
17 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Decentralized Scheduler for On-line Self-test Routines in Multi-core Automotive System-on-Chips / Floridia, Andrea;
Piumatti, Davide; Ruospo, Annachiara; Ernesto, Sanchez; Sergio De Luca, ; Rosario, Martorana. - ELETTRONICO. -
(2019), pp. 1-10. (Intervento presentato al convegno 2019 IEEE International Test Conference (ITC) tenutosi a
Washington (USA) nel 9 - 15 November, 2019) [10.1109/ITC44170.2019.9000129].

Original

A Decentralized Scheduler for On-line Self-test Routines in Multi-core Automotive System-on-Chips

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ITC44170.2019.9000129

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2751212 since: 2020-06-23T16:13:42Z

IEEE

A Decentralized Scheduler for On-line Self-test
Routines in Multi-core Automotive

System-on-Chips
Andrea Floridia∗, Davide Piumatti∗, Annachiara Ruospo∗, Ernesto Sanchez∗

Sergio De Luca†, Rosario Martorana†
∗Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy

†STMicroelectronics, Italy

Abstract—Modern System-on-Chips (SoCs) deployed for
safety-critical applications typically embed one or more pro-
cessing cores along with a variable number of peripherals. The
compliance of such designs with functional safety standards is
achieved by a combination of different techniques based on
hardware redundancy and in-field test mechanisms. Among these,
Software Test Libraries (STLs) are rapidly becoming adopted for
testing the CPU and peripherals modules. The STL is usually
composed of two sets of self-test procedures: boot-time and run-
time tests. The former set is typically executed during the boot
or power-on phase of the SoC since it requires full access to the
available hardware (e.g., these programs need to manipulate the
Interrupt Vector Table and to access the system RAM). The latter
set instead, is designed to coexist with the user application and
can be executed without requiring special constraints. When the
STL is intended for testing the different cores within a multi-core
SoC, the concurrent execution of the boot-time self-tests becomes
an issue since this could lead to a longer power-up phase and
excessive utilization of system resources. The main intent of this
work is to present the architecture of a decentralized software
scheduler, conceived for the concurrent execution of the STL on
the available cores. The proposed solution considers the typical
constraints of an STL in a multi-core scenario when deployed
in field, namely minimum system resources usage (i.e., code and
data memory). The effectiveness of the proposed scheduler was
experimentally evaluated on an industrial STL developed for a
multi-core SoC manufactured by STMicroelectronics.

I. INTRODUCTION

In the last decade the complexity of electronics devices
deployed for safety-critical applications has been growing
exponentially. Multi-core architectures are the answer of the
semiconductor manufacturers for satisfying the performance
requirements whilst being limited by the maximum power
consumption of embedded applications. In the context of
the automotive domain, the ISO 26262 standard regulates
the usage of electronic devices and imposes strict reliability
figures. From an industrial perspective, different solutions
(commonly referred also as safety mechanisms) are together
adopted for achieving the highest safety level (e.g., ASIL C or
D) [1]. Such safety mechanisms fall in two main categories:
hardware-based and software-based safety mechanisms. The
former ones can be further distinguished depending on the
functionality they are intended to perform:

• Fault detection and/or correction mechanisms: Triple
Modular Redundancy (TMR), Lockstep Computing, End-
to-End Error Correction Code for memories [2], [3].

• In-field testing mechanisms: Logic and Memory Built-in
Self-Test (LBIST and MBIST, respectively).

Several examples of both LBIST and MBIST exist [4]–[8],
and when correctly adopted they yield high fault coverage
metrics. Typically, they are applied during the so-called Power-
on Self-Test (POST), that is the in-field test performed after the
device is powered up. Nevertheless, functional safety standards
also impose testing the device periodically at run-time, that
is when the system is already executing its functionalities
(e.g., executing the application software). This type of test
is normally referred to as on-line testing.

Software-based mechanisms better fit the on-line testing
requirements. Normally, they consist in a set of software
procedures or test programs composing a Software Test Li-
brary (STL). These programs are executed by the processor
core and their main target is to test the processor core
and eventually the peripherals surrounding it. This strategy,
initially proposed by [9], has been studied by different research
groups [10]–[15], and later extended targeting safety-critical
devices used in the automotive field [16], [17]. These self-
test procedures are usually developed by the semiconductor
company, which owns all the structural information about the
device and can guarantee that their execution achieves an
adequate figure in terms of fault coverage. Once available,
the self-test procedures are then integrated by the system
company (often corresponding to a Tier1 company in the
automotive domain) into the application software and invoked
when required (e.g., during the power-on, periodically, or
during the application idle times). In this way, the required
safety level can be obtained without transferring any sensible
information from the semiconductor to the system company.
Furthermore, industrial STLs are designed to be configurable:
the final customer (i.e., the system company) decides whether
some self-test routines are required or not. As an example, if
the floating-point unit is not used, the customer may decide
to not execute the self-test procedures targeting that unit. This
approach is today widely supported by many semiconductor

and IP companies, such as STMicroelectronics, Infineon [18],
Cypress [19], Renesas [20], Microchip [21], ARM [22].

Concerning the automotive domain, the self-test procedures
can be distinguished [16], [22] in:

• Boot-time self-test routines: they are executed by the tar-
get processor core during the boot phase of the SoC, when
the system is entering the so called on-line phase. Tests
belonging to this category modify the processor Special
Purpose Registers, the Interrupt Vector Table, trigger
exceptions and preemption is not allowed. Moreover, for
the sake of test purposes, they require to access specific
addresses in the shared portion of the system RAM,
outside the boundaries of the processor stack frame.

• Run-time self-test routines: they are conceived to coexist
with the application source code. Generally, they target
mainly the computational units (e.g., arithmetic units)
within the processor core. They are executed in real-
time, they do not alter the processor status and can
be interrupted in case high priority tasks require to
be executed. Differently than boot-time tests, run-time
ones do not access system RAM addresses outside the
processor stack frame.

