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Abstract—Functional Safety standards like ISO 26262 require
a detailed analysis of the dependability of components subjected
to perturbations. Radiation testing or even much more abstract
RTL fault injection campaigns are costly and complex to set
up especially for SoCs and Cyber Physical Systems (CPSs)
comprising intertwined hardware and software. Moreover, some
approaches are only applicable at the very end of the development
cycle, making potential iterations difficult when market pressure
and cost reduction are paramount. In this tutorial, we present a
summary of classical state-of-the-art approaches, then alternative
approaches for the dependability analysis that can give an early
yet accurate estimation of the safety or security characteristics
of HW-SW systems. Designers can rely on these tools to identify
issues in their design to be addressed by protection mechanisms,
ensuring that system dependability constraints are met with
limited risk when subjected later to usual fault injections and
to e.g., radiation testing or laser attacks for certification.

I. INTRODUCTION

In the recent years, many application domains have seen
functional safety added to their classical list of design con-
straints [1]. In addition to traditional areas such as space or
avionics, the ISO 26262 standard for automotive defined many
safety requirements, increasingly important to go towards
autonomous vehicles [2]. Similar standards are evolving in
other areas such as railways, medical devices, or industrial
devices and machinery (ISO/IEC/DO standards).

To focus by example on automotive, providing sufficient
evidence for an Automotive Safety Integrity Level (ASIL)
qualification requires a time- and resource-consuming process,
today involving state-of-the-art fault injection approaches.
When security is (also) a constraint, similar approaches are re-
quired to evaluate the robustness versus fault-based attacks that
take advantage of computation errors to recover secrets [3],
[4], [5].

No matter the final goal (safety, security, etc.) engineers
need to get an evaluation of the effect of errors in their circuit
as early as possible. In some cases, classical fault injection
approaches applied at the Register-Transfer-Level (RTL) can
be replaced by other approaches in order to early evaluate
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the level of robustness achieved, taking into account a given
hardware architecture and/or an application software.

This paper summarizes the challenges related to a fast but
accurate early evaluation of dependability in a cross-layer
scenario, from hardware to software, discussing the most usual
up-to-date approaches. The paper starts by presenting state-
of-the-art fault injections techniques using either simulation
or emulation and then moves to several complementary alter-
native approaches that try to avoid costly fault injections at
each modification of the global system but are still accurate
with respect to a given application. The presented approaches
cover both pure hardware blocks and microprocessor based
systems including the executed software. Results come from
previous works performed in the presenter’s teams and in the
framework of the European FP7-CLERECO project [6].

Remaining challenges and perspectives of the presented
approaches, even outside the scope of pure dependability
evaluation, will be drawn.

II. METRICS AND DEFINITIONS

This section provides a short glossary of reliability-related
terminology to guarantee a common understanding of the
terms used in this paper. The taxonomy of dependable com-
puting defined in [7] is used as a reference.

Dependability is a global concept representing the extent to
which a system is expected to operate in compliance to its
specifications. According to [7], the concept of dependability
covers different aspects including:

• Availability: readiness for correct service;
• Reliability: continuity of correct service;
• Safety: absence of catastrophic consequences for the

user(s) and the environment;
• Integrity: absence of improper system alterations;
• Maintainability: ability to undergo modifications and re-

pairs.
• Security: the state of being free from malicious dangers

or threats.:
When considering a dependability threat, the following

concepts must be considered:



• Failure: an event that occurs when the delivered service
deviates from the correct service. The deviation can
be caused by incorrect design, environmental factors or
malicious actions;

• Error: part of the total state of the system that may lead
to its subsequent service failure;

• Fault: Adjudged or hypothesized cause of an error. A
fault is active when it causes an error; otherwise it is
dormant.

A. System-level reliability metrics

Several reliability metrics have been defined in the literature
and Table I summarizes the most used ones. Most of them are
applicable at the system level as well as at the component
level.

B. Dependability threats

The metrics that characterize the dependability threats are
necessary to understand and identify the weak points of the
system. As previously explained the dependability threats are
generally described by the concepts of faults, errors and
failures as depicted in Figure 1. Dependability threats metrics
measure the probability of occurrence of these events, and the
relations among these events.
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Fig. 1. The chain of dependability threats

1) Faults: Following the taxonomy of [7], faults can be
classified according to different properties summarized in
Figure 2. This includes the phase of creation or occurrence,
the system boundaries, the phenomenological cause, the di-
mension, the objective, the intent, the capability and the
persistence. Examples of faults that can affect the hardware of
a computing system are: manufacturing defects (e.g., open or
short circuits, parametric failures), physical deterioration (e.g.,
wear-out effects like Negative-Bias Temperature Instability
- NBTI, electromigration, Time-Dependent Dielectric Break-
down - TDDB, Hot Carriers Injection - HCI) and physical
interference (e.g., soft-errors and electromagnetic interference
-EMI).
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Fig. 2. Classification of faults (based on [7])

When considering hardware faults, the persistence (i.e.,
permanent, intermittent and transient) is among the most
considered properties. The concept of intermittent faults [11]
has been added to the used taxonomy in order to take into
account the different nature and impact of these faults. This
paper focuses on soft-errors. Table II lists the metrics that
are typically used for the measurement of transient fault
occurrences in a computing system.

