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Extreme Event Quantification in Dynamical Systems with Random Components\ast 

Giovanni Dematteis\dagger , Tobias Grafke\ddagger , and Eric Vanden-Eijnden\S 

Abstract. A central problem in uncertainty quantification is how to characterize the impact that our incomplete
knowledge about models has on the predictions we make from them. This question naturally lends
itself to a probabilistic formulation, by making the unknown model parameters random with given
statistics. Here this approach is used in concert with tools from large deviation theory (LDT)
and optimal control to estimate the probability that some observables in a dynamical system go
above a large threshold after some time, given the prior statistical information about the system's
parameters and/or its initial conditions. Specifically, it is established under which conditions such
extreme events occur in a predictable way, as the minimizer of the LDT action functional. It is
also shown how this minimization can be numerically performed in an efficient way using tools from
optimal control. These findings are illustrated on the examples of a rod with random elasticity pulled
by a time-dependent force, and the nonlinear Schr\"odinger equation with random initial conditions.
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1. Introduction. The governing equations we use to model complex phenomena are often
approximate. For example, we may not know exactly the initial and/or boundary conditions
necessary to integrate these equations. Other parameters entering these equations can also be
uncertain, either because we are not sure of the model itself or because these parameters may
vary from situation to situation in a way that is difficult to predict in detail. The question
then becomes whether we can quantify how our imperfect knowledge of the system's param-
eters impact its behavior. This question lends itself naturally to a probabilistic formulation.
Consider, for example, the case of a dynamical system whose state at time t can be specified
by some u(t) which can be a vector or a field and satisfies

(1.1) \partial tu = b(u, \vargamma ), u(t = 0) = u0(\vargamma ).

Here b(u, \vargamma ) is a given vector field and \vargamma denotes the set of parameters we are uncertain
of. Assuming that these parameters take value in some set \Omega , which can again be finite or
infinite dimensional, it is then natural to equip \Omega with a probability measure \mu to quantify our
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1030 G. DEMATTEIS, T. GRAFKE, AND E. VANDEN-EIJNDEN

uncertainty. This makes \vargamma random, and therefore the solution to (1.1) becomes a stochastic
process. Denoting it by u(\cdot , \vargamma ), we can ask questions about the statistics of this process. For
example, if f(u) is a scalar valued observable, we can define

(1.2) PT (z) \equiv \BbbP (f(u(T, \vargamma )) \geq z) , z \in \BbbR ,

where \BbbP denotes the probability over \mu and T > 0 is some observation time. The probability
(1.2) is useful, e.g., in the context of a certification problem where, given z \in \BbbR and \epsilon > 0
(typically z large and \epsilon small), we wish to verify that PT (z) \leq \epsilon . Other quantities of interest
include

(1.3) \BbbP 
\biggl( \int T

0
f(u(t, \vargamma ))dt \geq z

\biggr) 
, \BbbP 

\Biggl( 
sup

0\leq t\leq T
f(u(t, \vargamma )) \geq z

\Biggr) 
, etc.

The numerical estimation of (1.2) or (1.3) can be performed by Monte Carlo sampling
methods: generateN independent realizations of \vargamma , for each evaluate f(u(T, \vargamma )) via integration
of (1.1), and compute the fraction of these realizations for which f(u(T, \vargamma )) \geq z. As N \rightarrow \infty ,
this fraction will converge to PT (z). This direct approach is not effective when PT (z) is small,
however, since the relative error of the estimator just described is

\sqrt{} 
(1 - PT (z))/(NPT (z)) \sim 

1/
\sqrt{} 
NPT (z). This means that in order to get an estimate accurate to order \delta \ll 1, we need

to use N = O
\bigl( 
\delta  - 2P - 1

T (z)
\bigr) 
samples, which can become prohibitively expensive as PT (z) gets

smaller. This is problematic since it excludes from consideration events that are rare but may
nonetheless have dramatic consequences. Similar issues arise if we replace (1.1) by some time
independent equation like

(1.4) 0 = b(u, \vargamma ),

where b(\cdot , \vargamma ) is some function of u and possibly its derivatives and (1.4) is supplemented with
boundary conditions that may also depend on the random parameter \vargamma . The solution to (1.4)
defines a complicated map u(\vargamma ), and given a scalar valued observable f(u), the estimation of

(1.5) \BbbP (f(u(\vargamma )) \geq z) , z \in \BbbR ,

will again be challenging when this probability is small, i.e., when the event f(u(\vargamma )) \geq z is
rare.

In these situations alternative methods such as those proposed, e.g., in [20, 26, 9, 19, 39,
42, 17, 36], must be used to estimate (1.2), (1.3), or (1.5). The approach we introduce in this
paper builds on earlier results found in [13] and uses large deviation theory (LDT) [14, 43] as a
tool: we show that, if in (1.2) PT (z) \rightarrow 0 as z \rightarrow \infty , then under some additional assumptions
we have

(1.6) PT (z) \asymp exp

\biggl( 
 - min

\theta \in \Omega (z)
I(\theta )

\biggr) 
, where \Omega (z) = \{ \theta : f(u(T, \theta )) \geq z\} \subseteq \Omega .

Here \asymp indicates that the ratio of logarithms of both sides tends to 1 as z \rightarrow \infty and we defined

(1.7) I(\theta ) = max
\eta 

(\langle \eta , \theta \rangle  - S(\eta )) ,
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EXTREME EVENT IN SYSTEMS WITH RANDOM COMPONENTS 1031

where \langle \cdot , \cdot \rangle is a suitable inner product on \Omega and S(\eta ) is the cumulant generating function of
\vargamma :

(1.8) S(\eta ) = log\BbbE e\langle \eta ,\vargamma \rangle = log

\int 
\Omega 
e\langle \eta ,\theta \rangle d\mu (\theta ) .

We will also show that the minimizer of I(\theta ) in \Omega (z), i.e.,

(1.9) \theta  \star (z) = argmin
\theta \in \Omega (z)

I(\theta ) ,

is the point of maximum likelihood in \Omega (z). The most likely way the event \{ f(u(T, \vargamma )) \geq z\} 
occurs is when \vargamma = \theta  \star (z), which we will also refer to as the instanton realization, since it is a
critical point of the action I(\theta ). Similar estimates hold for (1.3) and (1.5) upon straightforward
redefinition of the set \Omega (z) upon which the optimization is performed.

Establishing the large deviation principle (LDP) in (1.6) is one of the objectives of this
paper. As we will see in section 2, this can be done by proving that \theta  \star (z) is a dominating point
in \Omega (z), building on results derived, e.g., in [5, 31, 7, 24] that provide us with a framework
to justify the saddle-point approximations often used in physics [25, 18]. Equation (1.6) is a
somewhat unusual LDP however because there is no small (or large) parameter associated to
the random variable \vargamma : rather we play with the variable z being large. More precisely, instead
of scaling \vargamma so that events with a finite z become rare, we keep \vargamma as is and look at rare events
that occur in the tail of the distribution when z \gg 1. As a result, the standard approach
developed in [5, 31, 24] must be adapted. In particular, we do not know a priori what is the
speed of the LDP. The formulation we adopt can be viewed as a way to estimate this speed
by estimating how the minimum in (1.6) behaves as z increases toward infinity.

When (1.6) holds, we can reduce the evaluation of PT (z) to the minimization problem
in (1.9), and a second objective here is to design numerical tools to perform this minimization.
As we will see in section 3, this can be done by adapting techniques used in optimal control [41,
6].

We will also illustrate these tools on two examples in section 4: The first one is a model
for an elastic rod with a random elasticity coefficient. The rod gets pulled from one end with a
given forcing protocol, and the response depends nonlinearly on the elasticity coefficient. The
LDP can be used here to infer the probability of atypically large extensions of the rod. The
second application deals with the nonlinear Schr\"odinger equation (NLSE) in nonlinear fiber
optics, in the context of what is known as integrable turbulence. Specifically, we study the
problem of the onset of rogue waves out of a bath of random waves taken as initial condition
for NLSE.

2. Large deviation principle. Here we establish (1.6), using background material that can
be found, e.g., in [5, 31, 24]. For simplicity, we will restrict ourselves to situations where \vargamma is
finite dimensional, i.e., we assume that \vargamma \in \Omega \subseteq \BbbR M with M \in \BbbN . In this case we can also
assume that the inner product \langle \cdot , \cdot \rangle appearing in (1.7) and (1.8) is the standard Euclidean
inner product on \BbbR M . Under appropriate assumptions, the results below will hold also in the
infinite-dimensional set-up, when \vargamma is a random field, but the arguments to establish them
will require generalization (see, e.g., [15, 29] for results in infinite dimension). To treat theD
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1032 G. DEMATTEIS, T. GRAFKE, AND E. VANDEN-EIJNDEN

problems in (1.2), (1.3), and (1.5) on the same footing we also define the map F : \Omega \rightarrow \BbbR via

(2.1)

F (\theta ) = f(u(T, \theta )) for (1.2),

F (\theta ) =

\int T

0
f(u(t, \theta )) dt, or F (\theta ) = sup

0\leq t\leq T
f(u(t, \theta )), for (1.3),

F (\theta ) = f(u(\theta )) for (1.5)

so that we can recast these probabilities into

(2.2) P (z) = \BbbP (F (\vargamma ) \geq z) = \mu (\Omega (z)), where \Omega (z) = \{ \theta : F (\theta ) \geq z\} .

