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Summary

Building Evacuation is an important application field of Agent-Based Modeling
(ABM). This research links together structural analyses, damage scenarios, human
behavior, ABM simulations and sensor based catastrophe management through
multiple case studies made in California, United States and aims to demonstrate
the effort that reliable damage scenarios, human behavior and risk analysis can
bring in the field of Emergency Management, making simulations closer to real-
ity. Smart sensor networks produce pervasive structural health monitoring (SHM)
information. Using sensors data, mobile operating system frameworks return pro-
cessed features such as attitude and heading that can be used to improve structural
health awareness. Knowing structure’s coordinate system a priori, even the data
from arbitrarily positioned sensors can automatically be transformed to the struc-
tural coordinates, used to estimate buildings risk and improve ABM simulations
reliability. To explore the use of MEMS accelerometers used by sensors built during
this research to detect and characterize vibration sources in buildings, this study
involved experimental data collection and machine learning algorithmic processing
components.
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Chapter 1

Introduzione in lingua italiana

L’Agent-Based Modeling (ABM) è una tecnica efficiente nata con lo scopo di
simulare gli effetti delle decisioni prese da elementi detti agenti. Una delle ap-
plicazioni più importanti dell’ABM è la simulazione dell’evacuazione di individui
da edifici o quartieri. La maggior parte dei casi studio oggigiorno si concentra
sulla modellazione del comportamento umano per modellare l’evacuazione da in-
cendi, atti terroristici o tsunami. Rimane invece finora inesplorata l’evacuazione
di individui causata da terremoti, in cui sono necessari ulteriori dati sullo stato
di danno all’interno delle strutture. Per risolvere questa lacuna, è stato effet-
tuata un’attivita’ di ricerca presso il PEER - Pacific Earthquake Engineering Re-
search Center, centro di ricerca parte dell’Università della California a Berkeley.
E’ stato realizzato un caso studio relativo ad un edificio progettato da Forell-
Ellsner, azienda di San Francisco e situato nella città di Oakland, CA. Il sito di
realizzazione della struttura è ad alto rischio sismico, essendo prossimo alla faglia
di Sant’Andrea. La struttura è stata progettata secondo i canoni previsti dalle
normative americane relative all’acciaio con isolamento alla base (Single Friction
Pendulum Bearings) e testata al Maximum Considered Earthquake.

La ricerca in oggetto intende inoltre dimostrare quanto sia importante in-
cludere scenari di danno all’interno della simulazione Agent-Based, qui ottenuti
attraverso l’utilizzo del Performance Assessment Calculation Tool (PACT, soft-
ware della FEMA), i cui risultati delle analisi strutturali e non strutturali sono
stati utilizzati per ricavare le percentuali di componenti danneggiate in ogni piano
dell’edificio. Sempre mediante PACT è stato possibile ricavare le percentuali di
persone ferite o debilitate. Tali risultati sono stati realizzati su mappe di danno e
collegati con un software di simulazione realizzato appositamente.

L’attività di ricerca si è inoltre concentrata a sviluppare un modello di com-
portamento umano basato su dati reali derivati da questionari distribuiti sia negli
Stati Uniti che in Italia. L’attendibilità delle risposte è stata valutata seguendo
la teoria del Planned Behavior di Ajzen (1991) [1]. Il modello di comportamento,

1



1 – Introduzione in lingua italiana

basato sul "Belief, Desire and Intention framework" di Lee, considera invece nu-
merosi aspetti del comportamento delle persone durante l’evacuazione causata da
catastrofi naturali e tiene conto della formazione di gruppi quali famiglie o amici e
della ricerca di persone care da parte degli agenti, in modo tale da differenziarne
il comportamento nelle due situazioni. L’azione da parte degli agenti viene inoltre
calibrata da un modello di panico progettato appositamente per l’evacuazione di
edifici sottoposti a sisma e che permette di simulare le variazioni delle capacità
decisionali che l’ansia può causare agli esseri umani. Questo modello tiene conto
della eventuale visibilit à di un’uscita d’emergenza, della densità di agenti nella
zona e dei tempi di evacuazione, il cui valore iniziale viene determinato dall’analisi
strutturale ed i dati di ansia riportati da Takahashi (2010) [54], i quali documen-
tano lo stato di ansia delle persone soggette al test sul panico e dalle capacitá
motorie su tavola vibrante.

I modelli sopra citati sono stati realizzati tramite la scrittura di un software
mediante il linguaggio di programmazione C++11 e l’integrazione di un framework
ABM e Parallel Computing chiamato Repast HPC, progetto opensource realizzato
dall’Argonne National Laboratory. Il movimento degli agenti è stato invece im-
plementato applicando un algoritmo di Intelligenza Artificiale (Lee’s Algorithm,
1961 [32]). I risultati riportati nei Capitoli 7 e 8, dimostrano come la modellazione
del comportamento umano e del danno strutturale aumentino notevolmente la
precisione dei risultati finali ottenuti dal software.

Negli ultimi anni, gli accelerometri di tipo Micro Electro-Mechanical Systems
(MEMS) hanno dimostrato di offrire una applicazione valida in ingegneria civile
per il monitoraggio strutturale (SHM). Sulla base dei promettenti risultati prelim-
inari ottenuti in questa attività di ricerca, viene poi discussa una loro possibile
applicazione per l’identificazione di danni strutturali su scala reale, per dare prova
della loro rilevanza tramite calcoli comparativi verso i risultati dimostrati nella
letteratura passata. Essere in grado di limitare l’effetto di disastri, limitando i
danni e monitorando continuamente la condizione strutturale degli edifici, porta
inoltre il modello ABM proposto a mantenere l’applicazione di danni strutturali
al livelli minimi, permettendo di ottenere quasi sempre evacuazioni ottimali. A tal
proposito, come descritto a partire dal capitolo 9, la ricerca si è quindi concentrata
sullo studio di una tecnica di monitoraggio dello stato di rischio strutturale degli
edifici tramite l’utilizzo di sensori dotati di accelerometro digitale ad altissima pre-
cisione, attraverso il quale è possibile ottenere il periodo naturale della struttura
in condizioni stazionarie e poter così valutare la presenza di danni confrontando i
dati raccolti prima e dopo un terremoto, ottenendo così non solo un rapido sistema
di allarme, ma anche una tecnica di stima continua del rischio. Questa parte di
ricerca è stata condotta in collaborazione con Safehub Inc., società con sede a San
Francisco e testata sul territorio della California, negli Stati Uniti d’America.
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Chapter 2

Introduction and Motivations

Agent-based modeling (ABM) is a modern and powerful tool for testing the col-
lective effects of individual actions. One of the most important ABM applications
in Civil Engineering is the simulation of crowd evacuation for buildings.

Most of the examples in literature, described in Chapter 3, focus on increasing
the affidability of these simulations by refining human behavior models without
taking into consideration most of the alterations that fires, explosions or earth-
quakes can create to structural and non-structural components.

This study links together structural analyses, damage scenarios (including non
structural components), panic models and ABM simulations to simulate the evac-
uation of a building after an earthquake. The presented case study is an ideal
three-story building set in Oakland (CA) and made of steel with base isolation
(Friction Pendulum bearings). Structural analyses were performed on OpenSees
software by researchers of the Pacific Earthquake Engineering Research Center
(PEER, U.C. Berkeley).

Furthermore, this research includes the development of a human behavior
model and a panic model, both oriented in earthquake evacuation simulations.
Models take into account the most important aspects of human behavior during
emergencies, including the variations that anxiety can bring to the decisional ca-
pacity. A first model, described in Chapter 4, has been created according to a
simplified version of the Extended Belief, Desires and Intentions framework and
it is based on a survey that has been run both in Italy and in the U.S.A.. The
questionnaire design, described in Chapter 6, involved social desirability bias mit-
igation tools, according to Ajzen’s "Theory of Planned Behavior" (1991) [1]. The
model takes into account the most important actions that an agent can perform
during the evacuation: leader-follower behavior of an agent respect to the group
formation, helping a seriously or not seriously injured person and the research of
missing individuals. Through this model, agents are evaluated taking into an ac-
count their feelings: the sight of an emergency exit, the injury status and if the
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person is alone or with his/her family or friends. The panic model simulates the
anxiety effects in the human decision capacity and it has been specifically designed
for building evacuation in case of earthquakes including three parameters: sight of
an emergency exit, evacuation time and density of occupants. Its starting value
has been calibrated by using the shaking table results of Takahashi (2010) [54] in
order to find a correlation between structural analyses results and people’s anxiety
levels that were analyzed through a complete campaign of shaking table tests.

The models that have been described above are designed for each agent: this
work employs an Artificial Intelligence model described in Chapter 5 to simulate
crowd behavior. This model considers the agents’ interaction with other agents,
obstacles and speeds, according to their injury level and decisional states.

Chapter 7 describes how structural analysis results were implemented on PACT
(Performance Assessment Calculation Tool, by FEMA) in order to create the dam-
age scenarios in terms of percentage of injured people and obstacles created by
collapsed components.

Evacuation simulations involved the use of Repast HPC software tool (by Ar-
gonne National Laboratory) and they go beyond the traditional evacuation sim-
ulations by using parallel computing to increase reliability and expansion of the
models. As reported in the cumulative charts in Chapters 7 and 8, the use of
damage scenarios and two refined human behavior and panic models permitted to
define at best an escape path for each agent, bringing the results closer to reality.

In recent years, Micro Electro-Mechanical Systems (MEMS) accelerometers
have proven to offer a suitable solution for Structural Health Monitoring (SHM)
in civil engineering applications. Based on the well promising preliminary out-
comes of this research, their possible application for the dynamic identification of
existing, full-scale structural damages is then discussed, giving evidence of their
potential via comparative calculations towards past literature results. Being able
to limit the occurrence of disasters by preventing damage and continuously monitor
buildings, leads the proposed ABM model to simplify its application by limiting
the implications of structural damage, leading almost always to optimal evacu-
ations levels. In this regard, as described from Chapter 9, this research activity
focused on the study of a building monitoring technique that uses sensors equipped
with a very high precision digital accelerometer, through which it is possible to
compute the natural period of the structure in stationary conditions, thus estimat-
ing presence of damage and therefore allowing to compare the data collected from
a building before and after an earthquake, obtaining not only an early warning
system, but also a risk assessment technique. This part of research was carried
out in collaboration with Safehub Inc., a San Francisco based company.
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Chapter 3

State of the art

This chapter aims to give an overview of the current state of the art this
research refers to. The first paragraphs describe the history of human Agent-
Based Modeling, then a lot of modern civil engineering applications are described
together with a description of the possible methodologies that researchers used in
the past or they are using nowadays to describe the human behavior. Finally, the
last paragraphs will focus on the current solutions and applications of sensor-based
studies, for this research to improve this technology and provide strength for ABM
models to be used in ideal conditions.

3.1 ABM Introduction
Agent-based modeling (ABM) is a methodology for testing the collective effects

of individual actions. In general, ABM allows the examination of macro-level
effects from micro-level behavior. Science requires the understanding of how an
observed characteristic of a system (e.g. a solid) can be accounted for by its
components (e.g. molecules). ABM is used in a vast range of fields like biology,
business problems, ecology, social and earth science, network theory, technology
and also civil engineering. In ABM, components and environment in which they
exist are both modeled, in order to observe if the overall system behavior of the
model matches the target (or subject) system behavior. The benefits of using
ABM over other modeling techniques can be described in three statements, as of
Bonabeu (2002) [6]:

• ABM captures emergent phenomena that are the result of the interaction
among the agents.

• ABM provides a natural description of a system: In many cases, ABM is most
natural for describing and simulating a system composed of "behavioral"
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entities. Whether one is attempting to describe a traffic jam, the stock
market, voters, or how an organization works, ABM makes the model seem
closer to reality.

• ABM is flexible: this flexibility can be observed along multiple dimensions.
For example, it is easy to add more agents to an agent-based model. ABM
also provides a natural framework for tuning the complexity of agents: be-
havior, degree of rationality, ability to learn and evolve, and rules of in-
teractions. Another dimension of flexibility is the ability to change levels
of aggregation: one can easily play with aggregate agents, groups or single
agents, using different levels of description in every given model.

In agent-based modeling, a system is modeled as a collection of autonomous
decision-making entities called agents. Each agent individually assesses its situa-
tion and makes decisions on the basis of a set of rules. An agent can interact with
others, it is flexible and has the ability to learn from the past and to adapt his
behaviors based on the experiences. A definition of agent may represent individu-
als, groups, companies and so on. The models of their behavior and the reciprocal
interactions are formalized by equations, but it is possible to consider individual
variations in the behavioral rules and random influences. Furthermore, ABM can
be combined with other simulation methods used in natural and engineering sci-
ences, including statistical physics, biology, cybernetics and, as proposed by this
study, sensors based models.

3.2 Brief history
One of the earliest made agent-based model was the segregation model by

Schelling (1969) [48] from Harvard University, which was discussed in Schelling
(1971) [47] "Dynamic Models of Segregation". Even if he did not planned the use
of computers, his models embodied the basic ABM concepts of autonomous agents
interacting in a shared environment that gives singular and aggregated results.

Modern ABM has been created by Axelrod (1981) [3] with his revolutionary
simulations of cooperative behavior. On this topic, in the appendix of Axelrod
(2006) [4],the four research goals on this field are described as following:

• Empirical: "Why have large-scale regularities evolved and persisted, even
when there is little top-down control?";

• Normative understanding: "How can agent-based models be used as labora-
tories for the discovery of good designs?";
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• Heuristic: "How can greater insight be attained about the fundamental causal
mechanisms in social systems?";

• Methodological advancement: "How can we best provide ABM researchers
with the methods and tools they need to undertake the rigorous study of
social systems and to examine the compatibility of experimentally-generated
theories with real-world data?".

In the ’90s, with the appearance of frameworks like StarLogo, Swarm, NetLogo,
RePast, AnyLogic and GAMA, ABM started to being applied in several fields, be-
ginning with social sciences. ABM began to focus on issues like designing effective
teams, understanding the communication required for organizational effectiveness
and the behavior of social networks. More recently, Sun (2006) [53] developed
methods for basing agent-based simulation on models of human cognition, known
as "cognitive social simulation". Bonabeu (2002) [6] instead described very well
the potential of modern ABM simulations. Many researchers at the University of
California, Los Angeles (UCLA), have also given significant contributions to the
organizational behavior and decision-making: since 2001, UCLA arranges annual
conferences that has become one of the major gathering points for practitioners in
this field.

3.3 ABM applications in Civil Engineering
Nowadays, ABM simulations are performed in several fields of civil engineering:

from the thermic assessment of a building to the simulation of terrorist attacks.
For example, one of the most important studies in the field of energy assessment
in a building has been done by Lee (2013) [35]. In this work he simulated human
interaction with the energy performances of a building: researchers mixed the
EnergyPlus software with an ABM for a single agent written with Matlab, using
few equations for modeling behaviors and giving priorities to the thermal comfort.

However, the aim of this work is to simulate the evacuation of infrastructures
and buildings during emergencies, one of the most important fields in which ABMs
have been developed in the recent years. These helps designers and legislators to
demonstrate if a designed building is safe and if the occupants will be able to
evacuate during an emergency. Evacuation simulations can be done on site: they
allow researchers to get a huge amount of reliable data, but in many cases these
simulations can not be performed in all the infrastructures. For instance, if an
administration wants to run a simulation for an airport terminal, the economic
losses caused by the huge cost of the simulation or the inconveniences caused to
passengers and flights might be too high, as Tsai (2009) underlined [59]. Therefore,
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today’s best way to simulate an evacuation is to run an agent-based model on a
computer.

Gwynne (1999) [25] studied crowd behavior during fire emergencies and divided
ABM civil engineering applications in three categories (optimization, simulation
and risk assessment models):

• Optimization models are created in order to optimize the position of all the
emergency furnitures. Therefore in these models the human behavior is not
well defined: evacuees are considered like a uniform flow.

• Simulation models: they are created in order to take into consideration all
the aspects of the human behavior during an evacuation, including feelings
and actions that are not strictly related to the evacuation process. These
models allow designers to simulate, for example, how people use the designed
emergency exits, the crowd formation and the evacuation time at a specific
damage or hazard scenario.

• Risk assessment models attempt to identify hazards associated with evacua-
tion resulting from a fire or related incident and attempt to quantify risk. By
performing many repeated runs, statistically significant variations associated
with changes to the compartment designs or fire protection measures can be
assessed.

According to Tsai (2009) [58], crowd simulations can be classified as "macro-
oriented" or "micro-oriented". Micro-scale simulations, in civil applications, con-
sists on set the agent as a single human brain, with models that represent its
behavior. Macro-scale simulations are the ones who make agents to interact with
the environment.

The following examples describe the massive use of ABM simulations for town
evacuations: here agents are families evacuating cities by specific means of trans-
portation.

• Raney (2003) [45] created an ABM simulation for the Swiss Travel combin-
ing micro and macro scale simulations. From a micro-scale point of view,
they considered an agent each traveler having his own behavior: agents are
intelligent and they have strategic and long-term goals. The macro-scale
point of view is their approximation to particles in a fluid dynamics flow. By
combining the two simulations, a complex system can be represented.

The last example introduced an important field in which crowd simulations
are used: in recent years, transport planners have been using ABM simulations
for designing evacuation plans in urban environments. ABM is considered during
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transportation studies by using modern softwares (e.g. TRANSIMS) that are
considered a new development of transportation.

• Chen (2008) [12] applied ABM in the simulation of an evacuation of an
entire town. This study uses an agent-based technique to model traffic flows
at the level of individual vehicles and investigates the collective behaviors of
evacuating vehicles.

• Yin (2014) [64] created an agent-based travel demand model system for
hurricane evacuation simulation, which is capable of generating comprehen-
sive household activity-travel plans. The system implements econometric
and statistical models that represent travel and decision-making behavior
throughout the evacuation process.

• Zia (2013) [66] created a big simulation of movements in a medium size
European city. He created a Cellular Automata (CA) grid from a raster
image of a city (CA definition is given in the following paragraphs). Then
they modeled the city and human behavior in Repast HPC and they printed
the results on raster images that were scaled to the resolution of the CA grid.
This work is so important because this thesis refers to it in many aspects,
in particular in the software that is used, in the definition of some human
characteristics and in the outputs definitions.

• Perkins (2015) [43] developed an ABM simulation for creating a model for
reducing the dwell time in train stations. One of the key parameters (or
optimization factors) was the width and number of doors in a train.

The complexity of cities evacuation models is caused by the huge dimensions,
so researchers needs to parallelize calculations in order to fasten simulation times
and increase reliability. This research aims to do the same for building evacua-
tion: some cities models are added into building models. In these simulations,
agents are individuals (each human being, dynamic agents) and the environment.
The following examples are the current works that literature presents about ABM
simulations of buildings.

• Tang (2008) [55] created an agent-based simulation model for a building in
case of fire evacuation. They used a fire dynamics simulator (FDS) based on
the computational fluid dynamics and a geographic information system soft-
ware (GIS) with an ABM application to model the occupants response. Their
case study demonstrates that the evacuation model effectively simulates the
coexistence and interactions of the major factors including occupants, build-
ing geometry, and fire disaster during the evacuation.
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• Dai (2013) [15] used an ABM to simulate an emergent evacuation in the
Georgia Dome (Atlanta, GA), in order to evaluate the clearance time of
evacuation of the stadium and the crowding areas. The behavior of evacuees
included the maintenance of personal spaces, following groups and any be-
havior of a group during an evacuation. The building design factor that was
also examined is the size and the location of bottlenecks.