Considering single-core devices, a more comprehensive
description of these tests and guidelines for an efficient de-
velopment can be found in [16]. However, in that paper, the
authors did not addressed the issues related to the usage of
an STL in a multi-core context. The most relevant constraints
of an STL oriented to test on-line a multi-core system are
described below:

• Minimum memory resources usage: this stems from the
fact that the STL source code normally coexists with
an operating system or more in general with an appli-
cation software. Since in embedded systems the memory
resources are limited, the STL should interfere minimally
with the user application. This requirement implies a
limited use of memory resources to allocate the STL
source code and also a reduced number of system RAM
portions to be reserved for test purposes.

• Avoid any source of non-determinism: some test programs
require proper sequence of instructions to be executed,
that might be modified by the processor speculative
units, such as the Branch Predictors and Caches. For the
sake of determinism (at least for boot-time tests), these
speculative modules are normally disabled and eventually
enabled only when needed by specific test programs.

• Whenever possible, reduce conflicts due to shared re-
sources usage, such as Interrupt controllers and other
peripherals.

II. RELATED WORK

A. Motivations

To the best of our knowledge, the vast majority of the
available Software-Based Self-Test (SBST) strategies [12]
were devised considering only a single processor core at a
time. When the STL has to be executed in field on the

different processor cores of a multi-core system, a possible
solution is to serially test one processor core at a time.
Although straightforward, potential problems could arise when
dealing with the boot-time tests. Despite the fact that the
real-time constraints are more relaxed compared to the run-
time routines, the boot-time routines are executed during the
namesake phase of the System-on-Chip after it is turned on.
Therefore, the serial execution could delay excessively the user
application. For speeding-up the test application time, a better
solution could be to execute the STL in parallel among the
different cores. Clearly, the parallel execution of the entire
STL is not always feasible since often some boot-time test
programs use shared resources, such as the system RAM.
The shared memory subsystem may represent a bottleneck
for the concurrent execution of the test, due to the access
contention among the different processor cores. Hence, the
embedded software running in a multi-core scenario suffers
from a limited timing predictability [23]. This issue is further
emphasized from the fact that, unlike the traditional multi-
core applications, in most of the cases there exists a unique
copy of the STL in memory accessed by all the processor
cores. Therefore, a suitable software scheduler is needed for
managing the shared resources accessed by the different test
programs (e.g., the system RAM).

B. State of the Art

Regarding the state-of-the-art self-test routines scheduling,
the authors of [24] presented a test selection algorithm ori-
ented to the minimization of the execution time under real-
time constraints. The same topic was also addressed in a
detailed study presented in [25]: the paper presents some
scheduling alternatives when the self-test procedures coexist
with hard real-time tasks. By an appropriate test selection, it
was shown how the timing deadline can be accomplished with-
out sacrificing the self-test quality (i.e., the fault coverage).
Similar analyses but in a multi-core scenario were presented
in [26] and [27]. In the former, the impact of a periodic
testing on system availability was assessed. Using a suitable
exploration framework, it was shown how to derive scheduling
policy such that the test execution time is minimized and
consequently maximizing the system availability. In the latter
instead, a power-aware periodic scheduling is proposed with
minor performance penalty while satisfying the imposed power
consumption constraints.

The most closely relevant works to the one presented in this
paper, albeit in a quite different testing scenario, are [28]–[30].
In [28] a scheduling algorithm of self-test routines for shared-
memory multi-processor system is proposed. The algorithm
is based on an optimized usage of system caches and code
allocation in order to minimize the latency introduced by the
memory subsystem. Instead in [29], it is shown how to exploit
thread-level parallelism to improve the execution of self-test
routines in each core of a multiprocessor chip. The same
research group then presented in [30] an effective strategy for
multi-threaded multi-core systems oriented at maximizing the

execution parallelism of the self-test routines without affecting
the fault coverage.

However, the aforementioned papers dealt with the self-
test procedures for end-of-manufacturing testing. Such test
programs have fewer constraints in terms of memory usage
and resources availability than the ones intended for in-field
testing. Moreover, the approaches use caches extensively,
which are not applicable in the scenario targeted in this work.

C. Contributions

All the above-mentioned studies treat either multi-core end-
of-manufacturing testing or run-time on-line testing. Con-
versely, a first analysis of boot-time self-test procedures execu-
tion in a multi-core scenario is presented in [31]. With respect
to [31], the aim of this work is to propose a decentralized
scheduler for boot-time self-test procedures that:

1) maximizes the concurrency of the tests among the differ-
ent cores while minimizing the system resources usage;

2) can be used in compliance with the actual industrial STL
development methodology;

3) maintains the same fault coverage of the STL as when
executed in a single-core scenario.

The rest of the paper is organized as follows: Section 3
introduces some practical concepts of the STL development
flow that constraints the concurrent execution in the multi-core
scenario along with the concepts about software synchroniza-
tion in the multi-processor scenario. In Section 4 the proposed
scheduler is described in details. The experimental validation
of the scheduler is discussed in Section 5. Finally, Section
6 concludes the paper summarizing the obtained results and
future directions.

III. BACKGROUND

The purpose of this Section is to discuss the most relevant
constraints for the concurrent execution of an STL and briefly
overview the most common techniques for synchronizing
software executed by different processor cores.

A. Constrains for the concurrent execution of a STL

Typically, some boot-time self-test procedures exploit spe-
cific portions of the system RAM for improving the test of
the targeted modules. For avoiding uncertain fault coverage,
the addresses are fixed and chosen outside the boundary of the
processor stack frame. As an example, test programs targeting
the effective address calculation mechanisms extensively use
strategies based on fixed addresses [32]. This approach is
also adopted when the targeted module requires the source
code being executed from specific memory locations. These
test programs are normally copied to and executed from the
system RAM, since reserving fixed addresses in the code
memory would be too restrictive and negatively impact the
portability of the STL. When the STL is executed in a multi-
core System-on-Chip, those memory addresses should belong
to the shared region of the RAM (i.e., a region allocated for
common data between processors). Since in real applications,
it is not feasible reserving multiple portions of this shared

region exclusively for the STL, it is evident that a set of the
boot-time self-test procedures cannot be executed in parallel
due to conflict in accessing the shared portion of the RAM.
Indeed, if multiple test programs access simultaneously the
same shared region, the outcome is unpredictable.