To proceed, we start by making two assumptions.

Assumption 1. There exists a finite z0 such that the restriction of the map F to the
preimage of the interval (z0,\infty ) \subset \BbbR , i.e., to the set F - 1

\bigl( 
(z0,\infty )

\bigr) 
\subset \Omega , is differentiable with

| \nabla (F )| > K for a suitable K > 0.

Assumption 2. The measure \mu is such that (this is (1.8))

(2.3) S(\eta ) = log\BbbE e\langle \eta ,\vargamma \rangle = log

\int 
\Omega 
e\langle \eta ,\theta \rangle d\mu (\theta )

exists for all \eta \in \BbbR M and defines a differentiable function S : \BbbR M \rightarrow \BbbR .
Ultimately, Assumption 1 is about the specifics of the governing equation in (1.1) or (1.4)

and the observable f : since the field u is typically a complicated function of \vargamma , establishing
the conditions under which this assumption holds will have to be done on a case-by-case
basis. Note that it guarantees that the set \Omega (z) is simply connected with a boundary that
is C1 for all z \in \BbbR , with inward pointing unit normal at \theta (z) \in \partial \Omega (z) given by \^n(z) =
\nabla F (\theta (z))/| \nabla F (\theta (z))| . We could relax the constraint | \nabla F (\theta )| > 0 and allow, e.g., for the sets
\Omega (z) to have several connected components (the number of which could depend on z), but
this requires modifying the argument below. Assumption 2 allows us to introduce the tilted
measure

(2.4) d\mu \eta (\theta ) =
e\langle \eta ,\theta \rangle d\mu (\theta )\int 
\Omega e

\langle \eta ,\theta \rangle d\mu (\theta )
= e\langle \eta ,\theta \rangle  - S(\eta )d\mu (\theta ) .

It is easy to see that the mean of \mu \eta is shifted compared to that of \mu . A simple calculation
shows that

(2.5)

\int 
\Omega 
\theta d\mu \eta (\theta ) = \nabla S(\eta ) ,

and this will allow us to pick \eta such that the mean of \mu \eta is precisely at the point minimizing
I(\theta ) in \Omega (z). Note that

(2.6) \Omega (z + \delta ) \subseteq \Omega (z) \forall z \in \BbbR , \delta \geq 0 ,

and to establish (1.6) we will find conditions such that (i) \mu (\Omega (z)) decreases fast with z and
(ii) this probability is dominated by a small region around a single point on \partial \Omega (z). This willD
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EXTREME EVENT IN SYSTEMS WITH RANDOM COMPONENTS 1033

require us to make additional assumptions on the geometry of \Omega (z) that we discuss next in
connection with properties of the rate function I(\theta ) defined in (1.7).

Letting

(2.7) \theta  \star (z) = argmin
\theta \in \Omega (z)

I(\theta ) ,

we first make the following assumption.

Assumption 3. There exists a finite z0 such that, \forall z \geq z0, \theta 
 \star : [z0,\infty ) \rightarrow \Omega is continuously

differentiable and I(\theta  \star (\cdot )) is strictly increasing with z with

(2.8) I(\theta  \star (z)) \rightarrow \infty and | \nabla I(\theta  \star (z))| \geq K > 0 as z \rightarrow \infty .

This assumption implies that \theta  \star (z) \in \partial \Omega (z) for z > z0, i.e., we can replace (2.7) with

(2.9) \theta  \star (z) = argmin
\theta \in \partial \Omega (z)

I(\theta ) .

The Euler--Lagrange equation for (2.9) is

(2.10) \nabla I(\theta  \star (z)) = \lambda \nabla F (\theta  \star (z))

for some Lagrange multiplier \lambda . Since by definition both S and I are convex functions, by the
involution property of the Legendre transform we have

(2.11) S(\eta ) = max
\theta 

(\langle \eta , \theta \rangle  - I(\theta )) ,

and this maximum is achieved at the solution of

(2.12) \eta = \nabla I(\theta )

in \theta . Therefore if we define \eta  \star (z) via

(2.13) \eta  \star (z) = \nabla I(\theta  \star (z))

the mean of \mu \eta  \star (z) is \theta 
 \star (z). From (2.11) this also implies that

(2.14) \langle \eta  \star (z), \theta  \star (z)\rangle  - S(\eta  \star (z)) = I(\theta  \star (z)) ,

which gives the following exact representation formula for \mu (\Omega (z)):

(2.15)

\mu (\Omega (z)) =

\int 
\Omega (z)

eS(\eta 
 \star (z)) - \langle \eta  \star (z),\theta \rangle d\mu \eta  \star (z)(\theta )

= e - I(\theta  \star (z))

\int 
\Omega (z)

e - \langle \eta  \star (z),(\theta  - \theta  \star (z))\rangle d\mu \eta  \star (z)(\theta ) .
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1034 G. DEMATTEIS, T. GRAFKE, AND E. VANDEN-EIJNDEN

Ω(z)

∂Ω(z)
η∗(z)

I(θ∗(z))

θ∗(z)

optimum θ∗(z) for varying z
level sets of I(θ)
level sets of F (θ)

Figure 1. Schematic interpretation of the object involved in Theorem 2.1. For a given z, \theta \ast (z) is the point
on \partial \Omega (z) that minimizes I(\theta ). The normal to the level set of I(\theta ) is \eta \ast (z) = \nabla I(\theta \ast (z)).

For a geometric illustration of the objects introduced in (2.7)--(2.15) see Figure 1. To proceed
further we need to make assumptions about \Omega (z).

Assumption 4. For all z \geq z0, the set \Omega (z) is contained in the half-space whose boundary
is tangent to \Omega (z) at \theta = \theta  \star (z), i.e.,

(2.16) \Omega (z) \subseteq \scrH (z) = \{ \theta : \langle \^n \star (z), \theta  - \theta  \star (z)\rangle \geq 0\} ,

where \^n \star (z) = \nabla F (\theta  \star (z))/| \nabla F (\theta  \star (z))| denotes the inward pointing unit normal to \partial \Omega (z) at
\theta  \star (z).

In the terminology of Ney [31], it means that \theta  \star (z) is a dominating point in \Omega (z). If we
combine (2.10) and (2.13) we deduce that

(2.17)
\eta  \star (z)

| \eta  \star (z)| =
\nabla F (\theta  \star (z))
| \nabla F (\theta  \star (z))| = \^n \star (z)

and as a result we can use Fubini's theorem to express (2.15) as

(2.18) \mu (\Omega (z)) = e - I(\theta  \star (z))

\int \infty 

0
e - | \eta  \star (z)| s| \eta  \star (z)| G(z, s) ds .

Here we defined

(2.19) G(z, s) = \mu \eta  \star (z) (\Omega (z) \setminus \scrH (z, s))

with

(2.20) \scrH (z, s) = \{ \theta : \langle \^n \star (z), (\theta  - \theta  \star (z) - \^n \star (z)s)\rangle \geq 0\} .

Note that in (2.18) the lower limit of the integral is at s = 0 by Assumption 4. Since by
definition we have

(2.21) \forall s > 0 : G(z, s) \in (0, 1), \forall s, s\prime > 0, s\prime > s : G(z, s\prime ) > G(z, s), lim
s\rightarrow 0+

G(z, s) = 0 ,
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EXTREME EVENT IN SYSTEMS WITH RANDOM COMPONENTS 1035

from (2.18) we obtain the upper bound

(2.22) \mu (\Omega (z)) \leq e - I(\theta  \star (z))

\int \infty 

0
e - | \eta  \star (z)| s| \eta  \star (z)| ds = e - I(\theta  \star (z)) ,

which implies

(2.23)
log\mu (\Omega (z))

I(\theta  \star (z))
\leq  - 1 .

To get a matching lower bound notice that for all s1 > 0 we have

(2.24)

\mu (\Omega (z)) \geq e - I(\theta  \star (z))

\int s1

0
e - | \eta  \star (z)| s| \eta  \star (z)| G(z, s)ds

\geq e - I(\theta  \star (z))G(z, s1)
\Bigl( 
1 - e - | \eta  \star (z)| s1

\Bigr) 
\geq e - I(\theta  \star (z))G(z, s1)

| \eta  \star (z)| s1
1 + | \eta  \star (z)| s1

.

To obtain a bound, we need to make the following assumption.

Assumption 5. There exists s1 > 0 such that

(2.25) lim
z\rightarrow \infty 

logG(z, s1)

I(\theta  \star (z))
= 0.

For this s1 we have (using also Assumption 3 that guarantees that | \eta  \star (z)| \geq K > 0)

(2.26)

log\mu (\Omega (z))

I(\theta  \star (z))
\geq  - 1 +

logG(z, s1) + log (| \eta  \star (z)| s1) - log (1 + | \eta  \star (z)| s1)
I(\theta  \star (z))

=  - 1 +
logG(z, s1) - log

\bigl( 
1 + | \eta  \star (z)|  - 1s - 1

1

\bigr) 
I(\theta  \star (z))

\rightarrow  - 1 as z \rightarrow \infty .

Combining (2.23) and (2.26) we finally deduce the following.