• Tsai (2009) [59] simulated the evacuation due to multiple improvised ex-
plosive devices (IEDs) explosions at the Los Angeles International Airport
(LAX). An important starting point of that simulation was that in airports
there are not only business people (like in a train station during a work day),
but also a huge number of families. Households present a completely different
model of human behavior, as they no longer follow the often assumed "self
preservation" edict and often seek to ensure the safety of family members
first.

3.3.1 Specific models for Building Fires
In lieu of data and theory, evacuation models (and users) make assumptions

and simplifications about occupant behavior, which can inappropriately charac-
terize the time it actually takes to evacuate a building. When assumptions lead to
too optimistic or too conservative evacuation estimates, buildings and emergency
measures can be designed with either insufficient or unnecessary (and costly) egress
routes and fire protection/notification systems. There is a lot of history in con-
ceptual models of human behaviour in fire. Research into disasters, based on
methods from the social sciences, has led to the development of theories and per-
spectives that can be related to building fire emergencies. Previous models are
based upon a theoretical framework of individual decision-making and response
to emergencies [51] and even by factoring the influence of actions that include
information seeking, milling, preparing for evacuation, and informing others. A
large body of behavioural research has shown that occupants, either individually
or within groups, engage in a decision-making process before evacuating. Occu-
pants perceive certain cues, interpret the situation, establish the risk to them based
on those cues combined with prior knowledge and experience, and then make a
decision as to what to do (i.e., select an action) based on these interpretations.
In more advanced simulation models, a new performance element is considered,
the Behavioural Itineraries. The user can address evacuee delays during evacuee
movement by assigning behavioural itineraries to evacuees or groups of evacuees.
Behavioural itineraries are tasks performed during the pre-evacuation or move-
ment phases of an evacuation, and are assigned usually to the individual or group.
The behavioural itinerary requires the definition of the locations visited during the
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evacuation and the time spent at these locations. The itinerary then implicitly
represents evacuee movement and the associated delays that are not directly asso-
ciated with movement to a place of safety. By analyzing such models, it becomes
clear how understanding and representing evacuee behaviour, as a model user and
a model developer, is a difficult and complicated task. This task is made more
difficult by the tendency to oversimplify and focus on the physical aspects of an
evacuation, rather than the psychological and the sociological aspects. It is hoped
that with the research proposed by this work, a wider array of evacuee behaviours
will be considered in the modelling process to fill the gap.

3.4 Human Behavior Models during evacuations
The human behavior is a complex mechanism influenced by culture, attitudes,

emotions, values, ages, perception and many other aspects. During an evacuation
simulation, the human behavior must be divided in three simpler components:

• The state, which includes the role performed in the evacuation and the age
of the individuals. These characteristics involve different static and basic be-
havior. Different projects have different quantities and percentages of people
that are involved in different roles (e. g. a man that in a specific emergency
is alone, but in another context he can be with his son).

• Crowd Behavior. Individuals in a crowd behave in different ways: they have
been widely studied and classified. These behaviors are mostly influenced by
kinship, aggregation phenomena or collision events.

• Individual behavior, which considers the emotional aspects of a person. This
is the most variable and unpredictable aspect.

The following paragraphs explain the state of the art of frameworks for Indi-
vidual and Crowd behavior models.

3.5 Crowd behavior models
Human crowd is a complex but fascinating social phenomenon in nature. In

some situations, a crowd of people shows well-organized structure and demon-
strates tremendous constructive power, but in other situations, people in a crowd
seem to abandon their social norms and become selfish. That is why crowd mod-
els are so complex. Zheng (2009) [65] has given a detailed description of all the
possible models for crowd behavior simulation.
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3.5.1 Cellular Automata approach
The first Cellular Automata study was made by Von Neumann (2010) [61]: the

crowd is represented as a collection of homogenous individuals who react to the
events and environment accordingly to some simple rules (like a fluid in a duct).
In CA-based models, the environment is divided into a grid consisting of cells. At
each time step, each cell is subject to a new state based upon its current state and
the neighboring cells (Shanthi, 2012 [49]).

3.5.2 Lattice Gases approach
It is a special case of Cellular Automata, and popularized in the 1980s. This

model is often used to study the features of a pedestrians crowd by means of
probability and statistics. In lattice gas models, each pedestrian is considered
as an active part of the grid. Lattice gas models have been applied to study
the characteristics of pedestrian flow in different small building structures, like
the crowd flow going outside a hall with bottlenecks formations and T-shaped
channels.

3.5.3 Social Forces approach
In 1995, Helbing and Molnar proposed a social force model for pedestrian mo-

tion. The total effect a person is subjected to, has been described through mathe-
matical expressions that include the effects of pedestrian desire, repulsive feelings
of pedestrians and environment borders or attractive effects (Helbing, 2000 [27]).
Quinn (2010)[44], showed how the model takes into an account wall and obstacles
avoidance, because of a better simulation grid that can implement an obstacles
map. In recent years, social forces models have attracted great attention from
some researchers and have been further developed to study crowd evacuation. In
particular, they have been combined with other models like Lattice Gases ap-
proach.

3.5.4 Fluid-dynamic models
Pedestrian crowds have been described with fluid-like properties over the last

decades. Bradley (1993) [7] has hypothesized that the Navier-Stokes equations
governing fluid motion could be used to describe similar situations for very high
densities crowds: the footprints of pedestrians in snow look similar to streamlines of
fluids or, again, the streams of pedestrians through standing crowds are analogous
to riverbeds. Fluid-dynamic models describe how density and velocity change in
time with the use of partial differential equations. The problem of these models is
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that panic effects are difficult to be described. Furthermore, Colombo (2005) [14]
presented a continuous model for pedestrian flow to describe typical features of
this kind of flow such as some effects of panic. In particular, this model describes
the possible overcompressions in a crowd and the fall in the outflow through a
door of a panicking crowd jam. They considered the situation where a group of
people needs to leave a corridor through a door. If the maximal outflow allowed by
the door is low, then the transition to panic in the crowd approaching a door may
likely cause a dramatic reduction in the actual outflow, decreasing it even more.

3.5.5 Agent-Based Models
ABMs are computational models that build social structures with a "bottom-

up" approach, by simulating individuals using virtual agents, and creating emer-
gent organizations out of the operation of rules that govern interactions among
agents. Panic behavior is an emergent phenomenon that results from relatively
complex individual-level behavior and interactions among individuals. ABM seems
ideally suited to provide valuable insights into the mechanisms and preconditions
for panic and jamming by incoordination. In the last few years, the ABM tech-
nique has been used to study crowd evacuation in various situations. ABMs are
generally more computationally expensive than cellular automata, lattice gas, so-
cial forces or fluid-dynamic models, also because they implement a lot of aspects
of all the other methods. Their ability to allow each pedestrian to have an unique
behavior makes ABMs the favorite models for modeling heterogeneous humans.

3.5.6 Game approach
The interactive situation, specified by the set of participants, the possible

course of action of each participant, and the set of all possible utility payoffs,
is called a "game". In a game, the evacuees assess all of the available options and
select the alternative that maximizes their utility. Each evacuee’s payoff depends
on the actions chosen by all evacuees. This method is simple and it can be adopted
for little models. When only one exit is available, the competitive behavior of the
pedestrians in emergency egress could be interpreted in a game theoretical way.

The model of this thesis requests a huge variety of behaviors, in order to simu-
late different scenarios and people attitudes during emergencies in the same work.
Agent-Based Modeling is the most powerful tool available in literature for the goal
that the thesis aims to reach.
Agent-Based models can be divided into two categories:

• Deterministic models, which tend to be simpler to use, but do not take into
account the possible variations of human behavior. If several simulations of
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the same model are run with the same inputs, the results will be exactly the
same

• Stochastic Models, which can produce different outputs because of their
stochastic definition. They are more complex than the previous ones and
they need to be run several times in order to have, on average, more reliable
results than deterministic models.

3.6 Individual Behavior models
In the following paragraphs there is reported a description of the most used

individual behavioral models for ABM: SOAR, Act-R and BDI, that is the selected
one for this research.

3.6.1 State, Operator And Results
SOAR (State, Operator And Results) has been developed in 1983. It is based

on the syllogisms theory: it uses an associative mechanism to identify knowledge
relevant to current problems and to bring it to bear potential solutions. A pat-
tern matcher compares a representation of the current context to the activation
conditions for each element in the system’s knowledge base. In Soar, every deci-
sion is made through the combination of current interpretation of sensory data,
the contents of working memory created by prior problem solving, and any rele-
vant knowledge retrieved from long-term memory. The problem solving process in
Soar is implemented as a search through a problem space (consisting of different
possible states) that allows to solve the problem, nay to reach the goal state.

3.6.2 Act-R
Act-R is a hybrid cognitive architecture (Anderson, 2001 [2]). It is based on

psychology, which is used to construct assumptions about human cognition. These
are based on numerous facts derived from psychology experiments. The human
behavior is discretized thanks to two sub-modules: memory and perceptual-motor,
which consider the interaction between a human and real world. Mind processes
can be summarized by mathematical equations. Firstly an utility equation esti-
mates the relative cost and benefit associated to each production (knowledge about
how we do things) thereafter, the execution (action performed) is the production
with the highest utility. The retrieval equations are used when a fact can be re-
trieved from declarative memory, which considers the context and the history of
usage of that fact. Act-R has its own programming language and it has been used
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successfully to create models in domains such as learning and memory, problem
solving, decision making, cognitive development and so on.

3.6.3 BDI - Belief, Desire, Intention
The BDI paradigm was invented by Bratman (1987) [8] and it describes human

reasoning and actions in everyday life using programming language and it has
been applied successfully in many softwares. Because of this straight forward
representation, the BDI paradigm can easily map extracted human knowledge
into its framework. This characteristic enables a BDI paradigm-based system
to imitate the human reasoning and decision-making process, and also makes the
system easy to be understood by an actual human being (Lee, 2009 [33]). The BDI
paradigm provides a "strong" notion of agency: agents are viewed as having certain
mental attitudes (Beliefs, Desires and Intentions, which represent, respectively,
their informational, motivational and deliberative states). In BDI the architecture
of an agent can be completely specified by the events that it can perceive, the
actions it may perform, the beliefs it may hold, the goals it may adopt and the
plans that give rise to its intentions. In Bratman’s theory (1987) [8], an agent
divides its thinking time between deliberating about its intentions, and planning
how to achieve them. BDI identifies three types of deliberation:

• Goal deliberation, which is the process of generating a consistent set of goals,
perhaps by selection from a set of desires;

• Intention deliberation, which means choosing a goal (or goals) that the agent
will act upon (and so will become an intention);

• Plan deliberation, which means constructing a plan, or selecting one from a
plan library, that will further be one or more of the agent’s intentions.

BDI, Soar and Act-R concentrate on the actual brain mechanisms during infor-
mation processing, including tasks such as reasoning, planning, problem-solving,
and learning. Consequently, these models become complex and difficult to be un-
derstood (Lee, 2009 [33]). Therefore, BDI is the most powerful and easy way to
implement a model because it imitates easily the human reasoning and decision-
making processes.

3.7 HPC in ABM
Multi-Agent Systems (MAS) are seen as a promising technology to face the

current requirements of large-scale distributed and complex systems [36]. ABM is
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a category of MAS. The application of MAS to such large scale systems, charac-
terized by millions of distributed nodes, imposes special demanding requirements
in terms of fast computation. High Performance Computing (HPC) technology is
a reliable solution for this purpose.

3.7.1 HPC definition
HPC systems are based on hardware architectures with a large number of pro-

cessors: these cores work in parallel, so that they can execute multiple instructions
simultaneously. The reason of this architecture is to save a huge amount of time in
calculations and to improve precision. Therefore, besides the compute power, the
major challenges with the high end field of applications and economical resources
usage there are an efficient communication and data locality: the most important
requirements for a well designed HPC simulation are the intelligent design of in-
struction sequences and memory usage, in order to avoid bottlenecks during their
flow.

3.7.2 HPC application in ABM
Parallelizing MAS applications means deploying and running multiple intelli-

gent agents on several computational resources nodes. However, the distribution of
multi-agent system execution is a complex task, due to the technical particularities
and to the intensive communication among agents and environment. Additionally,
individual agents needs to modify the environment itself during their decision-
making processes which, in terms of parallelization, are translated to the need to
share several layers of environmental data and agents, which is a complex process.
HPC technologies help researchers to develop the reliability of the human behav-
ior simulation, giving the sufficient computational power for running, for example,
better crowd models instead of a traditional Cellular Automata approach:

• Quinn (2010) [44] has modeled Terminal 1 at O’Hare International Airport
in Chicago. They designed the simulation as a C program with calls to the
Message Passing Interface (MPI) library (MPI is the most popular message-
passing library standard for parallel programming). Passengers have been
roughly described with the Social Forces Model (a model for only pedestrian
movement).

• An important milestone in crowd simulations is reported by [19]. Authors
explained how they simulated a crowd of more than a million people during
a marathon in Istanbul: in the model they included all the objects of ur-
ban architecture, involving ABM (with the characterization of runners and
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public) and the parallelization of computational processes. The simulation
has been written in C++ and ran on NVIDIA CUDA GPUs. The success of
that simulation consisted also in a 3D representation of the results.

Moreover, an HPC tool has added to many traditional ABM frameworks in
recent years: two examples are NetLogo by Thiele (2013) [56], which can be par-
allelized by R through a toolkit, and Repast, which has seen the new edition for
HPC simulation (released in May 2015). An important application of these soft-
ware tools is the model that has been made by Zia (2013) [66]: it is described in
paragraph 2.3 and it used Repast HPC.

3.8 Sensors-based studies
Smart sensor networks produce pervasive structural health monitoring (SHM)

information. With various embedded sensors, smartphones have emerged to inno-
vate SHM by empowering citizens to serve as sensors. By default, smartphones
meet the fundamental smart sensor criteria, thanks to the built-in processor, mem-
ory, wireless communication units and mobile operating system. SHM using smart-
phones, however, faces technical challenges due to citizen-induced uncertainties,
undesired sensor-structure integration, and lack of control over the sensing plat-
form. This study aims at extending the capabilities of smartphone-based SHM
with a special focus on the lack of control over the sensor (i.e., the phone) posi-
tioning by citizens resulting in unknown sensor orientations. Using smartphone
gyroscope, accelerometer, and magnetometer; instantaneous sensor orientation can
be obtained with respect to gravitational and magnetic north directions. Advances
in sensor technology and computational power, as well as extensive research in
system identification, made structural health monitoring (SHM) one of the high-
lighted topics in mechanical, aerospace, and civil engineering (Doebling, 1998 [17]).
As a result of rapid urbanization and industrialization, the infrastructure stock
tremendously increased in developed cities. Aging infrastructure, natural disas-
ters, and manmade hazards threatened structural integrity, serviceability, and oc-
cupant safety; necessitating implementation of SHM technologies to a broader
extent (Stolz, 2010 [52]). Shifting from non-destructive evaluation to SHM, identi-
fication of structural characteristics gained a global, large-scale, and data-enriched
perspective (Derriso, 2014 [16]). Gathering sensor data from multiple channels
and processing data with advanced identification algorithms, structural models
with uncertainties are validated, verified, or updated with monitoring data, and
in this way, the actual dynamic behavior of structures is represented with a better
accuracy. Advent of the Internet, wireless communications, and cloud technology
gave rise to remote sensing, distributed sensor networks, and smart sensors in the
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last two decades. Due to practical and economic reasons, monitoring of civil in-
frastructure with temporary instrumentation became widely applicable compared
with the sensor systems permanently embedded in structures. Integrating sensors
with small-sized computing, data acquisition, and wireless data transfer units,
smart sensor technology became a feasible choice for monitoring structural sys-
tems (Cimellaro, 2014 [41]).

3.9 Smartphones in SHM
Smartphone industry rose tremendously in the last decade. Basically, smart-

phones are equipped with computing hardware such as central processor unit,
randomly accessible memory, and data storage components. They are capable of
sending and receiving data wirelessly with the help of global system for mobile
communications, internet, and bluetooth connection. What is more, thanks to
the rapid advancements in microelectromechanical systems (MEMS) technology,
smartphones are equipped with low-cost sensors such as accelerometer, gyroscope,
and magnetometer which can measure device motion in six degrees of freedom
(6DOF). To summarize, smartphones can compose a large SHM sensor network
which has all the features of typical smart, heterogeneous, and mobile sensing
platforms. Latest advances in data sciences imply that citizens and smart cities
can benefit from crowd participants through multisensory mobile information. In-
novative citizen engagement and crowd motivation methods are proposed and im-
plemented through actual community examples (Bellavista, 2015 [5]). Using the
advances in sensors and information technology, crowdsensing can become a pow-
erful source for smart cities needs such as air quality assessment (Brienza, 2015 [9])
and environmental noise monitoring (Hu, 2015 [28]). Encouraged by the aforemen-
tioned advances, a citizen-engaged structural vibration measurement platform can
be constructed with the help of multisensory smartphones. On the other hand, con-
sidering smartphone-based SHM as a participatory sensing problem, there might
be a significant accuracy difference between conventional monitoring and crowd-
sourced results (Ozer, 2015 [40]).

3.10 Sensor system for building integrity moni-
toring

Nowadays, buildings and infrastructure are designed to sustain ordinary or ex-
treme dynamic loads (such as wind, traffic, earthquakes, impacts, etc.). In most of
the cases, simplified design methods and simulation techniques are conventionally
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used, to describe the mechanical features of different structural typologies. How-
ever, their actual structural behaviour (i.e., fundamental period, vibration shapes,
etc.) is properly assessed for a limited number of cases only, i.e., for critical build-
ings and infrastructures whose integrity and serviceability is of high importance
for public safety and civil protection. Only a few of these strategic constructional
facilities are then equipped with continuous monitoring systems. Several research
efforts have been devoted in the last decade to the development of reliable and
cost-effective monitoring devices equipped with Micro Electro-Mechanical Systems
(MEMS). Dynamic measurements of human body movements, for example, were
carried out via MEMS accelerometers by Benevicius et al. (2013) [60]. Hand-arm
and whole-body MEMS-based vibration records were critically discussed, aiming at
investigating the reliability of MEMS techniques for biomedical applications. The
so-called bioMEMS gave evidence of their potential for the medical field especially,
in the last five years (Ciuti, 2015 [13]). At the same time, MEMS accelerometers
proved to be efficient also for vibration monitoring in industrial machines and
rotors (e.g. Chaudhury, 2015 [11], etc.). Since the 1990s, major efforts and well-
promising results were reported in the literature from the application of MEMS
accelerometers in the SHM of civil engineering facilities, as well as in the early-bird
monitoring of seismological hazards. In the first case, MEMS systems have been
efficiently used for the monitoring of strong-motion events in rigid structures, but
positive efforts have been also achieved from continuous MEMS measurements of
flexible structures (such as vehicular and pedestrian bridges), as deeply discussed
in several research papers. The collected vibration data showed close agreement
with the experimental measurements derived from commercial devices for SHM
purposes. A list of additional positive MEMS applications for the SHM and dy-
namic identification of civil engineering constructions, including wireless options,
can be found in the literature (see for example Kok (2003) [30] and Torfs (2013)
[57]). A number of research projects aimed to assess the feasibility of MEMS ap-
plications in the form of seismological alarm systems can then be found in the
literature. Dashti et al. (2012) [46], for example, explored the use of cellular
phones as ground motion instruments, giving evidence of their accuracy as seis-
mic monitoring devices via comparative shake table tests. Similar results are also
reported in Kong (2016) [31], etc.
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Chapter 4

Individual Behavior and Panic
models

In an Agent-Based Model, the human behavior model constitutes the core. The
constant increase of computational power of computers and supercomputers allow
researchers to develop refined (and complex) models. Evacuation simulations, as
stated in Chapter 3, involve particular and sub-conscious behaviors: BDI paradigm
is the selected method for this purpose. The research involves a methodology that
has been explained by Lee (2008) [34] and it has the aim to create reliable math-
ematical expressions for modeling human decision making during crowds. In fact,
the proposed human behavior model has been used for simulating crowd evacua-
tion behaviors under a terrorist bomb attack in Washington D.C. National Mall
area. This research enhances BDI framework through the panic model described
in Paragraph 3.6: it is based on agent’s feelings and it is calibrated through a real
human feeling databases.