B. Multi-processor software synchronization

Semaphores are one of the existing methods for achieving
synchronization of software executed on different processors.
A semaphore is an abstract data type (in most of the cases a
shared variable) that regulates the access to a common resource
by multiple processors. Depending on the number of proces-
sors allowed to access the common resource, the semaphores
are distinguished in counting and binary semaphores. The
latter are also called mutex, since exclusively one processor at
a time can access the shared resource. When the processor is
accessing the shared resource is said to be executing the code
of the critical section. The basic idea is that the accesses to a
shared resource are guarded by a suitable semaphore. Before
entering the critical section, the processor checks the status of
the semaphore. If the semaphore is available (i.e., unlocked),
the processor tries to acquire the semaphore, locking the
access to the shared resource. Independently from the low-
level implementation, the mechanism used for checking and
then acquiring the semaphore must guarantee that the two
operations are executed atomically. That is, they appear to
be indivisible from the other processors perspective. Finally,
before leaving the critical section, the semaphore is released
unlocking the access to the shared resource. Depending on the
considered Instruction Set Architectures (e.g., ARM, MIPS,
PowerPC, RISC-V), there exist different atomic instructions
that perform a read-modify-write operation on a given memory
location.

IV. PROPOSED APPROACH

The end goal of this paper is to propose a decentralized
software scheduler intended for the concurrent execution of
boot-time self-test routines in a multi-core SoC. The proposed
scheduler considers the typical constraints of an STL when
deployed in field, namely minimum system resources usage
and compliance with the actual industrial STL development
methodology, while maximizing the concurrency. These re-
quirements imply:

• a unique copy of the STL in the code memory and portion
of system RAM available for the test;

• unaltered fault coverage with respect to a single-core
scenario;

• deterministic execution time.

A. Problem Formulation

The reader should note that the problem addressed in this
paper is quite different from a generic multi-core real-time
scheduler for embedded systems. Normally, given a set of tasks
Λ = {λ0, . . . , λm} to be executed, and a set of processing
units P = {p0, . . . , pn}, the goal of a scheduler is to assign
to each processing unit pj ∈ P a set of tasks Γ ⊆ Λ so

that the overall execution time is minimized. When dealing
with a STL, Λ corresponds to the set of self-test procedures
composing the STL while P represents the different cores to
be tested. The fundamental difference relies on the fact that
each λi ∈ Λ must be executed on each core pj ∈ P . Therefore,
in this scenario the scheduler should guarantee the execution
of all the self-test procedures while avoiding conflicts due to
common shared resources (e.g., the system RAM), so that the
overall test execution time is minimized.

Two possible approaches exist to schedule the accesses to a
shared resource in multi-processors environments: centralized
and decentralized. In the former, there is a high degree of
control over the scheduling process, since all the requests are
processed by a unique scheduler. Although it is conceptually
easier to reason and design according to this paradigm, the
drawback is that the scheduling is not so efficient in terms
of performances. Instead, decentralized schedulers represent a
more efficient solution, since they have an intrinsic distributed
nature which takes full advantage of the underlying multi-
processors system. Typically, they are built upon a first come,
first served policy. Therefore, there is less control over the
scheduling itself. The proposed scheduler falls into this cate-
gory: each processor executes its own local software scheduler,
interacting each others through a synchronization mechanism
based on mutex.

B. The Decentralized Scheduler

Each local scheduler (described in Algorithm 1) concur-
rently executes all the Test Programs (TPs) included in an
ordered set, hereinafter called TestTable, which defines the
execution order of the self-test procedures composing the
STL. It is important to note that the order specified in the
TestTable is identical for each processor. The TPs that cannot
be executed in parallel due to conflicting accesses to a shared
resource (e.g., the system RAM) are also present in a second
set called the ShareResource set. The relation between these
two sets is ShareResource ⊆ TestTable. In the following, it is
assumed that TestTable is ordered so that the test programs
in ShareResource are the first ones in the TestTable sequence.
The actual number of TPs executed is tracked by a different
set, the PendingList. Differently than in TestTable, the order
of the elements composing PendingList and ShareResource is
irrelevant.

At the beginning, |PendingList| = |TestTable|. The sched-
uler sequentially selects one TP at a time from TestTable
(coherently with the specified order, line 5), and it checks
whether the selected TP is still present in PendingList (that
is, not yet executed, see line 6). If so and at the same time
the selected TP does not belong to the ShareResource set, the
TP can be executed. Once executed, it is also removed from
PendingList (line 23), reducing its cardinality. Contrarily, if
the TP is also present in ShareResource (line 7), the TP can
be executed given that the common resource is not busy. This
is achieved through a suitable mutex (line 8), which signals
to each local scheduler whether another scheduler is currently
executing a TP in the ShareResource set. Therefore, the critical

Algorithm 1: Selfish Decentralized Scheduler Algorithm

1 PendingList ← TestTable;
2 MaintainMutex ← false;
3 while |PendingList| 6= |∅| do
4 i ← 0;
5 for TPi ∈ TestTable do
6 if TPi ∈ PendingList then
7 if TPi ∈ ShareResource then
8 if Acquire(Mutex) is successful ∨

MaintainMutex is true then
9 Execute TPi;

10 PendingList ← PendingList\{TPi};
11 i ← i +1;
12 if TPi ∈ ShareResource then
13 MaintainMutex ← true;
14 else
15 MaintainMutex ← false;
16 Release(Mutex);
17 end
18 else
19 i ← i +1;
20 end
21 else
22 Execute TPi;
23 PendingList ← PendingList\{TPi};
24 i ← i +1;
25 end
26 end
27 end
28 end

section corresponds to the portion of code executing tests
belonging to ShareResource (lines 8 to 16). It is important
to note that a mutex is required since only one local scheduler
at a time can access the critical section. If the resource is not
free, the TP is skipped. Instead of performing busy waiting
(i.e., waiting for the resource to be freed), the scheduler tries
to execute another TP (line 19). If the resource is free, the TP
is executed (line 9) and removed from PendingList (line 10).
The STL execution completes when there are no TPs to be
executed, that is PendingList is empty (line 3).

