This holds for all feasible solutions which means the state of the

real system will be inside Xr in i steps. Therefore, in order to prove the theorem,
we have to prove that

∀µ > 0, ∃K such that J∗
k < µ for k < K. (3.23)

where J∗
k is the cost computed at time instant k. At each time step, we solve (3.21)

and apply the first element of the maximizer U i∗
t as control action ut∗ and add a

new measurement to the dataset D. The following inequalities hold when a new
measurement is added

diam(Sk+1(xt, ut∗)) = 2fe(wt) < 2µ (3.24)

Sk+1(xt, ut∗) ⊂ Sk(xt, ut∗) (3.25)

diam(Sk+1(xt, ut∗)) < diam(Sk(xt, ut∗)) (3.26)
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where the subscript k+1 indicates a measurement is added to the dataset D, which
happens at each time step.

When a new measurement is added to the dataset D, the uncertainty of the
successive predicted states might also be reduced

Sk+1(xt, Un
t ) ⊆ Sk(xt, Un

t ) ∀n ∈ [2, i] (3.27)

From (3.27), since the size of the predicted states might be reduced, two things
could happen.
If xr ∈ Sk+1(xt, U i∗

t ), from (3.26) we have

J∗
k+1(xt, xr, ik+1) < J∗

k (xt, xr, ik) , ik+1 = ik (3.28)

If xr /∈ Sk+1(xt, U i∗
t ), which means U i∗

t is no longer a feasible solution. In such
conditions, from the definition of the optimization problem, one of the following
inequalities hold

card(Ik+1) ⩽ card(Ik), ik+1 > ik (3.29)

or
J∗

k+1(xt, xr, ik+1) < J∗
k (xt, xr, ik), ik+1 = ik (3.30)

Now consider the following function

v(xt, xr) =
∑

i∈I(xt,xr)
J∗(xt, xr, i) (3.31)

From (3.28), (3.29), (3.30) and (3.31) we have

vk+1(xt, xr) < vk(xt, xr)
vk+2(xt+1, xr) < vk+1(xt+1, xr)
vk+3(xt+2, xr) < vk+2(xt+2, xr)

. . .

(3.32)

Finally, consider the integral of the function v over the compact set X

V (xr) =
∫

x∈X
v(x, xr)dx (3.33)

From (3.31), (3.33) we can say V (xr) is a positive definite function V (xr) ⩾ 0 since
J∗ ⩾ 0 and V (xr) = 0 if and only if R∞

I = 0. From (3.32), (3.33) it holds that
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Vk+1(xr) − Vk(xr) < 0 ∀k > 0 (3.34)

Therefore limk→∞ Vk(xr) = 0 which is true if and only if limk→∞ J∗
k = 0.

Algorithm 7 Dynamic Set Membership DoE

1. Select a reference regressor wr to be visited which has a high uncertainty and
its equivalent pseudo-state xr is close to the estimated state:

wr, xr = arg min
wr∈W,xr∈X

(
x̂t+1 − xr


2

+ δ

fe(wr)). (3.35)

2. Compute Xr according to (3.17) with a suitable λ.

3. Apply the following criterion:

if x̂t+1 ∈ Xr

then ut = ur ∈ wr

else ut = K(xr, xt).

4. Evaluate ỹt+1 = fo(w̃t) = fo(xt, ut).

5. Add ỹt+1 and w̃t to the dataset D := D ∪ {ỹt+1, w̃t}.

6. Update γ and Γ according to Algorithm 4.

7. Set t := t + 1 and go to step (1).

The dynamic set membership DoE is implemented in Algorithm 7. The Al-
gorithm is iterative: at each iteration, a reference regressor wr is computed to be
visited. Ideally this reference should be where fe is maximum (similarly to Al-
gorithm 6). However, if the reference is close to the estimated state, it can be
visited more quickly. Equation (3.35) combines these two objectives. In step 2,
the reference set Xr is computed. In step 3, if the central estimate is inside the
reference set, the input is generated according to the corresponding ut of the vector
wr. Otherwise, the input is generated by the SMPC controller K. Finally, at each
iteration, a new measurement is taken and added to the measurement dataset D
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and the Lipschitz bounds γ, Γ are updated. To compute fe in step 1 and 2, a global
bound Γ is used and a quasi-local bound γ is used in step 3.

Corollary 1. For any desired radius of information Rd ⩾ µ, there exist a finite
number of steps T of Algorithm 4 such that RI(t) ⩽ Rd , ∀t ⩾ T .

According to Theorem 13, it is shown that if the system is static, which means
it is possible to take a measurement anywhere in the regressor domain W , then,
Algorithm 6 can reach any desired radius of information. Also, according to The-
orem 14, it is shown that for a dynamic system the SMPC controller can visit any
desired point in the regressor domain. Algorithm 7 is the combination of Algorithm
6 and the SMPC controller assuming a large value δ in equation (3.35). Thus, we
can conclude that Algorithm 7 can reach any desired radius of information in a
finite time experiment.

3.5 Simulation Results

In this section, we present two simulation studies to illustrate the SM-DoE
algorithm. The first example is concerned with a simulated nonlinear system, pre-
viously studied in [47]. The input signals obtained by the SM-DoE approach are
compared with other input signals and with the optimal one, discussed in section
3.2. The second example also studied in [10], is a nonlinear dynamic system with a
static nonlinearity, where we compare the SM-DoE approach with three other DoE
methods, taken from the literature.

3.5.1 Example 1:

This section is concerned with the DoE for the following nonlinear dynamic
system:

yt+1 = 0.88 yt − 0.12 tanh(15 yt) + 0.06 ut. (3.36)
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Assuming the initial condition y1 = 0. Three inputs signals have been considered:

U(1) = {3 sin(0.2t), t = 1,2, ..., T}

U(2) =
{
3 sin(0.0009t2), t = 1,2, ..., T

}
U(3) = {WN(0,4, t), t = 1,2, ..., T} .

(3.37)

where WN(0,4, t) is a white gaussian noise of mean 0 and variance 4. For each of
these signals, a simulation of the system (3.36) with length T = 300 was performed.
The output signal was corrupted by a uniform random noise with amplitude ⩽ 0.01.
The corresponding radius of information RI was computed. The involved regressor
is

wt = [yt ut].

The regressor domain of interest W is the rectangular region indicated in Figure
3.4 and defined by

W .= {w : w1 ≤ 0.35, w1 ≥ −0.35, w2 ≤ 3.5, w2 ≥ −3.5} . (3.38)

The values µ = 0.01 and γ(w̃) were computed according to Algorithm 3,4.
The ideal optimal input sequence UOptimal was computed according to (3.1), using
Matlab® Global Optimization Toolbox, providing the minimum possible radius of
information. Finally, a fifth input signal USM−DoE was obtained, using the proposed
SM-DoE algorithm. For each of the five input signals, a dataset was obtained.
Figure 3.3 shows the five input sequences.

In order to assess the quality of each dataset, a quasi-local set membership
model was identified. Then, the prediction accuracy was validated on a 100 × 100
grid in the rectangular region defined in (3.38). The following accuracy indexes
were considered to evaluate the model accuracy:

RMSE = ∥ỹ − ŷ∥2 /
√

N

FIT = 100
(

1 − ∥ỹ − ŷ∥2
∥ỹ − mean(ỹ)∥2

) (3.39)

where ỹ indicates the measured output vector and ŷ is the predicted output vector
and N is the length of these two vectors.

Table 3.1 shows the radius of information and the accuracy on the validation
set of the identified set membership models for each input signal.
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Figure 3.3: Input sequences.

Table 3.1: Radius of information and set membership model accuracy corresponding
to the input sequences.

Inputs U(1) U(2) U(3) UOptimal USM-DoE

R∞
I 0.568 0.536 0.209 0.053 0.055

R2
I 0.210 0.177 0.055 0.030 0.033

RMSE 0.0391 0.0350 0.0214 0.0061 0.0062
FIT 0.69 0.72 0.85 0.96 0.96
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It can be noted from Table 3.1 that the optimal input sequence and the SM-
DoE sequence provide much lower radius of information compared to the sinusoidal
and random inputs. The fact that the data generated from UOptimal and USM−DoE

provides lower radius of information, and consequently a higher identification accu-
racy, is related to the more effective exploration of the regressor domain W . This
can be observed in Figure 3.4, where the “measured” regressors are shown for the
five simulations.