2) Errors: When faults are activated, they result in errors.
However, a large part of faults are not activated but dropped.
The possible outcomes of a single-bit fault in different states
have been classified in [14] and are represented in Figure 3.
Table III presents the metrics that are most commonly used for
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Fig. 3. Classification of the possible outcome of a faulty bit from [14]

the characterization of errors. It includes metrics that are used
to characterize the probability of occurrence of errors and also
to characterize the probability of activation of a fault (which
results in an error).

C. Failures

A failure of the system happens when the delivered service
deviates from correct service. The way the system deviates
from a correct service is the failure mode of the system.
Figure 4 represents the set of failure modes of a computing
system as defined in [7].
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Fig. 4. Failure modes of a computing system from [7]

Besides its mode, a failure can be characterized by:
• Its detectability: if the failure of the system is detected

and signaled;
• Its consistency: if the failure is perceived identically by

all system users;



TABLE I
SUMMARY OF BASIC RELIABILITY METRICS.

Name Description
Failure rate (λ) Number of failures per unit of time. If the failure rate λ is constant, reliability can be modeled using an

exponential distribution
Executions per Failure (EPF) A measure of the number of times an application must be executed before observing a system failure [8]. It is

computed as: EPF = EIT/λ where EIT (Executions in Time) is the number of executions of an application
in 109 hours of device operation. It enables a joint analysis of reliability and performance.

Failures In Time (FIT) A measure of the failure rate in 109 device hours: FIT = λhours ∗ 109

Mean Time To Failure (MTTF) The arithmetic mean time to failure of a system. Usually expressed in hours. For instance, if a system’s MTTF
is 2 years, then on average a failure occurs every 2 years. It is a basic measure of reliability for non-repairable
items. For non-repairable items with constant failure rate: MTTF = 1/λ

Mean Time To Repair (MTTR) The mean time to repair an error once it is detected. It measures service interruption. This time is determined
by the repair and recovery mechanisms that a system is equipped with. The smaller the MTTR the higher the
reliability of the system. It is a basic measure of the maintainability of repairable items

Mean Time Between Failure (MTBF) Arithmetic mean (average) time between failures of a system. Usually expressed in hours. Basic measure of
reliability for repairable items. MTBF is calculated as: MTBF =MTTF +MTTR

Mean Work to Failure (MWTF) Captures the average amount of work between two errors and is useful to compare the reliability of different
workloads [9]

Mean Instructions to Failure (MITF) Expresses the average number of committed instructions in a microprocessor between two errors [10]

TABLE II
METRICS ON TRANSIENT FAULTS

Name Description
Single Event Upset (SEU) rate Measures of the occurrences of SEU per unit of time. Expressed in FIT/Mb or SEU/Mbit/h. Depends

on technology and, environment.
Multiple Bit Upset (MBU) rate Measures the occurrences of MBU per unit of time. A MBU is defined as ”any event or series of

events that cause more than one bit to be upset during a single measurement” [12].
Single Event Functional Interrupt (SEFI) rate Measures the occurrences of SEFI per unit of time. A SEFI is ”a soft error that causes the component

to reset, lock-up or otherwise malfunction in a detectable way, but does not require power cycling
of the device (off and back on) to restore operability” [13].

Single Event Transient (SET) rate Measures the occurrences of SET per unit of time. A SET is defined as a ”momentary voltage
excursion (voltage spike) at a node in an integrated circuit caused by a single energetic particle
strike” [13].

Single Event Latch-Up (SEL) rate Measures the occurrences of SEL per unit of time. A SEL is an ”abnormal high-current state in a
device caused by the passage of a single energetic particle through sensitive regions of the device
structure and resulting in the loss of device functionality” [13].

