
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Approximate computing design exploration through data lifetime metrics / Savino, A.; Portolan, Michele; Leveugle, R.; Di
Carlo, S.. - ELETTRONICO. - (2019), pp. 1-7. (Intervento presentato al convegno 24th IEEE European Test Symposium
(ETS 2019) tenutosi a Baden Baden, D nel May 27-31 2019) [10.1109/ETS.2019.8791523].

Original

Approximate computing design exploration through data lifetime metrics

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ETS.2019.8791523

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2751349 since: 2019-09-11T14:44:26Z

Institute of Electrical and Electronics Engineers Inc.

Approximate computing design exploration through
data lifetime metrics

Alessandro Savino1, Michele Portolan 1 2
, Regis Leveugle 2, Stefano Di Carlo1

1 Dipartimento di Automatica ed Informatica
Politecnico di Torino, Torino, Italy

{name.surname}@polito.it

2 Univ. Grenoble Alpes, CNRS, Grenoble INP1,
TIMA, 38000 Grenoble, France

{name.surname}@univ-grenoble-alpes.fr

Abstract— When designing an approximate computing system, the
selection of the resources to modify is key. It is important that the
error introduced in the system remains reasonable, but the size of
the design exploration space can make this extremely difficult. In
this paper, we propose to exploit a new metric for this selection:
data lifetime. The concept comes from the field of reliability, where
it can guide selective hardening: the more often a resource handles
"live" data, the more critical it becomes, the more important it will
be to protect it. In this paper, we propose to use this same metric
in a new way: identify the less critical resources as approximation
targets in order to minimize the impact on the global system be-
havior and therefore decrease the impact of approximation while
increasing gains on other criteria.

Keywords: Approximate Computing, Design Space Exploration,
Error metrics

I. INTRODUCTION
In recent years, the new Approximate Computing (AC) para-

digm represented a breakthrough for several application do-
mains. In domains where quality of results depend on the hu-
man perception (e.g., image processing) or algorithms are in-
herently resilient to errors (e.g., machine learning) [1][2], ap-
proximate results are often hard to distinguish from exact ones.
Thereby, designers can efficiently trade-off accuracy of the re-
sults with other design parameters such as performance,
memory requirements and power consumption.

The main effort of the research community has focused so far
on the design of efficient approximate functions and operators
[3]. However, all approaches require choosing where, how, and
when approximation can be applied. This selection is a complex
task since it requires the exploration of a large design space.
The set of computations that can be approximated is huge, and
it is extremely difficult to predict the effect of the approxima-
tion on the precision of the final result [4]. Currently, only few
publications addressed the problem of modelling the error prop-
agation in AC applications, predicting the final effect on the
outcomes without requiring large simulation campaigns [5] [6].
However, although these approaches solve the problem of esti-
mating the impact of the approximation on the precision of the
application, they still do not provide a strategy to select the best
subset of resources to approximate.

This paper takes a step forward proposing a technique able to
identify a subset of resources that can be approximated while
minimizing the impact on the precision of the final output. This
significantly reduces the size of the design space to be analyzed.

1 Institute of Engineering Univ. Grenoble Alpes

The proposed approach takes inspiration from the reliability
domain. From the reliability standpoint, each hardware/soft-
ware resource contributes to the reliability level of the system.
This contribution is a function of several parameters (architec-
ture, workload, etc.) and is extremely difficult to estimate. In
this field, some metrics have been developed to identify critical
resources and support efficient design space exploration
[7][8][9][10][11]. In this paper we propose to exploit Register
Data Lifetime (RDL) [8], i.e., the interval between the time a
data is written into a register and the last time it is read, as a
candidate metric for design space exploration in an AC context,
able to identify those resources that can be approximated with
minor impact on system-level precision. The motivation behind
this proposal is that a longer life-time is in general related to a
larger number of operations using the same value, and data us-
age is one of the key factors affecting the precision of a program
in presence of approximation. This is somehow different from
the use of the RDL in the reliability domain, in which the as-
sumption is that more faults may occur during a larger storage
time. Nevertheless, even if the mechanism is different the effect
is similar and AC can take advantage from available techniques
and tools. The proposed technique has been tested on a set of
typical benchmarks used to evaluate AC techniques, providing
interesting results showing that the proposed approach can be
an interesting starting point for the development of a new class
of resource approximability metrics.