Theorem 2.1 (large deviation principle). Under Assumptions 1--5, the following result holds:

(2.27) lim
z\rightarrow \infty 

logP (z)

I(\theta  \star (z))
= lim

z\rightarrow \infty 

log\mu (\Omega (z))

I(\theta  \star (z))
=  - 1.

Note that (2.27) is just a rephrasing of (1.6).
It is useful to comment on the assumptions on \Omega (z) that lead to Theorem 2.1. Assump-

tion 3 states that the event \{ F (\vargamma ) \geq z\} becomes rare as z \rightarrow \infty , which is clearly necessary
for an LDP to apply. Assumption 4 guarantees that all regions in \Omega (z) remain much more
unlikely than \theta  \star (z): this assumption can be relaxed, but at the price of having to analyze
more carefully how I(\theta ) behaves on \partial \Omega (z) and exclude that regions with lower likelihood near
this boundary accumulate and eventually dominate the probability. Finally, Assumption 5
is about the shape of the set \Omega (z) near \theta  \star (z). Since the mean of \mu \eta  \star (z) is \theta  \star (z), we knowD
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1036 G. DEMATTEIS, T. GRAFKE, AND E. VANDEN-EIJNDEN

that this measure must have mass in a region around \theta  \star (z) but we need to make sure that
this region has sufficient overlap with \Omega (z). For example, if for each z \geq z0 we can insert in
\Omega (z) a set that contains \theta  \star (z) on its boundary and is such that its volume remains finite as
z \rightarrow \infty , Assumption 5 will automatically hold. On the other hand, this assumption could fail,
for example, if \Omega (z) becomes increasingly thin. More discussion about this kind of geometric
assumption can be found, e.g., in [23, 29].

It is also interesting to note that (2.18) offers a way to derive asymptotic expansions
for \mu (\Omega (z)) more refined than (2.27) if we assume that (i) | \eta  \star (z)| grows with z, i.e., we
supplement (2.8) with

(2.28) | \eta  \star (z)| = | \nabla I(\theta  \star (z))| \rightarrow \infty as z \rightarrow \infty ,

and (ii) G(z, s) has a specific behavior near s = 0 as z \rightarrow \infty . For example, suppose that there
is a C > 0 such that for all u \geq 0

(2.29) G(z, | \eta  \star (z)|  - 1u) \sim C| \eta  \star (z)|  - \alpha u\alpha with \alpha > 0 as z, | \eta  \star (z)| \rightarrow \infty ,

where f(z) \sim g(z) indicates that limz\rightarrow \infty f(z)/g(z) = 1. Then we have

(2.30)

P (z) = \mu (\Omega (z)) = e - I(\theta  \star (z))

\int \infty 

0
e - uG

\bigl( 
z, | \eta  \star (z)|  - 1u

\bigr) 
du

\sim e - I(\theta  \star (z))C| \eta  \star (z)|  - \alpha 

\int \infty 

0
e - uu\alpha du

= C\Gamma (\alpha + 1)| \eta  \star (z)|  - \alpha e - I(\theta  \star (z)) .

It is interesting to note that both (2.18) and (2.30) are consistent with \vargamma | \Omega (z) (outcome of the
event conditioned on F (\vargamma ) \geq z) having fluctuations of order O(| \eta  \star (z)|  - 1) away from \theta  \star (z) in
the direction parallel to \eta  \star (z). Perpendicular to \eta  \star (z) the fluctuations remain of order O(1)
even as z \rightarrow \infty , but integrating in these perpendicular directions only gives a subexponential
correction to \mu (\Omega (z)). This correction depends on the geometry of the hypersurface \partial \Omega (z)
(in particular on its curvature) near \theta  \star (z). This is what is accounted for in (2.30), and this
picture will be confirmed in the numerical examples below.

Illustration: Gaussian measure with linear observable. Let us illustrate the LDT opti-
mization in the simple case of a Gaussian random variable \vargamma with mean 0 and covariance Id,
taking values \theta \in \BbbR N . If we consider a linear observable

(2.31) F (\theta ) = \langle b, \theta \rangle , b \in \BbbR N ,

we have

(2.32) \BbbP (\langle b, \vargamma \rangle \geq z) = (2\pi ) - N/2

\int 
\langle b,\theta \rangle \geq z

exp
\bigl( 
 - 1

2 | \theta | 2
\bigr) 
d\theta ,

and a direct calculation shows that

(2.33) \BbbP (\langle b, \theta \rangle \geq z) = 1
2 erfc

\biggl( 
z\surd 
2| b| 

\biggr) 
\sim (2\pi ) - 1/2| b| z - 1 exp

\bigl( 
 - 1

2 | b|  - 2z2
\bigr) 

as z \rightarrow \infty .
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Let us check that the LDP derived above is consistent with this result. Here

(2.34) I(\theta ) = 1
2 | \theta | 2, S(\eta ) = 1

2 | \eta | 2.
If we minimize I(\theta ) subject to \langle \theta , b\rangle \geq z, we deduce

(2.35) \theta  \star (z) = z| b|  - 2b and I(\theta  \star (z)) = 1
2 | b|  - 2z2.

Comparing this result with (2.33) we see that it is consistent with the prediction in (2.27).
We can also test what the theory can say beyond the log-asymptotic estimate. Here, the

planar condition corresponding to \Omega (z) = \scrH (z) is exactly fulfilled by linearity of F (\theta ) = \langle b, \theta \rangle .
We need to estimate G(z, | \eta  \star (z)|  - 1) as z \rightarrow \infty . From (2.13) and (2.14) we have that

(2.36) \eta  \star (z) = \nabla I(\theta  \star (z)) = \theta  \star (z) = z| b|  - 2b, S(\eta  \star (z)) = 1
2z

2| b|  - 2 ,

and the tilted measure (2.4) at \eta = \eta  \star (z) reads

(2.37) d\mu \eta  \star (z)(\theta ) = (2\pi ) - N/2 exp
\bigl( 
 - 1

2 | \theta | 2 + zb| b|  - 2\langle b, \theta \rangle  - 1
2z

2| b|  - 2
\bigr) 
d\theta .

Using (2.36), we obtain

(2.38)

G(z, s) =

\int 
z\leq \langle b,\theta \rangle \leq z+s

d\mu \eta  \star (z)(\theta )

= (2\pi ) - 1/2

\int s

0
exp

\bigl( 
 - 1

2u
2
\bigr) 
du

= 1
2 erf

\Bigl( 
1
2

\surd 
2s
\Bigr) 
.

As a result

(2.39) G(z, | \eta  \star (z)|  - 1s) \sim (2\pi ) - 1/2| \eta  \star (z)|  - 1s = (2\pi ) - 1/2| b| sz - 1 as z \rightarrow \infty .

Comparing with (2.29), we see that here C = (2\pi ) - 1/2 and \alpha = 1. Therefore (2.30) agrees
with (2.33) as expected.

3. Numerical aspects. Here we discuss how to numerically perform the minimization
in (1.6) and thereby estimate P (z)---the method can be straightforwardly generalized to con-
sider also the minimization associated with the calculation of (1.3) or (1.5). We impose the
constraint f(u(T )) \geq z by adding a Lagrange multiplier term to (1.6), so that the minimization
can be rephrased in the Hamiltonian formalism by [41, 6]

(3.1) E(u, \theta ) = I(\theta ) - \lambda f(u(T ))) ,

where u(T ) should itself be viewed as a function of \theta obtained by solving (1.1) with \vargamma = \theta ,
that is,

(3.2) \partial tu = b(u, \theta ), u(t = 0) = u0(\theta ).

The minimization of (3.1) with u(T ) obtained from (3.2) can be performed via steepest descent
with adaptive step (line search). This requires computing the gradient of E with respect to
\theta , which can be achieved in two ways: by the direct and the adjoint methods [6, 35]. These
steps are described next.D
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3.1. Gradient calculation.

3.1.1. Direct method. The gradient of the cost function with respect to the control reads

(3.3) \nabla \theta E(u(T, \theta ), \theta ) = \partial \theta E + (\partial \theta u(T, \theta ))
\top \partial uE = \nabla \theta I  - \lambda J\top (T, \theta ) \partial uf(u(T, \theta )) ,

where J = \partial \theta u is the Jacobian---componentwise Ji,j = \partial ui/\partial \theta j . An evolution equation for J
can be obtained by differentiating (3.2) with respect to \theta :

(3.4) \partial tJ = \partial ub J + \partial \theta b, J(0) = \nabla \theta u0.

Summing up, given the current state of the control, \theta n, we calculate the gradient of the
objective function via the following:

1. Field estimation. Obtain the current field un by solving

(3.5) \partial tu
n = b(un, \theta n), un(0) = u0(\theta 

n) .

2. Jacobian estimation. Obtain the Jacobian Jn by solving

(3.6) \partial tJ
n = \partial ub(u

n, \theta n) Jn + \partial \theta b(u
n, \theta n), Jn(0) = \nabla \theta u0(\theta 

n).

3. Gradient calculation. Compute the gradient (\nabla \theta E)n via

(3.7) (\nabla \theta E)n = \nabla \theta I(\theta 
n) - \lambda (Jn(T ))\top \partial uf(u

n(T )).

