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Abstract— When designing an approximate computing system, the 
selection of the resources to modify is key. It is important that the 
error introduced in the system remains reasonable, but the size of 
the design exploration space can make this extremely difficult. In 
this paper, we propose to exploit a new metric for this selection: 
data lifetime. The concept comes from the field of reliability, where 
it can guide selective hardening: the more often a resource handles 
"live" data, the more critical it becomes, the more important it will 
be to protect it. In this paper, we propose to use this same metric 
in a new way: identify the less critical resources as approximation 
targets in order to minimize the impact on the global system be-
havior and therefore decrease the impact of approximation while 
increasing gains on other criteria. 
 
Keywords: Approximate Computing, Design Space Exploration, 
Error metrics  

I. INTRODUCTION 
In recent years, the new Approximate Computing (AC) para-

digm represented a breakthrough for several application do-
mains. In domains where quality of results depend on the hu-
man perception (e.g., image processing) or algorithms are in-
herently resilient to errors (e.g., machine learning) [1][2], ap-
proximate results are often hard to distinguish from exact ones. 
Thereby, designers can efficiently trade-off accuracy of the re-
sults with other design parameters such as performance, 
memory requirements and power consumption.  

The main effort of the research community has focused so far 
on the design of efficient approximate functions and operators 
[3]. However, all approaches require choosing where, how, and 
when approximation can be applied. This selection is a complex 
task since it requires the exploration of a large design space. 
The set of computations that can be approximated is huge, and 
it is extremely difficult to predict the effect of the approxima-
tion on the precision of the final result [4]. Currently, only few 
publications addressed the problem of modelling the error prop-
agation in AC applications, predicting the final effect on the 
outcomes without requiring large simulation campaigns [5] [6]. 
However, although these approaches solve the problem of esti-
mating the impact of the approximation on the precision of the 
application, they still do not provide a strategy to select the best 
subset of resources to approximate.  

This paper takes a step forward proposing a technique able to 
identify a subset of resources that can be approximated while 
minimizing the impact on the precision of the final output. This 
significantly reduces the size of the design space to be analyzed. 
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The proposed approach takes inspiration from the reliability 
domain. From the reliability standpoint, each hardware/soft-
ware resource contributes to the reliability level of the system. 
This contribution is a function of several parameters (architec-
ture, workload, etc.) and is extremely difficult to estimate. In 
this field, some metrics have been developed to identify critical 
resources and support efficient design space exploration  
[7][8][9][10][11]. In this paper we propose to exploit Register 
Data Lifetime (RDL) [8], i.e., the interval between the time a 
data is written into a register and the last time it is read, as a 
candidate metric for design space exploration in an AC context, 
able to identify those resources that can be approximated with 
minor impact on system-level precision. The motivation behind 
this proposal is that a longer life-time is in general related to a 
larger number of operations using the same value, and data us-
age is one of the key factors affecting the precision of a program 
in presence of approximation. This is somehow different from 
the use of the RDL in the reliability domain, in which the as-
sumption is that more faults may occur during a larger storage 
time. Nevertheless, even if the mechanism is different the effect 
is similar and AC can take advantage from available techniques 
and tools. The proposed technique has been tested on a set of 
typical benchmarks used to evaluate AC techniques, providing 
interesting results showing that the proposed approach can be 
an interesting starting point for the development of a new class 
of resource approximability metrics. 

The paper is organized as follows: first, it discusses related 
literature in the approximate and reliability domains (Section 
II), then it introduces in detail the proposed approach (Section 
III). Section IV provides an experimental proof of concept, 
while Section V draws conclusions and introduces future per-
spectives.  

II. STATE OF THE ART 

A. Approximation strategies 
Approximate computing techniques can mainly be grouped in 

three categories: (i) design of efficient approximate hardware 
blocks [12], (ii) introduction of errors in the control flow of the 
application [13] or (iii) trade-off between data size and preci-
sion [14]. 

When looking into approximate hardware components, sev-
eral publications focus on adders and multipliers [15]. The basic 
idea is to introduce an approximation by: (i) reducing the carry 
propagation chain, (ii) dividing the adder into sub-adders then 



generating carries using different methods, (iii) playing with 
full-adders’ modifications. Similar concepts are applied to mul-
tipliers, where the approximation may be introduced by: (i) gen-
erating partial products (ii) ignoring some partial products (iii) 
using approximate counters or compressors in the partial prod-
uct tree, (iv) composing complex approximate multipliers by 
means of simple approximate / correct multipliers. For both ap-
proximate adders and multipliers, the result of the operation is 
affected by an error that depends on the input data and can be 
measured using different metrics such as the Mean Relative Er-
ror (MRE) or the Worst-Case Error (WCE), and Error Probabil-
ity (EP), i.e., the probability that the approximation affects the 
output. All strategies reduce area, power consumption, and can 
improve the computation throughput. 