Figure 3.4: Measured regressor {ỹt, ũt}300
t=1 for different input sequences.

Figure 3.5 shows the radius of information and model accuracy during the
SM-DoE process. It can be seen that only half of the experiment was enough to
derive an accurate model. It is also evident that reducing the radius of information
directly leads to increasing the model accuracy.
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Figure 3.5: Radius of information and model accuracy during SM-DoE experiment.

3.5.2 Example 2:

To evaluate the performance of proposed SM-DoE compared to other DoE
methods, a simulation study was performed considering a nonlinear dynamic system
previously investigated by [10]. In this example, three different DoE methods, as
well as the SM-DoE algorithm, were tested. The system under investigation is the
following:

ẏ = g(y, x) = 2x/(2.4 cos(10x + 4) − 0.5y + 3.3). (3.40)

where

x = f(u1, u2) = cos(9
√

u2
1 + u2

2 + 2) + 0.5 cos(11u1 + 2)
+ 15((u1 − 0.4)2 + (u2 − 0.4)2)2.

(3.41)

This system was discretized using forward Euler method with a sampling time
of 0.5 s. The system has two inputs, and the single output of the system is corrupted
by a uniform bounded noise of amplitude ⩽ 0.025. An illustration of the scaled
functions of the system is shown in Figure 3.6. The function g of the discretized
system is different from that of the continuous-time system.

Three different DoE strategies were used in order to compare with the SM-
DoE algorithm, which are mentioned in section 3.1 and are discussed more in detail
in [10]. Three distributions (random, LHC and D-optimal) were constructed with
50 design points that are shown in Figure 3.2. For each distribution, 10 different
APRBS signals were constructed with a random sequence of the design points with
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Figure 3.6: Nonlinear Dynamic System.

Thmin
= 6s and duration of T = 560s. (a total of 30 input sequences). Thmin

was
chosen by trial and error which gave the best results.
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Figure 3.7: Set Membership DoE scheme.

In the SM-DoE algorithm, the regressor has been defined as wt = [yt ut
1 ut

2],
and values µ = 0.05 and Γ = 10, γ(w̃) were computed according to Algorithm 3,4.
Algorithm 7 has been applied to the system according to Figure 3.7, with δ = 0.25,
λ = 0.5 and duration of T = 560s.

For each set of data generated by the considered input sequences, a Neural-
Network model has been identified with 18 sigmoid neurons. Table 3.2 shows the
identified model accuracy for each DoE method. This table shows that the accuracy
of the model derived from SM-DoE data is significantly higher.
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Table 3.2: Model accuracy mean and standard deviation.

Inputs FIT RMSE
Random 0.69 ± 0.03 0.149 ± 0.017
LHC 0.68 ± 0.04 0.155 ± 0.022
D-Optimal 0.76 ± 0.01 0.115 ± 0.008
SM-DoE 0.91 0.043

Figure 3.8: Measured regressor. D-optimal design (a),(b). SM-DoE (c),(d)

The measured regressors of the D-optimal design and the SM-DoE approach
are shown in Figure 3.8. The domain is the same as the one in Figure 3.6. Both
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the experiments have the same duration. In the D-optimal case, although the input
space is covered very well (In Fig. 3.8(a), the design points are on top of each other
due to the nature of the APRBS signal), we can see that the most nonlinear regions
of the dynamic system are not explored (Fig. 3.8(b)), and the measurements are
more concentrated around the diagonal which represents the steady state behavior
of this system. Thus, the dynamic system nonlinearities are not captured by the
data. On the other hand, the SM-DoE was able to better explore the whole regressor
domain (Fig.3.8(c), 3.8(d)).

3.6 Conclusions

The aim of this chapter was to develop a systematic DoE method for nonlinear
dynamic systems. We formulated the problem in a set membership framework and
proposed a quasi-local nonlinear set membership approach that results in less con-
servative uncertainty bounds compared to the global approach. Then, we proposed
a SM-DoE algorithm for input-constrained MISO nonlinear dynamic systems. The
algorithm uses a novel SMPC controller to move the system toward the most un-
certain regions of the regressor space and take new informative measurements. The
proposed SM-DoE algorithm minimizes the worst-case model error. Thus, it is
able to guarantee any desired worst-case error larger than the measurement error
in a finite-time experiment. Applications of the proposed method are clearly most
useful in areas where experiments are expensive and/or a very accurate model is
desired. The DoE approach presented in this paper may also be of interest for
future studies on adaptive data-driven nonlinear control design.
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Chapter 4

From Design of Experiments to
Data-Driven Control Design for
Lean NOx Trap Regeneration

4.1 Introduction

Diesel engines are widely used in passenger cars due to their high efficiency.
However, diesel engines have higher emissions compared to spark-ignition (SI) en-
gines, and these emissions should be reduced in order to increase the air quality
and to meet the constraints imposed by government regulations. After-treatment
systems are widely used for this aim. One important issue of these systems is NOx
reduction: since diesel engines usually operate in lean mode, they emit large quan-
tities of NOx. Indeed, during lean engine operations, the fuel is burned with an
excess of air (the air-fuel ratio is leaner than stoichiometric), and this leads to an
over-production of NOx. On the contrary, in rich mode, the engine operates at an
almost stoichiometric air-fuel ratio, implying a reduced NOx production.

Lean NOx Trap (LNT) is one of the most effective after-treatment technologies
used to reduce NOx emissions of diesel engines. The basic concept of LNT is to
store NOx during lean conditions and release the stored NOx in rich conditions to
react with the available reductants (HC and CO). Like any trapping system, LNTs
have a finite capacity. Therefore, the engine must create rich exhaust conditions at
given time intervals to regenerate the catalyst, which releases the stored NOx and
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converts it to nitrogen. A method for providing the necessary rich condition for
LNT regenerations is using the engine control unit to create a rich air-fuel mixture
ratio. This is an attractive approach since it uses actuators already available in the
engine.

As shown in Figure 4.1, there are two main operating conditions for LNTs.
In the first phase, called adsorption or storage phase, the engine works in a lean
condition and the exhaust gas NOx is chemically stored in the catalyst. In the
second phase, called purge or regeneration, by injecting extra fuel in the cylinder,
the engine moves to a rich condition and the NOx is released from the catalyst
to react with components of the rich exhaust gas, such as carbon monoxide (CO),
hydrocarbons (HC) and hydrogen (H2), to form nitrogen.

Figure 4.1: LNT storage and purge reactions.

Regeneration timing control plays a vital role in NOx emission reduction with
minimum fuel possible. One of the greatest challenges in this context is deriving an
accurate model, able to describe the highly nonlinear dynamics of an LNT. Several
studies have documented different approaches for modeling and control of the LNT.
One approach is modeling the LNT based on chemical-physical processes [19, 34].
This approach in general yields accurate dynamic models. However, the derived
models are complex from a computational point of view and thus they can be
suitable for simulation but not for control. Other studies focus on control-oriented
modeling [74, 31, 32, 6, 73]. Indeed, most of the control-oriented models proposed
in the literature have been validated on stationary engine operating points and
this raises questions about their accuracy, as they may show a poor performance in
transient conditions. Moreover, the dynamics of newly developed LNT technologies
may not be accurately described by the equations of the previous studies. Clearly,
a controller designed from a non-accurate model may work well when applied to the
model itself [27] but may lead to a very bad performance when applied to the plant
of interest. Another approach is black box modeling using system identification.
In [75] , a nonlinear autoregressive with exogenous input (NARX) model is used
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to describe the LNT. This is an interesting approach since the model is simple
and accurate enough for control. However, another fundamental problem is that,
even in the rare cases where an accurate model can be found, designing an effective
LNT control strategy using this model is difficult, due to the high complexity of
the LNT process and to its strongly nonlinear behavior. These problems have
led to threshold-based control strategies [31, 45], that are widely used thanks to
their simplicity. However, since diesel engines are gaining more and more attention
in light-duty applications, there is a need for more efficient algorithms to meet
the emission regulations [30]. In other words, a nonlinear MIMO (Multiple Input
Multiple Output) control design problem has to be solved, where the goal is to
minimize on-line the fuel penalty, while keeping the NOx emissions under a given
level.