4.1 Introduction
Human behavior during emergencies is a complex field that most of times is

mythologized by films and the media: such views are almost always inaccurate.
Human behavior and panic effects could not only be the responsible of some

hazards (like fires, industrial accidents or terrorist attacks), but also compromise
the evacuation procedure. For example, evacuees on a double deck aircraft that
are forced to escape from the upper level have an higher degree of anxiety at the
moment when they need to jump into the slide, so they will take more time in
their egress process (Jungermann, 2000 [29]).

Factors and behaviors changes depending on hazard, environment types and
researchers must be aware of modeling human behavior with assumptions that are
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built on "myths".
First of all, the majority of people in disasters behave with responsibility and

concern for their neighbors. There are always stories of self interest in all disasters,
but although they tend to get the most publicity, they are far from representative.
Disaster planning should take into account the fact that most people will think
about the others during an emergency (Lindell, 2006 [38]).

Another common misconceptions is to consider evacuees having the same be-
havior when, in fact, there are many segments of population that differ in their
hazard knowledge, family roles, and material resources. In particular, emergency
managers must distinguish among the function of each person in the building or,
in general, in the simulation environment itself, because these population segments
differ in their willingness and ability to evacuate. This consideration demonstrates
that a refined human behavior model should take into account most of these dif-
ferences. Consequently, in emergencies simulations, a crowd behavior model is not
sufficient.

The statements above are valid when panic is not present. In general, panic is
rare in disasters, but it can be a common problem in closed spaces like buildings.
Normal people react to danger by doing the best they can for themselves and those
with them. They may even make mistakes from lack of knowledge or confusion,
which may even cost their or other peoples lives. The circumstances under which
panic is most likely to occur are when people do not have adequate information
about what is happening, there is an immediate perceived threat of death, or
people feel themselves to be trapped by means of escape route being blocked and
when there is a lack of leadership and direction. In conclusion, panic models should
be designed in order not to distort the whole human behavior model, but to let
the person continue to keep his/her capacity to think and help.

It is possible to summarize all of those aspects in three characteristics. The
following points also report choices that have been made during the research:

• State module: agents are "normal people" like visitors and workers, so res-
cuers are not taken into consideration (because the structure is not severely
damaged);

• Individual behavior: the relationship among friends and family members,
the altruism (is an agent will help an injured person) and the leader-follower
behavior;

• Crowd behavior: the interaction among agents and in particular the defini-
tion of the path towards the exit.

This chapter describes the individual behavior model. Challenger et al. (2009)
[10] studied the behavior of crowds in real evacuation processes. Their study shows
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that a frequent phenomenon during the evacuation is the so called leader-follower
relationship: in this software, agent’s decision of following another person is af-
fected by a stochastic model, calibrated through a survey. In another publication,
the same authors reported the evidence of relationships among family members
also during evacuation simulations: this aspect is deeply described and simulated
in this model. The last aspect being considered is the help offered to an injured
person. The research take into an account the possibility of helping a not seri-
ously injured individual (defined as a person with small wounds) and a seriously
injured human being (defined as a person that is incapable of moving and has
severe wounds).

4.2 Modern BDI Development
BDI is a model of human reasoning process, where its mental state is char-

acterized by three components: beliefs, desires, and intentions. Rao (1998) [23]
developed Bratman’s definitions:

• Beliefs are information which human has about the circumstance, and may
be incomplete or incorrect due to the nature of human’s perception.

• Desires are the states of affairs which human would wish to be brought about.

• Intentions are desires which human has committed to achieve.

As shown in Figure 4.1, its explanation and the following paragraphs are mainly
taken from the framework that was proposed by Lee (2008) [34] for human behavior
simulation during evacuations by using an extended version of BDI.

It is one of the possible frameworks for the BDI implementation and its ap-
plication is complex. Concepts, sub-models and equations have been adapted for
the purpose of this research. BDI framework, for defining a plan (normal mode),
follows the following instructions:

• Environmental conditions are caught by agent’s sensors (eyes, ears etc.);

• In the Belief Module, the Perceptual Processor interprets the data that comes
from the sensors and generates subjective beliefs (given the same environ-
mental condition, beliefs of different individuals will be different depending
on their cultural background as well as levels of experiences and knowledge);

• The Desire Module, based on the current Beliefs, generates Desires, that are
goals that the agent wants to achieve;
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Figure 4.1: BDI framework

• In the Decision Making Module, the Deliberator generates an Intention (a
short-term goal or one of multiple Desires) based on the Desire(s);

• In the Decision Making Module, the Real-time Planner generates a plan (i.e.
a series of actions to be taken needed to achieve the intention) based on his
current Beliefs (on his capability and environmental conditions);

• After a plan is developed, in the Decision Making Module the Decision Ex-
ecutor executes each action contained in the plan, which will affect the en-
vironment. If what is predicted during the planning stage is similar to what
an individual faces during the execution stage, the Confidence Index (CI) in
the Emotional Module increases, and he continues to execute actions until
all the actions in the current plan are executed. The confidence index is a
function of the deviation between what is predicted about the environment
during the planning stage and the actual environment during the execution
stage.

On the other hand, if there is a significant deviation between what is predicted
vs. the reality, CI decreases. If the CI is below a threshold value, he develops a
new plan (i.e. suspicious model) based on the current environmental condition and
his beliefs (based on long-term memory) instead of completing the one previously
developed. The Instinct Index Updater increases the Instinct Index in the event
(e.g. decision making under time pressure such as evacuation from factory fire)
for which the above mentioned reasoning process is not possible; in this case, the
human being follows his instinct (i.e. long-term memory), which is part of Beliefs.
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4.3 Belief Module definition
The belief module, in the software script, is definition of the agent’s state.

Thus, starting from its personal information (if it is alone or with family, if it is
injured and its injury severity), the sensorial data will complete a list of variables
that will define his status. In particular, sensorial data defines if he can see an
emergency exit, an injured person a member of his family etc.. In Lee’s framework,
the Perceptual Processor is modeled with the Bayesian Belief Network (BBN).
By using BBN it is possible to capture the probabilistic relationship together
with historical information between variables by containing prior and conditional
probabilities to infer the posterior probability through Bayes’ theorem. This tool
is useful but requires a significant amount of data. BBN for this research is instead
replaced by the definition of interval of probability for each belief.

4.4 Decision Field Theory (DFT)
Decision field theory (DFT) is a model for the human Decision Making Module,

which is based on psychological rather than economical principles. It provides a
mathematical framework to represent the psychological preferences of humans on
the given choices during their deliberation process. DFT can be used in order
to realize a real-time planner sub-module in the Decision Making module of the
proposed extended BDI for the normal mode agent. It provides a dynamic and
probabilistic mathematical approach to simulate human deliberation process in
making decision under uncertainty. It is dynamic because the time variable is a
factor affecting the decisions as well as the changing of environment. In DFT, the
human preferences can be described as reported by Equation 4.1.

P (t + h) = S · P (t) + C · M · W (t + h) (4.1)

Where:

• P(t) = [P1(t), P2(t), ..., Pn(t)] is an n-element vector that represents the
preference state, where Pi(t) is the strength of preference corresponding to
option i at time t (h is the time step).

• S is the stability matrix, which represents the effect of the preference from
the previous state (the memory effect) in the diagonal elements, and the
effect of interactions among the options in the off-diagonal elements. For
the stability of this linear system, the eigenvalues λi of S are assumed to be
| λi |< 1.
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• M is the value matrix (a m x n matrix, where n is the number of options,
and m the number of attributes), which represents the subjective evaluations
of a decision-maker for each option on each attribute. For example, given
a information like smoke, fire, police or crowd, evacuators obtain their own
subjective evaluations for each option (e.g. a path to a specific point) on
each attribute (e.g. risk, evacuation time), which constitute the M matrix.

• W is the weight vector, (m elements vector), where m is the number of
attributes. W(t) changes over time according to a stochastic process. It
allocates the weights of attention corresponding to each column (attribute)
of M. In the case that M is constituted with multiple states, each weight
corresponds to the joint effect of the importance of an attribute and the
probability of a state.

• The matrix C is the contrast matrix comparing the weighted evaluations of
each option, MW(t). If one is evaluated independently, then C will be an
identity matrix. In this case, the preference of each option may increase
simultaneously. Alternately, the elements of the matrix C may be defined as
cii=1 and cij=-1/(n-1) for i/=j, where n is the number of options. The increase
of preference for an option lowers the preference to alternative options.

Lee’s method has been created in order to best fit the case of an evacuation of a
big urban environment, in which people (or agents) are able to choose the exit path
according to their feelings. In such model, the actions that can be performed are
strongly connected together, because of the previous explanation: from a practical
point of view, this model requires the use of artificial intelligence for solving the
problems it was created for. The problem that this research has to solve does not
require that type of artificial intelligence, because the paths that can be chosen
by agents are in most of cases "single" (only one emergency exit is available). For
such models, Lee suggests the researchers to "simplify" the methodology by taking
into consideration only few aspects of the emergency, that can be strongly modeled
through a survey, and to model them by using his matrices.

The assumption to not use artificial intelligence for searching an exit path is
replaced with a smoother one, described in Chapter 7. In fact, this project involves
the use of artificial intelligence to avoid all the obstacles after having calculated
the shortest path towards an emergency exit.

Moreover, the original DFT model was created for modeling situations in which
multiple choices are always possible. In reality, the evacuation of a building can
lead the user to evaluate different scenarios, depending on gravity of the damages
and its personal situation. In the model that is developed during this research,
DFT matrices are designed in order to avoid correlation among possible actions,
because they refer to all existing cases that can be presented to a specific typology

24



4.4 – Decision Field Theory (DFT)

of user: for example, there is no correlation among the possibility to help a relative,
an injured person or to follow a group of people, if the agent can’t see the emergency
exit. This research employes a set of DFT matrices: a matrix for each typology of
user.

Due to the difficulty to gain good precision for the M matrix calculation (for
example, in a case with a 3x3 matrix, only 3 parameters could be calculated
starting from 6 others chosen randomly), the research condensed the CxM matrices
multiplication to a matrix called T.

P (t + h) = S · P (t) + T · W (t + h) (4.2)
T matrix calculation should be done before the start of a simulation: because

of this, the only values that can be used for the calculation of probability vectors
P(t+h), P(t) and W(t+h) are the average values of W intervals, that are now
called Wavg.

Wavg = S · Wavg + T · Wavg (4.3)
Following Equation 4.3, T matrix can be easily calculated. The values of S

components has been chosen according to Xi (2011) [63]. For a four dimensions
case, S matrix is the following:

S =

⎡⎢⎢⎢⎣
0.9 −0.01 −0.01 −0.01

−0.01 0.9 −0.01 −0.01
−0.01 −0.01 0.9 −0.01
−0.01 −0.01 −0.01 0.9

⎤⎥⎥⎥⎦ (4.4)

For a three dimensions case, the S matrix becomes the following:

S =

⎡⎢⎣ 0.9 −0.01 −0.01
−0.01 0.9 −0.01
−0.01 −0.01 0.9

⎤⎥⎦ (4.5)

Off-diagonal values are very small because each choice is independent from
the others. At each step of the simulation, the probability is calculated through
Equation 4.2, with a W(t+h) vector that is randomly defined everytime.
In the case of panic situations, the human brain does not work as previously
described. History path, long-term and short-term memory does not influence
impulsive decisions that a person can have under panic circumstances. For these
situations, after defining the probability for each action through the Belief Module
results, actions will be chosen randomly (according to the probability patterns just
defined):

P (t + h) = W (t + h) (4.6)
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4.5 Individual Behavior: a questionnaire-based
approach

In this work, eight types of agents are being defined:
• The agent is alone, it is not injured, it sees the emergency exit.

• The agent is alone, it is not injured, it does not see the emergency exit.

• The agent is alone, it is wounded but not seriously injured and it sees the
emergency exit.

• The agent is alone, it is wounded but not seriously injured and it does not
see the emergency exit.

• The agent is with his friends/his family, it is not injured and it sees the
emergency exit.

• The agent is with his friends/his family, it is not injured and it does not see
the emergency exit.

• The agent is with his friends/his family, it is wounded but not seriously
injured and it sees the emergency exit.

• The agent is with his friends/his family, it is wounded but not seriously
injured and it does not see the emergency exit.

Their behavior has been defined by the use of a survey explained in the following
chapter. The questions that have been asked in the survey are:

• Will you help someone that is not seriously injured?

• Will you help someone that is seriously injured?

• You see the emergency exit, but you also see a group of people that is run-
ning in a different direction (a different direction than yours/the one for the
emergency exit): would you follow them? (The question is written differently
in case of emergency exit visibility or not).

• You are evacuating a building, but you do not see one or more friends or
family members that were with you before: would you continue moving in
your initial intended direction with your actual group? (This question is
applied only to the last four categories).

According to the previous points, the first four types of agents are described
through vectors in three dimensions and thus by 3x3 matrices. The last four
typologies are described by four dimensions vectors and by 4x4 matrices instead.
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4.6 Confidence Index
The panic model simulates the effects of anxiety in the decisional capacity.

It can be expressed through the definition of a confidence index, defined as a
function of deviation between what is predicted during a planning stage and the
actual environment on the execution stage (Lee, 2008 [34]). If the confidence index
is above a certain threshold (confident mode), the Decision Executor performs all
the tasks in its plan, otherwise a re-planning is performed every time (suspicious
mode). Lee’s model for Confidence Index is the following:

CIt = αe−dt + (1 − α) CIt−1 (4.7)
where dt is equal to:

dt =
(︂
mi

risk − mtresh
risk

)︂
+
(︂
mi

time − mtresh
time

)︂
(4.8)

where

• dt > 0 denotes the deviation between what is predicted about the envi-
ronment during the planning stage and the actual environment during the
execution stage, where mi

risk is the evaluation of risk on the planned option
i, mi

time is the evaluation of evacuation time on the planned option i and
mtresh

risk and mtresh
time are the relative threshold values.

• 0 ≤ α ≤ 1 is a memory coefficient, that adjusts the effect of previous con-
fidence to the current confidence, which varies depending on the individual
human.

The confidence index is defined with values between 0 and 1. Lower values means
very low confidence. Lee used four different levels in his examples, but the re-
search (and the case study) does not have a sufficient amount of data for defining
such high number (also because the definition of a single panic threshold value is
sufficient to define human behavior in earthquake evacuation).

Lee’s model can not be applied in this project because of the problems explained
in the following list of pros and cons:

• It takes into account the evacuation time and the comparison of the risk of
the safer path to the emergency exit with a risk threshold, but those last
parameters require on-site experiments and further analyses with calibration
software tools;

• As mentioned in the previous point, Lee’s model is based on "path choice"
methods, which are a branch of artificial intelligence. Those methods can be
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very useful in case of urban evacuation, but in a building simulation it can
be meaningless, in particular when the building has paths that are already
and uniquely given;

• No indications are given about the definition of a starting value of confidence
index. In a building evacuation simulation, the evacuation time is more and
more little respect to a neighbor evacuation, so the starting value of the
confidence index is fundamental.

In conclusion, the model that should be used in this project must move from
path and risk calculations to a simplified realistic method. However, Lee’s CI
model inspired the design of panic models because:

• It uses exponential functions like e-n where n is a positive value: CI is com-
prised between 0 and 1, for high values of n the agent has a low CI (that
means a lot of panic). The geometry of this function and Lee’s considerations
suggest to fix a “confidence threshold" at the value of 0.35;

• It takes into account the evacuation time, which is a fundamental parameter
in panic feeling.

Li (2014) [37] considered a CI model in which confidence values are based on
evacuation time, distance to the emergency exit and crowd density. This model use
exponential functions, but the three components are not correlated to each other:
the selected CI is the minimum value among the three results. This model was
applied to a subway station simulation in case of a bomb attack. This model has
some lacks. First of all, the starting value of the confidence index can not be defined
and the model itself does not take into account a memory effect. Correlation among
three components is also defined improperly: some of them can even assume a
different amount of importance depending on the development.

The confidence index in this project is designed by following these guidelines
instead:

• Use of exponential functions according to the previous models;

• Correlation between evacuation time, sight of the emergency exit and the
density of people.

Equation 4.9 depicts the confidence index this research has developed:

CIt = (1 − α)
[︄
βe−γ t

t +
(︄

1 − β

2

)︄
e−dt +

(︄
1 − β

2

)︄
e−γ ρ

ρ

]︄
+ αCIt−1 (4.9)
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with β as a weight coefficient, that is equal to:

β = t

t
e−γ t

t (4.10)

Where
• 0 ≤ α ≤ 1 is the "memory coefficient" and it is set equal to 0.6.

• dt > 0 denotes the deviation between what is predicted about the envi-
ronment during the planning stage and the actual environment during the
execution stage and it must be higher than 0. It decreases or increases of a
specific value if the agent is able to see/not to see the emergency exit. Its
starting value and the increasing/decreasing values are calibrated through
the average evacuation time.

• t is the actual value of time.

• t is the characteristic value of evacuation time without any obstacles due by
damages: for this project t is defined as the time when 80% of evacuees have
left the building.

• p is the density of people (agents) around the considered one.

• p is the threshold of people density: if p is higher than that value, the density
component will lead the person in panic (p is set equal to 3 people/m2)

• CIt=0 ≤ 1, calibrated through shaking table test results (see Chapter 7).

• β is a weight coefficient. Its formulation is defined because this thesis assumes
that the evacuation time does not influence the first steps of the evacuation.

• γ is a model coefficient and it is equal to 1.08, in order to have e-γ equal
to 0.34, that is close to 0.33(the weight at t) and 0.35( the panic limit).
The reader should understand that these approximations goes further the
reliability of the whole model.