When hardware approximation cannot be exploited, it is still 
possible to approximate by reducing the algorithm execution 
time through loop perforation. In this case, selected loops can 
be executed less times (by skipping some counter increment or 
jumping out of the loop on certain conditions), exploiting the 
ability of the computation to converge on a near good result in 
a smaller number of steps. This approach still enables to trade-
off power consumption and performance while the hardware 
area remains constant. 

By tuning the data size (e.g., by considering only the original 
most significant bits or by replacing floating-point data with 
fixed-point data [16], or leveraging the data precision [14]) the 
hardware area, the computation time and the power consump-
tion can also be reduced. This strategy is well suited for several 
classical DSP applications (e.g., Finite Impulse Response - FIR, 
Infinite Impulse Response - IIR filters, Fast Fourier Transform 
(FFT), and machine learning). 

B. Reliability Estimation 
Another source of errors in computations is due in many ap-

plications to environmental disturbances, due to e.g., particles, 
electromagnetic interferences, or voltage variations that may re-
sult in erroneous data or so-called "Soft Errors". 

A lot of work has been done to obtain estimations of the effect 
of such errors early in design flow. Replacing Radiation Testing 
with RT-Level fault injections is a first step [17], but these set-
ups are still too expensive in terms of computational complexity  
[18], even when hardware acceleration or emulation platforms 
are used [18], and they require the RTL model to be extremely 
precise. Several approaches have been proposed to elevate the 
abstraction of the problem, most of the time relying on statisti-
cal modelling of the software [19][20]. 

Among the different approaches proposed in the literature, the 
approach proposed in [8], in which Register Data Lifetime is 
used for reliability estimation is of particular interest for this 
paper. The overall idea is simple: the longer a data is resident in 
a register, the higher is the probability of it being corrupted. The 
application is actually more complex, as there are many subtle 
points to consider, such as the actual contribution of the data to 
the final result, or masking effects introduced by the micro-ar-
chitecture. As systems get bigger, these factors become espe-
cially important to avoid taking into account data that will have 
no effect on the final output [9]. 

Figure 1 depicts the general principle. Figure 1-a shows a ge-
neric RTL description of a circuit composed of a set of storage 
elements (registers, marked as “R”), connected by a network of 
combinatorial functions (functions, marked as “F”). Figure 1-b 
depicts the effect of a Single Event Upset (i.e., single bit-flip) 
on two different registers. In one case, the fault propagates 
through the system until it reaches the final output, corrupting 
it and generating an error. In the second case, the fault is filtered 
by the combinatorial logic, and has no effect on the final output. 
This means that the first fault is more critical. Therefore, in case 
of selective hardening it would be more important to protect the 
first register rather than the second one in case of an error at this 
particular clock cycle. Modern systems may be composed of a 
huge number of registers, so it is not always feasible or cost-
effective to harden them all. In the same way an error due to a 
computation error introduced by approximation will not have 
the same effect at each cycle and at each location. 

A possible solution is to identify the subset of registers that 
are more critical for the reliability of a given application, so that 
the designer knows where to focus his efforts. To obtain usable 
results, the method proposed in [8] developed a detailed model 
of a target processor microarchitecture, notably taking into ac-
count the processor pipeline structure and mechanisms like fast-
forwarding. The approach provided consistent results when 
compared with Fault Injection campaigns and was successfully 
expanded to generic digital circuits with no assumption on the 
architecture [9].  

 
 

 
Figure 1 Design Space Exploration for Reliability 
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III. PROPOSED APPROACH 
To present the proposed approach for the identification of can-

didate resources where to apply approximation, let us start from 
the same example reported in Figure 1-a. When approximating, 
one or more of the Functions Fi, considered as “Precise”, are 
replaced by corresponding Approximate Function (AFi), thus 
introducing an error ei at the output of the circuit. Figure 2-b 
shows an example, where the original Functions are labelled as 
PF (Precise Function) for better readability. If a different pre-
cise function PFj is replaced by an approximate function AFj 
(Figure 2-c) a different approximation error ej is introduced. 
The difference comes from the different position and role of the 
two PF functions in the system, and of course of the impact on 
the data and control paths.  