The paper is organized as follows: first, it discusses related
literature in the approximate and reliability domains (Section
II), then it introduces in detail the proposed approach (Section
III). Section IV provides an experimental proof of concept,
while Section V draws conclusions and introduces future per-
spectives.

II. STATE OF THE ART

A. Approximation strategies
Approximate computing techniques can mainly be grouped in

three categories: (i) design of efficient approximate hardware
blocks [12], (ii) introduction of errors in the control flow of the
application [13] or (iii) trade-off between data size and preci-
sion [14].

When looking into approximate hardware components, sev-
eral publications focus on adders and multipliers [15]. The basic
idea is to introduce an approximation by: (i) reducing the carry
propagation chain, (ii) dividing the adder into sub-adders then

generating carries using different methods, (iii) playing with
full-adders’ modifications. Similar concepts are applied to mul-
tipliers, where the approximation may be introduced by: (i) gen-
erating partial products (ii) ignoring some partial products (iii)
using approximate counters or compressors in the partial prod-
uct tree, (iv) composing complex approximate multipliers by
means of simple approximate / correct multipliers. For both ap-
proximate adders and multipliers, the result of the operation is
affected by an error that depends on the input data and can be
measured using different metrics such as the Mean Relative Er-
ror (MRE) or the Worst-Case Error (WCE), and Error Probabil-
ity (EP), i.e., the probability that the approximation affects the
output. All strategies reduce area, power consumption, and can
improve the computation throughput.

When hardware approximation cannot be exploited, it is still
possible to approximate by reducing the algorithm execution
time through loop perforation. In this case, selected loops can
be executed less times (by skipping some counter increment or
jumping out of the loop on certain conditions), exploiting the
ability of the computation to converge on a near good result in
a smaller number of steps. This approach still enables to trade-
off power consumption and performance while the hardware
area remains constant.

By tuning the data size (e.g., by considering only the original
most significant bits or by replacing floating-point data with
fixed-point data [16], or leveraging the data precision [14]) the
hardware area, the computation time and the power consump-
tion can also be reduced. This strategy is well suited for several
classical DSP applications (e.g., Finite Impulse Response - FIR,
Infinite Impulse Response - IIR filters, Fast Fourier Transform
(FFT), and machine learning).

B. Reliability Estimation
Another source of errors in computations is due in many ap-

plications to environmental disturbances, due to e.g., particles,
electromagnetic interferences, or voltage variations that may re-
sult in erroneous data or so-called "Soft Errors".

A lot of work has been done to obtain estimations of the effect
of such errors early in design flow. Replacing Radiation Testing
with RT-Level fault injections is a first step [17], but these set-
ups are still too expensive in terms of computational complexity
[18], even when hardware acceleration or emulation platforms
are used [18], and they require the RTL model to be extremely
precise. Several approaches have been proposed to elevate the
abstraction of the problem, most of the time relying on statisti-
cal modelling of the software [19][20].

Among the different approaches proposed in the literature, the
approach proposed in [8], in which Register Data Lifetime is
used for reliability estimation is of particular interest for this
paper. The overall idea is simple: the longer a data is resident in
a register, the higher is the probability of it being corrupted. The
application is actually more complex, as there are many subtle
points to consider, such as the actual contribution of the data to
the final result, or masking effects introduced by the micro-ar-
chitecture. As systems get bigger, these factors become espe-
cially important to avoid taking into account data that will have
no effect on the final output [9].

Figure 1 depicts the general principle. Figure 1-a shows a ge-
neric RTL description of a circuit composed of a set of storage
elements (registers, marked as “R”), connected by a network of
combinatorial functions (functions, marked as “F”). Figure 1-b
depicts the effect of a Single Event Upset (i.e., single bit-flip)
on two different registers. In one case, the fault propagates
through the system until it reaches the final output, corrupting
it and generating an error. In the second case, the fault is filtered
by the combinatorial logic, and has no effect on the final output.
This means that the first fault is more critical. Therefore, in case
of selective hardening it would be more important to protect the
first register rather than the second one in case of an error at this
particular clock cycle. Modern systems may be composed of a
huge number of registers, so it is not always feasible or cost-
effective to harden them all. In the same way an error due to a
computation error introduced by approximation will not have
the same effect at each cycle and at each location.

A possible solution is to identify the subset of registers that
are more critical for the reliability of a given application, so that
the designer knows where to focus his efforts. To obtain usable
results, the method proposed in [8] developed a detailed model
of a target processor microarchitecture, notably taking into ac-
count the processor pipeline structure and mechanisms like fast-
forwarding. The approach provided consistent results when
compared with Fault Injection campaigns and was successfully
expanded to generic digital circuits with no assumption on the
architecture [9].