TABLE III
METRICS ON ERRORS AND VULNERABILITY TO ERRORS

Name Description
Silent Data Corruption (SDC) rate Probability of occurrence of Silent Data Corruption. Form of error where a fault induces

the system to generate erroneous outputs [15].
Detected Unrecoverable Error (DUE) rate Probability of faults that are detected but cannot be recovered.
Time Vulnerability Factor (TVF) Measures the fraction of time during which a device is susceptible to radiation-induced

upsets [16].
Architectural Vulnerability Factor (AVF) Measures the vulnerability of a hardware structure to faults. Defined as the probability that

a fault in that particular structure will result in an error [17].
Program Vulnerability Factor (PVF) Captures the architecture-level fault masking inherent in a program, allowing software

designers to make quantitative statements about a program’s tolerance to soft-errors [18].
Hardware Vulnerability Factor (HVF) Quantifies the vulnerability of hardware structures to errors [18].
Hard-Fault Architectural Vulnerability Factor (H-AVF) Measures the probability to commit an erroneous state due to hard faults in a microprocessor

structure [19].

• Its severity and its consequences: if the failure has a minor
impact or catastrophic consequences.

The notion of failure severity is heavily dependent on the
application domain and there are no generic definitions that
can be applied to all application domains.

III. FAULT-INJECTION-BASED DEPENDABILITY ANALYSIS

The baseline solution to evaluate the dependability of a
system is to submit it to a controlled set of faults and observe
its behavior. As explained in the previous section, not all
faults necessarily result in a failure: the role of fault injection

campaigns, is therefore to directly observe and quantify the
ratio of faults being activated and ending up in a system
failure. The principle, depicted in Figure 5, is quite simple:
while the System Under Investigation (SUI) is subjected to a
test bench, a Fault Injection Mechanism perturbs its behavior
and an Acceptance Check verifies if the SUI is still inside
specification or if any failure occurred.

Even though the principle is simple, the actual implemen-
tation of such a scheme is extremely complex.

First, there is the fault model: which faults must be injected?
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Fig. 5. General Setup of a Fault Injection Campaign

At which abstraction level? The usual considered levels are:
• Physical injection (e.g.: through controlled radiation test-

ing);
• Transistor level (Spice simulations);
• Register Transfer level (RTL);
• Micro-architecture level;
• Software level.
Of course the lower the abstraction level is, the more

precise the fault model is. Therefore, observability and debug
capability will be extremely high. However, in the meantime,
the simulation will take longer. The higher the abstraction
level is, the faster the simulation will be, but the results will
loose precision. Usually, information collected from lower
levels are used to parameterize higher-level campaigns. In the
following sections, we will present each of these levels and
their relationships in more details.

Another important point to consider is the injection space.
Faults can occur at any target location inside the system and at
any time. Therefore, a simulation must be done for each pair
(Target, Time) to fully characterize the system’s behavior. The
total set grows extremely fast: for instance, if a 1000-gates
systems is subjected to a 100ns test bench, an exhaustive fault
injection campaign on all gates with a fault each nanosecond
would require 1000×100 = 10K simulation runs. Developing
efficient yet reliable fault models and exploiting the advantages
of each abstraction level is therefore a priority to avoid hitting
the ”Combinatorial Wall”.

A. Fault Injections and Abstraction Models

This section overviews, for each abstraction level, relevant
fault injection approaches in an effort to point out advantages
and drawbacks of each of them.

1) Physical fault injections: Physical fault injection uses
external physical sources to introduce faults into the system’s
hardware (i.e., the actual target system) [20].

There are two main groups of physical fault injection
techniques: by physically perturbing the external interface of
the device (e.g., voltage/current pulses to the external pins
of an integrated circuit) or by exploiting energetic sources
(e.g., heavy ions, radiations, electromagnetic or laser beams)
to internally affect the normal behavior of the device.

The advantage of physical fault injection is its accuracy in
terms of realistic fault effect, and the ability to access some
locations that are not accessible by other techniques. These
techniques are also suitable for systems requiring high time-
resolution for hardware triggering and monitoring. Neverthe-
less, they require: (i) the availability of the target device (thus
not allowing early reliability analysis); (ii) special hardware
infrastructures to inject the faults and to observe the results
of the injection campaign. These infrastructures are usually
very expensive; (iii) the high risk to damage the system while
injecting the faults.

2) Simulation-Based Fault Injection at Transistor, Gate,
RTL level: Perturbations on a circuit can be analyzed at
various levels, with different representations of the fault and
different levels of accuracy. Taking as an example the impact
of a particle on a logic element, the lowest level of analysis
will consider the electric charges generated in the silicon and
the effect of the charge transfers between the electrodes of a
transistor. This is analyzed using detailed technological models
of a transistor (TCAD simulators) [21]. Such simulations are
very time consuming and limited to cells with only a few
transistors. They are used to create electrical models of the
perturbations, i.e., shapes of current pulses that can then be
used to analyze propagations in larger cells with electrical
simulators such as SPICE. The results can then be compiled
in a characterization library for e.g., standard cells in a given
technology. This library allows simulations at gate level for
blocks using these standard cells, taking into account both
the logical effect of the expected perturbations (previously
mentioned models such as SETs or SEUs) and the timing
characteristics when appropriate. At each increasing level, a
designer can analyze the perturbation effect on a larger circuit
with a given simulation effort, but with a reduced accuracy
with respect to the physical phenomena.