Model calibration is done by calibrating the equation (including memory) to
obtain a characteristic evacuation time component equal to 0.35 starting from 1
in the following hypothetical situation:

• No damages (no additional obstacles);

• No hazard;

• Starting CI value equal to 1.
For example, if t is 14 seconds, the offset value is 0.019. In this case it appear
obvious that a simulation without damages and panic is required.
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Chapter 5

Crowd behavior model and
calibration procedures

This chapter describes assumptions and decisions that have been taken for
the creation of a reliable crowd behavior model in the Agent-Based Modeling
software. Paragraphs 5.1, 5.2 and 5.3 describes why important aspects like the
human dimensions and their evacuation speed should be considered stochastic
data. Agent-based models can not take into an account all those variations, thus
some characteristics have been reduced to fixed values as described in the last
paragraph.

5.1 Initial Conditions
In an Evacuation Agent-Based simulation it is necessary to define the following

initial conditions:

• The starting position of the agents is decided stochastically.

• The quantity of people in the case study is defined by using real statistic
data. Those data are available online as survey results or as requirements
of national polices. The population assumptions are described in Chapter
7.3.3.

By following the described framework, the software was programmed to create
a "zero scenario". Agents are also defined in their dimensions: Table 5.1 describes
the general assumptions for humans diameter values, according to Smith (2008)
[50].

Before starting the evacuation process, each person is subject to a response
time, defined as time span between the moment when a person first hears an
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Agent Minimum Maximum
2.5 percentile 97.5 percentile

Men 40 48
Women 35 45
Children 30 38
Average 35 44

Table 5.1: Dimensions of human width [cm] (Adapted from Smith (2008) [50])

alarm or feels the shaking and when he/she starts to move toward the exit of the
building. This project does not consider this particular period of time.

This assumption is a strong limit in case of highly damaged structures, where
there can be a lot of injured people who have long response times. In the case
study of this work (described in Chapter 6) the structure is not severely damaged
and a low percentage of people is injured, so the response time of agents can be
superimposed on the shaking time.

5.2 Agent behavior assumptions
According to Vreugdenhil (2015) [62] a good agent-based model for building

evacuation should consider the following crowd behavior aspects:

• Walls and obstacles avoidance;

• Trend toward the exit;

• Search of less crowded areas for moving easily;

• Attraction from the main stream.

In general, agents can be either alone or form a group. Families and groups of
friends are special types that are constantly monitored starting from the beginning
of a simulation. General behaviors of agents are described as follows:

• If an agent has no sight of a family member or a friend, he/she will probably
looks for him;

• A not seriously injured person may need help or not;

• A not seriously injured person that does not need help can eventually help
another person;
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• An injured agent that has been rescued by another agent won’t need further
help in the future.

Evacuation time depends on the agent type:

• Non injured people: speed is like normal evacuation speed;

• Non seriously injured people: speed is like disabled speed;

• Seriously injured person: speed is zero until another agent helps him;

Directions are defined through a crowd behavior model. Values and variations
of the speeds are reported in Table 5.2 (see Smith, 2008 [50]). Non seriously agents
are considered as people with motion disabilities.

Agent Min. Max. Min. Max.
Stairs Stairs

Men 1.10 1.60 0.85 1.05
Women 1.05 1.45 0.85 1.05
Injured 0.57 1.02

Table 5.2: Evacuees’ speed [m/s]. (Adapted from Smith, 2008 [50])

If an agent (or a part of a group of agents) decides to help an injured or seriously
injured person, it can lose his own group. Then, during each step, the agent can
decide if it is necessary to help this person or not. When he reaches the injured
agent, he can resume his evacuation normally.

5.3 Crowd behavior
A crowd behavior model describes how an agent interacts with others. When

agents are stuck in a bottleneck, they cannot move at the defined speed, but they
are forced to wait their turn to pass the bottleneck situation.

5.3.1 Social Forces model
The Social Forces Model (Helbing, 2000 [27]) is a refined framework for the

definition of crowd behavior on agent-based models. Like Newton’s law, that
model describes the components of the force that can move each agent:

mi
dvi (t + h)

dt
= mi

v0
i (t + h) e0

i (t + h) − vi (t)
τi

+
∑︂
j /=i

fij +
∑︂
W

fiW (5.1)
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5 – Crowd behavior and calibration

The change of position ri(t) is given by the velocity vi(t) = dri/di. In this
model, each pedestrian of mass mi wants to move with a certain desired speed v0

i
into a certain direction e0

i and therefore tends to correspondingly adapt his actual
velocity vi with a specific characteristic time τ i. fij and fiW are two "interaction
forces" that are due to the interaction of an agent with, respectively, other human
beings and obstacles.

Helbing’s model is very refined, but it can not be implemented in the agent-
based model of this project because of the following aspects:

• The environment is defined as a 2D matrix, which cells represent a 30x30 cm
areas each;

• Repast HPC moves the agents according to space units instead of time units
(one step is equal to one cell movement);

• Lee’s algorithm (1961) [32] can simulate the artificial intelligence, so it will
orient the agent according to the shortest path, moving him in the four
cardinal directions.

5.3.2 Lee’s algorithm
The adopted methodology is the Maze Routing Algorithm or Lee’s Algorithm

(1961) [32]. This method is based on the Breadth-First-Search (BFS) technique,
that permits to find the shortest path between two points in a 2D matrix, a grid
that represents the environment, including obstacles. Each agent can move in four
directions: up, down, left, right.

Maze routing adopts a two-phase approach of filling followed by retracing. The
filling phase works in the "wave propagation" manner: starting from the source cell
S, the adjacent cells are progressively labeled one by one according to the distance
of the "wavefront" from S until the target node T is reached. Once the target node
T is reached, the shortest path is then retraced from T to S with decreasing labels
during the retracing phase. This algorithm guarantees that the path between S
and T will always be found and that it will be the shortest path to follow.

This research modified the algorithm in order to take into an account the
presence of crowds: if an agent can not move in the further cell because of the
presence of an agent, then the algorithm is repeated in order to compute a new
path that allow to avoid it.

The algorithm has been implemented with C++11 code that uses Repast HPC.
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5.4 – Model Assumptions

5.4 Model Assumptions

5.4.1 Evacuation speed
In this project, a step is defined as agent movements equivalent to one cell.

Thus, the following considerations can be done:

• The movement distance for a step is roughly 30 cm;

• This project assumes 0.25 seconds as temporal value for making a step, which
means a frequency of 4 steps per second;

• The previous consideration means that the agents’ speed is 1.2 m/s, which
is close to Smith’s considerations.

An important assumption should be done for injured agents: they can move
only one step every two. Therefore, this assumption means an average speed of
0.6 m/s for the agent.

During each time step of the simulation, agents will absorb some important in-
formation for their decision capability, mainly made by sight or mental elaboration
data. Thus, agent can recognize the presence of:

• the emergency exit;

• a member of his family;

• a group of people;

• an injured person;

• the injury gravity of that person.

During the simulation, at each time step, the software elaborates the sensorial
data of the agent (sight data), then the following priority list will be respected in-
volving also the data of border conditions that have been calculated in the previous
time steps:

• Input of sensorial data;

• Calculation of the status;

• Calculation of possibilities of each action;

• Action definition (see the following Example).
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5 – Crowd behavior and calibration

At each step of this model, once the possibility of an action is determined
through the model that has been described above, the software calculates if each
action is performed: by using the internal clock, the processor defines a random
value (from 0 to 1) and it compares it to the probability value P(t+h) (See Equation
4.2). If an action is not performed, the software will pass to the calculation of next
one, otherwise the cycle is finished and the agent will act according to the defined
action. It is possible to explain the process with the following example:

Example
The agent is alone, he is not injured, he sees the emergency exit,
he sees a seriously injured person and a group that is going to
another direction.
After the possibility values calculation, the software defines its
probability values:

• I help the not seriously injured person: 43.4% (Forced to 0%).
• I help the seriously injured person: 35.2%.
• I follow the group: 17.8%.

The first calculation is performed on the first action: since the
probability is 0%, the action will not be performed, so the calcu-
lation is repeated for the following case: if the random value is
lower than the probability of that action, the agent will act help-
ing the seriously injured person. If the response to that action is
negative, the agent will repeat the process for the next action. If
the response is again negative, the agent will continue to move
according to his path.
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Chapter 6

Survey design

This chapter describes how the survey was created and distributed. The last
sections reports the confirmation of good planning and the results that were im-
plemented in the Agent-Based simulation.

6.1 A responder-oriented survey
The model implemented in this research is based upon survey results. Errors in

the surveying activity may cause a terrible increase of biases, so the questionnaire
has been created by involving modern theories for permitting the sample to be
"caught" in each situation. The result of a well planed questionnaire is considered
a model with strong mitigation of biases (social desirability bias in particular).
The construction of a questionnaire has been based on similar research surveys
and on Ajzen’s Theory of Planned Behavior (TPB) (1991) [1].

6.1.1 Social desirability bias
When samples are responding a survey, they tend to distort their answers in

order to explain how a "nice" person should behave in a specific situation. People
tends to present themselves in the best possible light (Fisher, 1993 [22]). This
phenomenon leads to a disruptive error in social sciences models: it is called
the "social desirability bias". This bias in sometimes avoided by using indirect
questioning, but in the case of evacuation scenarios it can lead to other types of
biases. The most important problem in this field is the answer to the question
"would you help an injured person?": if indirect questions are not applicable, one
of the best ways to avoid (or mitigate) social desirability bias is to try to give the
sample a real feeling about the emergency environment (images and videos), to
give the sample multiple choices of answers and to create an algorithm for their
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6 – Survey design

management. The questionnaire has been created with 1 to 5 multiple choice
questions: "Yes", "Probably yes", "I don’t know", "Maybe no" and "No".

Each of those answers are explained with a brief phrase, in order to allow the
responder to think about the emergency situation. The responder is free to answer
with one of the answers above, but the surveyor is able to modify how the answer
is applied in the specific context. This research has interpreted the answer to the
questions "will you help a seriously/not seriously injured person?" in the following
way: the possibility to help a person is chosen randomly among the percentage
of people who answered "Yes" and the total number of people who replied "Yes"
and "Maybe yes". For the other actions, the possibility is chosen between the sum
of "Yes” and "Maybe yes" and the sum of "Yes", "Maybe yes" and "I don’t know"
responses.

6.1.2 The implementation of TPB
The core of Ajzen’s theory (1991) [1] is the individual’s intention to perform a

given behavior: intentions are assumed to capture motivational factors that influ-
ence behavior. An important postulate of his theory is that "behavior is a function
of salient information, or beliefs, relevant to the behavior". People can perceive
a huge number of perceptions simultaneously, but the total number that are in-
stantaneously considered is very low. Thus, when modeling the human behavior,
only salient perceptions should be considered. That is why a small number of
questions have been asked to the responders. A "Behavioral Intention" can find its
expression in behavior only if the behavior in question is under volitional control.
Moreover, the performance of this behavior is not only influenced by the will (mo-
tivational factors), but also by other parameters such as skills and environmental
conditions. These factors are defined as "actual behavioral control". This param-
eter is strongly influenced by perceptions, in fact Ajzen redefines it as "Perceived
Behavioral Control". Each individual perceives in a different way, so this param-
eter is personal and for each person it changes across situations and actions. The
final decision, that Ajzen calls "Behavioral Achievement", is pursued through the
Perceived Behavioral Control and the Behavioral Intention. Perceived Behavioral
Control strongly influences the decision taken in this research to divide the survey
in 8 situations, in which the sample is invited to think about different statuses: the
environmental conditions that are presented him will indeed influence its answers.
In his study, Ajzen continues to remark the joint function of Behavioral Intentions
and Perceived Behavioral Control for the performance of the action. This means
that, to achieve a correct prediction of the behavior, the following statements must
be considered:
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• Intentions and perceptions must be assessed in relation to the particular
behavior of interest;

• Intentions and perceived behavioral control must remain stable in the inter-
val between their assessment and observation of the behavior (no upcoming
events);

• The interaction of the above tools may vary in function of the type of in-
tention: perceived behavioral control is the parameter of uncertainty of the
performance of an action (like the confidence index in the BDI).

These characteristics influenced the creation of the model and the survey struc-
ture, in particular they affected the style of the questions. Each responder is invited
to think about a specific situation and to use its mind when he/she has to take
important decisions (like the first aid to a person): everybody wants to help a
person in difficulty, but during the evacuation maybe it is not the better solution
for the safety of both responder and injured.

6.2 Survey creation and distribution
The survey has been created online using GoogleForms, that permits to get

answers in real time in an sorted and manageable way. It has been written in
both Italian and English. A copy of the survey in both languages is available in
Appendixes A and B. The survey has been sent by email and other internet-based
instruments. In particular, it has been published in an internet website of an high
school in Italy and it reached a lot of senior students, professors and staff. The
survey reached 143 people in the U.S.A. (California) and Italy. Moreover, the
reached people have different ages and nationalities, so the sample is nicely mixed.
The results were recorded automatically on a GoogleSheet file then analyzed and
managed on Microsoft Excel.

The survey is composed by eleven sections. Before filling in the questionnaire,
in the first page responders are informed about reason and purpose of the research
study. Privacy statement and contacts to request information are provided.

Extract from Page 1
You have been invited to take part in a research study. The infor-
mation in this form is provided to helps if you want to take part
in this survey.
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What is the purpose of this research study?
The goal of this project is to use an emergency scenario survey
that allow to analyze how people evaluate emergencies situations,
in order to develop an accurate simulation model of an emergency
evacuation, taking into an account human behavior, damage sce-
narios and parallel computing devices.

Will the information that is obtained from me be kept confiden-
tial? The personal information that you will be asked to give are
age, sex and highest school degree, so your identity will not be
known by the Principal Investigator. People who will have access
to that information will be the research team members, specifically
the Principal Investigator and the Advisors. Your responses will
be confidential. You and your answers will not be identified in
any reports or publications resulting from the study.

May I change my mind about participating?
Your participation in this study is voluntary. You may decide to
not begin or to stop the study at any time by simply close the
webpage.

Who can I contact for additional information?
You can obtain further information about the research or to voice
concerns or complaints about this research by writing to the Prin-
cipal Investigator: Alessio Vallero at alessio.vallero@studenti.polito.it.

Advice for the goal achievement
In order to achieve the goal of this survey, please answer all the
questions by focusing on the situation that is described at the be-
ginning of each section. Please follow each request you find during
the questionnaire and answer with honesty (remember that nobody
will know your identity). Please, do not complete the survey more
than one time.

Sex, age and job of the sample are asked, in order to have those data for future
improvements of the model. Results have been illustrated in the section above.

40



6.3 – Psychological environments

6.3 Psychological environments
The core of survey is composed of sections 4 to 11. They each represent a

category of situations. In order to avoid repetitions, in this paragraph only one of
these sections is reported. For a complete view and critique of the whole survey,
the reader is invited to see Appendix 1 and 2. Each section is composed by a
brief introduction, that presents the psychological context that the agent should
be subject to. A drawing of the scene is also presented to the sample, in order to let
him remember better the context while filling the survey section. As described in
the previous chapter, each question has been written in order to better reduce the
social desirability bias and to involve the responder to think about the presented
situation according to TPB theory. The following example reports the fifth case
of the survey.

Example

CASE 5 (Questions 13-16)
During the evacuation, you are with YOUR FAMILY or with
your friends. Fortunately, you are not injured, so you can walk
and run and you are able to see and hear well the most impor-
tant things of the environment, even if there is crowd and smoke.
Fortunately you see the emergency exit!

You are EVACUATING the building, but... DAMN! You can not
find a member of your family/friends!!! What will you do?

1. I will come back and look for the missing person.
2. Maybe I will come back and look for the missing person.
3. I don’t know.
4. Maybe I will continue the evacuation: paramedics are more expe-

rienced than me, they will give him a better help.
5. I will continue the evacuation: paramedics are more experienced

than me, they will give him a better help.

You see a group of people running in a different direction respect
the emergency exit one. How likely will you follow them?

1. I will follow them: maybe they know a better exit!
2. Maybe I will follow them: maybe they know a better exit!
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3. I don’t know.
4. Maybe I will not follow them: I will exit on my own through the

emergency exit!
5. I will not follow them: I will exit on my own through the emer-

gency exit!

You find a not seriously injured person. How likely will you give
him a help (or first aid)?

1. I will help him.
2. Maybe I will help him.
3. I don’t know.
4. Maybe it’s not necessary to help him: paramedics will arrive soon!
5. It’s not necessary to help him: paramedics will arrive soon!

You find a not seriously injured person. How likely will you give
him a help (or first aid)?

1. I will help him.
2. Maybe I will help him.
3. I don’t know.
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4. Maybe it’s not necessary to help him: paramedics will arrive soon!
5. It’s not necessary to help him: paramedics will arrive soon!

6.4 Statistics and comments on survey answerers

6.4.1 Responders
The graph reported in Figure 6.1 illustrates the division of the sample in age

intervals.

Figure 6.1: Age of responders.

The distribution of age in the sample does not follow the percentages of a
specific building or population, because the survey was not treated as a simple
random survey. Moreover, it includes personal data that will permit, in the future,
the development of human behavior for a specific category of people (e.g. the
behavior of a female student between 20 and 25 years old).

The information that has been presented in this paragraph is not considered
in the model that has been created on the software because of the complexity of
the implementation of those information. As written above, further developments
are encouraged by using those data: the presence of other characteristics such as
age and job will permit a refined pivoting of the sample.
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6.4.2 Goals achievement
This paragraph aims to demonstrate the quality of the survey design. Answers

are examined case by case. The following histograms report the probability to
follow a group of people that is not moving in agent’s prefered direction. Data are
divided between cases in which people do not see the emergency exit and cases in
which people see it.

Figure 6.2: Probability of following a group of people, if agent does not see the
emergency exit.

Figure 6.3: Probability of following a group of people, if agent is able to see the
emergency exit.

Three considerations can be done:

• Most of the people tend to follow a group if they do not see the emergency
exit.

• If agents are able to see the emergency exit and they are not injured or they
are with their family/friends, they tend more to exit on their own. It is
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the demonstration of the increase of "personality" in agents during specific
situations.

• A higher number of people would follow a group of people if they are injured
but they see the emergency exit. The increase is about 5-10% respect to the
healthy people.

The following histograms report the willingness to help someone, depending on
the state and the feelings of the agent.

Figure 6.4: Probability of helping a seriously/not severely injured person (Alone
case).

Figure 6.5: Probability of helping a seriously/not severely injured person (With
family).

Three considerations can be done:
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• Responders understood the difference between seriously and not seriously
injured people;

• Responders understood the difficulty of helping someone if they are injured:
in fact their willingness to help a person is extremely reduced in that case;

• Unfortunately, there are not differences between alone people or people with
family/friends.

The last histogram this chapter reports is the willingness to look for a miss-
ing relative or friend: as expected, most of the interviewed people will look for
him/her. 20% of responders would not look for the missing person if injured: it
is the demonstration of the "selfish" behavior that some agents belong to specific
categories of people.

Figure 6.6: Probability of looking for a missing relative or friend.

6.5 Results for BDI model

6.5.1 Data treatment
Figure 6.7 reports how survey data have been treated. According to the guide-

lines in the previous sections, the following decisions have been applied:

• The probability of helping a person (seriously or not seriously injured) is
chosen from a probability interval that is created by people who answered
"Yes" and people who answered "Yes" and "Maybe yes".