As it can be noticed, the scheduler does not release the
mutex (lines 11 to 16) as long as the next sequential TP
still uses the shared resource. For this reason, the proposed
scheduler is said to be selfish: the first local scheduler that
acquires the mutex, executes consecutively all the TPs within
the ShareResource set without freeing the shared resource. As
it is experimentally proved in the experimental part of this
work, not releasing the mutex along with the devised TestTable
ordering assumes a crucial aspect for the determinism and the
efficiency of the scheduler.

Figure 1 shows a practical example of the scheduler de-
scribed above. For the sake of a better understating, let us
consider the simplified case in which two processor cores

Fig. 1. Timeline of the proposed scheduler.

(CORE 0 and CORE 1) must execute a boot-time STL
composed of three self-test procedures (TP1, TP2 and TP3).
Two of these, TP2 and TP3, require the usage of a shared
portion of the RAM. It should be noticed that TP2 and TP3
are scheduled at the beginning of the TestTable sets. Initially,
as represented in the figure, the PendingList sets for both
processors are equal to TestTable. Therefore, with the same
formalism used in this Section, for each core the three sets
are composed as depicted in Figure 1.

Initially, the mutex is free. Assuming CORE 1 is the first
one that acquires the mutex, it starts executing TP2 and TP3
(being the firsts in TestTable) without releasing the mutex. At
the same time, CORE 0 checks the status of the mutex, which
is locked by CORE 1. Thus, it cannot execute any self-test
procedure in the ShareResource set and it executes TP1 (being
the first self-test procedure not requiring a common resource).
Once CORE 0 terminates the execution of TP1 (it is removed
from CORE 0 PendingList), CORE1 has not yet freed the
mutex. Therefore, CORE0 waits until the resource is freed.
Once TP3 terminates the execution on CORE 1, the mutex is
released. At this point CORE 1 has to execute TP1 (the last
program in CORE 1 PendingList), while CORE 0 can acquire
the mutex and execute the remaining self-test procedures in
its PendingList (i.e., TP2 and TP3).

By adopting the proposed scheduler described beforehand,
the concurrency of the STL execution is maximized since
while the shared resource is busy the local schedulers execute
other self-test procedures. This does not impact the fault
coverage, since the test programs are not preempted and thus
the instructions flow of a given test program is not altered.
Although there is a local scheduler for each processor core,
the copy in the code memory is unique and shared by each pro-
cessor. Therefore, the resources utilization is minimal. In the
next Section, experimental evidences are provided supporting
these claims.

V. CASE STUDY AND EXPERIMENTAL RESULTS

This Section is organized as follows: the first subsection
describes the industrial case study used for the experimental

Fig. 2. SPC58NN84 internal architecture.

validation of the proposed scheduler. Then, for the sake of
comparison, in the second and third subsections the obtained
performances (in terms of execution time) and limitations
of different scheduling alternatives are reported: unlike the
proposed method, a serial scheduler and several non-selfish
decentralized schedulers are analyzed. Finally, in the last sub-
section the same analyses are also performed for the proposed
scheduler and compared with the previous ones.

A. Case Study and Experimental Setup

The device used to prove experimentally the effectiveness
of the proposed decentralized scheduler was the SPC58NN84,
a triple-core SoC manufactured by STMicroelectronics, in-
tended for automotive ASIL D applications. The SoC embeds
three 32-bit dual-issue z4256n3 PowerPC-compliant proces-
sors. Each processor core includes a local SRAM for code
and data, along with private data and instruction caches. For
the sake of generality and experiments reproducibility, the
local SRAM memories were not used (since this feature is not
always available among the different automotive SoCs). Also
the caches were not used, because they might compromise the
outcome of some self-test procedures (also in terms of fault
coverage) due to their non-deterministic behavior. Additional
safety mechanisms are available in the considered SoC: two
of the three processors are paired with an additional checker
core in a delayed lockstep configuration. Additionally, the
memories are equipped with ECC. The architecture of the SoC
is depicted in Figure 2. The SoC includes 6Mbytes of Flash,
128Kbytes of system RAM and different peripherals shared
among the three cores.

Concerning the STL, it comprises 104 self-test procedures:
34 of these are run-time tests, while the remaining 70 are boot-
time tests. 13 out of 70 use a shared region of the system RAM.
Therefore, they belong to the ShareResource set and cannot
be executed concurrently. The memory footprint of the single-
core STL is 429Kbytes. It is common practice to execute the
run-time tests along with the boot-time ones during the device
startup, to obtain the highest possible fault coverage. Then,
the run-time test programs are executed periodically when
the system is on-line. Therefore, for reproducing a realistic
case study in the performed experiments, all the 104 self-
test procedures are executed during the device startup. Finally,

the STL covers the 84.41% of the possible 729,522 stuck-
at faults affecting the processor core. Generally, a stuck-at
fault coverage grater than the 80% is considered acceptable
for the processor core. This value stems from functional
safety analyses performed by Functional Safety engineers,
considering the number of faults within the core with respect
to the total number of faults of the entire SoC. The library
is executed in a single-core scenario in about 29ms with
a system clock frequency of 16MHz. This execution time
includes an initialization phase and a test phase. During the
former the processor internal state (namely the Special Purpose
Registers) is set along with specific Interrupt Service Routines
for handling exceptions generated by test programs and other
utility functions for sake of testing. The latter is the phase in
which the test programs are actually executed.

The measurements of the different execution times were col-
lected directly on the physical device, leveraging the on-chip
hardware timers. For all the performed experiments the system
clock frequency was the default one (i.e., 16MHz). Increasing
the operating frequency was not considered as a solution since
it would be out of the scope of this work. Furthermore, when
referring to multi-core decentralized schedulers, the following
setup was used:

• to reproduce the worst possible scenario, the measure-
ments were gathered aligning the execution of the pro-
cessor cores;

• when the number of active cores is two, the third core
is switched off completely for avoiding influencing the
outcome of the measurement;

• the hardware timer was started once the processors were
aligned and then stopped once the last processor com-
pleted the test;

• all the performed measurements include the aforemen-
tioned initialization (being local to each core) and the
test phase.