Even gate-level simulations can only be done very late in
the design process and remain very time-consuming. Earlier
analyses require more abstract fault models, that can be applied
on higher level circuit descriptions, available earlier in the
design process. In that case, timing information cannot be
considered, nor propagations in the gate networks that are
not yet defined. The usual fault model is therefore single or
multiple bit-flips in registers and memories, corresponding to
either direct perturbations of these elements or the sampling
of wrong values due to SETs. Although the analysis can
only be functional, simulations on Register-Transfer Level
(RTL) descriptions can be faster by at least two orders of
magnitude compared with gate-level simulations and they can
give insights into critical parts of the circuit at an earlier stage
of the design. Similar simulations can even be done before,
on system-level (e.g., Transfer-Level - TLM) descriptions [22]
but in that case .even the actual registers in the final circuit are
unknown and the accuracy of the results is noticeably lower.

3) Simulation-Based Fault Injection at Micro-architectural
level: Micro-architectural simulators are designed to simulate
the full-system cycle in an accurate fashion [23]. More in
detail, a micro-architectural simulator provides a software



model of the hardware architecture able to mimic the hardware
behavior cycle-accurate level fully comparable with low level
models, such RTL [24]. It means that the execution can
emulate the pipeline of the hardware architecture and the In-
Order or Out-of-Order execution. The hardware components
that are usually described in a micro-architectural model are
all memory data structures while all computational and control
blocks are only functionally implemented. Nowadays, micro-
architectural simulators hold a dominant role in early and
accurate reliability assessments of several array-based micro-
architectural structures that occupy the majority of the chip’s
area. The explanation lays on (i) the early availability in the
design phase, (ii) the fast execution time compared with lower
level models, (iii) the configuration flexibility of the model,
(iv) the observability of the behavior at several levels of the
system stack, (v) the accurate support of important Instruction
Set Architectures (ISA).

Several fault injection architectures built on top micro-
architectural level simulators have been proposed to analyze
the software behavior in the presence of faults [25], [8], [26],
[27], [28].

One of the main reasons is that fault injection approaches
require small modifications of the simulators and, when sta-
tistically significant numbers of fault injections are performed
[29], [30], fault injection delivers very accurate reports on the
faulty behavior of hardware components. Moreover, compared
to lower level fault injection approaches it allows execution of
large portions of workloads to study the effect of faults to the
final program output.

Most of the fault models introduced in Section II (transient,
intermittent and permanent faults) can be analyzed at this
level as far as they are applied to micro-architectural memory
array components. Moreover, the high simulation throughput
enables the analysis of multiple faults in several combinations,
i.e., multiple faults of any type and any duration in a single
structure or multiple faults on different structures. One of
the main criticisms on such methods is the limitation to the
memory structures of the system and the inability of dealing
with asynchronous systems. In fact, all models relies on the
synchronous behavior of the modeled system.

4) Software-Based Fault Injections : Software-
Based Fault Injection (SBFI) requires software
modifications/instrumentations in order to be able to
model the impact of faults affecting the hardware layer of
the system. The main advantage of SBFI is the capability
to target a full application as well as Operating System,
which cannot be simulated using the simulation-based fault
injection. On the other hand, SBFI suffers for the limited
controllability that limits the injection of the faults only to
the locations accessible by software instructions.

Figure 6 sketches how physical faults reach and manifest
themselves at software layer. A straightforward way to model
faults is to map them into a set of fault models that affect
the instructions and the data at software layer. Examples of
software-level fault models are the Wrong Data in Operand
(WDat) and the Instruction Replacement (InstR) [31], [32],

Hardware

Hardware Layer

ISA

Virtual ISA

Software

Software Layer

Software Outcomes

Software Fault
Models

Physical Faults

Fig. 6. Fault Propagation through System Layers

[33]. They model the effect of transient/permanent faults
occurring either in the memory segment storing the data of
the program (WDat) or in the memory segment storing the
code (InstR). SBFI can be classified depending on how the
fault is injected into: compile-time (i.e., static) or run-time
(i.e., dynamic).