Figure 1 Design Space Exploration for Reliability

Input Output

R
R

R

R

R

R

Input Output

R
R

R

R

R

R

a)

b)

III. PROPOSED APPROACH
To present the proposed approach for the identification of can-

didate resources where to apply approximation, let us start from
the same example reported in Figure 1-a. When approximating,
one or more of the Functions Fi, considered as “Precise”, are
replaced by corresponding Approximate Function (AFi), thus
introducing an error ei at the output of the circuit. Figure 2-b
shows an example, where the original Functions are labelled as
PF (Precise Function) for better readability. If a different pre-
cise function PFj is replaced by an approximate function AFj
(Figure 2-c) a different approximation error ej is introduced.
The difference comes from the different position and role of the
two PF functions in the system, and of course of the impact on
the data and control paths.

Figure 2 Design Space Exploration for Approximation

This mechanism is extremely similar to the fault propagation
mechanism depicted in Figure 1. The basic assumption of the
proposed approach is that both the precision of the application
in presence of approximation and the reliability of a system in
presence of errors (e.g., soft errors) are similar mechanisms de-
pending on the data path and data dependency. Therefore, we
would like to exploit a metric such as the Register Data Lifetime
(RDL), that has proven to be a valuable instrument to identify
critical resources in the reliability domain, to select candidate

resources for approximation able to minimize the error at the
output of the computation. The main difference when moving
from the reliability to the AC domain is that, for reliability, the
relationship between RDL and criticality is direct: the more
time a data is “alive”, the higher is the probability that it can be
corrupted by a transient effect. In AC, the focus is rather on the
usage of the data, i.e., a high RDL might not be directly related
to a significant impact on the precision. However, due to data
locality, very often data remain resident for long time when they
require to be used multiple times. Therefore, RDL can be ex-
ploited as an indirect metric also for the analysis of critical re-
sources in AC applications. However, since RDL is not a direct
metric, different metrics strongly related to the data usage must
be evaluated. In this paper, the following three different metrics
have been considered:

1. the RDL,the ratio between the number of reads and the
number of writes (#R/#W).

2. the average period between two reads over the
execution time (AVG #Reads).

3. the average period between two writes over the
execution time (AVG #Writes).

To assess our hypothesis, i.e., RDL and other data usage re-
lated metrics can be used to identify candidate functions for ap-
proximation, the simulation procedure summarized by Algo-
rithm 1 is used. The algorithm considers a target system under
investigation (SUI) and computes the above-mentioned metrics
for all storage resources.

Algorithm 1: Evaluation methodology

The SUI is analyzed for each metric (lines 6-16). A metric can
be computed by profiling a golden execution, collecting statis-
tics on the usage of each resource (lines 7 and 8). Resources are
then ranked based on the target metric and grouped into four
bins (Q vector output of line 9). Figure 3 reports an example of
the RDL metric computed for 28 resources. Resources are
sorted for increasing RDL and grouped in four quartiles. The
assumption here is that overall, resources belonging to the same
quartile have similar impact on the precision of the system when
approximated.

To prove this, the approximation of all resources in each quar-
tile by means of an approximate operator is evaluated and com-
pared with the result of the reference application (line 10-15).

Input Output+e1

R
R

R

R

R

R

Input

R
R

R

R

R

R

a)

b)

Output+e2

1. Metrics = {RDL, #R/#W,
2. AVG. #Reads, AVG. #Writes}
3. AC_Policies = {R, W, R&W}
4. SUI = the benchmark to evaluate
5. resources {the set of target resources}
6. foreach m in metric
7. statistics[m] = compute_metric (SUI,
8. m, resources)
9. Q = compute_quartiles(statistics[m])
10. foreach q in Q
11. foreach p in Policies
12. SUI_aprx = apply_AF(SUI, q)
13. collect_data(SUI, SUI_aprx)
14. endfor
15. endfor
16. endfor

The approximate version (SUI_aprx) is created from the origi-
nal version by replacing each PF connected to the resources in
the quartile with an AF based on three different approximation
strategies: if the PF writes in a target resource (W), or if it reads
from a target resource (R), or all the times it writes to or reads
from a target resource (R&W).