In this chapter, a novel approach for regeneration timing control of LNTs is
proposed, allowing us to overcome all the issues discussed above. This approach,
named data-driven model predictive control (D2-MPC), does not require a physical
model of the engine/trap system but is based on a neural network model, directly
identified from data. In this way, all problems due to the fact that LNTs are
highly complex systems difficult to model are overcome. However, acquiring the
data necessary for identification is very challenging due to the expensive operating
costs of the engine/after-treatment test benches and highly nonlinear dynamics
of the after-treatment system. Therefore, we propose a Set-Membership Design
of Experiments for the LNT which is able to capture nonlinear behavior of the
system in a short experiment. The regeneration timing is computed through an
optimization algorithm, which uses the identified model to estimate and predict
the LNT behavior.

The proposed D2-MPC approach is tested in a co-simulation study, where the
plant is represented by a detailed LNT model, built using the well-known commer-
cial tool AMEsim, and the controller is implemented in Matlab®/Simulink. The
control strategy is then compared with other control approaches: The first one is
an MPC strategy where a perfect knowledge of the plant is assumed so that the
model used for prediction and optimization is the exact plant model. Clearly, this
is an ideal strategy that can never be applied in a real situation. In our study, this
ideal strategy is important to individuate the maximum performance that can be
reached. The second one is an MPC strategy taken from the literature. The third
one is a simple threshold-based strategy. This simulation study shows that the
proposed D2-MPC strategies provide very efficient regenerations with a minimum
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fuel penalty. In particular, the provided values for these two performance indexes
are very close to those provided by the ideal strategy, based on the exact model.
On the other hand, the other two strategies provide fairly efficient regenerations,
at the expense of quite high fuel penalties.

This chapter is organized as follows. In section 4.2, we present the outline of
the D2-MPC approach. In section 4.3, the engine and the after-treatment system
model is described. In section 4.4, the SM-DoE method of Chapter 3 is implemented
on the engine/after-treatment system and a neural network model is identified for
the LNT. In section 4.5, the D2-MPC for regeneration timing control of the LNT
is presented. And finally, simulation results are given in section 4.6.

62



4.2 – Outline of the Data-Driven Model Predictive Control Approach

4.2 Outline of the Data-Driven Model Predictive
Control Approach

In this section, the data-driven MPC approach is briefly outlined. Within this
approach, a novel strategy will be developed in the following sections, aimed at
LNT regeneration timing control.

Consider a nonlinear discrete-time MIMO system in regression form:

yt+1 = g
(
ut, yt, vt, ξt

)
(4.1)

ut = (ut, . . . , ut−n+1)
yt = (yt, . . . , yt−n+1)
vt = (vt, . . . , vt−n+1)
ξt = (ξt, . . . , ξt−n+1)

where ut ∈ U ⊂ Rnu is the control input, yt = (yt
1, . . . , yt

ny
) ∈ Rny , with yt

i ∈ R,
is the output, vt ∈ V ⊂ Rnv is a measured disturbance, ξt ∈ Ξ ⊂ Rnξ is an
unmeasured disturbance, and n is the system order. U , V and Ξ are compact sets.
In particular, U

.= [u, u] accounts for input saturation. The notation (. . . , . . . , . . .)
is used to indicate a column vector.
Suppose that the system (4.1) is unknown, but a set of measurements is available:

D .=
{
ũt, ỹt, ṽt

}0

t=1−L
(4.2)

where ũt, ṽt and ỹt are bounded for all t = 1−L, . . . ,0. The tilde is used to indicate
the input and output samples of the data set (4.2).
Let Y0 ⊆ Rn be a set of initial conditions of interest, R ⊂ Rny a compact set,
R .= {r = (r1, r2, . . .) : rt ∈ R, ∀t} a set of output sequences of interest, and V .=
{v = (v1, v2, . . .) : vt ∈ V, ∀t} and Ξ

.= {ξ = (ξ1, ξ2, . . .) : ξt ∈ Ξ, ∀t} the sets of all
possible disturbance sequences.

The problem is to control the system (4.1) such that, for any v = (v1, v2, . . .) ∈
V and ξ = (ξ1, ξ2, . . .) ∈ Ξ, and for any initial condition y0 ∈ Y0, the output
sequence y = (y1, y2, . . .) of the controlled system tracks any reference sequence
r = (r1, r2, . . .) ∈ R.

To solve this problem, we propose a data-driven model predictive control (D2-
MPC) approach. The first step of this approach is to identify from the data (4.2)
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a prediction model for the system (4.1) of the form

ŷt+k
i = fk

i (ut, yt, vt) ≡ fk
i (qt, ut)

qt = (ut−1, . . . , ut−n+1, yt, . . . , yt−n+1, vt, . . . , vt−n+1)
(4.3)

where ut, vt and yt are the system inputs and output, ŷt+k
i is the ith predicted

output, i = 1, . . . , n indicates the output component, and k = 1, . . . , kM is the
prediction horizon. For simplicity, this model is supposed of the same order as the
system (4.1) but this is not mandatory. See [50, 16, 48] for indications on the order
choice. The following parametric structure is taken for the model functions fk

i :

fk
i

(
ut, qt, θ

)
=

N∑
j=1

αjϕj

(
ut, qt, βj

)
θ = [α1, . . . , αN β11, . . . , βNq], βj ∈ Rq

(4.4)

where ϕj are basis functions and θ are parameters to be identified. The basis
function choice is in general a crucial step, [65, 28, 51]. In the present D2-MPC
approach, one-hidden layer sigmoidal neural networks are used.
The identification of the parameter vectors θk

i can be carried out as follows. Define

ỹk
i

.= (ỹt1+k
i , . . . , ỹt2+k

i )

Φ .=

⎡⎢⎢⎣
ϕ1 (ũt1 , q̃t1 , β1) · · · ϕN (ũt1 , q̃t1 , βN)

... . . . ...
ϕ1 (ũt2 , q̃t2 , β1) · · · ϕN (ũt2 , q̃t2 , βN)

⎤⎥⎥⎦
where t1

.= 1−L+n, t2
.= −kM , q̃t = (ũt−1, . . . , ũt−n+1, ỹt, . . . , ỹt−n+1, ṽt, . . . , ṽt−n+1),

and ũt, ỹt and ṽt are the input-output measurements of the data set (4.2). The
parameter vector θk

i is obtained solving the following optimization problem:

θk
i = arg min

θ

ỹk
i − Φα


2

(4.5)

Once a model of the form (4.3) has been identified, the command action ut∗ of
the D2-MPC controller is obtained solving on-line the optimization problem

ut∗ = arg minu∈U J (u, f (qt, u))
subject to C (u, f (qt, u)) ≤ 0

(4.6)
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where J is a suitable objective function, C is a function defining the constraints
of the optimization problem and f = (f 1

1 , . . . , fkM
1 , . . . , f 1

n, . . . , fkM
n ). The objec-

tive function and constraints will be specified below for the LNT control problem
considered in this chapter.

4.3 After-treatment System Model

4.3.1 Lean NOx Trap Dynamics

As outlined in the introduction, LNTs work in storage and purge modes. When
the engine is working in lean conditions the emitted NOx are chemically stored in
the LNT. The simplified chemical reactions are the following:

Storage:

NO + 1
2 O2 −−→ NO2

2 NO2 + BaCO3 + 1
2 O2 −−→ Ba(NO3)2 + CO2

Since the storage capacity is limited, the trap needs to be regenerated periodi-
cally. In the purge mode, by injecting extra fuel in the cylinder, a rich condition is
created. In this mode, the stored NOx is released from the trap and then converted
to nontoxic gases such as N2 by the available reductants. The simplified chemical
reactions are the following:

Purge:

Release:

Ba(NO3)2 −−→ BaO + 2 NO2 + 1
2 O2

BaO + CO2 −−→ BaCO3

Conversion:

NO2 −−→ NO + 1
2 O2

NO + CO −−→ CO2 + 1
2 N2

(2 m + n/2)NO + CmHn −−→ mCO2 + (m + n/4)N2 + n/2H2O
NO + 5

2 H2 −−→ NH3 + H2O

More realistically, there are dozens of chemical reactions occurring at the same
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time. Therefore, building a model that accurately captures the NOx storage and
release dynamics is very difficult. As far as the authors are aware, all the existing
methods for modeling the LNT strongly rely on simplistic physical descriptions of
the system dynamics [31, 6, 32]. Such approaches suffer from two main drawbacks:
1) The effects due to simplifying assumptions for the exhaust gas composition and
reaction dynamics; 2) the dynamics of the LNT changes with aging.