The considered device offers two main solutions for imple-
menting the synchronization mechanism described in Section
2: hardware semaphores and decorated instructions. The for-
mer is a peripheral embedded in the SoC that implements
directly in hardware the functionalities of a semaphore. The
decorated instructions on the other hand are PowerPC-specific
store/load instructions that implement an atomic read-modify-
write mechanism on memory locations. In the following, all
the discussed implementations are based on the decorated
instructions, since they yield higher performances compared to
hardware semaphores. Indeed, the average time for accessing
a hardware semaphore (i.e., a peripheral) is about 190 clock
cycles, while the decorated instructions require considerably
fewer clock cycles (17 only).

B. Analysis of serial scheduling

A preliminary set of experiments consisted in measuring
the execution time of the STL when using a serial scheduler
(i.e., the STL is executed serially on each core). These
measurements are used here as a reference point being the
upper bound of any multi-core scheduler. The measurements

TABLE I
PERFORMANCES OF THE SERIAL SCHEDULER @16MHZ

Active Cores Execution Time [ms]
2 57.15
3 88.01

TABLE II
PERFORMANCES OF DIFFERENT DECENTRALIZED SCHEDULERS

@16MHZ

Decentralized Scheduler Execution Time [ms]
2 Active Cores 3 Active Cores

DS1 40.18 71.93
DS2 49.31 79.89
DS3 39.87 66.80
DS4 41.12 71.42
DS5 41.81 79.80

are shown in Table I and were gathered considering the STL
executed on 2 and 3 cores.

C. Analysis of Non-selfish decentralized schedulers

To prove that the proposed decentralized scheduler is valid,
a second set of experiments focused on analyzing the per-
formances of different decentralized scheduling algorithms.
They differ from the proposed one since they cannot be
considered selfish (that is, the mutex is released even though
the next sequential self-test procedures still belong to the
ShareResource set). The considered schedulers are listed in
Table II.

Each of these decentralized schedulers considers differ-
ent formats of TestTable: in DS1 the order of the self-test
procedures is random. A total of 30 random orders were
generated, and DS1 represents the best random ordering.
It is worth to underline that the differences between the
generated random orders were minimal. Therefore, for sake of
conciseness, exclusively 30 random orders were generated and
the best order is reported. DS2 orders the self-test procedures
so that those included in ShareResource are executed first.
The order of the self-test procedures within ShareResource
is random. Differently, in DS3 the self-test procedures within
ShareResource are ordered according to the duration of the
self-test procedures themselves (with a descending order). For
both DS2 and DS3 the remaining self-test procedures (i.e.,
those not included in ShareResource) are ordered randomly.
Finally, DS4 and DS5 considers the self-test procedures still
ordered according to their duration (descending and ascending
order respectively), but independently from the fact that they
could also belong to the ShareResource set. As it can be
viewed in Table II, DS3 is the decentralized scheduler yielding
the best performances. This is justified by the fact that it is the
scheduler that better reduces the memory access contention,
as shown in Table III.

Table III reports the values of the on-chip performance
counters for the triple-core scenario (being the worst case from
the access contention viewpoint). The first column reports the
schedulers names. In the second column, the number of clock
cycles corresponding to stalls due to the access contention for
the Flash memory is reported. The third column shows the
clock cycles corresponding to stalls due to access contention

TABLE III
PERFORMANCE COUNTERS VALUES FOR THE TRIPLE-CORE SCENARIO

Decentralized Scheduler
Flash Memory

Stalls
[clock cycles]

System RAM
Stalls

[clock cycles]
DS1 1,878,336 663,386
DS2 1,932,409 791,922
DS3 1,589,729 478,264
DS4 1,738,412 525,011
DS5 1,929,209 788,668

for the system RAM. It is worth noting that any multi-core
scheduler is limited by the shared memory architecture: as
an example, considering exclusively the Flash memory, when
moving from a single-core implementation to a multi-core one,
the total number of clock cycles stalls increased from 200,679
to 1,589,729 (with the DS3 scheduler). Hence, as confirmed
by the values present in the second column of Table III, the
Flash memory represents the real bottleneck. In the considered
architecture, the flash is divided into different partitions and it
does not allow multiple reads from the same partition (the
STL code is the same for the three processors): therefore,
only one processor at a time can read from the flash. The
scheduler DS3 may seem the most promising one, since it
reduces substantially the execution time in both dual-core and
triple-core scenarios. However, further experiments showed
that it could hardly be used in an industrial context. Although
it meets some of the requirements (minimum system resources
usage), it suffers from a non-deterministic execution time when
the number of tests composing the ShareResource set varies.

The results of the third set of experiments are shown in the
charts of Figures 3 and 4, for the dual and triple-core scenarios,
respectively. In both cases, it was increased progressively the
number of self-test procedures composing the ShareResource
set, that is the set of procedures requiring the use of a shared
resource. This was done adding one self-test procedure at a
time, which was not originally part of the ShareResource set. It
is noteworthy that this does not mean altering the total number
of programs composing the STL, which is still 104.

For both figures, the orange line represents the execution
time when increasing the size of the ShareResource set,
inserting in a descending order the self-test procedures starting
with the longest test programs in terms of duration (their
duration is in the range 10,000 to 23,000 clock cycles). The
blue one instead represents the behavior of the scheduler when
increasing the size of the set, inserting in an ascending order
the self-test procedures starting with the shortest test programs
(duration ranging from 500 to 1,000 clock cycles). The red line
represents the threshold imposed by the serial execution. Since
the purpose is to show the indeterminacy of these approaches,
it was decided not to consider more than 25 self-test procedure
composing ShareResource.

It can be noticed comparing the two charts that the execution
time is not predictable and it presents non-negligible oscilla-
tions. By monitoring the STL execution on each processor
core using an external debugger (the Lauterbach Trace32

14 15 16 17 18 19 20 21 22 23 24 25
35

40

45

50

55

60

65

70

Number of Tests in ShareResource

E
xe

cu
tio

n
Ti

m
e

[m
s]

Ascending Order
Descending Order
Serial Execution

Fig. 3. DS3 execution time (y-axis) at 16MHz when increasing the number (x-
axis) of self-test procedures in the ShareResource set in a dual-core scenario.