• The probability of following a group of people is chosen from a probability
interval that is created by people who answered "Yes" and "Maybe yes" and
people who answered "Yes", "Maybe yes" and "I don’t know".
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• The probability of looking for a missing relative or friend is chosen from a
probability interval that is created by people who answered "Yes" and "Maybe
yes" and people who answered "Yes", "Maybe yes" and "I don’t know".

The following Figure reports the data treatment for the first typology of agents.
The complete database is available in Annex C.

Figure 6.7: Data treatment, Case 1.

6.5.2 Results
Results for Case 1.

T1 =

⎡⎢⎣ 0.255 −0.01 −0.01
−0.01 0.122 −0.01
−0.01 −0.01 0.129

⎤⎥⎦

Wlow,1 =

⎡⎢⎣ 0.154
0.587
0.545

⎤⎥⎦ ; Wup,1 =

⎡⎢⎣ 0.196
0.867
0.713

⎤⎥⎦ ; Wavg,1 =

⎡⎢⎣ 0.175
0.727
0.629

⎤⎥⎦
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Results for Case 2.

T2 =

⎡⎢⎣ 0.127 −0.01 −0.01
−0.01 0.147 −0.01
−0.01 −0.01 0.153

⎤⎥⎦

Wlow,2 =

⎡⎢⎣ 0.930
0.524
0.510

⎤⎥⎦ ; Wup,2 =

⎡⎢⎣ 0.937
0.769
0.678

⎤⎥⎦ ; Wavg,2 =

⎡⎢⎣ 0.934
0.647
0.594

⎤⎥⎦

Results for Case 3.

T3 =

⎡⎢⎣ 0.171 −0.01 −0.01
−0.01 0.128 −0.01
−0.01 −0.01 0.134

⎤⎥⎦

Wlow,3 =

⎡⎢⎣ 0.196
0.280
0.252

⎤⎥⎦ ; Wup,3 =

⎡⎢⎣ 0.238
0.538
0.476

⎤⎥⎦ ; Wavg,3 =

⎡⎢⎣ 0.217
0.409
0.364

⎤⎥⎦

Results for Case 4.

T4 =

⎡⎢⎣ 0.115 −0.01 −0.01
−0.01 0.160 −0.01
−0.01 −0.01 0.189

⎤⎥⎦

Wlow,4 =

⎡⎢⎣ 0.853
0.273
0.210

⎤⎥⎦ ; Wup,4 =

⎡⎢⎣ 0.909
0.503
0.364

⎤⎥⎦ ; Wavg,4 =

⎡⎢⎣ 0.881
0.338
0.287

⎤⎥⎦

Results for Case 5.

T5 =

⎡⎢⎢⎢⎣
0.130 −0.01 −0.01 −0.01
−0.01 0.374 −0.01 −0.01
−0.01 −0.01 0.149 −0.01
−0.01 −0.01 −0.01 0.162

⎤⎥⎥⎥⎦

Wlow,5 =

⎡⎢⎢⎢⎣
0.965
0.147
0.545
0.483

⎤⎥⎥⎥⎦ ; Wup,5 =

⎡⎢⎢⎢⎣
0.965
0.182
0.860
0.692

⎤⎥⎥⎥⎦ ; Wavg,5 =

⎡⎢⎢⎢⎣
0.965
0.164
0.703
0.587

⎤⎥⎥⎥⎦
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Results for Case 6.

T6 =

⎡⎢⎢⎢⎣
0.142 −0.01 −0.01 −0.01
−0.01 0.150 −0.01 −0.01
−0.01 −0.01 0.175 −0.01
−0.01 −0.01 −0.01 0.191

⎤⎥⎥⎥⎦

Wlow,6 =

⎡⎢⎢⎢⎣
0.951
0.825
0.483
0.434

⎤⎥⎥⎥⎦ ; Wup,6 =

⎡⎢⎢⎢⎣
0.1
0.1
0.1
0.1

⎤⎥⎥⎥⎦ ; Wavg,6 =

⎡⎢⎢⎢⎣
0.958
0.853
0.626
0.538

⎤⎥⎥⎥⎦

Results for Case 7.

T7 =

⎡⎢⎢⎢⎣
0.125 −0.01 −0.01 −0.01
−0.01 0.230 −0.01 −0.01
−0.01 −0.01 0.167 −0.01
−0.01 −0.01 −0.01 0.184

⎤⎥⎥⎥⎦

Wlow,7 =

⎡⎢⎢⎢⎣
0.790
0.210
0.301
0.259

⎤⎥⎥⎥⎦ ; Wup,7 =

⎡⎢⎢⎢⎣
0.860
0.287
0.552
0.455

⎤⎥⎥⎥⎦ ; Wavg,7 =

⎡⎢⎢⎢⎣
0.825
0.248
0.427
0.357

⎤⎥⎥⎥⎦

Results for Case 8.

T8 =

⎡⎢⎢⎢⎣
0.138 −0.01 −0.01 −0.01
−0.01 0.137 −0.01 −0.01
−0.01 −0.01 0.198 −0.01
−0.01 −0.01 −0.01 0.228

⎤⎥⎥⎥⎦

Wlow,8 =

⎡⎢⎢⎢⎣
0.804
0.825
0.287
0.245

⎤⎥⎥⎥⎦ ; Wup,8 =

⎡⎢⎢⎢⎣
0.860
0.881
0.538
0.413

⎤⎥⎥⎥⎦ ; Wavg,8 =

⎡⎢⎢⎢⎣
0.832
0.853
0.413
0.329

⎤⎥⎥⎥⎦
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Chapter 7

Damage Scenarios and Case
Study

This Chapter describes a case study of this research. The environment was
created using PACT, a software that is able to output the damage scenario starting
from structure, structural analysis and population definition.

7.1 The structure
This section aims to give a quick overview of all the previous work that has

been done by the Pacific Earthquake Engineering Research Center (PEER, UC
Berkeley) for designing the structure according to modern American standards
and policies. The case study is a three story building, with steel structure, located
in Oakland (CA). The building was originally planned to be built in Los Angeles
(CA) by Forell/Ellsner Engineers (Structural Engineering company, San Francisco,
CA).

The project location (and consequently its design) was moved to Oakland (CA)
and the PEER developed it with a large number of traditional and experimental
anti-seismic tools for research purposes. The design for this case study has been
made by Benshun Shao (PhD Candidate, UC Berkeley). The building has been
designed with base isolation through a Single Friction Pendulum Bearing available
in commerce. Measurements units that were used in this design are Imperial,
but in this thesis they are also translated according to the International System
(Metric). Building dimensions are:

• 180’ x 120’ (ft) in plan (54.9 x 36.6 m);

• Equal spans of 30’-0” (914 cm);

• Equal story heights of 15’-0” (457 cm);
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• Masses are equal for each story.

The sections being used are reported in Table 7.1. American Policies re-
quirements have been satisfied and all simulations have been performed through
OpenSees (PEER). The following subsections describe the structural model.

Table 7.1: Columns and beams sections. (Figure from www.structural-drafting-
net-expert.com/steel-sections-i-beam-w-shape.html)

7.1.1 Ground motion selection
USGS (U.S. Geological Survey) policies describe how to define the target spec-

trum at MCE (Maximum Considered Earthquake) level. MCE target spectrum
has the probability of exceedance set at the value of 2% in 50 years. After hav-
ing defined the target spectrum for Oakland (CA), PEER assumed the 16 ground
motions available in literature that best fitted the target spectrum. PACT soft-
ware requires an acceptable value of earthquake scenarios, so the ground motions
were scaled in order to define 10 different levels. 10 scenarios have been created
and simulated through OpenSees (Mazzoni, 2006 [39]) and their ground motion
factor (GM) varies between 0.3 and 1.2. It is important to denote that GM=0.5
corresponds to the DBE (Design Basis Earthquake), that is the probability of ex-
ceedance of 10% in 50 years. DBE values are necessary for the bearing performance
requirements.

7.1.2 Bearings
This case study involved the usage of single friction pendulum bearings, de-

signed by Earthquake Protection Systems, Inc. (Mission Vallejo, CA). Bearings
design consists of a starting point of plastic deformation at 8% of the weight on
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each of them. Their period is 3.0 sec at DBE. According to ASCE 7-10, the seis-
mic gap of the bearings is set considering the average displacement given by each
ground motion at the MCE level and its value is 25 inches (63.5 cm).

7.1.3 MAFE
The Mean Annual Frequency of Exceedance (MAFE) is a parameter that is

required by PACT software. Its value can be determined through USGS policies
by using the spectral acceleration at the value of fundamental period. A MAFE
curve was determined by using all the accelerations for each scenario/intensity
level.

7.1.4 Structural analysis results
Structural analysis has been done through the nonlinear time-history option of

OpenSees and the results are available in Appendix D. It is important to notice an
extremely high increase of the acceleration values at GM=1.1 and 1.2. As men-
tioned before, the seismic gap of FPBs is designed at the MCE level (GM=1.0), so
for higher intensities the FPB displacements would be higher than the maximum
space available. The result is a strong hardening phenomenon that gives a moti-
vation to the high values of acceleration. Obviously, in reality, these accelerations
are not occurring because of the failure of bearing components: it is a limit of the
model.

7.2 Building plan
This section describes choices and assumptions taken for the creation of the

building plan. According to the Repast HPC requirements, the plan has been
designed as a grid of square cells. The assumed dimension of a cell is 30 cm, that
is the smallest admissible length in the project.

Even if the structure was created as office building, this research designed the
first floor as a retail area. The following points describes the design choices made
for the floors:

• The ground floor is a big supermarket (having the characteristic long and
thick storage racks) and five small shops.

• The second floor is composed by six apartments, which are divided in small
office rooms. They include restrooms and storage rooms.

• The third floor has been designed to be equal to the second one.
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Each floor has a lot of non structural components, like desks, shelves and racks.
According to the Repast HPC requirements, their dimensions have been chosen as
follows:

• Internal and external walls, in black, have a thickness of one cell (30 cm);

• Wardrobes and office and retail desks are coloured in blue and they have
standard dimensions;

• Bookshelves and filing cabinets have a thickness of 30 and 60 cm;

• Storage racks, in blue, have a thichness of 60 cm and in the retail floor they
are sometimes coupled.

All the building plans are available in Annex E. The following Figure reports
an example of one of the small shops of the ground floor.

Figure 7.1: Example of the plan

7.3 PACT - Performance Assessment Calcula-
tion Tool

The Federal Emergency Management Agency (FEMA, U.S.A.) created a soft-
ware to allow earthquake damage evaluation called Performance Assessment Cal-
culation Tool (PACT ). It is an electronic calculation tool and repository of fragility
and consequence data, that performs the probabilistic calculations and accumula-
tion of losses. It is described in the FEMA P-58 publications (see FEMA, 2012 [20]
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[21]). It includes a series of utilities used to specify building properties and update
or modify fragility and consequence information in the referenced databases. The
following sections report the used software windows.

7.3.1 Project Information
This window is used as a project title and brief description. It does not contain

any technical information about the assessment simulation.

Figure 7.2: Project Information assignments [Source: PACT]

7.3.2 Building Information
PACT uses the Number of Stories input as a basic index for demand param-

eters, performance groups and calculations to be performed. A story is defined
as the building volume that extends from the top of slab or other flooring at one
floor level, to the top of slab or flooring at the next level. It includes all things
that are mounted on or above the lower floor and which are present beneath the
higher level, such as the framing supporting top floor or roof. The input value
should include all stories that contains vulnerable components and which are to
be included in the performance assessment. If basements are present, and con-
tains vulnerable structural or nonstructural components or occupants susceptible
to injury, these should be included as stories. Similarly, penthouses with vulner-
able components or occupants should be included as stories. PACT defines the
number of floors based on the Number of Stories input, where floor identifies all
those components present within a story that are located on top of the surface of
the identified floor, and beneath the top surface of the floor above. Thus, the first
floor includes fragility groups for framing that supports the second floor; as well
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as components that are supported on the first floor or suspended from the second
floor. Information related to stories and building dimensions are:

• Floor area

• Story height

Those information can be modified for each floor and their properties contains
the following information:

• Height Factor is used to reflect increases in repair cost attributable to a lot
of different causes, including the presence of complex systems (like elevator
components) that can create an obstacle during the work;

• Hazmat factor, which takes into account the presence of dangerous material
such as asbestos;

• Occupancy factor, which takes into account works that are done when the
building is already occupied by users.

In this section there is also the possibility to insert other information about:

• Replacement time;

• Maximum workers per square foot;

• Core and shell replacement cost;

• Total replacement cost;

• Total loss threshold.

This data is very important for loss analyses, but they have not been used for
this application. The following list reports the choices made for this research:

• Floor area: 21600 sq. ft for the first floor and 19000 sq. ft for the second
and third floors. The reduction of the area of the second and third floor are
due by the four squares in the building;

• Story height: 15 ft.

The following screenshot reports these choices in PACT.
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Figure 7.3: Building Information assignments [Source: PACT]

7.3.3 Population model
To assess casualties, users must define the population model, that is defined

as the distribution of occupants within the building at various times of day. With
PACT, it is possible to use one of the provided building population models or de-
velop and input building-specific models. Eight population models are provided in
PACT corresponding to typical commercial office, education (elementary, middle,
high school), healthcare, hospitality, multi-unit residential, research, retail, and
warehouse occupancies. Users can assign separate population models to several
fractions of each floor level. Each population model includes the hourly distribu-
tion of people per 1,000 square feet for weekdays or weekends and can be adjusted
to include further variation by month. The provided population models can be
used directly or modified to reflect the unique occupancy characteristics of a spe-
cific building, if known.

In literature there are different values of maximum densities for each typology
of building. The project assumed the following maximum densities for the standard
PACT curves:

• 0.2 agents/m2 for retail areas, which means approximately 20 agents/1000
ft2. The peak value of agents in the ground floor will be 380;

• 0.1 agents/m2 for office areas, which means approximately 10 agents/1000
ft2. The peak value of agents in the first and floor will be 185 each.

The following figure illustrates the retail occupancy provided in PACT. The
graph reports hourly occupancy during the weekends.
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Figure 7.4: Population assignments [Source: PACT]

7.3.4 Fragility Specifications and Performance Groups
Following the definition of the general building characteristics, it is necessary

to define quantity, vulnerability, and distribution of damageable components and
contents. PACT organizes this process in two parts:

• identification of required fragility specifications for each floor;

• identification of the quantity of components in each performance group at
each floor.

The fragility specification includes a description of the demand parameter that
predicts damage, the types of damage that can occur, fragility functions, which
indicate the probability of incurring each damage state as a function of demand,
and consequence functions, which indicate the probable values of loss that will
occur as a result of each damage state. Each fragility function specifies damage
state probabilities for a single demand parameter. Typically, peak story drift ratio
or peak floor acceleration parameters are used to determine if a component is
damaged. The demand parameter can have a specific orientation with respect to
the component (directional demand) or the demand can be non-directional. For
example, wall elements will typically be damaged by story drift within their plane,
where suspended ceiling systems are susceptible to damage from floor acceleration
independent of horizontal direction.

A performance group is a set of components described by a single fragility
group that will experience the same demand. Performance groups are ordered
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by the direction of application of their common demand parameter. In PACT,
components can be selected and distributed across the building’s floors to create
a complete representation of the damageable building.

PACT does not include all vulnerable building components that may be present
in a building, but it gives indications of typical components and quantities. Quan-
tities can be estimated through an Excel spreadsheet called Normative Quantity
Estimation Tool. By inserting dimensions and use of the building, that spreadsheet
has given the quantities that are reported in Figure 7.6.

Because of the limited computational capacity of PACT, the expected detail
level of the work and the awareness of having well designed structural components,
this research took into consideration only the non-structural components. The
modeled components are the following:

• Curtain walls;

• Wall partitions (full height);

• Wall partitions (partial height, not connected at the top);

• Stairs, made of precast concrete;

• Raised access floor;

• Suspended ceiling;

• Cold water piping

• Sanitary waste piping;

• HVAC metal ducts;

• Fire sprinkler water piping;

• Fire sprinkler drops;

• Modular office work stations;

• Desktop electronics;

• Bookcases;

• Storage racks;

• Unsecured fragile objects on shelves;

• Filing cabinets.
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Figure 7.5: Performance Groups suggested quantities - Part 1. [Source: PACT]
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Figure 7.6: Performance Groups suggested quantities - Part 2. [Source: PACT]

Figure 7.7: Performance Groups specification: floor 1, direction 1. [Source: PACT]
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Figure 7.8: Performance Groups specification: floor 1, direction 2. [Source: PACT]

Figure 7.9: Performance Groups specification: floor 1, direction 3. [Source: PACT]

Figure 7.10: Performance Groups specification: floor 2, direction 1. [Source:
PACT]
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Figure 7.11: Performance Groups specification: floor 2, direction 2. [Source:
PACT]

Figure 7.12: Performance Groups specification: floor 2, direction 3. [Source:
PACT]

Figure 7.13: Performance Groups specification: floor 3, direction 1. [Source:
PACT]
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Figure 7.14: Performance Groups specification: floor 3, direction 2. [Source:
PACT]

Figure 7.15: Performance Groups specification: floor 3, direction 3. [Source:
PACT]
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7.3.5 Collapse Fragility
The Collapse Fragility sheet is used to model structural collapse and its conse-

quences. Collapse fragility is defined in terms of the median spectral acceleration,
g, at the fundamental period of structure that can cause structural collapse and
the associated dispersion. At least one collapse mode needs to be defined. In ad-
dition, the mutually exclusive probability of collapse in each mode conditioned on
collapse occurring is also entered. The fraction of each floor affected by a collapse
is specified in a table.

In this case study, the collapse dynamic was considered as a total collapse,
because of the rupture of seismic isolators and the uncertain phaenomena that
can occurr after that rupture. Data have been defined by looking at the OpenSees
results: collapse has been defined when the story displacement is higher than 4%,
so the median acceleration value corresponds to the average of the accelerations
in the collapsed demand vectors. Choices are reported in Figure 7.16.

Figure 7.16: Collapse Fragility definition. [Source: PACT]

7.3.6 Structural analysis results
In PACT it is possible to define three types of performance assessment: intensity-

based, scenario-based, and time-based assessments.
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In general, intensity-based assessments evaluate performance for a user-selected
acceleration response spectrum, scenario-based assessments evaluate performance
for a user-selected earthquake magnitude and time-based assessments evaluate
performance over time, considering all possible earthquakes and their probability
of occurrence.

This research employed an intensity-based assessment that considered story
accelerations and displacements at 8 different intensities that were set from 0.3
to 1.2 times the spectral acceleration at the MCE level. Results have been taken
from OpenSees outputs. According to the structural model:

• The analysis type was set to "Non-Linear";

• The number of demand vectors was set to 16, that is the number of considered
ground motions;

• The number of realizations was set to 50: it is the number of simulations
that PACT performs in order to create different possible damage scenarios.

The structure has been simulated by considering the whole earthquake acting
only at the worst direction for the structure. PACT requires the use of two direc-
tions, so the same results for one direction were put also in the second one and, in
order not to get results that are too conservative, the considered damage scenario
is an average result among all 50 realizations.

The following Figures 7.17 and 7.18 report the input data of displacements for
the MCE level intensity. For all the other 9 intensities, the input data were the
same as reported in the OpenSees results (Annex D).