a) Compile-time : At compile-time, the fault is injected
by modifying the software executed by the system. The soft-
ware modification can be done at different levels: source code,
intermediate representation or even at byte-level code. In [34]
the concept of mutation testing is applied to mutate the source
code (e.g., C, C++, ) in order to inject a software fault. Each
mutation corresponds to one fault model. [35], LLFI [36], [37]
and KULFI [38] propose a fault injection environment able
to inject software fault models into the LLVM intermediate
code level of the application. The main idea is still the code
mutation but at lower level than original source-code. In
this way these approaches are language independent. Similar
concepts applied at byte-code are presented in [39], [40], [41].
Here, the use of the Javassist toolkit [42] allows to be as
independent as possible from the source code and to easily
manipulate the byte-code of the loaded classes at run-time.

b) Run-time: At run-time, the fault is injected during
the execution of the software without modifying its source
code. FERRARI [43] uses traps and system calls in order to
modify the execution state of the target application in UNIX
systems. In [44] the fault injection mechanism is based on the
interaction between two parallel processes: the fault injection
(thread) and the target program process. XCEPTION [45],
Faust [46] and [47] use advanced debugging and performance
monitoring features of the actual processor in order to perform
fault injections as realistically as possible.

B. Multi-Level Approaches

As seen in the previous subsections, fault simulations can be
performed at different abstraction levels (physical, transistor,
gate, RTL, micro-architecture and software). Low abstraction
levels provide high accuracy in terms of simulation results,
while higher levels allow simulating bigger systems in rea-
sonable time. However, in some cases, fault effects must be



simulated at low abstraction levels to be representative of the
physical phenomenon, while the outcome must be obtained
from the whole system. To solve these cases, researchers
proposed fault simulators that integrate co-simulation (at lower
level for the fault, at higher level for the system). The
terminology in this domain is not always uniform, and the
reader can find this concept under different names: multi-level,
mixed-mode, hybrid or multi-scale fault simulation.

Different approaches have been proposed for simulating the
effects of permanent faults (to target defects) and transient
faults (to target radiation effects or fault attacks). Concerning
the first category, a multi-level fault simulator operating at
switch- and gate-levels is described in [48]. In this approach,
low/high resistances are used to model on/off states of tran-
sistors. [49] uses event-based mixed-level fault simulation to
simulate the effect of manufacturing defects more accurately
while maintaining a tolerable simulation time, while [50]
targets bridging faults (at electrical and switch levels) while
simulating the system at gate level.

In the second category, timing precision is required. All
proposed solutions follow the same approach: the simulation is
initiated at high level, up to moment where the fault is injected.
At that moment, a low-level simulation is executed (for the
same circuit described at low level), its state is copied from
the previous simulation, and it is executed for the duration
of the fault. Finally, the state is copied from the low-level
to the high-level simulator to finish the simulation. Existing
simulators cover RTL and transistor levels [51], gate and RTL
levels [52], transaction level [53], and micro-architecture level
[27].

C. Do it Smartly

As mentioned in the previous sections, simulations for
fault injections can be extremely time-consuming (days for
a simple circuit with exhaustive injections of the simplest
single bit-flip fault model, up to weeks or months even on
a server farm for a SoC described at RT-Level with a complex
application to run). In order to reduce the Time-to-Market,
it is mandatory to improve the efficiency of fault injections.
Three complementary ways have been exploited: fault pruning,
statistical fault injection and emulation-based experiments.

Fault pruning is a process identifying on an analytical basis
faults or errors that cannot have any effect on the global com-
putation. It is related to the AVF analysis of microprocessors
for e.g., unused bits in instruction coding. It can be related to
other properties in pure hardware blocks [54]. It can also be
based on some abstract model of the architecture, using e.g.,
Petri Nets. These approaches are used before the final list of
errors to inject is decided.

Once the fault/error model to consider is defined, the injec-
tion space size is the product of the number of potential errors
by the number of potential occurrence instants. This space is
in general huge so exhaustive injections are not feasible in
the available timeframe. Many publications report an arbitrary
number of injected faults that should be sufficient to trust the
results. A better approach is to compute the required number

of injections for a Gaussian distribution and a targeted level of
confidence. In the case of a large injection space, the number
of injections can be drastically reduced while keeping control
over the trust in the results [55], [29]. Fault pruning can still
help in reducing the final list.

When the injection list is finalized, the experimental time
can be reduced by exploiting a hardware prototype of the
circuit rather than a software simulation. Even compared
with RTL simulation, the campaign duration can be reduced
by several orders of magnitude. Setting up the prototype of
course requires some effort but the experiments are notice-
ably accelerated. This was early proposed in [56] based on
industrial emulators available at that time. The approach was
then exploited on FPGA boards, taking advantage of dynamic
partial reconfiguration capabilities to reduce the injection times
without adding any hardware modifications in the circuit under
analysis [57], [58], [59], [60]. More recently, large industrial
SoC emulators have also been used [61], [55].

