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ABSTRACT
Software switches are increasingly used in network function virtual-
ization (NFV) to route traffic between virtualized network functions
(VNFs) and physical network interface cards (NICs). Understanding
of alternative switch designs remains deficient, however, in the
absence of a comprehensive, comparative performance analysis. In
this paper, we propose a methodology intended to be fair and use
it to compare the performance of seven state-of-the-art software
switches. We first explore their respective design spaces and then
compare their performance under four representative test scenarios.
Each scenario corresponds to a specific case of routing NFV traffic
between NICs and/or VNFs. Our experimental results show that
no single software switch prevails in all scenarios. It is therefore
important to choose the one that is best adapted to a given use-case.
The presented results and analysis bring a better understanding of
design tradeoffs and identify potential bottlenecks that limit the
performance of software switches.

1 INTRODUCTION
For many years developers have used software packet processing
for fast prototyping and functional testing but have relied on the
superior performance of proprietary hardware for product deploy-
ment. The limitations of commodity off-the-shelf (COTS) servers,
whose general-purpose kernels and chips were not optimized for
packet processing, outweighed the flexibility advantage of software
solutions. This situation has changed in recent years, thanks largely
to the impulsion of Software-Defined Networking (SDN) and Net-
work Function Virtualization (NFV) but also due to advances in
the performance of COTS hardware. It is now widely accepted that
significant savings in both CapEx and OpEx can be realized on re-
placing expensive, proprietary and inflexible hardware middleboxes
by software counterparts.

A major spur to progress has been the development of high-
speed I/O frameworks (e.g., DPDK [5], PF_RING ZC [10], and net-
map [54]) that employ acceleration techniques, like kernel bypass
and batch processing, to achieve performance comparable to that
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of proprietary hardware appliances. Software switches have been
developed to bridge and route traffic in SDN and NFV and their
performance has largely benefited from the use of these acceleration
techniques. These developments are typified by state-of-the-art
proposals such as FastClick [21], Open vSwitch (OvS) [8], Vector
Packet Processing (VPP) [16], and the Snabb NFV project [13].

While interest in software switches is soaring, the relative merits
of different proposals are still not well-understood in the absence
of a comprehensive, comparative performance analysis. It is in-
deed a daunting task to perform such an evaluation [32] and most
published comparisons relate to a small number of switch propos-
als [30, 58] or execute a limited number of test scenarios [49]. The
objective of the present work is to propose a methodology for com-
paring switch performance, in terms of essential throughput and
latency metrics, that takes proper account of the disparate design
choices that guided their development. For instance, OvS was tai-
lored to support match/action semantics, VPP was constructed as a
full-fledged software router, while other solutions such as Snabb,
FastClick, and BESS embraced modular design to compose complex
network services.

To give a sense of the complexity of the task, we consider a
simple scenario commonly used for performance comparisons. In
this scenario, a software switch is deployed as an L2 forwarder
between two 10 Gbps network interface cards (NICs). Bidirectional
maximum throughput and the corresponding round-trip latency
(with an offered input traffic load equal to 95% of the maximum
throughput) are measured with minimum size, 64B packets. Fig. 1
reports some of our experimental findings. In the left-hand figure,
we plot measured throughput against average latency. The metrics
are seen to be negatively correlated, meaning the switch with the
highest throughput is also the one achieving the lowest latency.
In the right-hand figure, we plot the standard deviation of latency
against its mean. However, this time no pattern is visible.

Based on these observations, we conclude that it is critical to
fairly compare a broad range of state-of-the-art software switches
in a set of simple yet representative test scenarios. To define the
methodology, we start by analyzing the design space of seven
software switches, namely Open vSwitch DPDK (OvS-DPDK) [9],
FastClick [21], Berkeley Extensible Software Switch (BESS) [38],
netmap suite [40, 47, 54, 55], Snabb [49], t4p4s [42], and FD.io
VPP [16], to build a basic understanding of their respective designs.
We then define four test scenarios, introduced in [62] and intended

https://doi.org/10.1145/3359989.3365415


CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA T Zhang, L Linguaglossa, M Gallo, P Giaccone, L Iannone, J Roberts

0

5

10

15

20

25

0 10 20 30 40 50

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
pp

s)

Average Latency (µs)

BESS

FastClick
VPP

OVS-DPDK
snabb

t4p4s

VALE

0

10

20

30

40

50

0 10 20 30 40 50

La
te

nc
y 

St
dD

ev
 (µ

s)

Average Latency (µs)

BESS
snabb

VPP

OVS-DPDK
FastClick

t4p4s

VALE

Figure 1: Scatter plots of latency/throughput and of aver-
age/standard deviation of latency, under 64B synthetic pack-
ets and bidirectional 10Gbps links.

to provide results meaningful for different segments of an NFV
service chain. Finally, we provide experimental measurements of
throughput, with unidirectional and bidirectional traffic, and la-
tency. It is important to note that these experimental results depend
significantly on the particular hardware and software versions used
in our platform and are thus only indicative (for instance, VPP
achieves higher performance under the FD.io Continuous System
Integration and Testing (CSIT) tests [3] using a similar hardware
configuration). Our aim is not, therefore, to discover the best per-
forming solution for our hardware platform, but rather to define
a proper comparison methodology and to identify possible per-
formance impairments when the switches are used in the context
of NFV. In our experiments, VNFs are hosted in virtual machines
(VMs). The same tests can be repeated for other virtualization tech-
niques such as containers, and we leave this for future work.

To facilitate reproducibility, all the scripts and instructions of
our experiments have been released on GitHub [2]. We strongly
encourage researchers and developers to use these to repeat the
same set of experiments on their own servers and to build on this
basis to gain further understanding.

The paper is organized as follows. In Sec. 2, we review related
literature on software switches and their comparison. Then, in
Sec. 3, we explore the design space of the considered software
switches and highlight their specificities. In Sec. 4, we explain
the four test scenarios. Experimental results are presented and
discussed in Sec. 5. We draw our conclusions and discuss future
work in Sec. 6.

2 RELATEDWORK
We first survey the panoply of open-source software switch pro-
posals before discussing related work on performance comparison
of different implementations.

2.1 Software switches
We first introduce the seven switches whose performance we have
directly compared and then briefly describe alternative designs.