3.1.2. Adjoint method. Let us introduce the adjoint field p(t) solution of

(3.8) \partial tp =  - (\partial ub)
\top p, p(T, \theta ) = \lambda \partial uf(u(T, \theta )).

Using this equation as well as the transpose of (3.4) we deduce

(3.9)
\partial t(J

\top p) = \partial tJ
\top p+ J\top \partial tp

= J\top (\partial ub)
\top p+ (\partial \theta b)

\top p - J\top (\partial ub)
\top p = (\partial \theta b)

\top p .

As a result

(3.10)

\int T

0
(\partial \theta b)

\top pdt = J\top (T )p(T ) - J\top (0)p(0) = \lambda J\top (T, \theta )\partial uf(u(T, \theta )) - (\nabla \theta u0)
\top p(0, \theta ).

This expression offers a way to write the gradient of the objective function in (3.3) as

(3.11) \nabla \theta E = \nabla \theta I  - (\nabla \theta u0)
\top p(0, \theta ) - 

\int T

0
(\partial \theta b)

\top p dt .

Using this expression instead of (3.3) is computationally advantageous because it avoids the
calculation of the Jacobian J---note in particular that the adjoint field p has the same di-
mensions as u, independent of the dimensions of the space \Omega . The price to pay is the field u
must be computed and stored separately since (3.8) for p must be solved backward in time.
Summarizing, the gradient of the objective function is now calculated via the following:D
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1. Field estimation. Obtain the current field un by solving

(3.12) \partial tu
n = b(un, \theta n), un(0) = u0(\theta 

n).

2. Adjoint field estimation. Obtain the adjoint field pn by solving

(3.13) \partial tp
n =  - (\partial ub(u

n, \theta n))\top pn, pn(T ) = \lambda \partial uf(u
n(T )).

3. Gradient calculation. Compute the gradient (\nabla \theta E)n via

(3.14) (\nabla \theta E)n = \nabla \theta I(\theta 
n) - (\nabla \theta u0(\theta 

n))\top pn(0) - 
\int T

0
(\partial \theta b(u

n(t), \theta n))\top pn(t) dt .

Note that (3.12) for u and (3.13) for p are adjoint in both space and time. As a result
the numerical simulation of these equations has to be done with care, as the integration
scheme used for one equation needs to be the adjoint of the other. This is preferably done
by using schemes that are self-adjoint. For recent literature on the topic we refer the reader
to [45, 22, 44].

3.2. Descent with preconditioning of the gradient. Once we have calculated the gradient
of the objective function at \theta n, we can make a downhill step in the cost function landscape
using the following

4. Descent step with pre-conditioning:

(3.15) \theta n+1 = \theta n  - \alpha nBn(\nabla \theta E)n ,

where Bn is a preconditioningM\times M matrix (recall that \theta \in \Omega \subseteq \BbbR M ), and \alpha n > 0 is the step
size that is tuned optimally at each iteration via line search: this can be done using classical
merit functions as discussed in [46].

The estimate of the matrix Bn deserves some further comments. Ideally, in the iterative
Newton's method to search for the solution to \nabla \theta E = 0, the stationary point, the precondi-
tioner Bn is the inverse of the Hessian of the objective function E(\theta n), but this Hessian is
typically difficult to calculate. Therefore, a simpler solution is to use the Hessian of the prior
I(\theta n), which in the case of a Gaussian measure is simply the inverse covariance matrix C - 1

(which is independent of \theta ). Since this estimate coincides with the Hessian of E(\theta n) only when
\lambda = 0, it will deteriorate when \lambda increases and the preconditioning may become inefficient.
If that is the case, it may be useful to switch to ``quasi-Newton"" methods such as the BFGS
algorithm, or the limited-memory BFGS algorithm when M is very large (> 100). In the
applications treated in this paper, the naive preconditioning depending only on the prior I(\theta )
turned out to be sufficient to perform the optimization efficiently.

Since we are typically interested in calculating (1.6) for a range of values of z, instead
of fixing z and trying to determine the corresponding Lagrange multiplier \lambda in (3.3), it is
easier to vary \lambda and determine a posteriori which value of z this leads to. Indeed this offers a
parametric representation of \theta  \star (z) via

(3.16) \theta  \star (z(\lambda )) = \~\theta  \star (\lambda ), z(\lambda ) = f(u(T, \~\theta  \star (\lambda )) ,

where \~\theta  \star (\lambda ) is the minimizer of E(\theta ) at \lambda fixed. We can then also calculate I(\theta  \star (z(\lambda ))) =
I(\~\theta  \star (\lambda )) and estimate P (z(\lambda )) \asymp exp( - I(\~\theta  \star (\lambda ))).D
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4. Applications.

4.1. Elasticity of a heterogeneous rod. In this section we study a model for a one-
dimensional rod with random elasticity coefficient subject to a prescribed external mechanical
forcing (i.e., pulling at one end). This model (or generalizations thereof) may be of interest
in actual applications (e.g., as a coarse-grained model of DNA stretching [8, 10, 30]). Here
it is primarily used as a simple illustrative example of the tools and concepts introduced in
sections 2 and 3. In particular, we use LDT to locate the most likely configurations leading to
extreme responses and we show that such realizations dominate the statistics asymptotically.

For a simple linear forcing protocol, we are able to derive analytical results which are
used to validate our numerical method. We also study the extreme events that occur under a
nonlinear forcing, when no analytical solution is available.

4.1.1. Continuous model with random structure. Consider a one-dimensional elastic rod
of length 1 that is being pulled at one end with a time-dependent force and whose energy is
specified in terms of its displacement field u : [0, 1] \rightarrow \BbbR via

(4.1) V (u, t) =
1

2

\int 1

0
\scrD (x) | \partial xu| 2 dx - r(t)u(1) ,

where the first term is the total internal energy of the rod and the second term is the external
energy (negative of the work potential); \scrD (x) > 0 is the elasticity coefficient, assumed to be
spatially dependent, and r(t) is a prescribed external forcing protocol acting on the right end
of the rod---the specific form of r(t) will be introduced later. The dynamics of the rod is
governed by the Euler--Lagrange equation associated with (4.1):

(4.2) \partial 2t u = \partial x(\scrD (x)\partial xu), x \in (0, 1) ,

with initial conditions to be prescribed later and boundary conditions

(4.3) u(t, 0) = 0 , \scrD (1)\partial xu(t, 1) = r(t) \forall t \geq 0 .

In order to introduce uncertainty in the model we make the elasticity random, i.e., we take
\scrD (x) \equiv \scrD (x, \vargamma ). Here we will assume that \scrD (x, \vargamma ) is piecewise constant over blocks of size
1/M for some M \in \BbbN , with independent values in each block. Specifically, we take

(4.4) \scrD (x, \vargamma ) =
M\sum 
k=1

\varphi k(x)g(\vargamma k) ,

where the functions \{ \varphi k\} Mk=1 are given by

(4.5) \varphi k(x) =

\Biggl\{ 
1 if M - 1(k  - 1) \leq x < M - 1k ,

0 otherwise;

g is a given function; and \{ \vargamma k\} Mk=1 are independent and identically distributed random vari-
ables. Below we will consider two cases.D
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Case 1. As a simple test case, assume that g : (0,\infty ) \rightarrow (0,\infty ) with

(4.6) g(y) = y - 1

and we take the variable \{ \vargamma k\} Mk=1 to be exponentially distributed, i.e.,

(4.7) \BbbP (\vargamma k \geq y) = e - \alpha y, y \geq 0, \alpha > 0 .

This choice implies that

(4.8) S(\eta ) = log\BbbE e\langle \eta ,\vargamma \rangle =  - 
M\sum 
k=1

log(1 - \alpha  - 1\eta k), \eta k < \alpha \forall k = 1, . . . ,M,

so that

(4.9) I(\theta ) =

M\sum 
k=1

(\alpha \theta k  - 1 - log \theta k) \theta k > 0 \forall k = 1, . . . ,M .

Case 2. Here we assume that g : \BbbR \rightarrow (0,\infty ) with

(4.10) g(y) = 1
2y +

\sqrt{} 
1
4y

2 + 1,

and we take the variable \{ \vargamma k\} Mk=1 to be normally distributed with variance \sigma 2 > 0, i.e.,

(4.11) \vargamma k = \scrN (0, \sigma 2) .

For this choice, we have

(4.12) S(\eta ) = 1
2

N\sum 
k=1

\sigma 2\eta 2k, I(\theta ) = 1
2

N\sum 
k=1

\sigma  - 2\theta 2k .

Given this random input, our aim is to investigate the statistics of the displacement of the
right end of the rod at time T : this amounts to considering the observable f(u(T )) = u(T, 1)
and studying the behavior of

(4.13) P (z) = \BbbP (u(T, 1, \vargamma ) \geq z) for z \gg 1.