14 15 16 17 18 19 20 21 22 23 24 25
60
70
80
90

100
110
120
130
140
150
160
170
180
190

Number of Tests in ShareResource

E
xe

cu
tio

n
Ti

m
e

[m
s]

Ascending Order
Descending Order
Serial Execution

Fig. 4. DS3 execution time (y-axis) at 16MHz when increasing the number (x-
axis) of self-test procedures in the ShareResource set in a triple-core scenario.

in the performed experiments), it was observed a higher
memory access contention. In particular, it emerged that these
fluctuations are caused by the alternated execution of the test
programs composing the ShareResource set with test programs
not belonging to this set. Clearly, this is not acceptable: let
us consider the scenario depicted in Figure 4, when moving
from 19 to 18 self-test procedures in the ShareResource set.
This may well be the typical scenario in which a customer,
using the STL, decides to disable one test program. With 19
tests the execution time is below the threshold of the serial
execution, but when reducing the tests the execution time
actually increases above the serial execution.

D. The proposed selfish decentralized scheduler

The fourth set of experiments involves the proposed de-
centralized selfish scheduler described in the previous section.
From the results presented in Table III, it appears that DS3

TABLE IV
PERFORMANCES OF THE PROPOSED DECENTRALIZED SELFISH

SCHEDULER @16MHZ

Active Cores Execution Time [ms]
Serial Scheduler DS3 Proposed Scheduler

2 57.15 39.87 38.27
3 88.01 66.80 57.18

TABLE V
OVERHEAD OF THE PROPOSED SCHEDULER

Overhead Single-Core STL Triple-Core STL
Memory Footprint [KB] 429 489

Execution Time [ms] 29.01 29.51

outperforms the other schedulers since it reduces the memory
access contention. The reason for this reduction (confirmed
again by monitoring the schedulers execution) originates from
the fact that if the longest tests are executed first, it is likely
that they will keep the shared resource busy for a considerable
amount of time. This forces the other local schedulers to
execute the self-test procedures not included in ShareResource
and then wait for the shared resource to be freed. This
significantly reduces the bus activity, but as the experiments
of Figure 3 and 4 confirmed, it depends on the actual duration
of the self-test procedures composing the ShareResource set.

The proposed scheduler enforces this condition with the
devised order for TestTable and maintaining the resource busy
until all the test programs in ShareResource are executed. The
latter in particular avoids the alternated execution mentioned
above, that causes the oscillations present in the scheduler
DS3. Table IV reports the comparisons among the serial sched-
uler, the DS3 scheduler and the proposed selfish scheduler
when executing the STL with the original number of test
programs in the ShareResource set (namely 13).

As it can be observed by comparing the second and the
fourth column of Table IV, the proposed solution reduces
considerably the execution time of about 33% and 35% (for
the dual-core and triple-core scenarios respectively). This is
significant, since especially in the triple-core scenario the
execution time improves with respect to DS3 of about the
14% and it is comparable with a serial execution but in a
dual-core scenario. It is worth noting that the order of the
self-test procedures within ShareResource is now irrelevant:
the test programs within ShareResource are executed as an
unique block.

Clearly, having multiple copies of the STL in the code
memory would be beneficial for any multi-core scheduler.
However, this is normally not possible when dealing with
in-field test of embedded systems since this means a flash
memory occupation two to three times higher than in a single-
core scenario. As an example, considering the STL under
analysis, the single-core version of the library occupies 429
Kbytes while the triple-core version is 489 Kbytes. Therefore,
having independent copies of the single-core version is not
acceptable since it leads to an excessive memory usage. On
the other hand, the overhead from a timing point of view of
the proposed scheduler is also modest, since it accounts for
about 0.5ms. Table V summarizes the main characteristics of

14 15 16 17 18 19 20 21 22 23 24 25
35

40

45

50

55

60

65

70

Number of Tests in ShareResource

E
xe

cu
tio

n
Ti

m
e

[m
s]

Ascending Order
Descending Order
Serial Execution

Fig. 5. The proposed scheduler execution time (y-axis) at 16MHz when
increasing the number (x-axis) of self-test procedures in the ShareResource
set in a dual-core scenario.

the proposed scheduler from a timing and memory footprint
viewpoint for the triple-core scenario (being the worst possible
in the considered case study). The reader should note that the
execution time reported for the Triple-core STL is derived
in a single-core scenario to show the overhead due to the
decentralized scheduler structure, only.

The same experiments performed with DS3 were repeated
and the results are shown in Figure 5 and 6 for the dual and
triple-core scenario, respectively. The behavior illustrated in
Figure 5 and 6 is now much more predictable compared to the
charts depicted in Figure 3 and 4. Furthermore, it can be seen
that the execution time in the dual-core scenario (Figure 5)
is always lower than the serial execution, unlike the behavior
of DS3 (Figure 3). It is important to note that in the triple-
core scenario (Figure 6), the orange line after 21 self-test
procedures in ShareResource crosses the red line. In more
practical terms, it means that the execution time of the decen-
tralized scheduler exceeded the serial scheduler. However, this
represents an exaggerated case since the added test programs
have a duration between 23,000 and 10,000 clock cycles. The
reader should note that this is quite unrealistic in practical
applications.

In order to asses the maximum achievable performances of
the proposed scheduler, a further set of experiments focused
on increasing the size of the ShareResource set, including
progressively self-test procedures from TestTable not present
originally in ShareResource. As in the experiments described
in Figure 3, 4, 5 and 6, the self-test procedures were included
starting from the shortest ones (in terms of duration) to the
longest ones. However, the substantial difference with respect
to the previous experiments is the fact that the aim is to
increase the size of the ShareResource set as much as possible,
well beyond the 25 self-test procedures of the aforementioned
experiments. Figure 7 depicts the results of the experiments
for two and three cores.

14 15 16 17 18 19 20 21 22 23 24 25
50

60

70

80

90

100

110

Number of Tests in ShareResource

E
xe

cu
tio

n
Ti

m
e

[m
s]

Ascending Order
Descending Order
Serial Execution

Fig. 6. The proposed scheduler execution time (y-axis) at 16MHz when
increasing the number (x-axis) of self-test procedures in the ShareResource
set in a triple-core scenario.