2.1.1 Evaluated Software Switches. The seven state-of-the-art
software switches included in our comparison study are OvS-DPDK,
t4p4s, FastClick, Snabb, BESS, VPP, and VALE. They have been
chosen both for the availability of an up-to-date codebase and for
their promised high performance.
OvS-DPDK [9] is a high-speed user-space variant of Open vSwitch
[8]. It moves the data plane of Open vSwitch into user space and
adopts DPDK poll-mode drivers to deliver packets, completely
avoiding the overhead imposed by kernel stack and interrupt han-
dling.
t4p4s [42] is a platform-independent software switch specifically
designed for P4 [25]. A compiler is implemented to generate switch-
ing code from P4 programs and a hardware abstraction layer deals
with platform-dependent details. For Intel NICs, t4p4s integrates
DPDK to improve efficiency.
FastClick [21] extends the codebase of Click Modular Router [41]
and integrates high-speed packet I/O techniques such as DPDK and
netmap. Its data path is also optimized by leveraging acceleration
techniques including zero-copy, batching, and multi-queueing.
Snabb [49] is a high-speed modular software switch with a set of
predefined modules enabling the composition of complex network
functions. Like MoonRoute [34], it is based on Lua and LuaJIT [14].
Snabb is known for the introduction of the vhost-user protocol [15],
featuring direct packet delivery between user-space processes and
VMs, without kernel intervention.
BESS [38] is a modular software switch from UC Berkeley featuring
a set of built-in modules used to compose network services. Mod-
ules can be glued together and fed to the daemon process, which
deals with packet scheduling (enabling traffic prioritization) and
processing.
VPP [16] is a software router that allows users to configure the
forwarding graph and to process packets in batches. The VPP de-
sign incorporates a number of throughput optimization techniques
while also supporting interrupt mode when using native drivers. In
addition, VPP provides a CLI for experimentation and debugging
while resorting to the binary API for production use (bindings to C,
C++, Go, Python over a non-blocking, shared memory interface).
VALE [55] is an L2 software switch based on the popular netmap
high-speed packet I/O framework. It adopts batch computing and
memory prefetching to enhance processing efficiency. mSwitch [40]
augments VALE with enhanced switching logic. To ensure high-
speed packet delivery between virtual machines, a pass-through
approach named ptnet is proposed [47]. In contrast to most of the
other switches that use the DPDK poll-mode driver and complete
kernel bypass, VALE is built on top of netmap and relies on system
calls and NIC interrupts for packet I/O. It is therefore interesting to
compare VALE with other solutions.

2.1.2 Other Software Switches. We briefly reference some other
software switches that we have not included in the present com-
parison.
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RouteBricks [28] achieves multi-Gigabit/s packet processing
speeds by exploiting parallelization both within and across com-
modity servers. PacketShader [39] boosts packet processing using
graphics processing units (GPUs). Hyper-Switch [53] improves
packet forwarding between virtual machines and the Xen hyper-
visor by adopting batch processing and computation offloading.
Cuckoo Switch [63], a software Ethernet switch, adopts the cuckoo
hashing algorithm for forwarding table lookup andDPDK for packet
I/O operations, thus realizing both memory efficiency and high-
speed processing. MoonRoute [34] is a software router based
on MoonGen [29] and LuaJIT [14]. The use of the Lua scripting
language improves programmability compared to other software
switches that use C or C++. Despite their interesting features, we
exclude these switches from direct quantitative comparison because
their codebase is quite outdated.

The Virtual Filtering Platform (VFP) [33] is designed to host SDN
in cloud datacenters. PVPP extends VPP to support P4. Promising
performance is reported in [27]. These solutions cannot be included
for direct comparison as their code is not currently available.

PISCES [57] extends Open vSwitch with the support of the P4
language. However, as detailed in [42], t4p4s outperforms it by
two times running the baseline L2 forwarding application. We thus
only consider t4p4s in our comparison. Lagopus [52] is a user-
space OpenFlow switch based on DPDK. We do not take this switch
into consideration here due to its low performance.1 In [24], the
OfSoftSwitch is enhanced by leveraging the PFQ framework [23].
However, like Lagopus, this switch has limited performance (≤
4 Mpps with 64B packets) and is therefore not included in our
comparison.

Finally, ClickNF [35, 43] extends Click with a set of modules
enabling complex L2 to L7 network functions. Since ClickNF is
similar to FastClick in terms of design and performance, we do not
consider it to avoid duplicates.

2.2 Performance Comparison
The literature includes a number of works aiming to evaluate the
performance of state-of-the-art software switches. The authors
of [31] compare Open vSwitch throughput with Linux bridge and
Linux kernel IP forwarding. According to their results, the stan-
dard Open vSwitch fails to achieve 2 Mpps with 64B packets. The
same authors further analyze the throughput and latency of Open
vSwitch in [30]. Paper [58] presents an evaluation of OvS-DPDK
throughput using port/flow mirroring with 1 Gbps NICs. Our work
differs in that we only focus on software switch implementations
capable of achieving much better performance (e.g. more than two
orders of magnitude higher throughput).

Several prior performance comparison works in the literature are
particularly relevant to ours. The survey [44] presents a throughput
and CPU utilization performance comparison of SR-IOV, netmap
passthrough, OvS-DPDK, and Snabb under two test scenarios: inter-
VM forwarding and 1-VNF loopback. Our work differs in that we
consider more software switches under a more diverse set of test
scenarios (including those considered by the survey). Moreover,
since our work focuses solely on software switches, we attach

1Our preliminary benchmarking result with Lagopus and Ryu controller achieves a
throughput less than 2 Mpps with 64B packets

physical NICs to the VALE switch, not directly to the VMs. We also
omit hardware PCI passthrough techniques such as SR-IOV.

The authors of [49] compare the throughput of Snabb, Open
vSwitch, OvS-DPDK, and Linux bridge while [32] evaluates the
throughput of BESS, VPP, and OvS-DPDK using physical interfaces
only. Our work focuses as well on NFV use cases and thus also
considers VNFs hosted in a virtualized environment. In addition,
all the aforementioned works do not compare performance in the
important scenario of service chains with more than one VNF.
This multi-VNF loopback scenario is considered in [50, 51], but the
comparison is limited to VPP and OvS-DPDK.