Below we will analyze the behavior of this quantity in two cases: when the forcing r(t) in (4.1)
is linear in t and when it is not---the first situation is amenable to analytical treatment whereas
the second is not in general. Note that in both situations, the behavior of P (z) for large z
will depend on how fast g(u) decays to zero: due to the shape of g this will depend on the
right tail of the distribution of \vargamma k in Case 1 and on its left tail in Case 2.D
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4.1.2. Discrete model. To perform the numerics, we need to consider a spatially dis-
cretized version of the model above. We do so by introducing the discrete energy

(4.14) V (u, t) =
1

2

N - 1\sum 
j=0

\scrD j+1(\vargamma )
(uj+1  - uj)

2

\Delta x
 - r(t)uN ,

in which uj = u(j\Delta x), \scrD j = \scrD (j\Delta x), \Delta x = 1/N . Alternatively, (4.14) can be thought of
as the energy for a system of N + 1 beads uj connected by N springs with random spring
constants \scrD j(\vargamma ). The dynamics obeys the system of ODEs

(4.15) \partial 2t uj =
\scrD j+1

\Delta x2
(uj+1  - uj) - 

\scrD j

\Delta x2
(uj  - uj - 1) , j = 1, . . . , N  - 1 ,

with fixed boundary condition u0 = 0 at the left end and dynamic boundary condition

(4.16) \partial 2t uN =  - \scrD N

\Delta x2
(uN  - uN - 1) +

r(t)

\Delta x

at the right end. We will pick N = PM for some P \in \BbbN , so that by our choice for \scrD (x, \vargamma )
in (4.4) we have

(4.17) \scrD j(\vargamma ) = g(\vargamma k) for \lceil j/P \rceil = k, j = 1, . . . , N, k = 1 . . . ,M.

Since we focus on the statistics of the observable f(u(T )) = uN (T ) = u(T, 1) that measures
the displacement at time T of the right end point with respect to its initial position, the cost
function is

(4.18) E(u, \theta ) = I(\theta ) - \lambda uN (T )

to optimize on the parameters \{ \theta k\} Mk=1. We will minimize (4.18) using the adjoint method to
compute the gradient. As shown in the appendix, the adjoint equations read

(4.19) \partial 2t pj =
\scrD j+1

\Delta x2
(pj+1  - pj) - 

\scrD j

\Delta x2
(pj  - pj - 1) , j = 1, . . . , N  - 1 ,

with conditions at the boundaries given by

(4.20) p0(t) = 0 , \partial 2t pN =  - \scrD N

\Delta x2
(pN  - pN - 1) ,

and final conditions

(4.21) pj(T ) = 0, \partial tpj(T ) = \lambda \delta j,N .

The gradient of the cost function can be expressed as

(4.22) \nabla \theta E(u(\theta ), \theta ) = \nabla I(\theta ) - G\top \nabla \scrD (\theta ) ,

where \nabla \scrD (\theta ) is the N \times M tensor with entries \partial \scrD j(\theta )/\partial \theta k, j = 1, . . . , N , k = 1, . . . ,M , and
G is a vector with entries

(4.23) Gj =

\int T

0

uj  - uj - 1

\Delta x

\mu j  - \mu j - 1

\Delta x
dt , j = 1, . . . , N .
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4.1.3. Linear forcing. Assume that r(t) = at for some a > 0 and as initial conditions
for (4.2) take

(4.24) u(0, x) = 0 , \partial tu(0, x) = a

\int x

0

dx\prime 

\scrD (x\prime , \theta )
\forall x \in [0, 1] .

With this choice, it is easy to check that the solution to (4.2) equipped with the boundary
conditions in (4.3) is

(4.25) u(t, x, \vargamma ) = at

\int x

0

dx\prime 

\scrD (x\prime , \vargamma )
.

Let us consider the implications of this formula in Case 1, which is suitable to derive analytical
results. Equation (4.25) implies that

(4.26) u(T, 1, \vargamma ) = aT

\int 1

0

dx\prime 

\scrD (x\prime , \vargamma )
=
aT

M

M\sum 
k=1

\vargamma k ,

where we used the specific form of \scrD (x, \vargamma ) given in (4.4) with g given in (4.6). Note that since
the discrete equivalent to the initial conditions (4.24) is

(4.27) uj(0) = 0, \partial tuj(0) =
a

M

j\sum 
k=1

\theta k ,

the result (4.26) also holds for the discretized model, i.e., we have

(4.28) uN (T, \vargamma ) =
aT

M

M\sum 
k=1

\vargamma k .

From (4.7), this implies that u(T, 1, \vargamma ) = uN (T, \vargamma ) follows a gamma distribution with shape
parameter M and rate parameter \alpha M(aT ) - 1:

(4.29)

P (z) =

\int \infty 

z

(\alpha M(aT ) - 1)MyM - 1

(M  - 1)!
e - \alpha M(aT ) - 1ydy

=
1

(M  - 1)!
\Gamma 
\bigl( 
M,\alpha M(aT ) - 1z

\bigr) 
,

where \Gamma (\cdot , \cdot ) is the upper incomplete Gamma function. When z \gg 1 with M fixed, (4.29)
gives

(4.30) P (z) \sim (\alpha M(aT ) - 1z)M - 1

(M  - 1)!
e - \alpha M(aT ) - 1z ,

meaning that

(4.31) logP (z) \sim  - \alpha M(aT ) - 1z + (M  - 1) log(\alpha M(aT ) - 1z) - log(M  - 1)!.D
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1 2 3 4

z

10−12

10−8

10−4

100

Analytical P (z)

Empirical P (z)

Analytical optimization

Numerical optimization

0.0 0.2 0.4 0.6 0.8 1.0

x

0.4

0.6

0.8

1.0

D
(x

)

Analytical optimization

Numerical optimization

Figure 2. Linear forcing with a = 0.1, final time T = 15, initial conditions (4.27), and the statistical prior
of Case 1. The numerics are performed with M = N = 30. Left panel: comparison between the exact expression
for P (z) in (4.29), the empirical MC estimate with 2 \times 107 samples, the analytical LDT estimate (4.34), and
the LDT estimate obtained via numerical optimization. Right panel: comparison between the analytical (4.33)
and the numerical instantons for z = 1.58, 1.71, 1.85, 2.04, 2.32, 3.08 from top to bottom.

In this last expression the second and third terms at the right-hand side (RHS) are subdom-
inant over the first, \alpha M(aT ) - 1z, and disappear in the limit as z \rightarrow \infty . It is useful to keep
these terms for comparison with the result (2.27) in Theorem 2.1 and the result (2.30), which
we do next.

If we solve

(4.32) min I(\theta ) = min

M\sum 
k=1

(\alpha \theta k  - 1 - log\alpha \theta k) subject to u(T, 1, \theta ) =
aT

M

M\sum 
k=1

\theta k = z ,

we get

(4.33) \theta  \star k(z) = (aT ) - 1z for k = 1, . . . ,M .

As a result

(4.34) I(\theta  \star (z)) =M
\bigl( 
\alpha (aT ) - 1z  - 1 - log(\alpha (aT ) - 1z)

\bigr) 
,

which from (4.31) is consistent with logP (z) \sim  - I(\theta  \star (z)) as z \rightarrow \infty , as predicted by (2.27).
Note also that here

(4.35) \eta  \star k(z) = \partial \theta kI(\theta 
 \star (z)) = \alpha  - aTz - 1 for k = 1, . . . ,M .

Since this implies that | \eta  \star k(z)| \rightarrow \alpha as z \rightarrow \infty , this means that the condition in (2.28) is not
satisfied here.

In Figure 2 we compare the asymptotic estimate (4.34) with the exact expression (4.29).
We also check that the numerical optimization is consistent with the analytical result, which
is important to validate the numerical code described below.D
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0.0 0.2 0.4 0.6 0.8 1.0
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0
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r(
t)

δ = −1

δ = −0.5

δ = −0.2

δ = −0.1

δ = 0

δ = 0.1

δ = 0.5

δ = 1

δ = 1.5

δ = 2

Figure 3. The forcing protocols r\delta (t) in (4.36), which are decreasing functions of t when \delta < 0 and
increasing functions when \delta > 0.

4.1.4. Nonlinear forcing. Next we consider nonlinear forcing protocols of the type

(4.36) r(t) = at\beta and r(t) = a(T  - t)\beta both with a, \beta > 0 .

Letting s = +1 if r(t) = at\beta and s =  - 1 if r(t) = a(T  - t)\beta , we will use r\delta (t) with \delta = s\beta as
shorthand to describe the family of forcing protocols. They are shown in Figure 3.

As initial conditions for (4.2) we take

(4.37) u(0, x) = 0 , \partial tu(0, x) = 0 \forall x \in [0, 1] .

At discrete level these initial conditions read

(4.38) uj(0) = 0, \partial tuj(0) = 0 .

In this section we restrict ourselves to Case 2 with \sigma = 1 and we use M = N = 30 and final
time T = 1. Observing that the mean elasticity \BbbE (\scrD (x)) is of order one, the average velocity
of propagation of the waves along the bar is close to 1. Thus, 1 is a rough estimate of the
average time that a signal takes to propagate from the right end to the left end. This means
that taking T = 1 we are considering a short transient strongly out of equilibrium, where the
random structure will contribute in a nonhomogeneous way.

To integrate (4.15) and (4.16) numerically, we use a velocity-Verlet integrator, which is
of second order, symplectic, and time reversible, with a time step of 10 - 3. The optimization
is performed as described in section 3, using (4.22) and (4.23), and the iteration is termi-
nated according to a tolerance threshold on the norm of the observed gradient of the cost
function.D

ow
nl

oa
de

d 
09

/2
5/

19
 to

 1
30

.1
92

.9
2.