IV. ALTERNATIVE APPROACHES AND CROSS LAYER
ANALYSIS

From the previous sections it is clear that, while fault
injection remains an unavoidable step to obtain a complete
characterization of a system, it has several drawbacks when
systematically used during the development steps of a system.
Regardless of the considered abstraction layer, it is compu-
tationally expensive; therefore, its usage during design itera-
tions would significantly affect the project deadline and cost.
Moreover, dependability results would arrive extremely late
in the development cycle, so any design change (typically, to
harden the most sensitive parts) would require extremely long
design iterations. For all these reasons, alternative approaches
have been proposed to provide dependability estimations early
enough in the design flow, allowing for easy iterations. The
goal is not to obtain precise dependability figures, for which
fault injection remains the only reliable approach, but rather
to provide the designers with tools and metrics to guide the
development phase by identifying the most critical elements.

An approach that gives excellent results and that has been
widely used is the so-called Register Data Lifetime (RDL)
[62]: instead of analyzing the whole injection space, the
attention is focused on the periods when data contained inside
a register are actually used. The principle is very simple: if a
fault affects data stored into a register, it will have a potential
effect, i.e., it will be activated, only when this data is read.
Therefore, RDL focuses on identifying the ”alive” periods of
the register, i.e., the time between the moment it is written and
the moment it is read, and the ”dead” ones, i.e., the periods
in which a register contains useless data. Based on those
periods, it is possible to define the Criticality of a register as:
Criticality(R) = (R Lifetime)/(Total cycles) × 100, where
RLifetime represents the sum of the alive periods of the
register. This metric is extremely useful because it can identify
the most critical parts of a system as soon as it is available,
allowing the designer to proactively harden them. Moreover,
RDL can be computed on different abstraction levels. In [63],



authors evaluated it at the micro-architecture level on a Leon
3 processor [64]: by combining the information given in the
data sheet and an analysis of the RTL code, it is possible to
construct a simplified model of the processor that is able to
track dependencies and information flow inside the processor.
This model is simpler and much faster than a standard ISA
simulator because it is simply tracking data dependencies and
is not concerned with the actual calculation results. The input
of the model is a trace extracted from an RTL simulation
for a given test-bench. To validate the model estimates, a
full fault injection campaign was performed, showing that
the criticality estimations are quite precise. Example results
are depicted in Figure 7. The estimated criticality values are
extremely close to the reference. It is also worth noticing that
this approach requires only one simulation of the target test-
bench, while fault injection requires a simulation for each fault
configuration.

Fig. 7. Criticality comparison between Fault Injection and RDL, from [63]

By itself, criticality is an abstract value that has no direct
relationships with the design: its value is in using it as a metric
for identifying sensitive areas. For instance, Figure 8 shows
another data presentation, with a Registers Binning based on
criticality levels: each pie regroups the internal registers of the
Leon 3, and coloring identifies the most critical registers for a
given criticality level. This type of information can be directly
used by designers to guide the hardening selection based on
the dependability levels required by the final system.

In [63], the speedup when compared to an emulation-
based fault injection campaign is around 40 to 50x, allowing
several iterations during the device cycle. Even though the
performances are extremely good, this micro-architecture level
approach demands a good knowledge of the target processor,
and a significant development time to obtain and validate the
RDL model. To overcome this limitation, RDL can also be
applied directly at the RTL level as described in [65]. When
looking at RTL descriptions, scaling is an immediate problem:
direct monitoring of all signals for all registers is not feasible
in a timely and resource-efficient way. For this reason, [65]
starts by identifying the ”Logic Cones”, i.e., the internal logic
whose value has an effect on a given functional output, from
which it is possible to extract a subset of meaningful signals

Fig. 8. Register Binning based on Criticality Levels, from [63]

to be monitored. This usually amounts to less than 1% of the
total signals. As with the micro-architecture level approach, a
single reference simulation is enough to compute RDL values.
Once more, RDL-computed criticality is extremely close to
reference results obtained through traditional fault injection
campaigns, as can be seen for instance in Figure 9.

Fig. 9. Comparison with fault injections for a CRC running on Leon3 [65]

Once more the need of having just one execution run allows
for extremely good performances: even when compared to
emulation-based fault injection, the tool provides almost 10x
speedup even though it implies the RTL simulation of a
complete processor running a software. If the comparison is
done with a simulation-based fault injection, the speedup can
be reach [65] 400x. RDL criticality evaluation can therefore be
directly used during the traditional design phase for an early
identification of the most critical elements without seriously
impacting development time.