Figure 7.17: Accelerations, Intensity 8. [Source: PACT]

7.3.7 Hazard Curve
This section requires as input the values of the Mean Annual Frequence of

Exceedance (MAFE curve). PACT requires also maximum and minimum points,
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Figure 7.18: Displacements, Intensity 8. [Source: PACT]

that were defined arbitrarily. Figure 7.19 reports the hazard curve definition.

Figure 7.19: Hazard Curve (MAFE). [Source: PACT]

It is necessary to report that a page of the PACT building modeller was not
used: that page is the "Residual Drift" data input sheet, that is an optional page
to use.

7.4 Damage Scenarios
PACT can give a lot of results from economic losses and restore time to damages

and number of injured people. The two following paragraphs describe the results
that this research has used:

• Injured Area, for defining the amount of injured people for each floor;

• Damaged Components, for defining the obstacles in each floor.

The first results were useful for the definition of injured agents in the HPC sim-
ulation tool, the second ones were useful for a reliable definition of the environment
in the ABM simulation.
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7.4.1 Injured Area
PACT results can give the area (in square feet) in which each person who is

inside will get injured. The software can define the area that belongs to each non
structural component and for each floor. The following tables report the injured
area that belongs to each component:

Table 7.2: Injured Areas Results [Extracted from PACT results]

It is possible to see that a lot of components does not show any value. This
situation can be caused by two different properties of the model:

• The response of the structure: it is a base-isolated structure, so a lot of
components does not present any damage;

• The definition of each component: they are supposed to be built with mod-
ern technologies that can prevent critical damages: for example, water and
sprinkler pipes are damaged, but they present only leakage at joints and they
are not collapsed, so agents are not hurt by them.

These results have been used for defining the percentage of injured people: the
research assumes a casual disposition of agents when the earthquake occurs, so
the percentage is defined by the ratio between the injured area of each component
and the total floor area.

The project also assumes that the 30% of injured people are seriously injured, so
they are not able to move until someone helps them. For each floor the percentages
of not seriously and seriously injured people are:
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• First floor: 6.1% and 2.6% respectively;

• Second floor: 3.2% and 1.4% respectively;

• Third floor: 6.7% and 2.9% respectively.

7.4.2 Damaged Components
PACT results contain the data of the damage state of each component and for

each realization. Since PACT analyses are based upon supposed quantities of non
structural components, the research has not considered each unit for them, but
only the percentage of damaged items upon the their overall values. The previous
assumption is taken into an account for each PACT realization and the final result
is an average value among all the realizations. Direction-sensible components
are considered only in the worst direction. The following Table 7.3 reports the
percentages of damaged component:
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Table 7.3: Damaged components [Elaborated from PACT results]
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7.5 Damage plans
This section describes how PACT damages results have been drawn in the floors

plans. Results are available in Appendix E. As said before, PACT assumes average
values of the non structural components, so the assumed damaged quantities are
a percentage of the total PACT suggested quantities:

• Fallen objects and electronic furnitures are represented in red and they have
a thickness of 30 cm.

• Fallen shelves and racks are represented like the previous damages, but they
create a thicker obstruction.

• The suspended ceiling has an high percentage of damages, but the definition
of the fragility curve says that only the 5% of that amount is dislodged or
fallen. The assumption that this research did is that only the 20% of dis-
lodged/fallen tiles creates a real obstacle. These obstructions are represented
in orange.

7.6 Starting Value of Confidence Index
Structural analysis results permitted to calibrate the starting value of confi-

dence index for each floor. Takahashi (2010) [54] performed several shaking table
tests in which people were put on the machines and they were asked to fill a sur-
vey about their degree of anxiety depending on frequency and maximum speed of
shaking. The results of the document are linear functions that put in correlation
velocity and anxiety level at fixed frequencies. The procedure for moving from
structural results to anxiety levels followed the following steps:

• Velocity time history responses were extrapolated from the structural anal-
ysis results for each ground motion. Time history responses have been con-
verted to frequency domain responses using fast Fourier transformations in
Matlab, in order to define frequency domain spectra of velocity. Then the
predominant frequencies have been defined for each spectrum by PEER staff;

• Velocities and frequencies have been used for defining Takashi’s anxiety levels
for each ground motion and for each floor;

• For each floor, the anxiety result is the 90th percentile of the 16 ground
motion results;
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• Takashi’s anxiety level is defined from 0 to 4, so this research used a propor-
tion for defining a confidence index that is defined from 1 to 0 (confidence
index has an inverse definition respect to anxiety level);

• The following tables report that the anxiety level is 0.33 for each floor. The
corresponding Confidence Index is 0.9175 and the research employes a start-
ing CI equal to 0.9.

Table 7.4: Anxiety level for each floor

It is possible to make some considerations:

• Takashi’s equations are approximated, because he has linearized a non linear
behavior that is extrapolated from a 1-to-4 answer;

• The procedure for passing from anxiety level to Confidence Index is not
accurate;

• Takashi’s document is the only available source for defining a reliable anxiety
level, so the starting CI definition can be considered a strong step forward
Agent-based simulations even if the results have a high degree of inaccuracies;

• The CI level is acceptable: in fact, even if the intensity of the earthquake
is very strong, the base isolation makes long but smooth movements, so the
anxiety is reduced compared to a fixed base building.
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Agent-based simulation

This chapter describes the modelization of previous models and scenarios with
Repast HPC, an Agent-Based Modeling software, focusing on the assumptions
that have been made and on the obtained results.

8.1 Repast HPC
Repast HPC is an ABM simulation tool for high-performance distributed com-

puting platforms, written in C++ and using MPI for parallel operations. MPI
means "Message Passing Interface" and it is a library that permits the paral-
lelization of instructions and calculations. Repast HPC is designed for parallel
environments where many processes are running in parallel and where the agents
themselves are distributed across processes. Shared, synchronized spaces are used
for passing an agent from one process over to another, or to gather information
such as agent density, blocked exits, etc. from the neighboring processes.

For Civil Engineering applications, parallel computing could be used for models
having a huge extension, like a small city. That is the reason why Repast HPC
was choosen as the ABM software tool for this project. MPI libraries have been
included into the program and the workflow has been automatically splitted among
the CPU cores.

8.2 Model Assumptions

8.2.1 Groups and human behavior decisions
In this model, families and groups of friends are considered as the same typology

of group. Their definition is done at the beginning of each simulation. Each agent
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scans the space around him in a radius of 5 cells and if he finds other agents not
linked to a group, it creates a group with them.

This scanning procedure is also repeated in each step for defining the following
variables:

• The presence or not of members of the agent’s group;

• The presence or not of a not seriously injured person;

• The presence or not of a seriously injured person;

• How many agents are around the considered one, in order to define the
density of people.

8.2.2 Sight of the emergency exit
The sight of the emergency exit is treated as a probabilistic variable. The

probability of seing it depends on how many steps the agent need to make to
reach the exit:

• 90% probability if the path has less than 15 steps (4.5 m);

• 50% probability if the path has more than 15 steps, but less than 25 steps;

• 20% probability if the path has more than 25 steps, but less than 50 steps;

• 10% probability if the path has more than 50 steps (15 m);

• 0% probability if the agent decided not to reach the emergency exit (e.g. if
it is helping someone);

The human behavior model has high probability values for the search of a
missing friend or relative. This project assumes that, after 60 steps (an average
evacuation time for three floors, excluding the stairs), the probability of looking
for a missing person or following a group is equal to zero. The first aspects is
set in order to not have agents casually moving inside the building and the second
because following a group is a starting input to give a defined direction to an agent
that is behaving as a "follower".

8.2.3 Damage scenarios
As cited before, each floor has been represented as a 181x122 matrix, in which

each cell is equivalent to a space of 30x30 cm. Matrices are available in Appendix
E. In Repast HPC, each matrix has been converted in a bits grid:
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• Cells with value "0" are empty spaces;

• Cells with value "1" are walls and other obstacles;

• Cells with value "2" are the external doors.

8.2.4 Stairs Model
The modelization of the stairs followed these guidelines:
• Slope of 35°;

• The connection of two floors is perfectly guaranteed by two ramps;

• The free width of the stairs is 1.8 m;
In Repast, the width of the stairs has been reduced to 0.9 m. This choice is

due because agents can move on all the empty cells: 1.8 m of width means 6 cells.
6 empty cells are able to fit 6 agents, but this is not realistic. The results of all
the simulations in the three floors report very few cases in which adjacent cells
are occupied by agents, so only the y direction of the stairs has a reduced width.
The stairs, using Lee’s algorithm only and steps having a huge number of agents
evacuating, were affected by the formation of a big crowd in the stairs landings,
because the A.I. model was not able to define a free path. This problem has been
solved through an additional model, that permitted the agents to move even if an
empty path was not possible to be defined.

8.3 Repast HPC outputs
Repast HPC has been programmed in order to give back to the user the fol-

lowing results:
• Comma-separated values file (.csv) of the floor matrices at each simulation

step;

• A record file counting how many agents are still in the simulated environ-
ment;

• A record file for confirming the used parameters of the human behavior and
panic models.

By using the first type of files, it was possible to realize images and frames
for video animations and by using the count output it was possible to realize the
cumulative curves (including curves for the C.I. calibration). Figure 8.1 show a
portion of a frame of the ground floor evacuation. Agents are defined through the
blue half-body symbol.

75



8 – Agent-based simulation

Figure 8.1: Frame of the evacuation

8.4 Confidence Index Calibration
The evacuation time that has been used for the CI calibration is the time

that 80% of the agents spend to evacuate the building. CI calibration used two
simulations and the following assumptions:

• The first simulation is the evacuation of the ground floor without damages.
The population was reduced to 275 agents (75% of the entire floor popula-
tion) in order not to create a crowded situation;

• The second simulation is the evacuation of the first floor (office). The model
has no damages and 140 agents were created, instead of 185;

• For the two office floors, the research used the evacuation time as defined
before, plus an addition of the expected time for running through the stairs
from each of the considered floors.

8.4.1 First floor
The following graph represents the cumulative distribution of evacuated agents.

76



8.4 – Confidence Index Calibration

Figure 8.2: Cumulative, ground floor

The evacuation time that is considered for the CI calibration is 14.0 seconds
with an incremental value of dt 0.019.

8.4.2 Second floor
The following graph represents the cumulative distribution of evacuated agents

from their starting position to the exit door of their apartment, so those data does
not take into account the stairs. The considered time to evacuate the stairs is 24.0
seconds and the floor evacuation time is 25.0 seconds.

Figure 8.3: Cumulative, second floor

The evacuation time that is considered for the CI calibration is 49.0 seconds
and the incremental value of dt is 0.0054).
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8.4.3 Third floor
The CI calibration for the third floor is similar to the previous case. The

cumulative distribution is the same of the first floor (Figure 8.3) and the stairs
evacuation time is 38 seconds. The evacuation time that is considered for the CI
calibration is 63.0 seconds, then the incremental value of dt is 0.0042.

8.5 Results
This section reports all the cumulative diagrams of the simulations. These are

the most important parts of the results of an evacuation simulation, because they
let the engineer know how many agents evacuate the building in function of the
time. The following diagrams are shown by focusing on the following values of
time:

• The total evacuation time, defined as the time that all the agents spend for
a complete evacuation;

• The 80th percentile evacuation time, defined as the time spent by the 80%
faster agents for leaving the building.

As cited before, sometimes a percentile value of evacuated agents is better than
considering the complete evacuation for defining the evacuation time. In particular,
highly damaged buildings will report an high number of dead or seriously injured
people, so most of them will not evacuate until a rescue team will enter the building:
in this case the complete evacuation time can induce to comprehension errors.

Figure 8.4 shows a group formation in a small portion of the second floor.
Agents that are gathered in groups are represented through the blue, red and
black dots. Alone agents are represented through a blue half-body symbol.

8.5.1 First floor
The cumulative curve for the ground floor is represented in Figure 8.5. 380

agents belong to this floor and the evacuation is completed in 35 seconds. The
80th percentile, 304 agents, completes the evacuation in 25 seconds.

8.5.2 Second and third floors
The evacuation analysis for second and third floor should be done by looking

at the cumulative curves of the stairs. 160 agents belong to the left stairs and the
evacuation is completed in 104 seconds (1.7 mins ca.). The 80th percentile, 128
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Figure 8.4: Groups in the second floor

Figure 8.5: Cumulative, Ground floor

agents, evacuates in 88 seconds (1.5 mins ca.). The cumulative curve is reported
in Figure 8.6.

210 agents belong to the right stairs and the evacuation lasted 118 seconds (2.0
mins ca.). The 80th percentile, 168 agents, evacuates in 102 seconds (1.7 mins ca.).
The cumulative curve is reported in Figure 8.7.

The starting seconds of the simulation are obviously reporting that nobody is
evacuating the stairs, because they are supposed to be empty when an earthquake
occurs. Figure 8.7 also reports a pleteau between seconds 58 and 66. This behavior
is caused by a good amount of people that has just evacuated the building, but at
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the same time lot of agents are also passing from the floors to the stairs, so there
are bottleneck formations in the landings.

Figure 8.6: Cumulative, Left Stairs

Figure 8.7: Cumulative, Right Stairs
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Chapter 9

Sensors-based model

This chapter describes the decisions that have been made for the creation of
a reliable sensors based model. Given the importance of all results obtained with
regard to the impact of any structural damage to buildings during the evacuation,
being able to prevent damage and to continuously analyze the buildings, leads
the ABM model to behave almost always with optimal evacuations without the
application of damage. In this regard, the research was subsequently focused
on the study of a building monitoring technique using sensors equipped with a
very high precision digital accelerometer, through which it is possible to detect
the natural period of the structure in stationary conditions, thus estimating the
possible presence of damage. Always using the sensors, it was possible to compare
the data of a building before and after an earthquake, obtaining not only an alarm
system, but also a risk modeling technique. This part of research was carried out
in collaboration with a San Francisco company called Safehub Inc. and tested in
California.

9.1 Introduction
Developing next generation technology to help building owners to be safe, re-

duce property losses, and monitor structural damages, can helps the community
to prevent damage, obtain early warnings and optimal evacuations. Thus, during
this research, a self-install inexpensive hardware (the Hub) was built to collects
and process data using optimal algorithms, adding the ability to monitor, alert,
and provide information services to building owners and insurers through desktop
dashboard displays and web notifications, as shown in Figure 9.1.
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Figure 9.1: How it works

9.2 Technology
The Hub collects and processes acceleration time-history data using a sensitive

tri-axis accelerometer and is connected to the internet via cellular network. Raw
and/or processed data is sent to a database for alerts, dashboard analytics, and
storage. Raw data is also stored locally on the device for approximately 30 days.
Access to this local data, firmware updates, and device troubleshooting occur
remotely.

The device is directly connected to AC power and includes a battery back-up,
preventing the device to loose power and data when a catastrophic event occur.

Sensors are set to be installed in single-family-homes, low-, mid- and high-rise
commercial buildings, and industrial facilities, including manufacturing, power,
data, and mission-critical. For buildings that are large in plan, complex in behav-
ior, or have multiple stories, groups of sensors can be installed. An overview of
the monitoring configuration is shown in Figure 9.2:

For earthquakes, data is processed and analyzed with the following objectives:

• Enhanced risk assessment;

• Damage detection and assessment;

• Early warning.

9.3 Enhanced Risk Assessment
One the main advantages of using building specific sensors is the enhancement

of risk assessment by providing information on two key parameters that determine
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Figure 9.2: Monitoring Configuration

earthquake risk:

• Site-specific soil properties;

• Building dynamic properties.

The idea is to monitor the ambient vibration through the data collected by
the Hub to better understand the structural dynamics of each building and detect
small or large earthquake events. The data, combined with basic information of
the data collected at the time of installation, allow to create a Risk Model that
is made available to the users through a web dashboard, as described in the next
chapter. Figure 9.3 gives an overview of the process.

Figure 9.3: Risk Analysis
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9.3.1 Site-Specific Soil Properties
How a building resonates with ground excitation is in large part a function

of the soil properties (stratigraphy and material properties) supporting and sur-
rounding the building. Soil properties significantly affect site amplification: soft
soils will generally increase accelerations locally due to the conservation of energy.
Soil properties also significantly impact the dynamic behavior of the combined
soil-structure system.

Although there is detailed soil information available for major metropolitan
areas of the West Coast of the United States, it is based on the interpretation of
large-scale geologic maps that are unable to accurately assess the local variability
in soils conditions from site to site. Such maps do not have the ability to assess the
variation in soil properties as a function of depth, further limiting the usefulness
of these maps. Since earthquake property damage and loss is greatly influenced
by soil amplification from earthquakes, accurate soils information will improve
earthquake risk assessment. Currently, better estimates can be obtained from in-
site geotechnical engineering evaluations, but this is costly and cannot be scaled
to multiple sites.

This research methodology for determining site-specific soil properties and as-
sociated amplification is cost-effective and scalable. Soil response to ambient vi-
bration (e.g. traffic, ocean waves) and small earthquakes is measured over long
periods of time using sensors installed in the lower levels of buildings/homes to
approximate free-field response.

Two techniques are then used. The first method is to compare recorded ac-
celerations between sensors in a network, and account for environmental factors,
geometric spreading, and source mechanisms. The second method is built to com-
pute horizontal and vertical spectra ratio. HVSR technique is a well-documented
method for determining soil properties, typically based on broad-band (expensive)
seismometer measurements over short periods of time. With this methodology
instead, less-sensitive low-cost accelerometers over long periods of time have been
used. Less fidelity in the sensor is offset by the significantly longer measurement
periods made possible by having a permanently installed device.

Initial soil properties, including associated amplification, can be obtained in a
few weeks with more refined estimates being achieved over time, following small
and large earthquakes. If needed for modeling input, Vs30 (average shear-wave
velocity to 30m) is back-calculated.

For light structures, the principal effect of the site conditions is amplification.
For heavier structures, including mid- and high-rise buildings, and industrial fa-
cilities, site conditions affect both site amplification and dynamic response of the
soil-structure system and with the proposed technique is possible to provide data
in both aspects.
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9.3.2 Building Dynamic Properties
Other key properties to estimate how buildings respond during earthquakes are

the natural modes and periods of vibration of the structure and/or soil-structure
system. These determine how it resonates with the ground motion (affected by
soil properties as discussed above), affecting accelerations, forces, and damage
during earthquakes. Normally, the first mode in each direction (side-to-side in most
buildings) dominates. The effective period (accounting for increased flexibility due
to soil and, possibly, damage) for the first mode, is of primary interest to engineers
and modelers as this is the assumed period during a large earthquake.

The effective period, Te, is typically estimated using approximate methods
based on building height, structural type, and other factors. Most design codes,
portfolio catastrophe models, and site-specific risk assessment methodologies incor-
porate the work of Goel and Chopra (1997) [24], in which instrumented buildings
were used to develop upper- and lower-bound estimates for Te. With an approxi-
mate 50% variation between bounds, and noting that accelerations and forces are
proportional to 1/T for the theoretical elastic behavior for a majority of building
stock, significant variability in estimated earthquake response is possible.

The proposed technology determines mode shapes and natural periods directly.
Time-domain wave-form data from ambient vibration (e.g. wind) and small earth-
quakes are converted to the frequency domain, and averaged over long periods of
time. Elastic periods are then converted to effective periods for a variety of shaking
intensities based on existing numerical relationships and ongoing data collection.