55
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

1046 G. DEMATTEIS, T. GRAFKE, AND E. VANDEN-EIJNDEN

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
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LDT, δ = −0.5

LDT, δ = 0
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LDT, δ = 1

LDT, δ = 1.5

Figure 4. Comparison between the empirical distributions P (z) obtained via MC sampling and their LDT
estimate. The sampling works down to events whose probability is about the inverse of the MC sampling size,
while the LDT optimization allows us to extend the tails to much smaller probabilities.

Let us now describe our results. In Figure 4 the LDT estimates of P (z) are compared
to the empirical estimates obtained via MC with 2 \times 106 samples, showing good agreement.
Next we look at the specific elasticity structure of the optimizers, \scrD (x, \theta  \star (z)). These are
shown in Figure 5. As can be seen, the region that is relevant for having an extreme extension
u(T = 1, 1) occupies only the right half of the space domain, independent of the protocol. This
makes sense since on average the signal takes roughly a time 1 to cross the whole domain: For
a point x0 to influence u(T = 1, 1) the signal needs to have time to propagate to x = 1. As a
result, the points on the left side will not have the possibility to influence the dynamics at all,
and the optimal state of \scrD (x, \theta ) is determined by mere minimization of I(\theta ) with no dynamical
constraint. In contrast, on the right side of the domain, \scrD (x, \theta ) must take low values to allow
for large values of u(T = 1, 1)---since these low values are unlikely, this also accounts for the
drop in probability observed in Figure 4. Figure 5 also indicates that \scrD (x, \theta  \star (z)) depends
on the forcing protocol. This dependency can again be interpreted intuitively by realizing
that the region that impacts u(T, 1) the most will be the one that is reached by a strong
signal (i.e., the propagation front of the most intense part of the forcing) and is able to send a
strong feedback back to the right end at final time---this feedback is what is accounted for by
the backward evolution of the adjoint equation in the optimization. So, the earlier the most
intense part of the forcing takes place, the further from the right end a low elasticity peak
appears. This explains why going toward negative \delta the low-elasticity peak moves to the left
in Figure 5, and the constant forcing (\delta = 0) is the one where the low elasticity contribution
is the most uniformly distributed.

Note that in this framework it is possible to compare how likely the protocols are to
produce extreme realizations of a given size, as shown in the insets in Figure 5. In this sense,D
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Figure 5. Top panel: elasticity structure of the instantons for z \geq 2.7, for the different protocols labeled
by \delta . Inset: the probability P (z = 2.7) as a function of the forcing protocol. Bottom panel: the same as in the
top panel, but for z \geq 3.3. Inset: the probability P (z = 3.3) as a function of \delta in the forcing protocol.

the constant protocol appears to be the optimal one. This is consistent with the fact that
\delta = 0 is the highest curve in Figure 4.

To further clarify the role of the instantons and why they dominate the dynamics and
the statistics of the extreme events, it is useful to ``filter"" the conditional events such that
u(T, 1) \geq z in the following way: First, we fix a size z and generate via MC a large set of \vargamma 
such that u(T, 1, \vargamma ) \geq z. Second, we average over such a conditional set to obtain the mean
conditional event and its fluctuations around the mean, which is generally very close to the
instanton \theta  \star (z). Third, we decompose the fluctuations \vargamma  - \theta  \star (z) into the components parallel
and perpendicular to \eta  \star (z), i.e., the normal to the hypersurface \Omega (z). This procedure is then
repeated for various z.

In Figure 6 we show the outcome of this analysis for the protocol with \delta = 1.5 and for
two different values of z---analogous results hold for the other kinds of forcing as well. As
can be seen the average event u(T, 1) \geq z lies on top of the instanton \theta  \star (z), with fluctuations
independent of the size of the event and also of the position along the rod (upper panels).
The decomposition shows that the components perpendicular to \eta  \star (z) are independent of the
size of the event, and basically independent of the dynamics too. Their mean and standard
deviation are the mean and the standard deviation of the unconstrained random variables \vargamma 
(central panels). In contrast, the parallel fluctuations are small and tend to zero as z increasesD
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(b) (e)
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x
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Figure 6. Comparison between the instanton \theta  \star (z) (black solid line) and the Monte Carlo sampling on the
distribution of \vargamma , conditioned on uN (1) = u(1, 1) \geq z (color map with intensity proportional to the empirical
probability density; thick white line = mean; thin white lines = one standard deviation range around the mean).
Left panels: z = 2.10, right panels: z = 2.40. The top panels show the full data: the instanton agrees with
the mean, but the variance does not substantially change going to more extreme events. The two central panels
show the fluctuations perpendicular to \eta  \star (z), confirming that their amplitude is independent of the size of
the event (left and right panels have the same variance) and homogeneous in space. The bottom panels show
the fluctuations in the direction parallel to \eta  \star (z), indicating that their amplitude decreases as z increases, as
predicted by the theory in section 2.

(bottom panels). The scaling of the fluctuations is analyzed in more detail in Figure 7, which
shows that they are O(1) in the direction perpendicular to \eta  \star (z) and O(| \eta  \star (z)|  - 1) in the
direction parallel to it, consistent with the theoretical predictions.D
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2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45

u(T, 1)

0.015

0.020

0.025

0.030

|η∗(z)|−1 decay

par. fluct.

perp. fluct. /(2.5× 10−2)

Figure 7. Increasing z, the fluctuations in the direction perpendicular to \eta  \star (z) stay constant, whereas in
the parallel direction they scale as O(| \eta  \star (z)|  - 1). Both behaviors are predicted analytically and here confirmed
numerically. The error bars are obtained by propagating the error on the estimator of P (z), which follows a
Bernoulli distribution.

4.2. Extreme events in optical turbulence.

4.2.1. The one-dimensional NLSE and the LDT formalism. The NLSE in one dimen-
sion arises in a variety of different contexts such as surface gravity waves [47, 32], nonlinear
fiber optics [2], plasmas [3], and Bose--Einstein condensates [21, 34]. Here we will focus on
applications of NLSE in nonlinear optics, a domain that has seen exciting experimental devel-
opments in recent years [28, 38, 40]. Specifically, we study the problem of the onset of rogue
waves out of a bath of random waves taken as an initial condition for NLSE, which is a key
question in integrable turbulence [48, 37, 1, 11, 17].

In nondimensional units, the one-dimensional NLSE for the envelope of a light beam
propagating in an optical fiber reads

(4.39) \partial \xi \Psi = i
1

2
\partial 2\tau \Psi + i| \Psi | 2\Psi , \tau \in \Gamma ,

where \Gamma = [0, T ], with periodic boundary conditions \Psi (\xi , 0) = \Psi (\xi , T ), \partial \tau \Psi (\xi , 0) = \partial \tau \Psi (\xi , T ),
and a suitable initial condition \Psi (0, \tau ) = \Psi 0(\tau ), at the input end of the fiber \xi = 0. The
nondimensional distance \xi , time \tau , and envelope \Psi are related to the respective physical
quantities x, t, and \psi via characteristic constants that depend on the specifics of the optical
fiber:

(4.40) x = \scrL 0\xi , t = \scrT 0\tau , \psi =
\sqrt{} 

\scrP 0\Psi .

For instance, if we pick \scrT 0 = 5 ps, \scrL 0 = 0.5 km, \scrP 0 = 0.5 mW, the NLSE (4.39) models an
optical fiber with dispersion | \beta 2| = \scrT 2

0 /\scrL 0 = 50 ps2km - 1 and nonlinearity \gamma = 1/(\scrL 0\scrP 0) =
4 km - 1mW - 1.D
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1050 G. DEMATTEIS, T. GRAFKE, AND E. VANDEN-EIJNDEN

Let us denote by \{ \^\Psi n\} n\in \BbbZ the Fourier component of \{ \Psi (\tau )\} \tau \in [0,T ], i.e.,

(4.41) \^\Psi n =
1

T

\int T

0
e - i\omega n\tau \Psi (\tau )d\tau , \Psi (\tau ) =

+\infty \sum 
n= - \infty 

ei\omega n\tau \^\Psi n ,

where \omega n = 2\pi n/T and n \in \BbbZ . Equation (4.39) is derived under the quasi-monochromatic
assumption, meaning that the spectrum of realizations \Psi (\tau ) must be narrow. We ensure this
with high probability by choosing a narrow power spectrum \^Cn defined as

(4.42) \^Cn =
1

T

\int T

0
e - i\omega n\tau C(\tau )d\tau , C(\tau  - \tau \prime ) = \BbbE (\Psi 0(\tau ) \=\Psi 0(\tau 

\prime )) .