Collecting data for the comparison between the approximate
SUI (SUI_aprx) and the golden reference (SUI) requires simu-
lating the application several times with different input data. For
each simulation, input data is randomly generated to assure the
results will not be dependent on the testbench.

Figure 3 Ordered lifetime with Quartiles Points

By comparing the output of the two versions of the SUI it is
possible to compute the error introduced by approximating a
given resource and by analyzing the average errors for resources
in each quartile we can validate our hypothesis that there should
be a clear correlation between quartiles and impact on the pre-
cision.

IV. EXPERIMENTAL RESULTS
In order to perform experiments on a set of benchmarks, we

developed an experimental proof of concept of the analysis de-
scribed in Algorithm 1. For simplicity, the target SUI is emu-
lated at the software level. In reference to Figure 2, software
variables take the role of storage elements, while arithmetic
functions take the role of Precise Functions (PF), for which we
also have an Approximate Function (AF) alternative. In partic-
ular sums and multiplications are the target functions of our
analysis since they have been extensively studied in the AC do-
main. We considered the software implementation of precise
and approximate 8-bit adders and 32-and 8-bits multipliers pro-
vided by [15]. For this first preliminary investigation, we se-
lected one approximate adder (with MRE=1.65% WCE=128,
and EP=1.6%) and one approximate multiplier (MRE=1.99%,
WCE=820, and EP=86.5%). Multiplier results are provided
over 16 bits.

Two benchmarks often used in the AC domain were analyzed:
1. Matrix Multiplication. it is a very common computa-

tional module used in several real applications in-
cluding image processing and neural networks em-
ploying both multipliers and adders. To keep the
analysis time low a 3x3 matrix multiplication was
analyzed.

2. Finite Impulse Response (FIR) filter. It is a filter
whose impulse response is of finite duration. It is a

very common DSP application. Four different 32th-
order filters were analyzed: (i) a low-pass filter
(LPF), (ii) a high-pass filter (HPF), (iii) a band-pass
filter (BPF), and (iv) an arbitrary-pass filter (APF).
For the FIR the randomness was applied in the form
of white noise generation.

These test cases represent opposite system-level require-
ments: while Matrix Multiplication computes a precise result
and is therefore extremely sensitive to approximation, the FIR
algorithms present several shifts and rounding steps, so they are
intrinsically more resilient to errors.

 The experimental setup follows Algorithm 1. In order to col-
lect data (line 13 of the alg. 1) we implemented these steps:

1. We gerated random values for all inputs. For the FIR,
a white noise generation apporach has been followed.

2. Inputs are provided to both the approximate version
(SUI_aprx) and the precise version (SUI) and the
outputs collected.

3. For each output value, we compute the error (ei) as the
diffence between the precise output and the
approximated one. The error is uses to track the
frequencies (fi) of all possibile errors.

To reduce data dependency, we repeat these steps several times,
stopping when the frequency distribution function was stable,
i.e., the weighted average of the error did not change more than
0.01%. The weighted average is computed using the following
equation:

𝐸 =
∑ (𝑒& ∗ 𝑓&)∀+,,-,

∑ 𝑓&∀+,,-,

Where	𝐸 represents the average error affecting a single output

of the computation, 𝑒& is the error (e.g., 0, 1, 2 etc.) and 𝑓& is the
frequency at which 𝑒& is detected. Eventually, value E is nor-
malized: the order of magnitude of the error may significantly
change from application to application but what is interesting
here is the trend. Matrix multiplication implies a sequence of
multiply operations, and their results accumulated several times
for each index of the output matrix. Thus, once an error is intro-
duced by a multiplication, the accumulation is not able to reduce
the error in any case, but just to add another error if an approx-
imate version is used. Similarly, the FIR general behavior is
also based on multiplications (between the specific coefficients
shaping the filter type and the input samples) and accumulations
but, due to some right shift operations over the final value of
each output, errors in the lower bits of the results can be dis-
carded.

Figure 4, Figure 5, Figure 6, Figure 7 show the normalized
projection of E, for each metric, of all considered applications
grouped by policy.

A. Result Feedbacks
Figure 4 shows that the RDL metric with (R) policy is strongly

related to the approximated quartile, i.e., resources in Q1 have
a lower impact on the accuracy of the system w.r.t. resources in
Q4. This is consistent also considering very different applica-
tions (e.g., Matrix multiplication and FIR). When RDL is used

QP1 QP2 QP3

0
0,1
0,2

0,3
0,4

0,5
0,6
0,7

0,8
0,9
1

RD
L

Resources

in combination with other approximation policies its accuracy
is reduced.