For sake of generality, it is more convenient to express the
results of Figure 7 using as x-axis the percent ratio between
the duration of the ShareResource set and the total duration
of the boot-time tests. It is important to underline that, in
the considered STL, the tests labeled as boot-time are 70
out of 104. Therefore, 70 is also the maximum number of
tests that can be included in the ShareResource set since the
remaining 34 are run-time tests that are always present and by
definition cannot be included in the ShareResource set. Figure
7 shows that up to a duration equal to 67% of the total duration
of the boot-time tests, the execution time of the proposed
decentralized scheduler is lower compared to a serial scheduler
(for both dual-core and triple-core scenarios). It is noteworthy
that a 67% figure corresponds to include in the ShareResource
set 65 out of 70 self-test procedures. This means that it was
possible to execute the vast majority of the test programs
that can be labeled as boot-time tests. For completeness, the
measurements corresponding to 90% and 100% of the boot-
time duration were also gathered. In this case the execution
time exceeded the one of the serial scheduler, since the last 5
test programs are the longest that can be included (each one
requiring more than 15,000 clock cycles to execute). However,
it is uncommon having such long programs accessing the
system RAM for testing purpose. Typically, only few test
programs require a shared portion of the system RAM for test
purposes. Therefore, when considering a reasonable percent
ratio of duration of the ShareResource set (namely 30-50%),
the performances of the proposed decentralized scheduler are
always superior compared to a serial scheduler.

By comparing the results shown in Figure 5, 6 and 7 it
can be observed that as the size of the ShareResource set
increases, the execution time of the decentralized scheduler
degrades faster in a triple-core scenario than in the dual-core.
This depends mainly from the fact that three active processors
generate considerably more activity in the system bus than two

21 23 26 32 41 67

40

50

60

70

80

Duration of the ShareResource set w.r.t. boot-time tests [%]

E
xe

cu
tio

n
Ti

m
e

[m
s]

2 Cores
3 Cores

Fig. 7. The proposed scheduler execution time (y-axis) at 16MHz when
increasing the duration (x-axis) of the ShareResource set. The blue and
red dotted lines represent the serial scheduler for dual-core and triple-core
scenarios, respectively.

processors. Moreover, as shown in Figure 2, in the considered
architecture two processor cores (labeled as A and B) share the
same cross bar (XBAR 2) while core C has a dedicated cross
bar (XBAR 1). Therefore, it is inevitable that when all the
three processors are active, the performances degrade faster
since there are more conflicts on the same bus (not present
when only two processors are active).

Finally, according to the development flow presented in
[16], test programs are independently developed and then fault
graded. Their cumulative effect is later considered for comput-
ing the final fault coverage figures. As it is extensively dis-
cussed in the above-mentioned paper, adopting the described
development flow reduces the computational effort during the
fault simulation process. Furthermore, another positive side
effect stems from the fact that the computed fault coverage
does not depend on the actual test program order. In particular,
as long as the boot-time tests are not interrupted during their
execution, the fault coverage is not altered. Therefore, since the
proposed decentralized scheduler does not preempt the self-
test procedures, the fault coverage is not altered.

VI. CONCLUSION

To the best of our knowledge, this paper describes for the
first time a decentralized software scheduler for the concurrent
execution of boot-time self-test procedures in a multi-core
scenario targeting safety-critical applications. The proposed
scheduler is based on a set of local schedulers, interacting
each others by means of shared variables (i.e., a mutex). The
benefits stemming from the adoption of the proposed scheduler
are:

• Maximum test concurrency: local schedulers always try
to execute other self-test procedures while the shared
resource is busy.

• Minimum system resource usage: the proposed scheduler
does not require having multiple copies of the STL

code in memory, nor different portions of the system
RAM to be reserved for test purposes. Therefore, as the
experiments confirmed, the overhead with respect to a
single-core version of the STL is minimal.

• Deterministic execution time: when increasing (or de-
creasing) the number of test programs that cannot be
executed concurrently, the execution time degrades (or
improves) in a predictable manner (unlike other decen-
tralized schedulers analyzed in the experimental section).

• The fault coverage of the STL is not altered: the test
programs structure is not modified, nor the instructions
stream (there is not preemption).

• Full compliance with the industrial STL development
flow.

Since from the experimental results it emerged that the per-
formances tend to degrade faster in a triple-core scenario, we
are currently exploring different solutions for further improv-
ing the performances of the proposed decentralized scheduler
in a scenario with three or more cores. Furthermore, we are
also investigating the capability (and the related performances)
of the proposed scheduler to handle different STLs, as in the
case in which the SoC embeds processor cores of different
types.

REFERENCES

[1] F. Reimann, M. Gla, J. Teich, A. Cook, L. R. Gmez, D. Ull,
H. Wunderlich, U. Abelein, and P. Engelke, “Advanced diagnosis:
Sbst and bist integration in automotive e/e architectures,” in 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2014,
pp. 1–6.

[2] E. Fujiwara, Code Design for Dependable Systems: Theory and Practical
Application. New York, NY, USA: Wiley-Interscience, 2006.

[3] C. L. Chen and M. Y. Hsiao, “Error-correcting codes for semiconductor
memory applications: A state-of-the-art review,” IBM Journal of Re-
search and Development, vol. 28, no. 2, pp. 124–134, March 1984.

[4] G. Tshagharyan, G. Harutyunyan, and Y. Zorian, “An effective func-
tional safety solution for automotive systems-on-chip,” in 2017 IEEE
International Test Conference (ITC), Oct 2017, pp. 1–10.

[5] T. McLaurin, “Periodic online lbist considerations for a multicore
processor,” in 2018 IEEE International Test Conference in Asia (ITC-
Asia), Aug 2018, pp. 37–42.

[6] M. Nicolaidis, “Theory of transparent bist for rams,” IEEE Transactions
on Computers, vol. 45, no. 10, pp. 1141–1156, Oct 1996.