A very similar set of approaches have been developed in the
computer architecture community around the concept of Ar-
chitectural Correct Execution (ACE) analysis to compute the
AVF of a microprocessor using architecture level simulators
[17], [66], [67]. These approaches are complex. They require
significant modifications to the simulators to track resources
during the execution of the program. Therefore, they are



limited to the analysis of small programs. Apart for the com-
plexity, accuracy is a general limitation of these approaches.
An 7x AVF over-estimation is reported in [68]. Even with
refined approaches, which require additional complexity in the
simulation, ACE analysis still provides 3x overestimation. This
has a detrimental effect on the system leading to system over-
design [67].

Similar approaches have been also proposed at the software
level to analyze the impact of faults into the data of a software
application and therefore compute the system’s PVF. [69]
proposes to use the variable lifetime combined with the data
dependency graph to identify critical variables of an applica-
tion to be protected. In [33] and [35], the authors presented
an analytical methodology to measure the vulnerability of the
memory components of a microprocessor-based computing
system, based on the data and the instruction lifetime evalua-
tion and residence. The approach considers only the software-
layer of the system, which makes it usable during early design
stages when the hardware architecture is not fully defined. To
consider the hardware memory hierarchy (i.e., RAM, Caches,
Register Files) at software level, the paper proposes a memory
subsystem emulator that can be easily configured to support
different memory and cache features. The approach works
with LLVM, and it instruments the original source code with
assertions that allow calculating the lifetime of every single
variable, by emulating their residence in the memory hierarchy
(L2 cache, L1 cache, registers). Their results showed that the
methodology can be applied on very complex applications to
evaluate their reliability.

Most of the approaches presented so far work at a single
abstraction level and therefore are constrained by the limita-
tions of the considered layer. Overall, a cross-layer holistic
evaluation approach has several advantages compared to more
traditional single layer techniques.

The first attempt to model the contribution of the software
to the AVF of the system is provided in three seminal papers
by Sridharan and Kaeli [70], [71], [18]. They introduce the
concept of Program Vulnerability Factor (PVF) to quantify
the portion of the AVF that can be attributed to the executed
software. This concept has been further extended in [18] with
the introduction of the concept of the System Vulnerability
Stack. The System Vulnerability Stack is a significant advance
towards the definition of a cross-layer system reliability model.
However, its main drawback is that it oversimplifies the
definition of the layers. In particular, the basic assumption
is that the layers are statistically independent. This allows to
compute the AVF of the system simply as the product of the
vulnerability factors of each layer. Moreover, the layers are
not further split into their composing components, preventing
a fine-grained analysis of the architecture of the system.

Another interesting solution that considers the impact of the
application software running on embedded microprocessors
was discussed in [72]. Similarly, to ACE analysis, it is based
on the use of program traces. One of the main contribution
of this model is to first introduce stochastic AVF analysis.
Nevertheless, being based on program traces, it suffers from

inaccuracies due to the fact that it cannot capture important
masking effects introduced during dynamic execution of the
software. Moreover, it is limited to bare metal applications.
An extension of this model based on Bayesian probability
propagation has been proposed in [73].

V. BEYOND SIMULATIONS: STOCHASTIC MODELS AND
DESIGN SPACE EXPLORATION

It is clear from the previous sections that both fault injec-
tion techniques and alternative approaches have positive and
negative aspects that must be carefully analyzed whenever
choosing the best approach to evaluate the reliability of a
target system. In fact, with the increasing adoption of cross-
layer reliability techniques, there is an increasing interest into
stochastic models able to combine the benefit of fault-injection
techniques at different abstraction levels, analytical approaches
such as RDE or ACE analysis and stochastic models able to
cope with the complexity of the target design together.

Modern SoCs and CPSs show a tight integration and interac-
tion between hardware and software built upon an integration
capacity of billions of transistors. Moreover, on top of the
hardware a complex software stack including an operating
system and complex application is usually executed and must
be taken into account when performing the reliability analysis.
In such scenario, reliability is not the only design constraint
to be optimized anymore: power, energy and performance are
equal partners when accounting for the system specifications.
Speaking of dependability, in a cross-layer resilient system,
mitigation techniques may work at physical and circuit level,
mitigating low-level faults, while hardware redundancy can be
used to manage errors at the hardware architecture layer and
software implemented error detection and correction mecha-
nisms can manage those errors that escaped the lower layers
of the stack [74]. Since software and hardware are linked each
other, it is not surprising anymore that also the actual workload
has direct impact on data and control flow.