When considering the remaining metrics (Figure 5, Figure 6,
Figure 7), it is clear that none of them perform well as RDL.
This is due to the fact that the approximation depends on data
(and the interrelationships among data) but most importantly
because each metric depicts a different aspect of the data usage.
In this sense, it is an interesting observation that all the other
metrics work better when associated with a write policy.

V. CONCLUSIONS AND PERSPECTIVES
In this paper, we showed how Register Data Lifetime can be

used as a Design Space Exploration metric in the AC domain.
Our experimental results show an interesting correlation be-
tween the RDL and the impact of approximation on the final
results of a computation. This corroborates our hypothesis and
points out several development directions. Overall, the fact that
RDL performs better on reading policies while other metrics
work better with writing policies suggests that a combination of
these metrics could be analyzed in the future to better guide the
selection of resources to approximate and to develop AC dedi-
cated metrics.

REFERENCES
[1] V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, "Analysis

and characterization of inherent application resilience for approximate
computing," 2013 50th ACM/EDAC/IEEE Design Automation Confer-
ence (DAC), Austin, TX, 2013, pp. 1-9., doi: 10.1145/2463209.2488873

[2] G. S. Rodrigues, F. L. Kastensmidt, V. Pouget and A. Bosio, "Perfor-
mances VS Reliability: how to exploit Approximate Computing for
Safety-Critical applications," 2018 IEEE 24th International Symposium
on On-Line Testing And Robust System Design (IOLTS), Platja d'Aro,
2018, pp. 291-294., doi: 10.1109/IOLTS.2018.8474122

[3] Sparsh Mittal. 2016. A Survey of Techniques for Approximate Compu-
ting. ACM Comput. Surv. 48, 4, Article 62 (March 2016), 33 pages. DOI:
https://doi.org/10.1145/2893356

[4] M. Barbareschi, F. Iannucci and A. Mazzeo, "A Pruning Technique for
B&B Based Design Exploration of Approximate Computing Variants,"
2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
Pittsburgh, PA, 2016, pp. 707-712., doi: 10.1109/ISVLSI.2016.110

[5] Vallero, A. et al., Early Component-Based System Reliability Analysis
for Approximate Computing Systems, in Proceedings Of The 2nd Work-
shop On Approximate Computing (WAPCO), pp.1-4, DOI:
10.13140/RG.2.1.3883.5604

[6] M. Traiola, A. Savino, M. Barbareschi, S. D. Carlo and A. Bosio, "Pre-
dicting the Impact of Functional Approximation: from Component- to Ap-
plication-Level," 2018 IEEE 24th International Symposium on On-Line

Testing And Robust System Design (IOLTS), Platja d'Aro, 2018, pp. 61-
64., doi: 10.1109/IOLTS.2018.8474072

[7] Vallero. A et al., SyRA: Early System Reliability Analysis for Cross-layer
Soft Errors Resilience in Memory Arrays of Microprocessor Systems, in
IEEE Transactions on Computers, 2018.

[8] K. Chibani et al., "Fast accurate evaluation of register lifetime and criti-
cality in a pipelined microprocessor", 22nd IFIP/IEEE Int. Conf. on Very
Large Scale Integration (VLSI-SoC), 2014, pp. 260-265

[9] K Chibani, M Portolan, R Leveugle, “Application-aware soft error sensi-
tivity evaluation without fault injections-Application to Leon3”, European
Conference on Radiation and its Effects on Components and Systems
(RADECS'16), 2016

[10] A. Vallero et al., "Cross-layer system reliability assessment framework
for hardware faults," 2016 IEEE International Test Conference (ITC), Fort
Worth, TX, 2016, pp. 1-10., doi: 10.1109/TEST.2016.7805863

[11] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto and L. Taghaferri, "Data
criticality estimation in software applications," International Test Confe-
rence, 2003. Proceedings. ITC 2003., Charlotte, NC, USA, 2003, pp. 802-
810.