For flexible taller buildings, over approximately 3 stories, mode shapes and
periods are estimated after a few days, with more refined estimates being achieved
over time, and following small seismic activities. Rare strong earthquakes provide
a wealth of valuable information on nonlinear (likely damaged) structural-dynamic
properties, including the relationship between elastic and effective periods.

Knowing building vibration periods – and therefore structural stiffness – as-
sists in quantifying the presence and effectiveness of retrofit. Most risk reduction
strategies change a structure’s stiffness in addition to its strength and ductility.

9.3.3 Effect on Modeled Losses
Results from a preliminary sensitivity study confirm engineering judgment, and

show that modelled losses are highly sensitive to changes in assumed properties of
the soil-structure system. On a building-specific basis, changing the soil properties
by one NEHRP Soil Class (say from D to C) decreases mean loss estimates by up
to 50%. Changing the effective natural period from one Goel-and-Chopra bound
to another changes loss estimates by up to 40%.
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Replacing generic modeling data with more refined data provided by the sen-
sors impacts results, both from mean-loss and uncertainty (tail-risk) perspectives.
This impact will be most pronounced for single-building and small-portfolio as-
sessments. This is especially true for highly protected risks, high value facilities,
and specialized risks. For very large portfolios, due to the Law of Large Numbers,
the most pronounced impact, and of most interest to insurers and reinsurers, will
be on tail-risk uncertainty (coefficient of variation) and its significant effect on
pure-premium for reinsurance pricing.

Site-specific loss estimates could be affected by up to 40% when sensors data
is incorporated, and predicted significant reduction in tail-risk uncertainty.

9.4 Damage Detection and Assessment
Existing methods of damage detection and assessment involve visual inspection

by structural engineers or claims adjusters. These are expensive, time consuming,
and it is often difficult to see damage on the structure through façades, partitions,
and hung ceilings. In cases where intensity maps are used (e.g. USGS ShakeCast),
damage estimates are coarse and dependent on the timely release of information.

The proposed methodology (Figure 9.4) provides instead remote and real-time
post-event damage assessments using the following methods:

• Correlating sensor readings to vulnerability curves;

• Detecting anomalies and variations in building dynamics.

Figure 9.4: Post-Processing
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9.4.1 Correlating Sensor Readings to Vulnerability Curves
During earthquake excitation, sensors technology records acceleration time-

history wave form data at the base and throughout the building. This data is used
to give an overall sense of damage by using the recorded spectral accelerations
and calculated displacements as input to the vulnerability curves for the building.
This information, provided through dashboard and alerts, increases situational
awareness for building owners, insurers, and other stakeholders. This technology
is similar to USGS ShakeCast, except that this research uses real-time building-
specific data, rather than coarse regional ShakeMap information.

9.4.2 Detecting Anomalies and Variations in Building Dy-
namics

Another means of estimating damage is to capture changes in building dynamic
properties following an event. This could either be through observations in the
record itself, or by noting period-elongation due to reduced stiffness of the soil-
structure system, which potentially implies that the structure sustained damage.

The intent is not to provide a highly granular assessment of localized damage
throughout the building, but more to provide an indication as to overall building
damage, and to prioritize buildings that require further investigation by engineers.

There will always be situations where the building will need to be visited by
an engineer. This technology will help direct valuable resources, and provide data
to the engineer performing an assessment.

9.5 Early Warning
Sensors collects and transmits data that can be used to support earthquake

early warning systems, providing typically 20-30 seconds of alert about a damaging
earthquake. This will allow people to protect themselves against falling hazards,
and for critical equipment to be turned off.

Initially, sensors data are connected to the USGS ShakeAlert system for the
West Coast of the United States, this information is then received by the platform
and transmitted through loudspeaker in the home, building, or facility. In the
future, this technology could develop its own early warning system, beyond the
West Coast of the United States.
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9.6 Technology Partners and Knowledge Experts
The intent of this research is to create not only world-class scientific and en-

gineering technology, but to ensure that data can be translated into useful and
impactful information for building owners, insurers, and other engineering centers.

A primary scientific technology agreement with the California Institute of Tech-
nology (Caltech)’s Community Seismic Network was achieved. Through this re-
lationship, access to relevant research and technology with experts in each of the
focus areas has already being enstablished.

The results of this research are also being connected with Risk Management
Solutions (RMS) to perform sensitivity and ROI studies around the technology;
a large Real Estate Investment Trust (REIT) to pilot the technology for indus-
trial facilities; and a major reinsurance company on a substantial residential pilot
program. These studies are ongoing.

9.7 Device Specifications
The device primary sensor is a very high-end 3-axis accelerometer. It measures

all movements of the Hub (i.e. building movements) with a dynamic range, resolu-
tion and sampling rate. Figure 9.5 represents the functional diagram of the device.
It is plugged to a standard 5V power adapter. Acceleration data is locally stored
at all times on a 32GB microSD card and the device also contains a magnetometer
such that the device orientation inside the building can be determined without
any user input.

Figure 9.5: Hub Functional Diagram

The device is connected to a dedicated cloud infrastructure via 4G-LTE cat. 4
cellular module as explained in the next subsection. The embedded CPU allows
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to perform complex operations such as power spectral density computation and
event detection. These operations are performed locally primarily to reduce the
amount of data transmitted to the cloud infrastructure over the cellular network.
In normal operation conditions the device use less than 10MB/month. But in case
of an earthquake, the device is able to transmit a very large load of data using
high-bandwidth connection. In case of a power outage, the backup batteries take
over. A buzzer briefly emits an alarm to warn people in case they accidentally
unplugged the device. In this low-power mode, the device shutdowns its cellular
connection in order to save power. The data is still stored locally, and if the low-
power microcontroller detects an event it briefly wakes up the cellular module to
send all relevant data to the cloud. The device is expected to operate for at least
two weeks without main power.

9.7.1 Connectivity
Using a cellular connection allow the sensors to be independent from any exist-

ing internet configuration in the building and gives an additional layer of reliability
in terms of data being safely sent to the cloud even after a catastrophic event has
occurred (see Figure 9.6) and, as mentioned above, even if the cellular connection
become erratic or missing for a certain amount of time, is still possible to recover
the data locally in the device. 4G LTE has been chosen as cellular standard for
the proposed Hubs. LTE stands for Long Term Evolution, and is a protocol for
wireless high speed data communications which is developed and standardized by
the Third Generation Partnership Project, or 3GPP. LTE was originally put for-
ward by Japanese carrier NTT DoCoMo (that at the time of this research is also
trying to promote "5G"), and it was only in late 2009 that the first live networks
were launched.

"LTE" is a broad term, and the technological foundation will remain for a long
time, so in order to differentiate between several LTE evolutions, the industry is
using different LTE Categories to describe the LTE network capabilities. There
are 11 different categories that are defined, and from a consumer perspective, they
mainly differ in terms of theoretical speed. However, an important trade-off of
having a greater speed is the use of higher power consumption (Figure 9.7), which
is problematic when the electricity goes off and backup batteries overtake to keep
the device on. For this reason, the Hub is currently including a Cat. 4 LTE
antenna.
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Figure 9.6: Communication

Figure 9.7: LTE Categories
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Chapter 10

Web Dashboard

This chapter describes how users can monitor Hub data that has been pro-
cessed, to allow a visual track of the structural conditions and the risk level asso-
ciated to an existing portfolio of buildings.

10.1 Introduction
The main purpose of the web dashboard is to provide risk managers and busi-

ness continuity professionals a sense of knowledge and control of their property
risk profile. Currently, the dashboard allows users to obtain building-specific risk
information, and an event timeline provides an overview of the buildings affected
by earthquakes. The main features provided are the following:

• Portfolio-level risk information, such as AAL, Expected Loss@250yrs,and
Key Risk-Drivers;

• A scenario feature to allow users to simulate the performance of their port-
folio for a given earthquake (past event or USGS scenario;

• After a catastrophic event, details that instill confidence in results and sup-
port engineering teams are provided;

• Highlight the benefits of using sensors in a building.

The platform was built using a web library called React and complemented
with database level application interfaces written in Ruby on Rails.
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10.2 Portfolio Risk Information
The following Figure 10.1 show how users are able to interact with a pane on

the right-hand side to evaluate portfolio risk. The bottom pane is used to display
events instead.

Figure 10.1: Portfolio Page

The portfolio summary page contains information similar to the ones currently
displayed on the building page. A plot located at the bottom right of the page lists
all the buildings on the x-axis and their average annual loss (AAL) on the y-axis.
They are sorted in descending order. The purpose of this plot is to inform the
user which buildings are the key risk-drivers in his/her portfolio. Furthermore, as
showed in Figure 10.2, the user can navigate on the map to filter the buildings by
geography. All the information contained in the "Risk Drivers" box only contains
the buildings visible on the map. The Portfolio Event Probability remain static
because it is impossible to update this data in real time.
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Figure 10.2: Portfolio Risk

10.3 Building Specific Risk Information
In Figure 10.3 and Figure 10.4 it’s possible to see how the building page high-

light the platform added value. That’s why risk metrics are taking a large section of
the page. Users are able to display y-axis Loss/Downtime vs. x-axis PGA/Return
Period. The color graph represents the expected Building Tag. Its axis can return
period or PGA.

10.4 Instrument a Building
Users are notified when buildings in their portfolio are currently not instru-

mented, to simply remind them to complete the configuration of a device or sug-
gest their adoption and highlight the status of the building itself (see Figure 10.5
and Figure 10.6).

Once the ambient vibration analysis is over and loss estimate has been updated,
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Figure 10.3: Building Page - Loss vs. Return Period

the sensor status icon turns green in the website. Also, each user can decide to
include/exclude sensor data in their loss estimation (Figure 10.7).

Another important aspect of the platform is the possibility to notify users
about seismic activities that affected their portfolio of buildings. Upon logging in,
a message informs them when a building was affected by an earthquake and allow
them to click on the events pane, which is described in the next section.

10.5 Building Response After an Event
The dashboard displays a list of events related to a building based on USGS

data and a list of sensors events that are subsequently divided in two types of
sensors events:

• Device event, when the acceleration exceeds a certain threshold, a device will
write to a DevicesEvents table in the database. It will only send the time
when the event started and ended and are never displayed on the website;
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Figure 10.4: Building Page - Loss vs. PGA

• Building event, which are created when 2 or more devices send a device
event. This building event forces all devices within a building to upload
accelerations data to the cloud and apply a subsequent artificial intelligence
algorithm to compute Response Spectra of the signal, displacement, peak
ground acceleration, peak ground velocity and MMI.

10.5.1 Buildings Events on the website building page
Currently buildings events are displayed together with USGS events fetched

from USGS application interface in a separate "Building page" (Figure 10.8). They
are differentiated by a different icon.

The Events list on the Building page displays:

• Date;

• Magnitude;
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Figure 10.5: Uninstrumented Building

• MMI;

• Estimated Damage.

It is impossible to compute the Magnitude for a Building Event, so the field
is left blank for this type of event (N/A or "-"). All the other fields are obtained
from the database and a web API fetch all the record that are not older than one
year. But when a Building Event occurs, some information are not made available
immediately. MMI and Estimated Damage can only be obtained once the data
requested by a device event is fully uploaded to the cloud. So if the PGA key is
not available, the web interface display "Data is Being Uploaded" in the Estimated
Damage column. Once the data is uploaded instead, the PGA key is assigned with
a value. Only then a "View Details" button becomes visible in each element of the
list. Useful information is also displayed in the form of "Event probability" curve,
where loss and MMI are estimated in relation to return period and loss estimate
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Figure 10.6: Calculating Benchmark

in US dollars. This gives to each user the ability to overview a potential trend of
events that could lead to a certain amount of damage and losses, therefore risks,
over the course of time. Finally, location of the building inside a tri-dimensional
map, together with a summary of information related to it and the average annual
loss (AAL) are displayed on the left side of this web page.

10.5.2 Event Details page
As mentioned in the previous section, once all devices in a building finish to

upload their accelerations data for further processing, the user is allowed to click
on the "View Details" button, which opens up the Events Details page. The list
of sensors available in the given building is being listed in a dropdown menu, as
shown in Figure 10.9. The list of sensors is fetched from the database by matching
building and each device is expected to be physically installed in different stories,
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Figure 10.7: Benchmark Calculated

starting from the ground floor.
On the left side of the page, a small simulation of the current shaking is repre-

sented, to give users an overall view of the building motion. Then, in the middle,
two charts containing the accelerations data uploaded by ground floor device and
one of the upper floors devices are displayed, with the possibility to choose the axis
being given. The top and bottom plots are identical, but it is useful for the user
to display two sensors data simultaneously (for instance ground sensor and third
floor). Finally, on the right side, it’s possible to view the response spectra of the
event. The plot represent two traces, computed with a 2% and 5% damping ratio.
The sensor axis displayed correspond to the axis chosen by the user. Right below
the response spectra, another plot containing the relative displacement is showed.
This gives the user a great understanding of the building motion during the event,
especially when associated with the shaking simulation in the same page. Dis-
placements are meaningful only when they are compared with the displacement of
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Figure 10.8: Building page with list of events

the ground sensor. For this reason the list contains all sensors except "Ground".
All these data is computed by applying refinements to state of the art algorithms
provided by mathematical libraries of the C++ programming language and are
being run automatically in the cloud.
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Figure 10.9: Events Page - Sensors data has been processed

10.6 Structural Damage Detection by Power Spec-
tral Density

Early detection of defects in civil structures is a critical process in assisting
structural maintenance and management plans. With the platform proposed by
this research activity, and its robust damage detection methodology, it becomes
possible to repair the structure during early stages of damage. Many damage de-
tection methods require information about the baseline data and the input data.
However, the data collection is not always practical because it cannot be readily
obtained. Output-only methods use only the vibration response signals and may
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be classified into nonparametric methods based on corresponding time series rep-
resentations and methodologies based on scalar or vector parametric time series
representations. Power spectral density (PSD), defined as the squared value of
the signal, describes the power of a signal or time series distributed over differ-
ent frequencies. The PSD is the Fourier transform of the autocorrelation function,
which provides the transformation from the time-domain to the frequency-domain.
From the sensitivities of PSD with respect to the structural damage parameters
and finite element model updating, Chen et al. (2014) [26] presented a method to
identify buildings damage. Zheng et al. (2014) [67] considered a structural dam-
age detection method from the finite element model, which is updated using the
measured PSD. In order to compute PSDs in this platform, the Welch method-
ology (1967) [42] has been used. The Welch method is used to find the PSD of
a signal and to reduce the effect of noise. It divides the time series data into
segments, computes a modified periodogram of each segment, and averages the
Power Spectral Density Estimation (PSE). A portion of the data stream near the
boundaries of the window function is ignored in the analysis, and its situation can
be improved by letting the segments overlap. The PSD represents the strength of
the variations as a function of frequency. The spectral density characterizes the
frequency content of the signal and its estimation detects any periodicities in the
data, by observing peaks at the frequencies corresponding to these periodicities.
Fang and Perera (2009) [18] introduced power mode shape curvature and power
flexibility, and they proposed the damage detection method using their variation
between undamaged and damaged states. Variations to the periodicities of the
signal in low noise conditions are strong symptoms of structural damage. Users
can visualize the PSDs of each building from the building page of the dashboard.
Welch method with a frame duration of 30 seconds and an overlap factor of 20%
has been used to generate 2800 PSDs each day that are being averaged to each
other to finally generate a single PSD every day. In the platform is possible to
further compare each daily generated PSD with a PSD of another day, in order
to get an overview of the differences and be notified about structural damages
detected through the algorithm, as showed in Figure 10.10.
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Figure 10.10: PSD Page - PSDs comparison in detected damages
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Chapter 11

Conclusions

In Chapters 4–8, the research described several fundamental parts of human
behavior and its application to a real evacuation model in catastrophe situations.
The reasoning process of human beings was first associated to the Belief Desires
and Intentions model, then a panic model with the application of the Decision
Field Theory was applied and complemented with a questionnaire-based data col-
lection. This analytic approach additionally allowed us to exhibit several new
relations between learning theory, communication complexity and how human be-
havior affects building evacuations. Panic and human behavior models have given
the agents a huge decisional capacity. The case study of a 3 story buildings in
Oakland, California, was then used as first practical application of the simulation.
This building was firstly tested without considering damage, then by considering
it. Damage scenarios creates new obstacles respect to the undamaged structure,
so it was proven that the agents needs to find different solutions for escaping the
building. The models were implemented using Repast HPC, a parallel computing
framework for Agent-Based Modeling. It was proven to be very efficient for large
scale buildings due to its parallel computing support and allowed the research
to perform high-density populations simulations. To effectively represent damage
and risk associated to city models, a portfolio sensors-based approach was then ex-
plained in chapters 9-10. The idea was to provide structural health monitoring to
every building and portfolio in order create a platform that allows to have a clear
view of the damages and risks associated to each building of a city or an entire
portfolio. Real-time vulnerability curves, power spectral density comparisons and
events based analysis were implemented and provided. This approach has proven
to allow monitoring for the risk associated to the structures and therefore improve
the precisions and the assumptions taken in the first part of the research, making
the model to effectively reflect real life scenarios. The proposed virtual model is
applicable to every city, region, State or even Country to give a precise insight of
damage levels, risks and evacuation times not only in case of emergencies but also
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before and after catastrophic events.

11.1 Comments on the results
An overall comment related to this work is the high increase of reliability of

simulations, especially when integrated with building specific sensors. That is due
because:

• Damage scenarios create new obstacles respect to the undamaged structure,
so the agents will need to find different solutions for escaping the building;

• Parallel computing permitted to increase the number of items in the map
matrices. Consequently, the number of steps per second increased respect to
similar simulations in this field;

• Panic and human behavior models have given the agents a huge decisional
capacity, in order to simulate their behavior during the emergency at best.

A demonstration of all these positive improvements is the graph reported in
Figure 11.1 cumulative curves for the evacuation of ground floors are reported:

• The blue curve is the cumulative of the building evacuation with only the
Lee’s model for Artificial Intelligence, without damages, human behavior or
panic models;

• The orange curve is the real cumulative curve of this research.

Figure 11.1: Cumulatives of the two models

The analysis of these curves reports that:
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• With the "traditional" model with only Artificial Intelligence, the evacuation
time (80th percentile) is 14.0 seconds;

• With the model proposed in this research, the evacuation time (80th per-
centile) is 25.0 seconds.

In this research other simulations have been made in order to make a com-
parison between the simulations with Artificial Intelligence only and the improved
results of this work. The graph in Figure 11.2 reports the distribution of the evac-
uation time for the ground floor in case of reduced amounts of evacuees. Data
report the 80th percentile of evacuation time for each case. The curves are linear
tendences that fit the evacuation time of:

• 20% of the entire population, equal to 76 agents (80th percentile corresponds
to 61 agents)

• 40%, equal to 152 agents (80th percentile corresponds to 122 agents)

• 60%, equal to 228 agents (80th percentile corresponds to 182 agents)

• 80%, equal to 304 agents (80th percentile corresponds to 243 agents)

• 100%, that is the considered simulation of this research.