None of the above-cited works consider latency, which is a criti-
cal performance metric. Both throughput and latency of BESS and
ClickOS are compared in [48] under a loopback service chaining
scenario. We preferred to consider VALE, rather than ClickOS, in
our comparison as the latter is a full-fledged NFV framework rather
than a software switch. Furthermore, in our comparison, all systems
use the same QEMU hypervisor, avoiding the uncertainty arising
when one system uses QEMU and the other Xen.

In contrast to the existing literature, in addition to providingmea-
surement results, our work seeks to define a comparison methodol-
ogy. This consists of a set of test scenarios and metrics designed to
enable a deeper understanding of software switch performance and
to help identify potential bottlenecks. There are two open-source
projects, namely FD.io CSIT-1904 [4] and VSperf [18], that are very
relevant to our work. CSIT-1994 aims at defining a comprehensive
set of test scenarios for VPP and DPDK applications. VSperf, pro-
posed by the Open Platform for NFV Project (OPNFV), focuses on
the benchmarking methodology of virtual switches for the NFV
infrastructure [59]. Currently, it has integrated vanilla OvS, OvS-
DPDK, and VPP. Our work covers all the test scenarios defined by
the two projects. Moreover, the reported experimental results relate
to a set of representative, state-of-the-art software switches that is
more extensive than any considered in prior work.

3 SOFTWARE SWITCHES DESIGN SPACE
We first discuss the importance of exploring the different design
objectives of alternative software switches before considering how
the seven representative state-of-the-art solutions fit into a design
space taxonomy.

3.1 Design objectives
Before performing a comparative evaluation, it is very important to
understand themain design differences between the considered soft-
ware switches. This may require identifying the adopted processing
model, or ascertaining whether the switch has been designed for a
particular application such as SDN or NFV. This is time-consuming
but appears an essential precondition to avoiding biased results or
an incorrect interpretation of the impact of subtle, performance
impacting details.

Rather than providing a detailed discussion of implementation
and/or acceleration techniques, for which we refer to the survey
in [45], we aim in this section to consider each switch design in
relation to a number of technical aspects affecting packet processing
performance. The objective is to gain insight on how to devise
meaningful experimental scenarios. A summary of this taxonomy
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Table 1: Taxonomy of State-of-the-Art High-Performance Software Switches
Architecture Programming Processing Model Virtual Runtime Programming Main

Self-contained Modular Paradigm RTC Pipeline Interface Reprogrammability Language Purpose
BESS ✓ Structured ✓ ✓ vhost-user Medium C, Python Programmable NIC
Snabb ✓ Structured ✓ vhost-user High Lua, C VM-to-VM

OvS-DPDK ✓ Match/action ✓ vhost-user Medium C SDN switch
FastClick ✓ Structured ✓ vhost-user Low C++ Modular router

VPP ✓ Structured ✓ vhost-user Medium C Full router
VALE ✓ Structured ✓ ptnet Low C Virtual L2 Ethernet
t4p4s ✓ Match/action ✓ vhost-user Medium C, Python P4 switch

and the corresponding software switch classification is shown in
Table 1.

3.2 Architecture
Amajor difference between software switches derives from the way
packet processing is configured and, more importantly, executed.
A self-contained architecture is defined as a full-fledged software
that can be deployed with minimal configuration effort. The switch
data path is predefined (though modifications at compile time are
allowed) and all processing functions are deployed in a single pro-
cess. In contrast, a modular architecture targets a high degree of
flexibility. This is usually achieved by providing a set of predefined,
well-known network functions that can be arranged in a forward-
ing graph. The latter can even be re-configured at run-time, when
each node is a different thread or process, or extended with custom
network functions.

Our evaluation takes into account four switches designed with a
self-contained architecture: VALE [55], VPP [20], t4p4s [42], and
OvS-DPDK [9]. VALE is an L2 learning switch based on netmap. It
can interconnect both physical NICs and virtual interfaces and for-
ward packets at high speed. Though it is feasible to connect VALE
with an external program, it is considered here as a self-contained
architecture. VPP consists of a forwarding graph with hundreds
of functions with support for additional plugins [46]. It exposes a
command-line interface that can be used to configure the router
with a syntax similar to the Cisco IOS operating system. OvS-DPDK
is a software switch built for SDN in which packet processing is
realized via a set of match/action tables (cf. Sec. 3.3), which can be
modified via the ovs-vsctl API. Custom packet processing can
be realized by adding new code that must be compiled inside the
original codebase. t4p4s is designed to support P4 [25] semantics,
whose workflow is quite similar to OvS-DPDK. It consists of a pars-
ing stage on packet entry and a de-parsing stage when packets exit.
Match/action tables, described through P4, are deployed between
these two stages to indicate the sequence of operations to perform
on packets.

The other switch designs considered in our study, FastClick
[21], BESS [38], and Snabb [49], belong to the modular category.
FastClick, one of the latest versions of the original Click Modu-
lar Router, consists of a set of nodes that can be arranged using
a Click-specific configuration language. BESS also has a modu-
lar architecture, although the modules are more general and less
specialized than those of FastClick. Similarly, Snabb interconnects
modules with links to compose network service.

3.3 Design paradigm
Software switch implementations are heavily influenced by their
target use cases. We classify the design paradigm into two cate-
gories. The first one adopts structured programming to route traffic
across VNFs, as done by a majority of existing software switches.
The second solution is to use the match/action programming par-
adigm exploited by OvS-DPDK and t4p4s. Packet processing is
realized using built-in packet classification algorithms that match
specific header fields and apply the corresponding actions.

3.4 Processing model
When packets are delivered to a software switch, there are generally
two ways to process them: run-to-completion (RTC) and pipeline.
The former refers to a model in which a single thread performs full
packet processing before being forwarded or discarded, while the
latter refers to a model that packets go through several threads, each
contains a portion of processing logic, to complete full processing.

Most frameworks (VPP, OvS-DPDK, t4p4s, and VALE) adopt the
run-to-completion model to reduce the context switching overhead.
Even FastClick, though being an extension of Click which was
designed with a pipeline model in mind, has completely moved to
a full run-to-completion approach. Snabb is the only considered
switch that processes packets solely according to a pipeline model
while BESS can adopt either model depending on the implemented
multicore approach.