In this chapter, according to the D2-MPC approach described in Section 4.2, we
control the regeneration timing of the LNT using a prediction model derived from
data, thus avoiding any under-modeling issue. One advantage of our approach is
that it can be relatively simply made adaptive: by using the sensors that exist on the
vehicle, data can be collected in order to tune on-line the prediction model, in order
to account for the LNT changes with aging. In industrial applications, the required
data are typically generated by a physical plant, through various experiments. In
the present work, a real engine/after-treatment is not available and a detailed
model is used instead. Future activities will focus on the application of our control
approach to a real diesel engine with after-treatment system.

4.3.2 AMEsim Model

A detailed lean burn engine model with after-treatment system was build in
AMEsim, a standard commercial software for modeling, simulation, and analysis of
multi-domain systems. In the AMEsim software, there exist a number of libraries
dedicated to powertrain analysis. In particular, IFP-Drive library is used that is
developed for simulation and analysis of fuel consumption, emissions and vehicle
performance [37]. As it is shown in Figure 4.2, the after-treatment system model is
coupled with a vehicle model that includes a model for a 2L engine, transmission,
powertrain, and driver. The model can be tuned with real engine/after-treatment
data and thus can be considered as a faithful representation of a real plant.

In this chapter, the AMEsim detailed model represents the “true” plant to
control. It will be used to generate the data necessary for D2-MPC design and
also to test all the designed controllers. In particular, the controller tests will be
carried out in AMEsim/Matlab® co-simulation, to reproduce a real-world scenario
in which the plant and the controller are “physically separated”. It is important to
remark that the control design procedure presented below can be applied without
significant modifications also when the plant to control is a real engine and not a
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Figure 4.2: AMEsim vehicle model with after-treatment system.

simulation model.

4.4 Design of Experiments for Lean NOx Trap

The regeneration control strategy that we propose in section 4.5 is based on
the estimation of the amount of NOx stored in the LNT. In order to have efficient
regenerations, the control algorithm predicts the amount of NOx stored in the LNT
and then decides if a regeneration is necessary via optimization. For this reason,
we need to identify a model of the LNT. The first step to identify a model is to
acquire data from the plant. The goal here is to apply the Set Membership DoE
algorithm (SM-DoE) of Chapter 3 in order to minimize the experimental effort and
acquire a rich dataset for identification by capturing the nonlinear behavior of the
LNT in the whole working domain of the system. It is worth mentioning that the
DoE algorithm was implemented with special attention to be as close as possible to
a real scenario, therefore it can easily be applied in a real engine/after-treatment
test bench.
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4.4.1 Simulation Setup

According to Figure 4.3, an engine test bench with after-treatment system
is simulated in AMEsim software. The engine is connected to a dynamometer
which can run the engine to any desired speed. The inputs are the engine speed
command to the dynamometer (uVeng), the load command to the ECU (uLoad) and
a regeneration command to the ECU (uRegen) which is a binary signal that changes
the combustion mode of the engine to a rich mode with fuel-air equivalence ratio
ϕ = 1.2. The outputs that can be measured by the available sensors in the test
bench are LNT wall temperature, fuel-air equivalence ratio (ϕ), exhaust gas flow
rate (ṁEG) and exhaust NOx flow rate (ṁNOx

). Note that the NOx stored quantity
in the LNT cannot be measured directly. However, it can be computed from exhaust
gas composition in the test bench.

Figure 4.3: Test bench simulation setup - AMEsim/Matlab® co-simulation.

4.4.2 Set Membership Design of Experiments

In this section, we implement the set membership design of experiment algo-
rithm which is discussed in Chapter 3.

The goal is to build a simulation model of the NOx stored quantity in the
LNT. Thus, the DoE aim is to acquire a rich dataset for building such model with
possibly low experimental effort. The model is of the form 2.1, with
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yt+1 = f(yt, ut)
u = [uT emp uϕ uṁEG

uṁNOx
]

y : NOx stored quantity
uT emp : LNT wall temperature
uϕ : fuel-air equivalence ratio
uṁEG

: exhaust gas flow rate
uṁNOx

: exhaust NOx flow rate

(4.7)

As mentioned in section 4.4.1, the test bench inputs that can be manipulated
are uVeng , uLoad, uRegen. Thus, none of the model inputs u can be manipulated
directly as it is required by the DoE algorithm. However, the three inputs uϕ,
uṁEG

, uṁNOx
are functions of engine speed, load command and combustion mode

which are available from the engine lookup tables. Three sets of data is available
for this engine for three combustion modes; stoichiometric ϕ = 1, lean ϕ < 1 and
rich ϕ = 1.2 modes.

Teng = fT (Veng, Lcmd, Cmode)
ϕ = fϕ(Veng, Teng, Cmode)

ṁEG = fṁEG
(Veng, Teng, Cmode)

ṁNOx = fṁNOx
(Veng, Teng, Cmode)

(4.8)

where Veng is the engine speed, Teng is the engine torque, Lcmd is the load command
to the ECU and Cmode is the combustion mode. Therefore, by generating uVeng ,
uLoad, uRegen we can directly manipulate inputs of the model (4.7).
The SM-DoE algorithm is performed on the system according to the scheme shown
in Figure. 4.4, 4.3.

The regressor domain of interest W and the pseudo-state is constructed as
following
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wt =[yt ut
T emp ut

ϕ ut
ṁEG

ut
ṁNOx

].
xt =[yt ut

T emp].
W .={w1, w2 : 0 ⩽ w1 ⩽ 2.5, 20 ⩽ w2 ⩽ 430,

w3, w4, w5 : 700 ⩽ uVeng ⩽ 4000, 0 ⩽ uLoad ⩽ 100, uRegen ∈ {0,1}}.

X .={x1, x2 : 0 ⩽ x1 ⩽ 2.5, 20 ⩽ x2 ⩽ 430}.

(4.9)

w1, x1 is the NOx stored quantity which can be between 0 and 2.5 grams, w2, x2

is the LNT temperature which can be between 20◦C and 430◦C. The other three
inputs can have specific values depending of the engine speed, load and regeneration
command according to the engine maps eq.(4.8).

Please note that regardless of the DoE method, the first input that is the tem-
perature of the LNT cannot be manipulated. Once we start an experiment with an
initial LNT temperature and an initial NOx stored quantity in the LNT, it is impos-
sible to reach some regions of the regressor domain (Assumption 3 is not satisfied).
For example, imagine the experiment is started with the LNT temperature equal to
the ambient temperature and NOx stored quantity equal to zero. i.e. xt = [0 30].
It takes a certain amount of time for the LNT to store NOx, and in the meanwhile,
the LNT temperature will rise. Thus, it is impossible to take any measurement
where the LNT temperature is equal to the ambient temperature and NOx stored
quantity other than zero e.g. xr = [1 30].

In order to overcome this issue, one solution is to split the DoE into multiple
experiments, and each experiment starts with an initial LNT temperature and
initial NOx stored quantity which has the maximum radius of information at the
end of the previous experiment. Therefore, we can be sure all the regressor domain
is somehow reachable. This is also possible to be applied in a real test bench where
we can wait for the LNT to cool down between experiments.

The SM-DoE is applied to the system according to Figure 4.4 and Algorithm
7 of Chapter 3 which is repeated here as Algorithm 8 for the ease of the reader.
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Figure 4.4: Set Membership Design of Experiments for LNT.