[7] G. Harutyunyan, S. Shoukourian, V. Vardanian, and Y. Zorian, “An
effective solution for building memory bist infrastructure based on fault
periodicity,” in 2013 IEEE 31st VLSI Test Symposium (VTS), April 2013,
pp. 1–6.

[8] K. Darbinyan, G. Harutyunyan, S. Shoukourian, V. Vardanian, and
Y. Zorian, “A robust solution for embedded memory test and repair,”
in 2011 Asian Test Symposium, Nov 2011, pp. 461–462.

[9] S. M. Thatte and J. A. Abraham, “Test generation for microprocessors,”
IEEE Transactions on Computers, vol. C-29, no. 6, pp. 429–441, June
1980.

[10] A. Paschalis, D. Gizopoulos, N. Kranitis, M. Psarakis, and Y. Zo-
rian, “Deterministic software-based self-testing of embedded processor
cores,” in Proceedings Design, Automation and Test in Europe. Confer-
ence and Exhibition 2001, March 2001, pp. 92–96.

[11] A. Jasnetski, R. Ubar, and A. Tsertov, “On automatic software-based
self-test program generation based on high-level decision diagrams,” in
2016 17th Latin-American Test Symposium (LATS), April 2016, pp. 177–
177.

[12] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda, “Micro-
processor software-based self-testing,” IEEE Design Test of Computers,
vol. 27, no. 3, pp. 4–19, May 2010.

[13] N. Kranitis, A. Merentitis, G. Theodorou, A. Paschalis, and D. Gizopou-
los, “Hybrid-sbst methodology for efficient testing of processor cores,”
IEEE Design Test of Computers, vol. 25, no. 1, pp. 64–75, Jan 2008.

[14] L. Chen and S. Dey, “Software-based self-testing methodology for
processor cores,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20, no. 3, pp. 369–380, March
2001.

[15] L. Chen, S. Ravi, A. Raghunathan, and S. Dey, “A scalable software-
based self-test methodology for programmable processors,” in Proceed-
ings 2003. Design Automation Conference (IEEE Cat. No.03CH37451),
June 2003, pp. 548–553.

[16] P. Bernardi, R. Cantoro, S. D. Luca, E. Sanchez, and A. Sansonetti,
“Development flow for on-line core self-test of automotive microcon-
trollers,” IEEE Transactions on Computers, vol. 65, no. 3, pp. 744–754,
March 2016.

[17] P. Bernardi, R. Cantoro, S. De Luca, E. Sanchez, A. Sansonetti, and
G. Squillero, “Software-based self-test techniques for dual-issue embed-
ded processors,” IEEE Transactions on Emerging Topics in Computing,
pp. 1–1, 2018.

[18] (2019) Infineon Software Test Library: [Online]. Available:
https://www.hitex.com/tools-components/software-components/selftest-
libraries-safety-libs/pro-sil-safetcore-safetlib/.

[19] (2019) Cypress Software Test Library: [Online]. Available:
http://www.cypress.com/file/249196/download.

[20] (2019) Renesas Software Test Library: [Online]. Available:
https://www.renesas.com/en-eu/products/synergy/software/add-
ons.html#read.

[21] (2019) Microchip Software Test Library: [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf.

[22] (2019) ARM Software Test Library: [Online]. Available:
https://www.arm.com/products/development-tools/embedded-and-
software/software-test-libraries.

[23] M. Lv, W. Yi, N. Guan, and G. Yu, “Combining abstract interpretation
with model checking for timing analysis of multicore software,” in 2010
31st IEEE Real-Time Systems Symposium, Nov 2010, pp. 339–349.

[24] N. Bartzoudis, V. Tantsios, and K. McDonald-Maier, “Dynamic schedul-
ing of test routines for efficient online self-testing of embedded micro-
processors,” in 2008 14th IEEE International On-Line Testing Sympo-
sium, July 2008, pp. 185–187.

[25] D. Gizopoulos, “Online periodic self-test scheduling for real-time
processor-based systems dependability enhancement,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 6, no. 2, pp. 152–158,
April 2009.

[26] M. A. Skitsas, C. A. Nicopoulos, and M. K. Michael, “Exploration
of system availability during software-based self-testing in many-core
systems under test latency constraints,” in 2014 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), Oct 2014, pp. 33–39.

[27] M. Haghbayan, A. Rahmani, A. Miele, M. Fattah, J. Plosila, P. Liljeberg,
and H. Tenhunen, “A power-aware approach for online test scheduling
in many-core architectures,” IEEE Transactions on Computers, vol. 65,
no. 3, pp. 730–743, March 2016.

[28] A. Apostolakis, D. Gizopoulos, M. Psarakis, and A. Paschalis,
“Software-based self-testing of symmetric shared-memory multiproces-
sors,” IEEE Transactions on Computers, vol. 58, no. 12, pp. 1682–1694,
Dec 2009.

[29] A. Apostolakis, M. Psarakis, D. Gizopoulos, A. Paschalis, and
I. Parulkar, “Exploiting thread-level parallelism in functional self-testing
of cmt processors,” in 2009 14th IEEE European Test Symposium, May
2009, pp. 33–38.

[30] N. Foutris, M. Psarakis, D. Gizopoulos, A. Apostolakis, X. Vera, and
A. Gonzalez, “Mt-sbst: Self-test optimization in multithreaded multicore
architectures,” in 2010 IEEE International Test Conference, Nov 2010,
pp. 1–10.

[31] A. Floridia, D. Piumatti, E. Sanchez, S. De Luca, and A. Sansonetti,
“Parallel software-based self-test suite for multi-core system-on-chip:
Migration from single-core to multi-core automotive microcontrollers,”
in 2018 13th International Conference on Design Technology of Inte-
grated Systems In Nanoscale Era (DTIS), April 2018, pp. 1–6.

[32] P. Bernardi, L. Ciganda, M. de Carvalho, M. Grosso, J. Lagos-Benites,
E. Sanchez, M. Sonza Reorda, and O. Ballan, “On-line software-based
self-test of the address calculation unit in risc processors,” in 2012 17th
IEEE European Test Symposium (ETS), May 2012, pp. 1–6.