3.5 Virtual interfaces
Software switches rely on virtual interfaces to interact with VNFs
and steer traffic on NFV platforms. Most of the VMs under QEMU
/KVM communicate with the outside world using the virtio [56]
standard. It consists of the virtio_net paravirtualized frontend
network driver and the vhost_net backend driver. Traditionally,
vhost_net takes packets into the kernel and copies them back to the
user-space software switch. However, this is not desirable from a
performance point of view. To address this issue, Snabb implements
vhost-user, a backend driver allowing direct packet exchange
between software switches and VMs. Compared with vhost_net,
vhost-user provides better performance as it eliminates the over-
head imposed by the kernel. DPDK also adopts this solution and
hence all of the frameworks considered in this work, except VALE
that is based on netmap, use vhost-user [15] as backend driver.

VALE adopts ptnet for efficient VM networking. ptnet is a new
paravirtualized device driver that grants the VMs direct access
to packet buffers of netmap ports on the host using the netmap
API. Compared with vhost-user, ptnet delivers packets in zero-copy
manner without incurring the overhead of queueing (as for virtio)
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or packet descriptor format conversion, at the cost of a lower degree
of host-VM isolation and more difficult live migration.

3.6 Runtime reprogrammability
Although software switches are usually easy to program, it is also
important to consider their degree of reprogrammability. As an ex-
ample, programmable packet processors can be written as a simple
C program. However, adding a new feature may require rewriting
part of the code and, sometimes, to also rerun, recompile or replace
binary executables. However, a highly reprogrammable software
switch may offer the possibility to change behavior directly at
runtime, without the need for recompilation. We categorize the
switches into three degrees of reprogrammability: high, medium
and low.

Snabb and BESS are the software switch implementations with
the highest degree of reprogrammability. Thanks to the App en-
gine and command-line tools of Snabb, standard modules can be
loaded interactively and the processing pipeline can be dynami-
cally adjusted at runtime. Similarly, BESS provides a control utility
(bessctl) capable of loading new configuration files and modules
into its processing pipeline on the fly. Note that newly added mod-
ules do need to be compiled before being integrated into the pro-
cessing pipeline. OvS-DPDK packet processing behavior can also
be adjusted at runtime. In particular, external controllers can popu-
late flow rules to the OvS match/action tables through southbound
protocols such as OpenFlow. As a result, its runtime programmabil-
ity really depends on that of the external control plane. Both VPP
and FastClick allow to program some modules and execute custom
packet processing applications. In particular, the VPP command-
line interface allows existing modules to be configured and new
plugins to be added at runtime. Yet changing the version of the
same plugin requires restarting the software switch. Therefore, VPP
has a medium degree of reprogrammability. Similarly, even though
some modules can be interactively configured, FastClick instance
has to be restarted when the processing graph is changed and there-
fore has a medium degree of reprogrammability. Finally, both t4p4s
and VALE switch have a low degree of reprogrammability since
they do not provide any means to dynamically adjust their packet
processing at runtime.

3.7 Programming language
The choice of one particular programming language over another
may be dictated by performance requirements, programmability, or
time-to-market considerations. Most of the software frameworks
for high-speed packet processing are written in C and/or C++. Since
both languages are performant, feature-rich, and portable across
different platforms, most of the software switches considered in
our study implement their performance-critical components using
them. Higher-level programming languages such as Python and
Lua are also used by some software switches. For example, BESS
additionally provides a Python API to facilitate the composition of
configuration scripts, t4p4s implements its P4 compiler in Python.
Snabb, on the other hand, is based on Lua. It also wraps snippets of
C code using LuaJIT, which profiles and optimizes code execution
at runtime [49]. With the relatively better programmability of Lua

and dynamic optimization of LuaJIT, Snabb is expected to be an
efficient solution.

3.8 Switch main purpose
Packet processing frameworks are able to sustain good performance,
thanks to a large collection of acceleration techniques discussed
in the survey [45]. The adoption of these techniques depends on
the main purpose for which the software switch has been designed.
Considering this purpose is of interest for two main reasons: (i)
it may provide hints on the performance of each design in some
specific scenarios; (ii) it may be helpful in understanding which
of the software switch implementations is more suitable for some
particular user requirements.

BESS provides a native way to easily schedule packets with-
out only using the simple FIFO approach, thus enabling custom
policies, resource sharing, and traffic shaping. Resource sharing
mechanisms may also be implemented on top of existing frame-
works: e.g., Addanki et al. [19] implemented fair sharing of both
CPU and bandwidth using fair packet dropping on top of VPP. How-
ever, to the best of our knowledge, BESS is the only design that
natively provides scheduling capabilities without the need to write
a custom algorithm. Snabb targets a simple and performant packet
processing framework. Its core optimizations leverage runtime pro-
filing and rely on LuaJIT to optimize the most frequently executed
portion of code, rather than relying on the static compilation. Its
app engine can dynamically register new apps, making it one of
the most flexible solutions for high-speed packet processing. Un-
like other switches, It implements its own compact kernel bypass
mechanism without relying on DPDK or netmap. OvS-DPDK aims
to provide the benefits of SDN (i.e., separation of data and control
planes) with the flexibility of a software solution. Its data path is
highly optimized thanks to the presence of internal flow caches. It
can also be used as a static switch with predefined rules, or as a
fully functional SDN switch in conjunction with an external control
plane. t4p4s implements a high-speed, platform-independent P4
switch. Its compiler synthesizes P4 programs and generates core
switch code, which is then converted to platform-specific instruc-
tions by its hardware abstraction layer. It is representative of several
efforts to implement production-ready P4 switches. FastClick aims
to provide a high-speed modular router that can process millions of
packets per second by arranging custom functions in a graph-like
fashion. The advantage of FastClick is the possibility to re-arrange
its rich set of internal elements to realize different types of packet
processing applications. VPP should be considered when a fully-
featured software network function (e.g., switch, router, or security
appliance) is required. Its code was part of Cisco high-end routers
before being released as open-source and therefore contains a large
set of software components that can be used for all kinds of pos-
sible L2-L4 applications. VALE fulfills the role of a high-speed L2
learning switch that interconnects multiple VMs. Its main purpose
is to provide a high-speed virtual local Ethernet switch.