Algorithm 8 Dynamic Set Membership DoE for LNT

1. Select a reference regressor wr to be visited which has a high uncertainty and
its equivalent pseudo-state is close to the estimated state.

wr, xr = arg min
wr∈W,xr∈X

(
x̂t+1 − xr


2

+ δ

fe(wr)) (4.10)

2. Compute Xr according to (3.17) with a suitable λ.

3. Apply the following criterion:

if x̂t+1 ∈ Xr

then ut = ur ∈ wr

else ut = K(xr, xt)

4. Apply the input to the plant and take the measurement i.e. ỹt+1 = fo(w̃t) =
fo(xt, ut)

5. Add ỹt+1 and w̃t to the dataset D := D ∪ {ỹt+1, w̃t}.

6. Update γ and Γ according to Algorithm 4.

7. Set t = t + 1 and go to step (1).

In step three the control law indicated as ut = K(xt, xr) means solving (3.21)
and applying the first element of the maximizer U i∗

t as control action ut∗. Imple-
menting this SMPC controller is computationally expensive therefore in this exam-
ple we propose the following controller that is more computationally tractable.
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ut = K(xr, xt) = arg min
u∈U

(∥x̂t+k − xr∥2 − α
k∑

τ=1
fe(ŵt+τ )). (4.11)

where x̂t+k, ŵt+τ are the multi-step central estimate according to Equation
(3.12), k is the prediction horizon and α is a tuning variable.

In the next section, a neural network model for the LNT has been identified
using the data generated by the SM-DoE algorithm. For comparison, another set
of data was also generated as follows. 20 experiments each one for a duration of
500 seconds starting with a random initial LNT temperature and initial NOx stored
quantity. For inputs uVeng , uLoad, two APRBS signals with a random distribution
of the design points were used. And for the input uRegen 10 random regenerations
were performed for each experiment. (A total of 20000 samples data including 200
regenerations).

Table 4.1 shows the radius of information of the data generated by the SM-
DoE algorithm and the data generated by the APRBS-Random strategy. Despite
the fact that the duration of the SM-DoE experiment is much shorter i.e. much
less experimental effort, the radius of information is much lower. Therefore, we can
expect the model identified from SM-DoE data to be much more accurate which is
shown in the next section.

Table 4.1: Radius of information of the data generated by SM-DoE and APRBS-
Random input sequence.

Inputs Duration (Samples) R∞
I R2

I

APRBS-Random 20000 1.03 0.22
SM-DoE 3000 0.36 0.07

4.4.3 NOx Stored Quantity Estimation Model

Two neural network NARX models were identified using the set of data gener-
ated by the SM-DoE algorithm and the data generated by APRBS-Random strat-
egy. The model is of the form (4.3), with

• ŷt+k : predicted amount of NOx stored in the LNT,
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• vt = (ut
T emp ut

ϕ ut
ṁEG

ut
ṁNOx

): measured inputs,

• yt = (ŷt, . . . , ŷt−n+1), where the ( .̂ ) indicates the output values predicted by
the model in the previous time steps,

• k = kM = 1.

• n = 1,

• sampling time = 0.5 s.

Note that the model uses the output values predicted in the previous time
steps by the model itself, and thus works in simulation. As mentioned earlier, the
reason is that we assume yt cannot be measured in normal operating conditions, as
it happens in standard LNT configurations.

In order to assess the quality of each model, the models were validated on
another set of data not used for identification. The validation dataset was generated
as follows. 10 set of data each one with a duration of 1180 seconds during the NEDC
driving cycle with random initial LNT temperature and random initial NOx stored
quantity and 10 random regenerations (A total of 23600 samples including 100
regenerations). The following accuracy indexes were considered to evaluate the
models accuracy:

RMSE = ∥ỹ − ŷ∥2 /
√

N

FIT = 100
(

1 − ∥ỹ − ŷ∥2
∥ỹ − mean(ỹ)∥2

) (4.12)

where ỹ indicates the measured output sequence and ŷ is the simulated output
sequence and N is the length of these two sequences.

As it is shown in Table 4.2, the model that is identified from SM-DoE data is
significantly more accurate with much less amount of data.

Table 4.2: Accuracy of the models identified from SM-DoE and APRBS-Random
data.

Inputs Duration (Samples) RMSE FIT R∞
I R2

I

APRBS-Random 20000 0.11 ± 0.12 0.65 ± 0.49 1.03 0.22
SM-DoE 3000 0.03 ± 0.007 0.90 ± 0.03 0.36 0.07
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In the remaining of this chapter the model is referred to the one that is iden-
tified form SM-DoE data. Figure 4.5, shows the simulation accuracy of the model
validated using the NEDC driving cycle with zero initial NOx stored quantity, 30◦C

initial LNT temperature, and 10 random regenerations. The obtained model FIT
is 93% with a root-mean-square error (RMSE) of 0.03.

Figure 4.5: Validation of the NOx stored quantity simulation model during the
NEDC driving cycle.

4.5 Regeneration Timing Control: Data-Driven
Model Predictive Control

In order to regenerate the LNT, extra fuel is injected in the cylinder to create
a rich condition, and this causes a higher fuel consumption. A great challenge is to
determine the best timing for regeneration in order to reduce the fuel consumption
and the NOx emissions. To accomplish this task, we consider the following criteria:

• Reducing the amount of extra fuel used for the regeneration of the LNT;

• Maximizing the amount of NOx removed from the trap in each regeneration;

• Keeping the tailpipe NOx emissions below a given level (defined on the basis
of the government regulation holding in the country of interest).

To formalize these criteria, we first need to specify the form of the LNT com-
mand input ut. As explained above, this command is the LNT regeneration trigger,
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i.e., a binary variable enabling the regeneration when equal to 1 and disabling it
when equal to 0 (changing the combustion mode of the engine to a rich mode).
Hence, ut can be defined as

ut =
{

0 t < t1, t > t2

1 t1 ≤ t ≤ t2
(4.13)

where t1 and t2 are the regeneration start and stop times, respectively. These times
determine the regeneration timing and are the control variables to choose at each
time step in order to satisfy the above three criteria.

The first criterion is as follows. The amount of extra fuel used for the regen-
eration of the LNT is said the fuel penalty and is defined as

FP (t1, t2) =
t2∑

t=t1

(
ϕt

reg − ϕt
eng

) ṁt
EG

AFRstoich

ṁt
EG : mass air flow rate (g/s)

AFRstoich : stoichiometric air fuel ratio
ϕt

reg : fuel-air equivalence ratio during regeneration
ϕt

eng : fuel-air equivalence ratio without regeneration

(4.14)

The first criterion thus consists in minimizing, at each time t, FP (t1, t2) with
respect to (t1, t2).

Note that as discussed later in this section, the control algorithm predicts the
fuel penalty of a regeneration. Since ṁt

EG and ϕt are known functions of engine
speed and engine torque (4.8), this prediction is done by assuming linear trend
models for engine speed and engine torque as shown in equation (4.15).

V t+k
eng = V t

eng + k(V t
eng − V t−1

eng ),
T t+k

eng = T t
eng + k(T t

eng − T t−1
eng ).

(4.15)

Then, ṁt
EG and ϕt in the receding horizon are obtained as functions of V t

eng and
T t

eng by the engine maps that are available on the ECU (4.8).

The second criterion can be formalized as follows. Using the prediction model
identified in section 4.4.3 for the NOx stored quantity, the amount of NOx that is
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removed from the trap is estimated by the following quantity:

ŷt+t1 − ŷt+t2 (4.16)

The second criterion is thus maximizing, at each time t, ŷt+t1 − ŷt+t2 with respect to
(t1, t2). Note that, as explained in Section 4.4.3, the prediction model for yt works
in simulation. Hence, the multi-step prediction in (4.16) is obtained via simulation.

The first and second criteria can be combined to have a unique criterion, that
is minimizing with respect to (t1, t2) the following objective function:

J (t1, t2) ≡ J (t, t1, t2) = FP (t1, t2)
ŷt+t1 − ŷt+t2

. (4.17)

The third criterion can be addressed by imposing a constraint on the cost
function J (t1, t2), which gives a tradeoff between fuel penalty and tailpipe NOx
emissions.

The final regeneration command is obtained by Algorithm 9.

Algorithm 9 LNT Regeneration Timing Control
1: Compute V t+k

eng , T t+k
eng for k ∈ [0, KM ] according to (4.15).

2: Solve optimization problem:

(t∗
1, t∗

2) = arg min
0≤t1<t2≤kM

J (t1, t2) (4.18)

by computing ϕt+k, ṁt+k
EG , ṁt+k

NOx according to (4.8) that is a function of V t+k
eng ,

T t+k
eng , t1 and t2. And, by simulating the LNT model starting from ŷt to ŷt+k.