Here and in the following the bar denotes complex conjugation. We will consider a Gaussian
spectrum with

(4.43) \^Cn = \scrA e - \omega 2
n/(2\Delta ) \scrA > 0, \Delta > 0,  - M \leq n \leq M, M > 0,

and \^Cn = 0 for | n| > M . Assuming that the initial \Psi (0, \tau ) is a Gaussian field with mean zero
and covariance C(\tau  - \tau \prime ), a typical set-up of statistical nonlinear optics [33, 38], this implies
the representation

(4.44) \Psi (0, \tau , \vargamma ) =
M\sum 

n= - M

ei\omega n\tau \^C1/2
n \vargamma n,

where \vargamma n are complex Gaussian variables with mean zero and covariance \BbbE \vargamma n \=\vargamma m = \delta m,n,
\BbbE \vargamma n\vargamma m = \BbbE \=\vargamma n \=\vargamma m = 0 . Note that the spectral amplitude is related to the optical power
P (\xi , \tau ) = | \psi (\xi , \tau )| 2 (statistically homogeneous in \tau ) via \scrA = \BbbE (P )/

\sum 
n e

 - \omega 2
n/(2\Delta ). The initial

statistical state of the system is thus completely determined given the two parameters \Delta 
and \BbbE (P ), and the average power \BbbE (P ) is relevant to optical experiments---it also enjoys the
property of being invariant under the NLSE evolution in the variable \xi , i.e., it can be measured
at the input or at the output of the optical fiber, equivalently.

In the set-up above, we will investigate extreme fluctuations of the optical power at the
output of the optical fiber (\xi = L). Recalling that | \Psi (L, \tau )| =

\sqrt{} 
P (L, \tau ), this amounts to

looking at the statistics of

(4.45) f(\Psi (\vargamma )) = max
\tau \in \Gamma 

| \Psi (L, \tau , \vargamma )| , L > 0.

Analyzing this observable using the framework developed in sections 2 and 3 amounts to
minimizing the cost function (this is (3.1))

(4.46) E(\Psi , \theta ) = I(\theta ) - \lambda f(\Psi ) with I(\theta ) = 1
2

M\sum 
n= - M

| \theta n| 2 .

This minimization must be performed on the 2\times (2M + 1)-dimensional space \Omega \subseteq \BbbC 2M+1 of
the initial conditions. The gradient of the cost function (4.46) is given by

(4.47) \nabla \theta E(\Psi (\theta ), \theta ) = \nabla \theta I(\theta ) + \Re (J(L, \tau \ast ))T
\Re (\Psi (L, \tau \ast ))

| \Psi (L, \tau \ast )| 
+ \Im (J(L, \tau \ast ))T

\Im (\Psi (L, \tau \ast ))

| \Psi (L, \tau \ast )| 
,
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where \Psi (L, \tau \ast ) \equiv max\tau \in \Gamma | \Psi (L, \tau )| . The field \Psi is evolved with (4.39) and the initial condition
depends on the point \theta \in \Omega through the mapping \Psi (0, \theta ) defined in (4.44), with the difference
that here \theta is no longer random. The matrix J (also complex) evolves according to

(4.48) \partial \xi J(\xi , \tau ) =

\int L

0
d\xi \prime 
\biggl( 
\delta b(\Psi (\xi ))

\delta \Psi (\xi \prime )
J(\xi \prime , \tau ) +

\delta b(\Psi (\xi ))

\delta \=\Psi (\xi \prime )
\=J(\xi \prime , \tau )

\biggr) 
,

where b(\Psi (\xi ))) is a shorthand for the RHS of (4.39): explicitly

(4.49)

\int L

0
d\xi \prime 

\delta b(\xi )

\delta \Psi (\xi \prime )
J(\xi \prime ) =

\biggl( 
i

2
\partial 2\tau + 2i| \Psi (\xi )| 2

\biggr) 
J(\xi ) ,

(4.50)

\int L

0
d\xi \prime 

\delta b(\xi )

\delta \=\Psi (\xi \prime )
\=J(\xi \prime ) = i

\bigl( 
\Psi (\xi )

\bigr) 2
J(\xi ) .

The initial condition for (4.48) is

(4.51) J(\xi = 0, \theta ) = \nabla \theta \Psi (0, \theta ) .

Before turning to the results, let us explain how the numerical simulations were performed.
Equations (4.39) and (4.48) were evolved from \xi = 0 to \xi = L (up to L = 0.2) using the
pseudospectral second order Runge--Kutta exponential-time-differencing method (ETDRK2)
[12, 27] with step d\xi = 5 \times 10 - 4 on a periodic box [0, T ] discretized by 212 equidistant grid
points. The size T = 30 is found large enough for the boundary conditions to not affect
the statistics on the spatio-temporal scales considered. Each Monte Carlo simulation involves
106 realizations of the random initial data constructed via (4.44), with M = 45. Adding
more modes to the initial condition does not affect the results in any significant way. The
minimization was performed in the space \Omega (with high dimension 2\times (2M + 1) = 182). This
step was carried out via steepest descent with adaptive step (line search) and preconditioning
of the gradient, using the covariance of the initial condition as metric, as explained in section 3.

4.2.2. Results. For generality, we present the results for the normalized field A(\xi , \tau ) =
\Psi (\xi , \tau )/

\sqrt{} 
\BbbE (P ) using nondimensional units. One can easily obtain the physical dimensions

by applying the straightforward transformations given in (4.40). Four sets of parameters have
been chosen to explore different regimes: In Set 1, we take \Delta = \pi , \BbbE (P ) = 5/4; in Set 2,
\Delta = \pi /2, \BbbE (P ) = 5/4; in Set 3, \Delta = 3\pi /2, \BbbE (P ) = 5/4; and in Set 4, \Delta = \pi , \BbbE (P ) = 5/9.

In Figure 8, the path of occurrence of two extreme events is shown for Set 1, selected
among the events in the random sampling with maximum power amplification | A| 2 = P/\BbbE (P )
exceeding a value of 40. These paths are compared to the instanton obtained by LDT opti-
mization. Since there have been recent claims, supported by both numerical and experimental
evidence [38, 40], about the universality of the Peregrine soliton (PS) as a pathway to optical
rogue waves out of a random background, the PS reaching the same power amplification as
the instanton is also plotted.

In Figure 9 the probability P (z) = \BbbP (max\tau | A(L, \tau )| \geq z) is shown for various val-
ues of L, showing good agreement between the results from MC sampling and those fromD
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Figure 8. Set 1: The paths of occurrence of two extreme events plotted are compared with the instanton
and the PS reaching the same maximum power at \xi = L. Shown is the quantity | A(\xi , \tau )| 2, i.e., the power in
units of average power, at three different locations (L = 0.2). The solution are shifted away from one another
for clarity, exploiting homogeneity in \tau .

LDT optimization. A rough estimate for the onset threshold of optical rogue waves is
| A| RW = 4

\sqrt{} 
2/\pi \BbbE (| A| ) \simeq 2.8 [16], independently of the set considered because of the use

of the normalized variable A. As can be seen, the focusing NLSE increases the probabil-
ity of large excursions of | A(L, \tau )| compared to its initial Gaussian value with expectation
\BbbE (| A(L = 0, \tau )| ) =

\sqrt{} 
\pi /4. This happens gradually as the distance L separating the input

from the output increases. The tail fattening can be interpreted quantitatively in terms of the
typical lengths of the coherent structures of NLSE. Defining the linear length as L\mathrm{l}\mathrm{i}\mathrm{n} = 2/\Delta 2

and the nonlinear length as L\mathrm{n}\mathrm{l}\mathrm{i}\mathrm{n} = 1/\BbbE (P ), the typical length of emergence of a PS-like
structure starting from a small hump is Lc =

1
2

\surd 
L\mathrm{l}\mathrm{i}\mathrm{n}L\mathrm{n}\mathrm{l}\mathrm{i}\mathrm{n} [40]. This gives Lc = 0.2 for Set 1,D
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LDT, L = 0

LDT, L = 0.05

LDT, L = 0.1

LDT, L = 0.2

Figure 9. Set 1: Comparison between the probability distributions of max\tau | A(L, \tau )| in the periodic time
window [0, T ] obtained by MC with 106 samples, and their corresponding LDT estimates computed using the
optimization method. The plot captures the tail fattening due to the NLSE dynamics, as the output point is
taken at increasing distance L from the input. The rogue-wave threshold is | A| RW \simeq 2.8 . The characteristic
length of emergence of the coherent structures is Lc = 0.2, compatible with the observed tail fattening.

12.5 15.0 17.5

τ

0

2
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8

|A
|

ξ = 0

12.5 15.0 17.5

τ

ξ = L/2

12.5 15.0 17.5

τ

ξ = L

Figure 10. Set 1: Results of the conditioning on the sampling for max\tau \in \Gamma | A(L, \tau )| \geq z = 6.25 with
L = 0.2. Shown is the average of the conditional event (blue line), surrounded by the one standard deviation
range (red area). The instanton (black line) is the optimal event reaching maximal intensity A = z at the output
point \xi = L. The PS is also represented (green line), normalized to have intensity z at the point of maximal
space-time focusing. From left to right, the panels are at \xi = 0, \xi = L/2, and \xi = L.

in good agreement with the width of the spatial transient over which the fast tail fattening
takes place.