 

 
Figure 2 Design Space Exploration for Approximation 

This mechanism is extremely similar to the fault propagation 
mechanism depicted in Figure 1. The basic assumption of the 
proposed approach is that both the precision of the application 
in presence of approximation and the reliability of a system in 
presence of errors (e.g., soft errors) are similar mechanisms de-
pending on the data path and data dependency. Therefore, we 
would like to exploit a metric such as the Register Data Lifetime 
(RDL), that has proven to be a valuable instrument to identify 
critical resources in the reliability domain, to select candidate 

resources for approximation able to minimize the error at the 
output of the computation. The main difference when moving 
from the reliability to the AC domain is that, for reliability, the 
relationship between RDL and criticality is direct: the more 
time a data is “alive”, the higher is the probability that it can be 
corrupted by a transient effect. In AC, the focus is rather on the 
usage of the data, i.e., a high RDL might not be directly related 
to a significant impact on the precision. However, due to data 
locality, very often data remain resident for long time when they 
require to be used multiple times. Therefore, RDL can be ex-
ploited as an indirect metric also for the analysis of critical re-
sources in AC applications. However, since RDL is not a direct 
metric, different metrics strongly related to the data usage must 
be evaluated. In this paper, the following three different metrics 
have been considered: 

1. the RDL,the ratio between the number of reads and the 
number of writes (#R/#W). 

2. the average period between two reads over the 
execution time (AVG #Reads). 

3. the average period between two writes over the 
execution time (AVG #Writes). 

To assess our hypothesis, i.e., RDL and other data usage re-
lated metrics can be used to identify candidate functions for ap-
proximation, the simulation procedure summarized by Algo-
rithm 1 is used. The algorithm considers a target system under 
investigation (SUI) and computes the above-mentioned metrics 
for all storage resources.  

 

 
Algorithm 1: Evaluation methodology 

The SUI is analyzed for each metric (lines 6-16). A metric can 
be computed by profiling a golden execution, collecting statis-
tics on the usage of each resource (lines 7 and 8). Resources are 
then ranked based on the target metric and grouped into four 
bins (Q vector output of line 9). Figure 3 reports an example of 
the RDL metric computed for 28 resources. Resources are 
sorted for increasing RDL and grouped in four quartiles. The 
assumption here is that overall, resources belonging to the same 
quartile have similar impact on the precision of the system when 
approximated.  

To prove this, the approximation of all resources in each quar-
tile by means of an approximate operator is evaluated and com-
pared with the result of the reference application (line 10-15). 
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1. Metrics = {RDL, #R/#W,  
2.  AVG. #Reads, AVG. #Writes} 
3. AC_Policies = {R, W, R&W} 
4. SUI = the benchmark to evaluate 
5. resources {the set of target resources} 
6. foreach m in metric 
7.   statistics[m] = compute_metric (SUI, 
8.     m, resources) 
9.   Q = compute_quartiles(statistics[m]) 
10.  foreach q in Q 
11.     foreach p in Policies 
12.        SUI_aprx = apply_AF(SUI, q) 
13.        collect_data(SUI, SUI_aprx) 
14.     endfor 
15.  endfor 
16. endfor  
  



The approximate version (SUI_aprx) is created from the origi-
nal version by replacing each PF connected to the resources in 
the quartile with an AF based on three different approximation 
strategies: if the PF writes in a target resource (W), or if it reads 
from a target resource (R), or all the times it writes to or reads 
from a target resource (R&W).  

Collecting data for the comparison between the approximate 
SUI (SUI_aprx) and the golden reference (SUI) requires simu-
lating the application several times with different input data. For 
each simulation, input data is randomly generated to assure the 
results will not be dependent on the testbench.  

 
Figure 3 Ordered lifetime with Quartiles Points 

By comparing the output of the two versions of the SUI it is 
possible to compute the error introduced by approximating a 
given resource and by analyzing the average errors for resources 
in each quartile we can validate our hypothesis that there should 
be a clear correlation between quartiles and impact on the pre-
cision.  

IV. EXPERIMENTAL RESULTS 
In order to perform experiments on a set of benchmarks, we 

developed an experimental proof of concept of the analysis de-
scribed in Algorithm 1. For simplicity, the target SUI is emu-
lated at the software level. In reference to Figure 2, software 
variables take the role of storage elements, while arithmetic 
functions take the role of Precise Functions (PF), for which we 
also have an Approximate Function (AF) alternative. In partic-
ular sums and multiplications are the target functions of our 
analysis since they have been extensively studied in the AC do-
main. We considered the software implementation of precise 
and approximate 8-bit adders and 32-and 8-bits multipliers pro-
vided by [15]. For this first preliminary investigation, we se-
lected one approximate adder (with MRE=1.65% WCE=128, 
and EP=1.6%) and one approximate multiplier (MRE=1.99%, 
WCE=820, and EP=86.5%). Multiplier results are provided 
over 16 bits. 