[12] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, J. Henkel and J. Hen-
kel, "Architectural-space exploration of approximate multipliers," 2016
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Austin, TX, 2016, pp. 1-8., doi: 10.1145/2966986.2967005

[13] H. Omar, M. Ahmad and O. Khan, "GraphTuner: An Input Dependence
Aware Loop Perforation Scheme for Efficient Execution of Approximated
Graph Algorithms," 2017 IEEE International Conference on Computer
Design (ICCD), Boston, MA, 2017, pp. 201-208., doi:
10.1109/ICCD.2017.38

[14] B. Barrois and O. Sentieys, "Customizing fixed-point and floating-point
arithmetic — A case study in K-means clustering," 2017 IEEE Interna-
tional Workshop on Signal Processing Systems (SiPS), Lorient, 2017, pp.
1-6., doi: 10.1109/SiPS.2017.8109980

[15] V. Mrazek, R. Hrbacek, Z. Vasicek and L. Sekanina, "EvoApproxSb: Li-
brary of approximate adders and multipliers for circuit design and bench-
marking of approximation methods," Design, Automation & Test in Eu-
rope Conference & Exhibition (DATE), 2017, Lausanne, 2017, pp. 258-
261., doi: 10.23919/DATE.2017.7926993

[16] D. Menard and O. Sentieys, "A methodology for evaluating the precision
of fixed-point systems," 2002 IEEE International Conference on Acous-
tics, Speech, and Signal Processing, Orlando, FL, 2002, pp. III-3152-III-
3155., doi: 10.1109/ICASSP.2002.5745318

[17] E. Jenn et al, "Fault injection into VHDL models: the MEFISTO tool",
24th Symposium on Fault-Tolerant Computing (FTCS), 1994, pp. 66-75

[18] R. Leveugle, "Towards modeling for dependability of complex integrated
circuits", 5th IEEE Int. On-Line Testing workshop, Rhodes, Greece, July
5-7, 1999, pp. 194-198

[19] S. S. Mukherjee et al., "A systematic methodology to compute the archi-
tectural vulnerability factors for a high-performance microprocessor",
36th IEEE Int. Symposium on Microarchitecture (MICRO-36), 2003, pp.
29-40

[20] A. Savino, S. Di Carlo, G. Politano, A. Benso, A. Bosio, G. Di Natale,
"Statistical reliability estimation of microprocessor-based systems", IEEE
Trans. on Computer, vol. 61, no. 11, Nov. 2012, pp. 1521-1534

Figure 4: RDL normilized weighted error (E) on a single application output

Figure 5: #R/#W normalized weighted error (E) on a single application output

Figure 6: AVG Reads normilized weighted error (E) on a single application output

0

0,2

0,4

0,6

0,8

1

m
at

rix
M

ul

FI
R

AP
F

FI
R

BP
F

FI
R

LP
F

FI
R

HP
F

m
at

rix
M

ul

FI
R

AP
F

FI
R

BP
F

FI
R

LP
F

FI
R

HP
F

m
at

rix
M

ul

FI
R

AP
F

FI
R

BP
F

FI
R

LP
F

FI
R

HP
F

R W R&W

E

Q1 Q2 Q3 Q4

0

0,2

0,4

0,6

0,8

1

m
at

rix
M

ul

FI
R

AP
F

FI
R

BP
F

FI
R

LP
F

FI
R

HP
F

m
at

rix
M

ul

FI
R

AP
F

FI
R

BP
F

FI
R

LP
F

FI
R

HP
F

m
at

rix
M

ul

FI
R

AP
F

FI
R

BP
F

FI
R

LP
F

FI
R

HP
F

R W R&W

E

Q1 Q2 Q3 Q4

0

0,2

0,4

0,6

0,8

1

m
at

rix
M

ul

FI
R

AP
F

FI
R

BP
F

FI
R

LP
F

FI
R

HP
F

m
at

rix
M

ul

FI
R

AP
F

FI
R

BP
F

FI
R

LP
F

FI
R

HP
F

m
at

rix
M

ul

FI
R

AP
F

FI
R

BP
F

FI
R

LP
F

FI
R

HP
F

R W R&W

E

Q1 Q2 Q3 Q4

Figure 7: AVG Writes normilized weighted error (E) on a single application output

0

0,2

0,4

0,6

0,8

1

m
at

rix
M

ul

FI
R

AP
F

FI
R

BP
F

FI
R

LP
F

FI
R

HP
F

m
at

rix
M

ul

FI
R

AP
F

FI
R

BP
F

FI
R

LP
F

FI
R

HP
F

m
at

rix
M

ul

FI
R

AP
F

FI
R

BP
F

FI
R

LP
F

FI
R

HP
F

R W R&W

E

Q1 Q2 Q3 Q4