4 TEST METHODOLOGY
To evaluate and compare software switch performance and to iden-
tify potential bottlenecks, we define four archetypal test scenarios,
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Figure 2: The four test scenarios we propose. Red arrows illustrate the packet flow in the System Under Test (SUT), namely
the software switches.

p2p, p2v, v2v and loopback, and two performance metrics particu-
larly relevant for NFV, throughput and latency. The four scenarios
are illustrated in Fig. 2. Note that we assume a server with 2 dual-
port NICs and denote software switches as SystemUnder Test (SUT).
This section describes each scenario. Some further configuration
details are provided in the appendix.

p2p (physical-to-physical). In this scenario, packets entering
from one physical interface are forwarded to the other by the SUT,
as shown in Fig. 2a. Although this scenario does not deal with VNFs,
it is still relevant since common network functions are increas-
ingly hosted by software switches, either to augment the physical
NIC [38] or to reduce duplicated VNF processing [36]. Evaluat-
ing the bare forwarding rate between two physical interfaces thus
provides a useful baseline reference. Furthermore, combined with
other scenarios such as p2v and v2v, p2p helps to evaluate the over-
head imposed by a virtualized environment, both qualitatively and
quantitatively.

p2v (physical-to-virtual). In this scenario, the SUT forwards
packets between a physical interface and a VNF hosted in a vir-
tualized environment, as shown in Fig. 2b. This scenario can be
mapped to the first and last hop of NFV service function chains
inside a server. Combined with p2p, p2v reveals SUT efficiency
when connected to a virtualized environment.

v2v (virtual-to-virtual). In this scenario, the SUT steers traffic
between two VNFs, as shown in Fig. 2c. It helps to characterize how
efficiently software switches perform such tasks. This is relevant
for NFV as services are usually deployed in chains, requiring in-
tensive traffic exchange between VNFs. It is important to note that
v2v throughput is upper-bounded by memory bandwidth, while
other scenarios that include physical interfaces are limited by NIC
capacity. It is thus important to know how fast an SUT can forward
traffic across VMs.

loopback: This scenario is representative of a complete NFV
service chain. Packets entering from one NIC are steered by the
SUT through a chain of VNFs before exiting through the other NIC.
Each VNF is hosted by an independent VM. Fig. 2d shows the case
of a 1-VNF service chain. We also take into account multi-VNF
chains in our study.

We believe these four scenarios and two performance metrics
are the most relevant for NFV. Their combination enables a com-
prehensive understanding of the performance bottlenecks of any
software switch built for NFV purposes.

Table 2: Software Switches Parameter Tuning

Solutions Applied Tunings
FastClick Increase descriptor ring size to 4096
t4p4s Remove source MAC learning phase
VALE Disable flow control for NIC interfaces

5 EXPERIMENTAL RESULTS
In this section, we first describe the testbed over which we execute
our experiments and then present the results obtained by applying
our test methodology to the seven software switches identified in
Sec.2 and analyzed in Sec.3.

5.1 Measurement platform
Our testbed includes a commodity server equipped with two Intel
Xeon E5-2690 v3@ 2.60GHz CPUs (each with 24 virtual cores under
Hyperthreading and 32k/256k/30720K L1-3 caches), and two Intel
82599ES dual-port 10-Gbps NICs spread over two NUMA nodes.
The server runs Ubuntu 16.04.1 with Linux 4.8.0-41-generic kernel.
VNFs are deployed inside CentOS 7 [1] VMs using QEMU 2.5.0.2

For each tested software switch, the latest stable version at the
time of writing has been used, namely: FastClick (commit 8c9352e);
BESS (Haswell tarball); OvS-DPDK (version 2.11.90); Snabb (commit
771b55c); VALE (commit 1b5361d); t4p4s (commit b1161b2); and
VPP (version 19.04). Moreover, we tune the default settings of some
switches in order to optimize their performance while imposing
minimal configuration. The adopted tuning is described in Table 2.
Furthermore, as recommended in [12] and [17], we set the CPU
frequency scaling governor to "performance" and disable Turbo-
boost in order to reduce performance variance. We also reserve
1GB Hugepages to minimize TLB misses. Finally, some cores are
deliberately isolated from the kernel using isolcpus and reserved
solely for the software switch under test.

The setup for each test scenario is illustrated in Fig. 3. Software
switches are always deployed on a single core on NUMA node
0 to ensure a fair comparison. Single-core is also arguably a rea-
sonable assumption as network operators usually seek to limit
resources devoted to networking. Each VM is allocated with four
cores through the QEMU -smp option. By default, we use MoonGen
(commit 31af6e6) as traffic generator/receiver (TX/RX) for p2p and
loopback scenarios. For p2v and v2v tests, all switches use Moon-
Gen [29] and FloWatcher-DPDK [61], except VALE, which requires
pkt-gen [7] as TX/RX inside the VM(s). This is because the VM’s
2Newer versions of QEMU cannot be used due to their compatibility issues with
BESS [37].
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Figure 3: Test scenarios mapped to our testbed with two NUMA nodes each associated with a dual port 10Gbps NIC directly
connected to the other NUMA node’s NIC. Blue arrows represent the data flow.

ptnet driver is tightly coupled with host VALE ports and can only
render optimal performance with netmap compatible tools. Other
switches do not have the same problem since the intermediate virtio
rings decouple the guest VMs from the host.

It is important to note that the use of the same server for both
traffic generation/reception and the system under test does not
introduce spurious interference since the cores and memory are
effectively isolated under the NUMA architecture of our server. In
particular, we combine software switch utilities (e.g. DPDK EAL
parameters) with system tools (e.g. numactl, taskset) to guarantee
core and memory affinities. For the v2v scenario, everything runs
on NUMA node 0 without the involvement of physical NICs, thus
the traffic forwarding rate is only limited by the local memory speed.
For other scenarios, the TX/RX components run on NUMA node 1
while the software switch under test (and TX/RX for p2v scenario)
is deployed on NUMA node 0. The cores only access memory in
their local NUMA node and do not share remote memory. Note that
since packets are transferred through physical NICs, their maximum
bandwidth (10Gbps) constitutes the theoretical bottleneck for these
scenarios.