Two benchmarks often used in the AC domain were analyzed: 
1. Matrix Multiplication. it is a very common computa-

tional module used in several real applications in-
cluding image processing and neural networks em-
ploying both multipliers and adders. To keep the 
analysis time low a 3x3 matrix multiplication was 
analyzed. 

2. Finite Impulse Response (FIR) filter. It is a filter 
whose impulse response is of finite duration. It is a 

very common DSP application. Four different 32th-
order filters were analyzed: (i) a low-pass filter 
(LPF), (ii) a high-pass filter (HPF), (iii) a band-pass 
filter (BPF), and (iv) an arbitrary-pass filter (APF). 
For the FIR the randomness was applied in the form 
of white noise generation. 

These test cases represent opposite system-level require-
ments: while Matrix Multiplication computes a precise result 
and is therefore extremely sensitive to approximation, the FIR 
algorithms present several shifts and rounding steps, so they are 
intrinsically more resilient to errors.  

 The experimental setup follows Algorithm 1. In order to col-
lect data (line 13 of the alg. 1) we implemented these steps:  

1. We gerated random values for all inputs. For the FIR, 
a white noise generation apporach has been followed. 

2. Inputs are provided to both the approximate version 
(SUI_aprx) and the precise version (SUI) and the 
outputs collected. 

3. For each output value, we compute the error (ei) as the 
diffence between the precise output and the 
approximated one. The error is uses to track the 
frequencies (fi) of all possibile errors. 

To reduce data dependency, we repeat these steps several times, 
stopping when the frequency distribution function was stable, 
i.e., the weighted average of the error did not change more than 
0.01%. The weighted average is computed using the following 
equation: 

 

𝐸 =
∑ (𝑒& ∗ 𝑓&)∀+,,-,

∑ 𝑓&∀+,,-,
 

 
Where	𝐸 represents the average error affecting a single output 

of the computation, 𝑒& is the error (e.g., 0, 1, 2 etc.) and 𝑓& is the 
frequency at which 𝑒& is detected. Eventually, value E is nor-
malized: the order of magnitude of the error may significantly 
change from application to application but what is interesting 
here is the trend. Matrix multiplication implies a sequence of 
multiply operations, and their results accumulated several times 
for each index of the output matrix. Thus, once an error is intro-
duced by a multiplication, the accumulation is not able to reduce 
the error in any case, but just to add another error if an approx-
imate version is used. Similarly, the FIR general behavior is 
also based on multiplications (between the specific coefficients 
shaping the filter type and the input samples) and accumulations 
but, due to some right shift operations over the final value of 
each output, errors in the lower bits of the results can be dis-
carded.  

Figure 4, Figure 5, Figure 6, Figure 7 show the normalized 
projection of E, for each metric, of all considered applications 
grouped by policy. 

A. Result Feedbacks 
Figure 4 shows that the RDL metric with (R) policy is strongly 

related to the approximated quartile, i.e., resources in Q1 have 
a lower impact on the accuracy of the system w.r.t. resources in 
Q4. This is consistent also considering very different applica-
tions (e.g., Matrix multiplication and FIR). When RDL is used 
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in combination with other approximation policies its accuracy 
is reduced. 

When considering the remaining metrics (Figure 5, Figure 6, 
Figure 7), it is clear that none of them perform well as RDL. 
This is due to the fact that the approximation depends on data 
(and the interrelationships among data) but most importantly 
because each metric depicts a different aspect of the data usage. 
In this sense, it is an interesting observation that all the other 
metrics work better when associated with a write policy.  

V. CONCLUSIONS AND PERSPECTIVES 
In this paper, we showed how Register Data Lifetime can be 

used as a Design Space Exploration metric in the AC domain. 
Our experimental results show an interesting correlation be-
tween the RDL and the impact of approximation on the final 
results of a computation. This corroborates our hypothesis and 
points out several development directions. Overall, the fact that 
RDL performs better on reading policies while other metrics 
work better with writing policies suggests that a combination of 
these metrics could be analyzed in the future to better guide the 
selection of resources to approximate and to develop AC dedi-
cated metrics. 
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Figure 4: RDL normilized weighted error (E) on a single application output 

  
Figure 5: #R/#W normalized weighted error (E) on a single application output  

 
Figure 6: AVG Reads normilized weighted error (E) on a single application output  
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Figure 7: AVG Writes normilized weighted error (E) on a single application output  
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