Figure 11.2: Comparison between two Agent-Based models

By observing the curve of an A.I. model, it is possible to confirm that no crowds
or bottlenecks are present, because the evacuation time remains constant even if
the number of evacuees grows. The curve for refined model reports a significant
increase of evacuation time: that is due because with the new models agents can
interact better among them and with the damaged environment. If the population
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increases, more groups are formed and more people get injured, so each agent can
be confused and spend more time in helping or finding someone: that is the real
reason of the constant increase of evacuation time in these simulations.

Even if some improvements can be done to continuously increase the reliability
and to get a better visualization of the results, this work needed the integration
of a reliable sensors based model first.

Throughout the use of sensors equipped with a very high precision digital
accelerometer that allow to monitor structural damages before and after catas-
trophic events and the ability to create an enhanced risk assessment web platform,
an higher probability to obtain a simplified ABM model with limited damages
has been proved. In fact, this research showed how the presence of damage dras-
tically affect the speed of a simulation. Furthermore, providing a web platform
to building owners, greatly improve their awareness about seismic activities and
related damages, which could be very helpful in areas at risk. Seismic risks are,
in fact, determined not only by hazard levels but also by the amount of people
and property that are exposed to the hazards and by how vulnerable people and
property are to the hazards.

11.2 Future improvements

11.2.1 Panic model
An improvement should be done to the panic model calibration, particularly

in the definition of the starting value of confidence index. In Takashi’s results the
density of points in the velocity-frequency interval of the considered structure is
not very high. Consequently, future works should improve the way the starting
value of confidence index is defined, through new experiments or data collections
made in real cases.

11.2.2 Parallel computing usage
In this research parallel computing was used in order to increase reliability and

speed of the simulations on a standard laptop. MPI libraries divided the processes
among all the cores in order to simulate each floor and stair ramp separately. A
suggestion for future research is to simulate similar structures on a supercomputer:
that will mean using MPI libraries also to simulate different floors (or stairs) in
parallel to analyze the interdependencies between floors and stairs. This will result
in a better analysis of the crowd and all the possible bottlenecks formations.
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11.2.3 Early warning timing
Another improvement might be necessary to the early warning system provided

by the sensors. Refining the model with algorithms that would allow seismic
activities to be predicted even quicker could make such system a revolutionary
and portable security alert, for example with the implementation of a dedicated
mobile app that could send push notifications to the users.

107



108



Bibliography

[1] Icek Ajzen. “The theory of planned behavior”. In: Organizational behavior
and human decision processes 50.2 (1991), pp. 179–211. issn: 0749-5978.

[2] John R Anderson and Jonathan Betz. “A hybrid model of categorization”. In:
Psychonomic Bulletin and Review 8.4 (2001), pp. 629–647. issn: 1069-9384.

[3] Robert Axelrod and William Donald Hamilton. “The evolution of coopera-
tion”. In: Science 211.4489 (1981), pp. 1390–1396. issn: 0036-8075.

[4] Robert Axelrod and Leigh Tesfatsion. “Appendix AA Guide for Newcomers
to Agent-Based Modeling in the Social Sciences”. In: Handbook of computa-
tional economics 2 (2006), pp. 1647–1659. issn: 1574-0021.

[5] Paolo Bellavista et al. “Scalable and Cost-Effective Assignment of Mobile
Crowdsensing Tasks Based on Profiling Trends and Prediction: The Partic-
ipAct Living Lab Experience”. In: Sensors 15.8 (2015), pp. 18613–18640.
issn: 1424-8220.

[6] Eric Bonabeau. “Agent-based modeling: Methods and techniques for simu-
lating human systems”. In: Proceedings of the National Academy of Sciences
99.suppl 3 (2002), pp. 7280–7287. issn: 0027-8424.

[7] GE Bradley. “A proposed mathematical model for computer prediction of
crowd movements and their associated risks”. In: Engineering for crowd
safety. Amsterdam: Elsevier (1993), pp. 303–11.

[8] Michael Bratman. “Intention, plans, and practical reason”. In: (1987).
[9] Simone Brienza et al. “A low-cost sensing system for cooperative air quality

monitoring in urban areas”. In: Sensors 15.8 (2015), pp. 12242–12259. issn:
1424-8220.

[10] R Challenger, CW Clegg, and MA Robinson. “Understanding crowd be-
haviours: Supporting evidence”. In: Understanding Crowd Behaviours (Crown,
2009) (2009), pp. 1–326.

109



BIBLIOGRAPHY

[11] S.B. Chaudhury, M. Sengupta, and K. Mukherjee. “Vibration Monitoring of
Rotating Machines Using MEMS Accelerometer”. In: International Journal
of Scientific Engineering and Research 2.9 (2014). issn: 2347-3878.

[12] Xuwei Chen and Franklin B Zhan. “Agent-based modelling and simulation of
urban evacuation: relative effectiveness of simultaneous and staged evacua-
tion strategies”. In: Journal of the Operational Research Society 59.1 (2008),
pp. 25–33. issn: 0160-5682.

[13] G. Ciuti et al. “MEMS Sensor Technologies for Human Centred Applications
in Healthcare Physical Activities, Safety and Environmental Sensing: A Re-
view on Research Activities in Italy.” In: Sensors 15.3 (2015), pp. 6441–6468.
issn: 1424-8220.

[14] Rinaldo M Colombo and Massimiliano D Rosini. “Pedestrian flows and non
classical shocks”. In: Mathematical Methods in the Applied Sciences 28.13
(2005), pp. 1553–1567. issn: 1099-1476.

[15] D. Dai and Y. Zhang. “An agent based model to simulate evacuation in a sta-
dium”. In: Conference on Agent Based Modeling in Transportation Planning
and Operations. 2013.

[16] Mark M Derriso et al. “Industrial Age non-destructive evaluation to Infor-
mation Age structural health monitoring”. In: Structural Health Monitoring
13.6 (2014), pp. 591–600. doi: 10.1177/1475921714546061. eprint: https:
//doi.org/10.1177/1475921714546061. url: https://doi.org/10.
1177/1475921714546061.

[17] Scott W. Doebling, Charles R. Farrar, and Michael B. Prime. “A Summary
Review of Vibration-Based Damage Identification Methods”. In: Identifica-
tion Methods,” The Shock and Vibration Digest 30 (1998), pp. 91–105.

[18] Scott W. Doebling, Charles R. Farrar, and Michael B. Prime. “Power mode
shapes for early damage detection in linear structures”. In: Journal of Sound
and Vibration 324.1-2 (2009), pp. 40–56.

[19] Yilmaz E. et al. “The virtual marathon: Parallel computing supports crowd
simulations”. In: IEEE computer graphics and applications 4 (2009), pp. 26–
33. issn: 0272-1716.

[20] FEMA. P58-1, Seismic Performance Assessment of Buildings, Vol.1: Method-
ology. Government Document. 2012.

[21] FEMA. P58-2, Seismic Performance Assessment of Buildings: Implementa-
tion Guide. Government Document. 2012.

[22] Robert J Fisher. “Social desirability bias and the validity of indirect question-
ing”. In: Journal of consumer research (1993), pp. 303–315. issn: 0093-5301.

110

https://doi.org/10.1177/1475921714546061
https://doi.org/10.1177/1475921714546061
https://doi.org/10.1177/1475921714546061
https://doi.org/10.1177/1475921714546061
https://doi.org/10.1177/1475921714546061


BIBLIOGRAPHY

[23] M. Georgeff and A. Rao. “Rational software agents: from theory to practice”.
In: Agent technology. Springer, 1998, pp. 139–160.

[24] Chopra A.K. Goel R.K. “Period Formulas for Moment-Resisting Frame Build-
ings”. In: Journal of Structural Engineering 123.11 (1997), pp. 1454–1461.
issn: 0733–9445.

[25] Steve Gwynne et al. “A review of the methodologies used in the computer
simulation of evacuation from the built environment”. In: Building and En-
vironment 34.6 (1999), pp. 741–749. issn: 0360-1323.

[26] Chen W. H. et al. “Damage identification based on power spectral density
sensitivity analysis of structural responses,” in: vol. 919-921. 2014, pp. 45–50.

[27] Dirk Helbing, Illés Farkas, and Tamas Vicsek. “Simulating dynamical fea-
tures of escape panic”. In: Nature 407.6803 (2000), pp. 487–490. issn: 0028-
0836.

[28] Mingyuan Hu et al. “A Multi-Stage Method for Connecting Participatory
Sensing and Noise Simulations”. In: Sensors 15.2 (2015), pp. 2265–2282.
issn: 1424-8220.

[29] Helmut Jungermann. “A psychological model of emergency evacuation from
double-deck aircraft”. In: 5th Australian Aviaton Psychology Symposium,
Manly/Sydney. Vol. 176. 2000.

[30] Ronald Kok, Cosme Furlong, and Ryszard J. Pryputniewicz. “Development
of a Wireless MEMS Inertial System for Health Monitoring of Structures”.
In: MRS Proceedings 785 (2003), p. D11.5. doi: 10.1557/PROC-785-D11.5.

[31] Qingkai Kong et al. “MyShake: A smartphone seismic network for earthquake
early warning and beyond”. In: Science Advances 2.2 (2016). doi: 10.1126/
sciadv.1501055. eprint: http://advances.sciencemag.org/content/
2 /2 / e1501055 . full. pdf. url: http :/ / advances . sciencemag. org/
content/2/2/e1501055.

[32] Chin Yang Lee. “An algorithm for path connections and its applications”.
In: Electronic Computers, IRE Transactions on 3 (1961), pp. 346–365.

[33] Seung Ho Lee. “Integrated human decision behavior modeling under an ex-
tended belief-desire-intention framework”. In: Proceedings of the 2008 Win-
ter Simulation Conference. S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T.
Jefferson, J. W. Fowler Editors, 2009.

[34] Seungho Lee and Young-Jun Son. “Integrated human decision making model
under belief-desire-intention framework for crowd simulation”. In: Simula-
tion Conference, 2008. WSC 2008. Winter. IEEE, 2008, pp. 886–894. isbn:
142442707X.

111

https://doi.org/10.1557/PROC-785-D11.5
https://doi.org/10.1126/sciadv.1501055
https://doi.org/10.1126/sciadv.1501055
http://advances.sciencemag.org/content/2/2/e1501055.full.pdf
http://advances.sciencemag.org/content/2/2/e1501055.full.pdf
http://advances.sciencemag.org/content/2/2/e1501055
http://advances.sciencemag.org/content/2/2/e1501055


BIBLIOGRAPHY

[35] Yoon Soo Lee and Ali Malkawi. “Simulating human behavior: an agent-
based modeling approach”. In: Proceedings of the 13th IBPSA Conference,
Chambéry. 2013.

[36] Paulo Leitao, Udo Inden, and Claus-Peter Rückemann. “Parallelising multi-
agent systems for high performance computing”. In: (2013). issn: 1612083102.

[37] Fang Li et al. “Pedestrian evacuation modeling and simulation on metro
platforms considering panic impacts”. In: Procedia-Social and Behavioral
Sciences 138 (2014), pp. 314–322. issn: 1877-0428.

[38] Michael K Lindell et al. Fundamentals of emergency management. FEMA
Washington, DC, 2006.

[39] Silvia Mazzoni et al. “OpenSees command language manual”. In: Pacific
Earthquake Engineering Research (PEER) Center (2006).

[40] Ekin Ozer, Maria Q. Feng, and Dongming Feng. “Citizen Sensors for SHM:
Towards a Crowdsourcing Platform”. In: Sensors 15.6 (2015), pp. 14591–
14614. issn: 1424-8220.

[41] Cimellaro G P et al. “Rapid building damage assessment system using mobile
phone technology”. In: Earthquake Engineering and Engineering Vibration
13.3 (2014), pp. 519–520. issn: 1671-3664.

[42] Welch P. “The use of fast Fourier transform for the estimation of power spec-
tra: a method based on time averaging over short, modified periodograms”.
In: IEEE Transactions on Audio and Electroacoustics 15.2 (1967), pp. 70–73.
issn: 0018-9278. doi: 10.1109/TAU.1967.1161901.

[43] Adam Perkins, Brendan Ryan, and Peer-Olaf Siebers. “Modelling and Simu-
lation of Rail Passengers to Evaluate Methods to Reduce Dwell Times”. In:
Proceedings of the 14th International Conference on Modeling and Applied
Simulation (MAS2015). 2015.

[44] Michael J Quinn, Ronald A Metoyer, and Katharine Hunter-Zaworski. “Par-
allel implementation of the social forces model”. In: Proceedings of the Second
International Conference in Pedestrian and Evacuation Dynamics. Citeseer,
2010, pp. 63–74.

[45] Bryan Raney et al. “An agent-based microsimulation model of Swiss travel:
First results”. In: Networks and Spatial Economics 3.1 (2003), pp. 23–41.
issn: 1566-113X.

[46] Dashti S. et al. “The Reliability of Phones as Seismic Sensors”. In: In Pro-
ceedings of the World Conference Earthquake Engineering (Sept. 2012).

[47] Thomas C Schelling. “Dynamic models of segregation†”. In: Journal of math-
ematical sociology 1.2 (1971), pp. 143–186. issn: 0022-250X.

112

https://doi.org/10.1109/TAU.1967.1161901


BIBLIOGRAPHY

[48] Thomas C Schelling. “Models of segregation”. In: The American Economic
Review (1969), pp. 488–493. issn: 0002-8282.

[49] M. Shanthi and E. G. Ryajan. “Agent Based Cellular Automata: A Novel
Approach for Modeling Spatiotemporal Growth Processes”. In: International
Journal of Application or Innovation in Engineering and Management (IJAIEM)
1.3 (2012). issn: 2319-4847.

[50] Joseph L Smith and James T Brokaw. “Agent based simulation of hu-
man movements during emergency evacuations of facilities”. In: Structures
Congress. 2008, pp. 1–10.

[51] Michael Kinsey Steve Gwynne Erica D. Kuligowski. “Human behavior in fire
- Model development and application”. In: 6th International Symposium on
Human Behaviour in Fire. 2015.

[52] Christian Stolz and Manfred Neumair. “Structural Health Monitoring, In-
service Experience, Benefit and Way Ahead”. In: Structural Health Moni-
toring 9.3 (2010), pp. 209–217. doi: 10.1177/1475921710366655. eprint:
https://doi.org/10.1177/1475921710366655. url: https://doi.org/
10.1177/1475921710366655.

[53] Ron Sun. Cognition and multi-agent interaction: From cognitive modeling to
social simulation. Cambridge University Press, 2006. isbn: 0521839645.

[54] T Takahashi et al. “Shaking Table Test for Indoor Human Response and
Evacuation Limit, journal of 5th International Conference on Earthquake
Engineering”. In: (2010).

[55] Fangqin Tang and Aizhu Ren. “Agent-based evacuation model incorporating
fire scene and building geometry”. In: Tsinghua Science and Technology 13.5
(2008), pp. 708–714. issn: 1007-0214.

[56] Jan C. Thiele. “Package RNetLogo”. In: (2013).
[57] T. Torfs et al. “Low Power Wireless Sensor Network for Building Monitor-

ing”. In: IEEE Sensors Journal 13.3 (Mar. 2013), pp. 909–915. issn: 1530-
437X. doi: 10.1109/JSEN.2012.2218680.

[58] Jason Tsai et al. “Agent-based evacuation modeling: Simulating the Los An-
geles international airport”. In: Proceedings of the workshop on emergency
management: Incident, resource, and supply chain management. 2009.

[59] Jason Tsai et al. “ESCAPES: evacuation simulation with children, authori-
ties, parents, emotions, and social comparison”. In: Proceedings of The 10th
International Conference on Autonomous Agents and Multiagent Systems-
Volume 2. International Foundation for Autonomous Agents and Multiagent
Systems, 2009, pp. 457–464. isbn: 0982657161.

113

https://doi.org/10.1177/1475921710366655
https://doi.org/10.1177/1475921710366655
https://doi.org/10.1177/1475921710366655
https://doi.org/10.1177/1475921710366655
https://doi.org/10.1109/JSEN.2012.2218680


BIBLIOGRAPHY

[60] Benevicius V., Ostasevicius V., and Gaidys R. “Identification of Capaci-
tive MEMS Accelerometer Structure Parameters for Human Body Dynamics
Measurements”. In: Sensors 13.9 (2013), pp. 11184–11195. issn: 1424-8220.

[61] J. Von Neumann. “John von Neumann’s Cellular Automata”. In: (2010).
issn: 1940-5030. url: http://embryo.asu.edu/handle/10776/2009.

[62] B.J. Vreugdenhil, N. Bellomo, and P. S. Townsend. “Using Crowd Modelling
in Evacuation Decision Making”. In: Proceedings of The ISCRAM 2015 Con-
ference. 2015.

[63] Hui Xi, Seungho Lee, and Young-Jun Son. “An integrated pedestrian behav-
ior model based on extended decision field theory and social force model”. In:
Human-in-the-Loop Simulations. Springer, 2011, pp. 69–95. isbn: 0857298828.

[64] Weihao Yin et al. “An agent-based modeling system for travel demand simu-
lation for hurricane evacuation”. In: Transportation research part C: emerg-
ing technologies 42 (2014), pp. 44–59. issn: 0968-090X.

[65] Xiaoping Zheng, Tingkuan Zhong, and Mengting Liu. “Modeling crowd evac-
uation of a building based on seven methodological approaches”. In: Building
and Environment 44.3 (2009), pp. 437–445. issn: 0360-1323.

[66] Kashif Zia et al. “An agent-based parallel geo-simulation of urban mobility
during city-scale evacuation”. In: Simulation (2013), pp. 1244–1267. issn:
0037-5497.

[67] Kashif Zia et al. “Structural damage identification based on power spectral
density sensitivity analysis of dynamic responses”. In: Computers Structures
146 (2014), pp. 176–184.

114

http://embryo.asu.edu/handle/10776/2009


Appendix A

Survey: English Version

115



A – Survey: English Version

116



A – Survey: English Version

117



A – Survey: English Version

118



A – Survey: English Version

119



A – Survey: English Version

120



A – Survey: English Version

121



A – Survey: English Version

122



A – Survey: English Version

123



A – Survey: English Version

124



A – Survey: English Version

125



A – Survey: English Version

126



A – Survey: English Version

127



A – Survey: English Version

128



A – Survey: English Version

129



A – Survey: English Version

130



A – Survey: English Version

131



A – Survey: English Version

132



A – Survey: English Version

133



A – Survey: English Version

134



Appendix B
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Survey Results
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Appendix D

Structural Analysis Results

Tables in the following pages report the structural analysis results from the
model that has been evaluated by the Pacific Earthquake Engineering Research
Center (PEER) in terms of:

• Peak story drifts [%].

• Peak story accelerations [m/s2] (including base floor acceleration).

• Residual story drifts[%].

• Story velocities [m/s].

• Corresponding frequencies [Hz], obtained through Fast Fourier Transforma-
tion.
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Appendix E

Building Plans

The following images report the plans of all the floors and a ramp of stairs. As
reported in the legends:

• Green color is used for representing emergency exits.

• Black color is used for representing external and internal walls.

• Blue color is used for representing the obstacles of the undamaged building
(shelves, racks, desks and other furniture).

• Red color is used for representing the following new obstacles of the damaged
structure: fallen objects from shelves and racks, collapsed shelves and racks,
collapsed desktop technologies from desks.

• Orange color is used for representing the collapsed tiles of the ceiling.
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