5.2 Throughput
In this section, we present and discuss the throughput sustained by
the software switches in the four test scenarios under synthetic uni-
directional/bidirectional traffic, with different packet sizes, namely
64, 256, 1024 Bytes.

p2p scenario. For this scenario we configure MoonGen to trans-
mit synthetic traffic at 10 Gbps from NUMA node 1 to the SUT, as
illustrated in Fig. 3a. Packets are sent at maximum rate disregarding
any drops.3 We vary the packet size (64B, 256B and 1024B) and
measure the throughput (in Gbps) on NUMA node 1 by collecting
outbound traffic from NUMA node 0.

Fig. 4a shows the throughput results for the p2p scenario. Con-
sidering unidirectional traffic, all the software switches manage
to saturate the 10 Gbps link with packets bigger than 256B, prov-
ing that they are all capable of handling realistic traffic (e.g., 850B
average packet size in data centers [22]). For the most stressful
input load with 64B packets, BESS, FastClick, and VPP still sat-
urate the link at 10 Gbps (about 14.88 Mpps-million packets per
second). Snabb achieves only 8.9 Gbps, as staging packets in inter-
nal buffers imposes extra overhead. OvS-DPDK achieves 8.05 Gbps

3Note that this is different from the usual Non-Drop-Rate (NDR) of RFC 2544 [26]: a
binary search for the NDR is not suited for evaluating software solutions as it may
converge to unreliable points due to even a single packet drop caused at the driver
level.

due to the overhead imposed by its match/action pipeline. As the
synthetic traffic consists of identical packets, corresponding to a
single flow, OvS-DPDK’s flow cache does not help. VALE switch
and t4p4s present the worst performance of around 5.6 Gbps. VALE
switch prioritizes memory isolation by design and therefore per-
forms expensive packet copying operations between its ports, in
addition to source MAC learning and flow table lookup. t4p4s incurs
the overhead of implementing multiple stages, including header
parsing/de-parsing and flow table lookup.

Bidirectional traffic is more stressful and provides a more rele-
vant comparison of the throughput performance of BESS, VPP, and
FastClick. This test is realized by simultaneously transmitting pack-
ets towards both interfaces of NUMA node 0 and measuring the
aggregated throughput. As shown in Fig. 4a, all the switches, except
VALE and t4p4s, reach 20 Gbps with 256B and 1024B packets. Note
that such limited performance could be explained with the same
considerations on unidirectional traffic results. For small 64B pack-
ets, BESS, FastClick, and VPP manage to exceed 10 Gbps. BESS even
reaches 16 Gbps since it only performs very simple tasks like col-
lecting statistics. FastClick additionally extracts and updates packet
header fields while VPP performs a number of verifications. The
other switches achieve similar results as with unidirectional traffic,
as their bottleneck is the processing being less efficient and/or made
of more complex operations.

p2v scenario. For the p2v scenario, we instantiate a single VM
using the QEMU hypervisor. As mentioned before, VALE uses
netmap’s ptnet driver for high-performance VM networking.4 We
therefore need to use a customized version of QEMU provided by
netmap authors [11], as it supports ptnet virtual interfaces with
VALE ports as their host backend [47]. We then configure ptnet
support in the guest VM and use pkt-gen (in RX mode) as traffic
monitor. pkt-gen is based on the netmap API and provides native
speed processing with ptnet virtual ports. To test other switches,
we use standard QEMU and configure virtio virtual interfaces with
vhost-user as host backend. Finally, we boost packet processing in-
side the guest VM by deploying DPDK (version 18.11) to bypass the
guest kernel. We attach virtio interfaces to the DPDK igb_uio de-
vice driver and use FloWatcher-DPDK [61], a lightweight software
traffic monitor, to measure the unidirectional throughput. Similar to
pkt-gen, FloWatcher-DPDK performs measurement with negligible
overhead [60] so that our results are not unduly influenced by this
configuration discrepancy. The scenario is illustrated in Fig. 3b.

4ptnet also supports passthrough of physical interfaces directly, without connecting
them using VALE, but we decided not to use this feature because our work focuses on
software switches and not on passthrough.
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Figure 4: Throughput in physical-to-physical (p2p), physical-to-virtual (p2v) and virtual-to-virtual (v2v) scenarios

Results for the p2v scenario are shown in Fig. 4b. With unidirec-
tional traffic, the software switches considered in our evaluation
sustain 10 Gbps under 256B and 1024B packets. For 64B packets,
FastClick, VPP, OvS-DPDK, and Snabb achieve only 5 to 7 Gbps,
which is less than their p2p results. Thus, these switches experience
a bottleneck in dealing with the virtualized environments as vhost-
user requires to enqueue/dequeue virtio rings by copying packets.
t4p4s achieves only 4.04 Gbps due to its less efficient processing
pipeline and to the overhead imposed by vhost-user. On the other
hand, VALE achieves a slightly higher throughput (5.77 Gbps) than
in p2p (5.56 Gbps) since ptnet supports zero-copy packet delivery
and imposes less overhead than vhost-user. Note that BESS sustains
10 Gbps regardless of the overhead from vhost-user, as the tasks it
performs are very simple. The impact of vhost-user on BESS can
only be understood with bidirectional traffic.

To obtain bidirectional traffic, we initiate two pkt-gen instances
(for VALE)/oneMoonGen instance (for others) to TX/RX from inside
the VM, and start another MoonGen instance to TX/RX simulta-
neously on NUMA node 1, as illustrated in Fig.3b. However, we
experienced severe performance degradation when the two pkt-gen
instances are attached to the same ptnet port inside the VM. To
overcome this, we attach the pkt-gen instances to a netmap vir-
tual interface, which is in turn attached to the ptnet port through
a VALE instance. Actually, this setting imposes an extra hop of
packet forwarding, but this is the best we can do to have reason-
able bidirectional p2v traffic with VALE. Without this issue, the
bidirectional throughput of VALE is expected to be higher.