The asymptotic agreement of the probabilities shown in Figure 9 is numerical evidence
that the focusing NLSE (4.39) with random initial data (4.44) satisfies an LDP. Additional
support for the LDP is found in Figure 10, where we compare the instanton with the sam-D
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Figure 11. Snapshots at increasing spatial coordinate from left to right (\xi = 0, \xi = 0.1, \xi = 0.2) of
instantons reaching the same peak intensity, for the three sets of parameters with different spectral width: Set 1
(\Delta = \pi ) in red; Set 2 (\Delta = \pi /2) in green; and Set 3 (\Delta = 3\pi /2) in blue. The PS reaching the same final height
(at the point of maximal focusing) is also plotted in black. For all the profiles, striking agreement is observed
around the point of maximal focusing in space-time, while significant differences are observed away from that
point.

pling mean. Looking at the signal to noise ratio, one sees that the events reaching a cer-
tain extreme amplification are all very similar. According to the results in section 2, these
events are expected to have typical fluctuations in the direction perpendicular to the instan-
ton in the space \Omega : notice how away from the focusing region (determined by the direction
perpendicular to the instanton because there the instanton is vanishing) the observable | A| 
fluctuates with standard deviation

\sqrt{} 
\BbbE (P )/2

\sqrt{} 
(4 - \pi )/2/

\sqrt{} 
\BbbE (P ) \simeq 0.57 around the expected

value
\sqrt{} 
\pi /2

\sqrt{} 
\BbbE (P )/2/

\sqrt{} 
\BbbE (P ) \simeq 0.89, exactly as expected for typical events. Instead, the

extreme size of the event is due to the component parallel to the instanton in \Omega , with small
fluctuations in this direction: In fact, in the focusing region (determined by the component
parallel to the instanton), the signal to noise ratio becomes very big, meaning that, as z
increases, the extreme rogue waves with max\tau | A(\tau , L)| \geq z become closer to the instanton
reaching max\tau | A(\tau , L)| = z. Figures 8 and 10 confirm that the high-power pulses arising
spontaneously from a random background tend to the shape of the PS around its maximum
space-time concentration [40]. Interpreting this in light of the gradient-catastrophe regular-
ization [4], it is clear that such a characteristic shape of the extreme power amplifications is
independent of the solitonic content of the field, although it is shared with the local behavior
of an exact solitonic solution. The random extreme realizations quickly diverge from the PS
away from the maximum, however. In contrast, the instantons characterize all the essential
dynamics of the extreme events in integrable turbulence. They give an approximation of the
extreme excursions that is much more accurate than the PS, as can be observed in Figure 10,
and their shape adapts to the size of the event. In addition, unlike the PS, they come with
probabilistic information and allow the estimation of the distribution tail, as seen in Figure 9,
with mathematical justification in the LDT result (2.27). Furthermore, the instantons depend
on the statistical state of the random background, as shown in Figure 11, while the PS is al-
ways the same. Because of these properties and their connection with the gradient catastropheD
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(which is their generating mechanism), the instantons can be important objects for further
investigations in integrable turbulence. In this context, recent results [13] suggest that the
formation of extreme coherent structures may not necessarily be linked to integrability, but
may pertain to a more general class of systems with instabilities (e.g., due to nonresonant
interactions) leading to spatio-temporal concentration phenomena.

5. Conclusions. We have shown that concepts from LDT, combined with optimization
tools from optimal control, can be used to analyze rare events in the context of dynamical
systems subject to random input in their parameters and/or their initial conditions. In our
examples, the predictions from LDT were actually valid in a wide region of parameter space.
This means that the large deviation regime is attained for events that are rare but still quite
frequent, and extend down to extremely low probabilities, exploring regions unattainable
through brute-force MC sampling. In addition, the instantons provide us with information
about the mechanism of the events that can only be extracted from MC sampling via nontrivial
filtering. Under this light, the LDT method stands as a competitive alternative, or at least a
useful complement, to brute-force MC.

Appendix A. Calculations of section 4.1. Using the convention that \scrD N+1 = 0, the
evolution equation (4.15) can be rewritten as a system of first order ODEs,

(A.1)

\left\{   
\partial tuj = vj ,

\partial tvj =
\scrD j+1

\Delta x2
(uj+1  - uj) - 

\scrD j

\Delta x2
(uj  - uj - 1) + \delta j,N

r(t)

\Delta x
,

j = 1, . . . , N ,

with fixed boundary condition in the origin,

(A.2) u0(t) = 0 ,

and initial conditions

(A.3) uj(0) = 0, vj(0) = 0 .

To make the notation compact, we will use

(A.4) X =

\biggl( 
u
v

\biggr) 
, Y =

\biggl( 
q
p

\biggr) 
,

column vectors in \BbbR 2N . Then, (A.1) can be written as

(A.5) \partial tX = b(X, \theta ) ,

where b(X, \theta ) is the 2N -dimensional vector with the components of the RHS of (A.1). Note
that (A.5) is in the general form (3.2) (linear system of ODEs), and this is helpful to make
direct contact with the formulas (3.8) and (3.11), and thereby compute the gradient of the
cost function (4.18) as

(A.6) \nabla \theta E = \nabla \theta I(\theta ) - 
\int T

0
(\partial \theta b)

\top Y dt
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with Y the adjoint field to X. Let us start by deriving the adjoint equation. One can easily
check that the linearization of the operator b(X, \theta ) for small variations of X reads

(A.7)
\partial Xb(\theta ) =

\biggl( 
0 Id

B(\theta ) 0

\biggr) 
,

with Bjk =
\scrD j+1

\Delta x2
(\delta j+1,k  - \delta j,k) - 

\scrD j

\Delta x2
(\delta j,k  - \delta j - 1,k).

Id is the N \times N identity matrix and we recall that \scrD j = \scrD (\theta j), by (4.10). It is the adjoint
operator (\partial Xb)

\top that we need to compute, defined implicitly by the identity

(A.8)
\Bigl\langle 
(\partial Xb)

\top Y,X \prime 
\Bigr\rangle 
\BbbR 2N

=
\bigl\langle 
Y, \partial XbX

\prime \bigr\rangle 
\BbbR 2N ,

where \langle \cdot , \cdot \rangle \BbbR 2N denotes the standard scalar product in \BbbR 2N . Using (A.8) we obtain

(A.9)

\bigl\langle 
Y, \partial XbX

\prime \bigr\rangle 
\BbbR 2N =

N\sum 
j=1

\biggl( 
qjv

\prime 
j + pj

\biggl( \scrD j+1

\Delta x2
(u\prime j+1  - u\prime j) - 

\scrD j

\Delta x2
(u\prime j  - u\prime j - 1)

\biggr) \biggr) 

=
N\sum 
j=1

\biggl( 
qjv

\prime 
j +

\biggl( \scrD j+1

\Delta x2
(pj+1  - pj) - 

\scrD j

\Delta x2
(pj  - pj - 1)

\biggr) 
u\prime j

\biggr) 
,

where in the last passage we just reorganized the indices in the sum in an equivalent way,
provided that we assume the boundary condition

(A.10) p0(t) = 0 .

Comparing the last line of (A.9) with the LHS of (A.8), we deduce that

(A.11) (\partial Xb)
\top =

\biggl( 
0 B(\theta )
Id 0

\biggr) 
,

which is the transpose of the RHS of (A.7) (B(\theta ) is symmetric), as we should expect. However,
starting from the identity (A.8) is the rigorous way to obtain the adjoint operator, making the
proper boundary conditions arise naturally. Plugging the result (A.11) into (3.8), we finally
obtain the adjoint equation

(A.12)

\left\{   \partial tqj =
\scrD j+1

\Delta x2
(pj+1  - pj) - 

\scrD j

\Delta x2
(pj  - pj - 1) ,

\partial tpj = qj ,
j = 1, . . . , N ,

with boundary condition (A.10). To obtain the correct conditions at final time, it is sufficient
to observe that the final conditions of (3.8) now read

(A.13) qj(T ) = \lambda \partial ujf(u(T )) = \lambda \delta j,N , pj(T ) = 0.

Let us now compute (\partial \theta b)
\top , again starting from the definition of the adjoint operator:

(A.14)
\Bigl\langle 
(\partial \theta b)

\top Y,w
\Bigr\rangle 
\BbbR N

= \langle Y, \partial \theta bw\rangle \BbbR 2N ,
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where w \in \BbbR N and

(A.15)

(\partial \theta b) =

\biggl( 
0

\nabla \theta B(\theta )

\biggr) 
(two N \times N blocks) ,

(\nabla \theta B)jk =
\scrD \prime (\theta j+1)

\Delta x2
(uj+1  - uj)\delta j+1,k  - 

\scrD \prime (\theta j)

\Delta x2
(uj  - uj - 1)\delta j,k.

With the convention that \scrD \prime (\theta N+1 = 0), a straightforward calculation yields

(A.16)

\langle Y, \partial \theta bw\rangle \BbbR 2N =

N\sum 
j=1

pj

\biggl( \scrD \prime (\theta j+1)

\Delta x2
(uj+1  - uj)wj+1  - 

\scrD \prime (\theta j)

\Delta x2
(uj  - uj - 1)wj

\biggr) 

=
N\sum 
j=1

\biggl( \scrD \prime (\theta j)

\Delta x2
(uj  - uj - 1)(pj  - pj - 1)

\biggr) 
wj ,

from which, comparing with the LHS of (A.14), we observe that

(A.17) ((\partial \theta b)
TY )j = \scrD \prime (\theta j)

uj  - uj - 1

\Delta x

pj  - pj - 1

\Delta x
.

Now, integrating in time according to (A.6),

(A.18)

\int T

0
((\partial \theta b)

\top Y )jdt = \scrD \prime (\theta j)

\int T

0

uj  - uj - 1

\Delta x

pj  - pj - 1

\Delta x
dt

leads to (4.22).
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