3: if J (t∗
1, t∗

2) ⩽ Threshold then
4: u∗ = ut

5: else
6: u∗ = 0
7: end if
8: Set t = t + ts and go to step (1).

where Threshold is a bound imposed to have not too high values of the objective
function. In practice, the Threshold is a design parameter tunable to achieve the
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desired performance. As it is shown in Figure 4.8.

The prediction horizon kM = 5 seconds was chosen by means of a trial and
error procedure: it was observed that larger values of kM do not provide a better
performance and require a bigger computational effort. The control sampling time
is ts = 0.5 second, implying that the optimization problem (4.18) is solved every
0.5 second. Note that this task can be accomplished quite easily, since both t1

and t2 can assume only 10 values and t2 > t1, so that the maximum number of
function/constraint evaluations needed at each time step to find the global solution
is non-larger than 55. The D2-MPC and the plant scheme is shown in Figure 4.6,
4.7.

Figure 4.6: Plant scheme for regeneration timing control.
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Figure 4.7: D2-MPC scheme for regeneration timing control.

4.6 Simulation Results

As discussed above, the aim of the regeneration timing control is to minimize
the fuel consumption and convert the NOx trapped inside the catalyst to N2 as
much as possible.

The detailed lean burn engine model with after-treatment system of Section
4.3.2, developed in AMEsim was assumed to be the real plant to control (see Fig-
ure 4.6). The D2-MPC controller was implemented in Matlab®/Simulink. A co-
simulation AMEsim/Matlab® was carried out, with the AMEsim model connected
in feedback with the controller implemented in Matlab®/Simulink (see Figure 4.7).
The NEDC driving cycle was considered for this simulation.

Figure 4.8 shows the performance of the controller for different threshold values
of the Algorithm 9 where the threshold value 0.4 shows a good tradeoff between
fuel penalty and tailpipe NOx emissions.

Figure 4.9 shows the regeneration trigger timing, the NOx stored quantity, the
catalyst temperature, and the tailpipe NOx emissions. The first thing to notice
is the accuracy of the model which is very close to the actual NOx stored quan-
tity in the LNT. The second thing to notice is the considerable amount of NOx
removed from the trap with short regenerations which is an indication of efficient
regenerations. From the dynamics of the LNT, we know that when the LNT tem-
perature is low, the regenerations are not efficient, therefore it can be seen that no
regenerations were made when the LNT temperature is below 200◦C.
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Figure 4.8: D2MPC controller with different threshold values during the NEDC
driving cycle.

As discussed in section 4.4.3, the LNT model works in simulation. Therefore,
the initial state of the NOx stored quantity is important for the model simulation.
However, because of the dynamics of the LNT, regardless of the initial state, the
estimated NOx stored quantity gets very close to the real value in a short amount
of time. Figure 4.10 shows the D2MPC controller with the LNT model starting
from a wrong initial state value. If we compare Figure 4.10 with Figure 4.9, we can
see the first three regenerations were not efficient because the controller thinks the
LNT is nearly full. However, the overall performance of the controller is not much
different from the case where the initial state is the true value. As it is shown in
Figure 4.11.

Three other controllers were implemented for comparison:

• Ideal MPC: MPC controller, where a perfect knowledge of the plant is as-
sumed so that the model used for prediction and optimization is the exact
plant model. Clearly, this is an ideal strategy that can never be applied in
a real situation. In our study, this ideal strategy is important to individuate
the maximum performance that can be reached.

• Controller 3: MPC controller taken from [27]. This is a nonlinear MPC, with
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Figure 4.9: AMEsim/Matlab® simulation during the NEDC driving cycle (Fig 4.6)
with D2MPC controller.
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Figure 4.10: AMEsim/Matlab® simulation during the NEDC driving cycle (Fig 4.6)
with D2MPC controller starting from a wrong initial NOx stored quantity.
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a 10 second prediction horizon. The cost function is only the fuel penalty
and a constraint on the cumulative NOx emissions and LNT temperature is
imposed.

• Controller 4: Simple threshold-based controller. In this strategy, the regen-
eration starts when the tailpipe NOx and LNT temperature are higher than
a threshold (NOx ≥ 10mg/s, T ≥ 150◦C).

Figure 4.11 shows the performance of the D2MPC controller compared with
the Ideal MPC and also with the D2MPC starting with a random initial state. It
is evident that the performance of the Ideal MPC is very close to the D2MPC.

Figure 4.11: Comparison of the Ideal MPC performance with the proposed D2MPC
controller.

The results of Table 4.3, indicate that the first two controllers have an almost
identical performance. A surprising result is given by Controller 3. Although the
objective function consists only of the fuel penalty, this controller gives a higher
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fuel consumption with respect to the proposed controllers. This result is due to the
fact that the regeneration efficiency is not considered in the cost function and the
regenerations continue until the amount of NOx stored quantity reaches a minimum
level, leading to longer regenerations.

Table 4.3: Fuel penalty and NOx emissions for NEDC driving cycle with cold start.

Controller Fuel Consumption (g) Fuel Penalty (g) Tailpipe NOx Emissions (g)
Without controller 654.5 0 3.021
D2-MPC 656.1 1.56 0.962
Ideal MPC 655.6 1.14 1.013
Controller 3 662.0 7.5 1.029
Controller 4 675.5 21 2.728

In summary, the proposed D2-MPC strategy show very efficient regenerations
with a minimum fuel penalty. In particular, the provided values for these two
performance indexes are very close to those provided by the ideal strategy, based
on the exact model. On the other hand, the other two strategies provide fairly
efficient regenerations, at the expense of quite high fuel penalties. We can conclude
that the proposed D2-MPC strategy shows a great performance in terms of fuel
consumption and NOx emission reduction.

4.7 Conclusion

The increasing demand for higher torque, reduced fuel consumption and emis-
sions has led to more complex engine and after-treatment designs with more actu-
ators and sensors which are more difficult to model, calibrate, and control. Consid-
ering the expensive operating costs of the engine/after-treatment test benches, and
increasing demand for accurate dynamic models, DoE plays a critical role in auto-
motive applications. In this chapter a novel data-driven model predictive control
(D2-MPC) approach for regeneration timing of the LNT has been proposed, allow-
ing to overcome several significant issues of “standard” techniques. In particular,
the D2-MPC approach does not require a physical model of the plant to control
but is based on a neural network model, directly identified from experimental data
generated by the Set Membership DoE algorithm. The regeneration timing is com-
puted through suitable optimization algorithms, which use the identified models to
predict the LNT behavior. In this way, all problems due to the fact that LNTs are
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highly complex systems difficult to model are overcome. The D2-MPC approach
was tested in a co-simulation study, where the plant is represented by a detailed
LNT model, developed using the well-known commercial tool AMEsim, and the
controller is implemented in Matlab®/Simulink.
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Chapter 5

Set Membership Fault Detection
for Nonlinear Dynamic Systems

5.1 Introduction

In this chapter, an innovative approach to fault detection for nonlinear dynamic
systems is proposed, based on the introduced quasi-local set membership identifica-
tion method in Chapter 2, overcoming some relevant issues proper of the “classical”
techniques. The approach is based on the direct identification from experimental
data of a suitable filter and related uncertainty bounds. These bounds are used to
detect when a change (e.g., a fault) has occurred in the dynamics of the system of
interest. The main advantage of the approach compared to the existing methods
is that it avoids the utilization of complex modeling and filter design procedures
since the filter/observer is directly designed from data. Other advantages are that
the approach does not require to choose any threshold (as typically done in many
“classical” techniques) and it is not affected by under-modeling problems. An ex-
perimental study regarding fault detection for a drone actuator is finally presented
to demonstrate the effectiveness of the proposed approach.

Consider a discrete-time nonlinear system in state-space form:

zt = fo

(
zt−1, ut−1

)
+ dt

yt = zt
i

(5.1)
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where zt ∈ Rnz is the state, yt ∈ R is the output, zt
i is a component of zt, ut ∈ Rnu

is the input, dt ∈ Rnd is a bounded disturbance and t = 0,1,2, . . . is the discrete
time index. Assume that the input ut and the state zt are measured. Note that
the assumption of measuring the state is not strictly necessary: the fault detection
approach proposed in the following can be applied with minor modifications using
an input-output system representation, see Remark 6 below.