As shown in Fig. 4b, for bidirectional traffic with 256B and 1024B
packets, BESS and FastClick are still able to sustain line rate, i.e.,
20 Gbps, but the impact of vhost-user is noticeable for the other
switches. Indeed, VPP, OvS-DPDK, Snabb, and t4p4s fail to saturate
20 Gbps, in contrast to their results in the bidirectional p2p test.
VALE reaches only 15 Gbps due to the extra overhead imposed by
the VALE instance inside the VM. The real throughput is expected
to be higher than this and the results here only represent a lower
bound. For 64B traffic, BESS achieves 11.38 Gbps, much lower than it
achieved in the bidirectional p2p test (16 Gbps), further illustrating
the impact of vhost-user. We also notice a throughput degradation
for VPP (5.9 Gbps) compared to the unidirectional test (6.9 Gbps).
To find out the cause, we reverse the unidirectional data path and
transmit packets from the VM to NUMA node 1. This "reversed"

unidirectional throughput is only 5.59 Gbps. It appears that VPP
suffers from a performance penalty in receiving packets from vhost-
user ports.

v2v scenario. For the v2v scenario, we instantiate two VMs, each
with a virtual interface attached to the software switch under test.
The virtual interface configuration is similar to the one for the p2v
scenario. We deploy a traffic generator in the first VM and configure
it to inject packets towards the software switch, which in turn for-
wards packets to the second VM running the monitoring VNF. Sim-
ilarly to previous scenarios, different traffic monitoring/generation
tools are required to realize the intended data path. For VALE uni-
directional throughput, we deploy an instance of pkt-gen in each
VM and configure them to perform traffic generation/monitoring
respectively. For other switches, we run MoonGen on the first VM
as traffic generator and FloWatcher-DPDK on the second VM to
measure throughput. The v2v scenario configuration is illustrated
in Fig 3c. Unlike other scenarios, v2v is only limited by the memory
bandwidth and thus illustrates the upper limit of inter-VM commu-
nication using software switches. Benchmarking results confirmed
that both MoonGen and pkt-gen are able to transmit packets at line
rate in VMs.

Results with unidirectional and bidirectional traffic are reported
in Fig. 4c. With unidirectional traffic, VALE achieves 10.50 Gbps for
64B packets. Comparedwith its corresponding p2v result (5.77 Gbps),
it is clear that VALE is more efficient in host-VM communication.
This is mostly due to the efficiency of the ptnet zero-copy host-VM
packet delivery mechanism. As shown in Fig. 4c, other switches
achieve throughput lower than 7.4 Gbps. Snabb is the only one
outperforming its p2v result (6.42 Gbps vs. 5.97 Gbps) while other
switches experience throughput degradation. We argue that this is
because of the different implementation details between Snabb and
DPDK. With a larger packet size of such as 256B and 1024B, almost
all solutions sustain line rate, i.e., 10 Gbps.

With bidirectional traffic, we deploy an instance of MoonGen
in each VM as TX/RX for software switches other than VALE. For
VALE, we deploy two pkt-gen instances in each VM and make them
TX/RX simultaneously. Similar to the p2v bidirectional test, we
attach both pkt-gen instances in each VM to a netmap virtual inter-
face which is attached to the ptnet virtual interface through a VALE
instance. As shown in Fig. 4c, switches exhibit lower forwarding
rate with bidirectional traffic, compared to the experiments with
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Figure 5: Unidirectional throughput measurement of loopback scenario
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Figure 6: Bidirectional throughput measurement of loopback scenario

unidirectional traffic. For example, VALE achieves 35 Gbps with
1024B packets, which is only 64% of its unidirectional throughput.
This occurs because bidirectional traffic doubles the number of
packet copy operations between VALE ports and through virtio
rings for the others.

loopback scenario. In the last scenario, loopback, we instantiate
a chain of VMs, each of which is allocated four virtual cores and a
pair of virtual interfaces. Each software switch steers traffic across
the VMs in sequence, forming a service chain. Fig. 3d illustrates the
setup. For VALE, we configure two ptnet virtual interfaces for each
VM in which we run a VALE instance as a VNF. This VALE instance
cross-connects the pair of ptnet ports. Each VM is linked to its
successor through a VALE instance. The first and last VM also need
to link the physical ports with two additional VALE instances. In all,
we need 𝑁 + 1 VALE instances for an 𝑁 -VNF service chain. For the
other switches, we configure two virtio interfaces with vhost-user
backend for each VM, in which we run an instance of the DPDK
l2fwd sample application [6] that cross-connects interfaces, updates
the MAC addresses, and forwards packets in batches. On NUMA
node 1, we start MoonGen to generate 10Gbps traffic through one
port and measure throughput for different packet sizes from the
other port. The SUT is configured to rely packets betweenMoonGen
and the service chain. We vary the number of VNFs from 1 to 5

to test the throughput of each SUT with increasing service chain
length.

Fig. 5 illustrates the throughput for unidirectional traffic. For the
1-VNF case, BESS yields the highest throughput. However, as we
increase the service chain length with more VMs, it is outperformed
by VALE. This is mainly due to the fact that BESS needs to perform
an increasing number of packet copies with an increasing number
of VMs.5 Even though VALE still needs to copy packets between
its VALE ports, this overhead is compensated by the efficient VM
network I/O of ptnet. As shown in Fig. 5c, VALE manages to sustain
10 Gbps for unidirectional traffic with 1024B packets, regardless of
the service chain length. Other switches achieve lower throughput
due to the overhead (mainly packet copies) imposed by vhost-user.
Note that when the service chain length reaches 4, Snabb becomes
overloaded and its throughput plummets, as the workload is too
much to handle with a single core.

Fig. 6 presents the results with bidirectional traffic. In this case,
VALE performance significantly degrades, especially for smaller
packets. For 1024B packets, its performance begins to dropwhen the
service chain length is greater than 2. This is due to the dominant
impact of doubling the overhead of packet copying between VALE

5Note that BESS exhibits QEMU compatibility issues that prevent the instantiation of
more than 3 VMs simultaneously. As a result, we cannot obtain throughput or latency
results for loopback scenario with more than 3 VNFs.
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Table 3: RTT latency (𝜇s) for p2p scenario and loopback scenario with 1-4 VNFs.