Recently, Henkel et al. [75] proposed a multi-layer depend-
ability approach to improve the design flow of a generic elec-
tronic system. It analyzes the system hierarchically, following
the way faults propagate from the bottom layer up to the
application layer. The underline idea is to apply protection
mechanisms at different layers in the system design. For each
layer, the paper proposes to resort to a design space exploration
(DSE) procedure to select the set of protection mechanisms.
The selection covers faults that escaped the protection mech-
anisms implemented in the lower hierarchical levels. Since
the exploration is done by moving in a hierarchical order,the
approach is biased toward low-level protection mechanisms
because they are applied first. Therefore, it does not allow to
fully explore the space of possible design options.

To go toward the definition of a full framework for cross-
layer early reliability estimation, the FP7-EU Clereco project
[6] has worked to develop a full framework named SyRA
(System Reliability Analyzer) able to analyze the impact
of radiation induced soft errors in the memory arrays of a
complex computing cores, such as microprocessor and GPUs



[73], [76], [77]. SyRA can support designers in the early
phases of the design, considering all layers of a system from
the hardware up to the application software (including the
operating system).

Figure 11 shows the architecture of the implemented frame-
work. SyRA exploits a multi-level hybrid Bayesian model to
describe the target system and to estimate different reliability
metrics. The construction of the system is based on simulations
at the different abstraction levels, thus combining into a single
model the benefits of fault injection at all abstraction levels
and the power of Bayesian stochastic models. This allows
designers to speed up the analysis and therefore to cope with
the complexity of the simulation of the full system stack.
SyRA can compute several reliability metrics including AVF,
FIT and EPF and the whole framework scales efficiently with
the complexity of the system. Experimental results show that,
on average, it is 68% faster than full micro-architecture level
fault injection and two orders of magnitude faster than RTL
fault injection while maintaining a comparable accuracy [24].

System Reliability Analyzer (SyRA)

Bayesian Reliability ModelTechnology 
Characterization 
Tools 
(Spice
Simulation)

CPU/GPU 
Characterization 
Tools (Micro-
architecture 
Level FI)

Software 
Characterization 
Tools 
(variable 
Lifetime + SBFI)

Model Analysis (Bayesian 
inference):
- Reliability metrics (AVF, FIT, EPF)
- Root cause analysis

AVF PVF EPF

Component Characterization

Fig. 10. Overview SyRA cross-layer reliability framework. The component
characterization toolset integrates a set of characterization tools for technolo-
gies [78], CPUs [26], GPUs [25] [79] and software routines [32], [35]. The
tools are used to build the Bayesian Reliability model that is at the core of
our System Reliability Analyzer (SyRA) [77], [76].

The complete tool-chain developed to build the model is
described in [76], [77] and an example of the accuracy of
the analysis performed by SyRA is reported in Figure 11.
The proposed framework scales efficiently with the complexity
of the system. On average it is 68% faster than full micro-
architecture level fault injection and two orders of magnitude
faster than RTL fault injection while maintaining a comparable
accuracy [24].

The potential of this type of approach is even more evident
looking at the design space exploration (DSE) problem. From
a designer perspective, performing DSE requires analyzing
several configurations of the system, weighting them con-
sidering all key constraints, e.g., dependability as well as
power consumption, area, etc., and delivering the best solution
possible. In [80], the authors clearly showed that performing
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Fig. 11. Adapted from [77]. Results obtained using SyRA to estimate the
AVF of five different applications executed an ARM Cortex A9. The figure
compares estimation provided by SyRA with those obtained using precise
RTL fault injection. The full experimental setup is described in [77].

the required simulation campaign for every new product in
the early stages of the design might not be affordable. This is
clearly only feasible if fast and accurate reliability estimation
models are available. As shown in [81], the fast metric
computation capabilities reached by the model proposed in
[77], together with the quality of its estimations, enables the
creation of optimization engines to support the DSE solutions.

VI. CONCLUSION

TO EDIT *********
Fault Injection works, but it is slow and costly. Even

”smart on big machines” is not enough. Difficulty in mod-
eling/simulating environment. Multi-level modeling can give
better performances. More analytical analyses can help without
reducing accuracy under some hypotheses A few words on
perspectives on triggering approximate computing (without of
course repeating the paper, but just the basic ideas ) Other
potential use of the proposed tools?

As mentioned in the introduction, the presented approaches
aim at evaluating the effect of errors, no matter their origin.
They are often used for safety analyses, extended to availabil-
ity or reliability constraints. They are also meaningful in terms
of security evaluations with respect to fault-based attacks. In
that case, the fault/error model may have to be adapted to
represent the expected attacker capabilities but the general
experimental process can remain unchanged.
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