A “classical” approach to fault detection is to identify a model of the system
(5.1) and to design a filter/observer on the basis of the identified model. The
designed filter/observer is then used to generate online a suitable residual signal.
The fault is detected when the residual exceeds a given threshold, see e.g. [78, 53,
20, 55, 29, 15, 35, 63, 8, 54]. However, the design of the filter/observer may be
hard in the presence of nonlinear and/or uncertain dynamics. Indeed, designing an
optimal filter from a nonlinear model is in general not possible, and approximate
filters only, such as the extended Kalman filters, can be actually obtained. These
kinds of filters may often be inaccurate and not even guarantee the estimation
error stability. Moreover, the choice of the threshold may be critical, especially
when poor prior information on the system is available. Another relevant issue is
that, in real-world applications, the system (5.1) is unknown and only approximate
models can be identified from finite data; evaluating the effects of the modeling
error on the estimation error of the filter designed from the approximated model is
a largely open problem.

Set membership fault detection methods have been introduced to efficiently
deal with modeling errors, [1, 56, 60, 3, 58, 69, 70]. These methods have been
mainly developed for linear systems, while only a few of them deal with nonlinear
systems, [58, 69, 70]. Typically, in set membership methods, a suitable estimation
interval is computed online and the fault is detected when one or more measured
variables fall outside this interval.

In this chapter, following this set membership philosophy, an innovative ap-
proach to fault detection is considered, allowing us to overcome the above issues.
The main advantage of this approach compared to the existing methods (“classical”
and set membership) is that it avoids the utilization of difficult filter design pro-
cedures since the filter/observer is directly designed from data. Other advantages
with respect to the “classical” methods are that the approach does not require to
choose any threshold and it is not affected by modeling errors since no model is
used. A further interesting feature is that the approach is computationally simple,
in both the design and implementation phases.
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The method proposed in this chapter represents an improvement with respect
to the one of [49]. Indeed, in [49], filter design is performed by means of the so-called
local nonlinear set membership identification method, where the filter is obtained
in the form of a linear combination of given basis functions. In this chapter, a so-
called quasi-local method is presented, where no filter parametric form needs to be
assumed. The filter is obtained directly from experimental data in a non-parametric
closed form, thus not requiring the choice of a suitable set of basis functions. Such
a quasi-local approach is similar to the so-called global approach of [39] but leads
to the derivation of significantly less conservative uncertainty bounds.

The chapter is organized as follows. In section 5.2 the fault detection problem is
formulated in the set membership framework and a summary of the fault detection
procedure is given. In section 5.3, the method is tested on a drone propeller in a
real experimental setting.
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5.2 Nonlinear Set Membership Fault Detection

Suppose that the function fo in (5.1) is not known but a set of noise corrupted
data is available, given by

D =
{
x̃t, ỹt

}T

t=1
(5.2)

where x̃t .= (z̃t−1, ũt−1). The proposed fault detection approach consists of the
following main steps. First, a set membership filter for the system (5.1) is defined
from the dataset (5.2) which gives us tight bounding functions f and f , such that

f
(
x̃t
)
⩽ fo,i

(
x̃t
)
⩽ f

(
x̃t
)

, ∀t.

Then, a fault detection system F is defined, on the basis of the bounding functions
f and f . The inputs of F is x̃t .= (z̃t−1, ũt−1), the outputs are the following:

yt .= f (x̃t) + εt

yt .= f (x̃t) − εt

}
k > L. (5.3)

where εt is a bound on the noise dt affecting the system. It is shown in Chapter
2 how to construct the functions f and f and to properly choose the involved
parameters (e.g., εt). The rationale behind this fault detection scheme can be
explained as follows.

Since ỹt = fo,i (x̃t) + dt, we have that ỹt ⩽ yt, ∀t. Similarly, it holds that
ỹt ⩾ yt, ∀t. It follows that ỹt > yt or ỹt < yt only if the function fo has changed,
i.e. only if some structural change has occurred in the system (5.1). On the basis
of this result, fault detection is performed by checking online if ỹt > yt or ỹt < yt:
a fault is detected as soon as one of these two inequalities is satisfied.

Remark 6. If the system state is not measured, the following input-output repre-
sentation can be considered:

yt = fo (xt) + dt

xt = (yt−1, . . . , yt−ny , ut−1, . . . , ut−nu) (5.4)

where yt ∈ Rny is the measured output, ut ∈ Rnu is the measured input and
dt ∈ Rnd is an unknown bounded disturbance. Note that the function fo in (5.4)
is different from the one in (5.1). The proposed fault detection approach can be
applied considering this representation without significant modifications.

Remark 7. The proposed fault detection approach can be applied to each state

88



5.2 – Nonlinear Set Membership Fault Detection

component (or output component, in the case where the input-output representa-
tion (5.4) is used), in order to obtain a multi-dimensional fault detection system, al-
lowing us to improve the detection performance with respect to a mono-dimensional
case.

5.2.1 Set Membership Fault Detection Procedure

The main steps of the proposed Set Membership fault detection method are
now summarized.

Offline operations

1. Define the measurement dataset D according to (5.2).

2. Estimate the noise bound µ according to Algorithm 3.

3. In the case of the local approach, estimate a preliminary approximation f∗

according to Algorithm 1 or 2.

4. Estimate the Lipschitz parameters according to Algorithm 4. In the case of the
global approach, compute Γ̂; in the case of the quasi-local approach, compute
γ̂(x); in the case of the local approach Γ̂∆.

Online operations

1. At each time step:

If ỹt > f(x̃t) + εt or ỹt < f(x̃t) − εt

Then Fault = 1
Else Fault = 0

2. In the case of the adaptive algorithm, update the set membership model ac-
cording to Algorithm 5 if no fault has accrued in the system and the system
is not recovering from a fault.

Regarding the online operations, since the set membership model describes
the normal dynamic behavior of the system, it has to be updated when no other
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dynamics are involved. In other words, during a fault or immediately after a fault
the measurements correspond to an abnormal behavior of the system and therefore
they are not suitable for updating the model.

5.3 Example: Fault Detection for a Drone Actu-
ator

In this example, the proposed fault detection algorithms were tested on a real
drone actuator, in a laboratory experimental setup. The actuator is composed of
three main components: a brushless DC motor, a driver and a propeller. The
motor makes the propeller rotate and this rotation produces the required thrust
and torque to drive a drone. The torque produced by the motor is given by

T = Kt(I − I0) (5.5)

where T is the motor torque, I is the input current, I0 is the current when there
is no load on the motor and Kt is the torque constant of the motor. The voltage
across the motor is given by

V = RmI + Lm
dI

dt
+ Keω (5.6)

where V is the voltage drop across the motor, Rm and Lm are the motor resistance
and inductance, respectively, and Ke is the motor speed constant. The motor is
attached to a propeller, and therefore we have

T = Bmω + (Jm + Jp)dω

dt
+ TD (5.7)

where Bm is the motor friction, ω is the motor angular speed, Jm and Jp are the
motor and propeller moments of inertia, respectively, and TD is the propeller drag
torque, given by

TD = CpρD5ω2 (5.8)

where Cp is the propeller power coefficient, ρ is air density and D is the propeller
diameter. The power coefficient Cp is a nonlinear function of the propeller speed,
which is difficult to derive from the geometric shape of the propeller [11].
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5.3.1 Experimental Setup

A brushless DC motor (RIMFIRE.10) attached to a propeller (APC 10x4.7p)
is connected to a driver and a 200 watt power supply. The input command of the
driver is a PWM signal with a duty cycle proportional to the voltage across the
motor. An encoder is attached to the back of the motor, to measure the angular
speed of the propeller. The input command signal and the encoder are connected
to a PC running Matlab® through a National Instrument data acquisition device
(PCI-6289). Data acquisition and online fault detection were carried out using the
Simulink Desktop Real-Time. The drone actuator system is shown in Figure 5.1.

Figure 5.1: Drone Actuator.

5.3.2 Nonlinear Set Membership Fault Detection

In order to identify a model, an experiment was carried out, where an ampli-
tude modulated pseudo random binary sequence (APRBS) command input with
a duration of 100 seconds was applied to the actuator. From this experiment, a
set of data was collected, using a sampling time of Ts = 0.05s. The dataset was
divided into an identification set, composed by the first 1000 data and a validation
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set, composed by the remaining 1000 data. See Figure 5.2(a). The measurement
set was defined according to (5.2) as follows:

D =
{
x̃t, ỹt

}1000

t=4

x̃t = [ỹt−1 ỹt−2 ũt−2 ũt−3]
(5.9)

To evaluate the performance of the fault detection algorithm, a second experiment
was carried out using another APRBS input command that was not used for iden-
tification nor validation. This second experiment had a duration of 30 seconds and
during this experiment, in order to introduce a fault scenario, a sheet of paper was
placed between the blades, approximately every 3 seconds, for a total of 8 times.
In Figure 5.2(b), the fault occurrences are denoted by the circles. During this
experiment, the following fault detection algorithms were running online.

Figure 5.2: (a) First experiment used for identification, (b) second experiment
online fault detection test (black circles are where the faults have occurred).
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Global Approach

A nonlinear set membership model was obtained assuming a global constant
bound on the function gradient according to section 2.3. A constant Lipschitz pa-
rameter Γ = 0.7 and a noise bound µ = 15 were estimated according to Algorithms
3 and 4. The model was tested in simulation on the validation set and the root
mean square simulation error (RMSE) was 42 RPM. Then, the fault detection algo-
rithm was applied online, as discussed above. Figure 5.3 shows the model intervals
and the bound violations. The model was able to detect seven out of eight faults.

Figure 5.3: Global Approach; Black lines, f + µ, f − µ. Red line, ỹ. Circles, bound
violation.

Quasi-Local Approach

A nonlinear set membership quasi-local model was obtained according to sec-
tion 2.5. A quasi-local Lipschitz parameter γ was derived according to Algorithm
4. The model was tested in simulation on the validation set and the RMSE was 30
RPM. Then, the fault detection algorithm was applied online, as discussed above.
Figure 5.4 shows the model intervals and the bound violations. The model was able
to detect all the eight faults.
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Figure 5.4: Quasi-Local Approach; Black lines, f + µ, f − µ. Red line, ỹ. Circles,
bound violation.

Local Approach

A preliminary approximation f∗ was derived according to Algorithm 1, using
polynomial basis functions up to degree 5. No improvements were observed consid-
ering higher degrees. The number of basis functions in (2.29) is 81 where, due to
ℓ1 sparsification, only 33 have a non-null coefficient. The nonlinear set membership
local model was obtained according to section 2.4. A Lipschitz parameter Γ∆ = 0.2
was derived according to Algorithm 4. The model was tested in simulation on the
validation set and the RMSE was 23 RPM. Then, the fault detection algorithm was
applied online, as discussed above. Figure 5.5 shows the model intervals and the
bound violations. The model was able to detect all eight faults.

Figure 5.5: Local Approach; Black lines, f + µ, f − µ. Red line, ỹ. Circles, bound
violation.
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5.4 Conclusions

A novel fault detection approach, based on set membership interval estimates,
has been presented, allowing us to overcome several problems of the standard tech-
niques. Its effectiveness has been demonstrated in a laboratory study, related to
fault detection for a real propeller.
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Chapter 6

Discussion and Conclusions

The main goal of the current study was to develop a general systematic method-
ology for design of experiment for nonlinear systems that can be applied to a wide
range of systems and applications.

The first main contribution of this thesis is the proposed quasi-local nonlinear
set membership method. Even though nonlinear set membership is a quite powerful
method, in some situations a global constant bound on the gradient of the function
is too conservative, resulting in high uncertainty bounds. In the proposed quasi-
local set membership approach, instead of a global constant bound on the gradient
of the function, a quasi-local bound is assumed. Therefore, the uncertainty bounds
are less conservative. Also unlike the local nonlinear set membership, this quasi-
local approach does not require a preliminary estimate of the function.

The second main contribution of this thesis is a novel DoE algorithm for input-
constrained MISO nonlinear systems. As discussed in Chapter 3, a key element to
design a proper DoE algorithm is understanding which are the regions of the regres-
sor space where the model is most uncertain. Set membership identification allows
us to properly quantify the uncertainty of the identified model in a deterministic
manner. Therefore, we formulated the DoE problem in a set membership framework
using the proposed quasi-local nonlinear set membership approach. However, know-
ing where the model is most uncertain is not sufficient. Since the unknown system is
dynamic, the DoE algorithm has to be able to generate an input sequence such that
the system moves toward those uncertain regions of the regressor space, in order
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to take new measurements. For this reason, we propose a novel adaptive Set Mem-
bership Predictive Control (SMPC) algorithm to move the system toward the most
uncertain regions of the regressor space and take new informative measurements.
Finally, a Set Membership DoE (SM-DoE) algorithm for input-constrained MISO
nonlinear dynamic systems is proposed which is aimed to minimize the so-called
radius of information, a quantity giving the worst-case model error. The proposed
SM-DoE algorithm is able to guarantee any desired worst-case error larger than
the measurement error in a finite-time experiment. Applications of the proposed
method are clearly most useful in areas where experiments are expensive and/or a
very accurate model is desired. Two numerical examples and a case study in the
automotive field are also presented, showing the effectiveness of the approach and
its potential in view of real-world applications.

The third main contribution of this thesis is an innovative approach to fault
detection for nonlinear dynamic systems, based on the introduced quasi-local set
membership identification method, overcoming some relevant issues proper of the
“classical” techniques. The approach is based on the direct identification from
experimental data of a suitable filter and related uncertainty bounds. These bounds
are used to detect when a change (e.g., a fault) has occurred in the dynamics of
the system of interest. The main advantage of the approach compared to the
existing methods is that it avoids the utilization of complex modeling and filter
design procedures since the filter/observer is directly designed from data. Other
advantages are that the approach does not require to choose any threshold (as
typically done in many “classical” techniques) and it is not affected by under-
modeling problems. The set membership fault detection approach can also be
made adaptive which is very useful in systems where the dynamics change over
time.

As discussed in Chapter 4, the findings of this study have a number of practical
applications. The increasing demand for higher torque, reduced fuel consumption,
and emissions has led to more complex engine and after-treatment designs with
more actuators and sensors which are more difficult to model, calibrate, and con-
trol. Considering the expensive operating costs of the engine/after-treatment test
benches, and the increasing demand for accurate dynamic models, DoE plays a
critical role in automotive applications.

The most important limitation of the set membership method, in general,
is the need of storing the measurement dataset on the memory which could be
problematic in systems with high dimension and/or size of the regressor space.
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Also, the computation effort of the optimal bounds increases linearly by the size of
the measurement dataset. Notwithstanding this limitation, as discussed in Chapter
2, the study suggests that the measurements to be stored only where the error is
larger than a value which will result in a reduced size measurement dataset.

Regarding the proposed DoE algorithm, a difficult part is the computation of
the set S which is required by the SMPC algorithm and makes it computationally
expensive and hard to implement in fast dynamic systems. For this reason, in
Chapter 4, a different cost function for the controller is used which is easy to
compute but it doesn’t have the theoretical guarantees of Chapter 3.

Despite the practical applications and limitations of the proposed approach
that has been discussed so far, I believe this study lays the groundwork for future
research on autonomous learning and data-driven control algorithms. There has
been a lot of research focusing on learning algorithms from data, where, the data is
provided by a user and the computer cannot experiment, collect data, and conse-
quently learn by itself. Experiments are an inseparable part of the learning which
us humans do all the time naturally. Imagine riding a bicycle, we instinctively ex-
periment with the bicycle, fall down a couple of times and ultimately, create neural
paths and muscle memory to control the bicycle. Now imagine a future that robots
need to interact with the environment and perform some control tasks where mod-
eling and designing a controller is not possible by a human user and the robot has
to make sense of the environment by itself not only by detecting objects but also
by modeling and controlling them autonomously. The robot could run experiments
on the system, model, and then create a data-driven controller. The fault detection
algorithm can also be integrated into the experiment algorithm or used separately
in order to have an understanding of the normal behavior of a system.
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