Scenario p2p 1-VNF loopback 2-VNF loopback 3-VNF loopback 4-VNF loopback
0.1𝑅+ 0.50𝑅+ 0.99𝑅+ 0.1𝑅+ 0.50𝑅+ 0.99𝑅+ 0.1𝑅+ 0.50𝑅+ 0.99𝑅+ 0.1𝑅+ 0.50𝑅+ 0.99𝑅+ 0.1𝑅+ 0.50𝑅+ 0.99𝑅+

BESS 4.0 4.6 6.4 35 15 39 67 33 136 167 55 147 - - -
FastClick 5.3 7.8 8.4 69 26 37 164 47 70 368 73 129 978 107 149
OvS-DPDK 4.3 5.2 9.6 50 23 514 124 42 909 182 90 1052 235 124 336

Snabb 7.3 11.3 22 70 27 74 123 53 146 186 95 266 406 365 1181
VPP 4.5 5.9 13.1 41 20 47 116 47 74 175 73 98 231 87 131
VALE 32 34 59 32 35 65 41 51 90 54 74 132 67 100 166
t4p4s 32 31 174 169 65 2259 274 117 3911 434 192 5535 548 228 7275

ports. Other software switches also present decreasing throughput
as the service chain length grows, due to the increasing number of
memory copies between the SUT and VMs.

5.3 Latency
It is critical for network operators to understand the impact on
packet latency of different switch architectures and design choices.
In this section, we report measurements of round-trip time (RTT)
latency, which in our case is defined as the time spent between
packet emission by the traffic generator and the time the packet is
received by the traffic monitor.

In order to perform meaningful measurements, it is necessary to
identify the Maximal Forwarding Rate (𝑅+), defined as the maximal
rate the SUT can forward packets without loss. Injecting packets
at a speed higher than 𝑅+ causes data path congestion and leads
to packet losses that bias the measured latency. On the other hand,
injecting packets at a very small rate may also impair latency as
most solutions employ batch processing. It proved to be very hard
to determine 𝑅+ since software traffic generators generally lack
the stability of hardware and may induce non-deterministic packet
losses.6 VNF chains in the loopback scenario tend to exacerbate this
uncertainty. Rather than trying to identify the precise 𝑅+, we follow
the methodology introduced in [46] and define 𝑅+ as the average
throughput achieved under saturating input. We measure latency
at loads of 0.10, 0.50, and 0.99 times 𝑅+. Thus, 0.99𝑅+ reflects the
latency under heavy input load, 0.50𝑅+ under intermediate, more
normal load, while 0.10𝑅+ shows the impact of batch processing
on latency under low load.

We perform the described latency measurement specifically for
p2p and loopback scenarios as, in these two scenarios, MoonGen
can leverage the NIC to accurately and efficiently time-stamp UDP
packets [29]. We have not performed a latency test for p2v as its
RTT is expected to be similar to that of the loopback scenario with
one VNF. For v2v, we cannot perform the same test as for p2p and
loopback since virtual interfaces, unlike physical ones, do not sup-
port hardware time-stamping. Fortunately, MoonGen implements
a software time-stamping feature that can still be utilized in VMs.
Although less accurate than hardware time-stamping, it provides a
means to compare different SUTs under the same setup.

p2p scenario. To measure RTT in the p2p scenario, MoonGen
is configured with two threads. One thread generates synthetic
traffic with 64B packets, as for measuring throughput. The other
TX thread periodically injects into background traffic Precise Time

6Precision is made more difficult by the low granularity of software traffic generators.
MoonGen, for example, rounds up TX rates in the range [9.88,10] Gbps to 10 Gbps.

Protocol (PTP) packets with specific sequence numbers, collects
these special PTP packets on their way back from the other port
of the NIC in NUMA node 1, and calculates the round-trip time
based on the difference between TX and RX time-stamps. These
time-stamps are generated by the underlying Intel 82599 NIC, under
the instruction of MoonGen.

We list the measured average latency in 𝜇s in Table 3. Under
0.99𝑅+ load, t4p4s presents a very high latency of 174 𝜇s, showing
its instability under peak load. Since the other DPDK solutions do
not face such problems, we believe this is due to the inefficiency of
the t4p4s internal pipeline. The hardware abstraction layer of t4p4s
presents a trade-off between performance and platform indepen-
dence and the level of abstraction can be re-factored to enhance
performance. VALE also imposes high latency at high load as it
uses interrupts for packet I/O unlike BESS, FastClick, OvS-DPDK,
and VPP that exploit DPDK busy-waiting for packet I/O. Snabb la-
tency is also quite high (22 𝜇s), mainly because its LuaJIT compiler
keeps evaluating its execution time in performing online code opti-
mizations. Under 0.50𝑅+ load, VALE presents the highest average
latency of 34 𝜇s, mainly because it uses interrupt instead of busy-
waiting for packet I/O. t4p4s also presents a relatively high latency
of 31 𝜇s, due again to its inefficient internal pipeline. Among the
other switches, Snabb achieves 11.3 𝜇s, because of the extra delay
imposed by intermediate inter-module buffers. Under 0.10𝑅+ load,
we observe that t4p4s achieves higher latencies than in the 0.50𝑅+
test. This is a consequence of the delay in constituting batches
under low load.

loopback scenario. The loopback latency test uses the same set-
tings as the p2p test with 𝑅+ set to the corresponding unidirectional
loopback throughput. We list the measured average RTTs in 𝜇s with
1 to 4 VNFs in Table 3. For all the switches we consider, latency
for 0.99𝑅+ load is always higher than for 0.50𝑅+ load. This is as
expected, since 𝑅+ is only the average throughput and the actual
forwarding rate of each software switch fluctuates around it. Con-
sequently, an unstable software switch might fail to sustain 0.99𝑅+
in a specific time period, causing data path congestion and packet
loss. Such a situation rarely happens under 0.50𝑅+ load. Another
important result is the impact of batch processing of VNFs since,
at a low input rate, time has to be spent to wait for new packets
to complete a batch, thus impairs overall latency. As shown in Ta-
ble 3, latency under 0.10𝑅+ load is higher than under 0.50𝑅+ for all
the software switches except VALE, mainly due to the strict batch
processing of DPDK l2fwd. In particular, the ratio between 0.10
and 0.50𝑅+ is more than 9 for FastClick with 4 VNFs, as FastClick
also suffers from its own batch processing delay. VALE does not
incur this issue since it dynamically adjusts the batch size. In most
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Table 4: RTT latency (𝜇s) for v2v scenario.

BESS FastClick OvS-DPDK Snabb VPP VALE t4p4s
37 45 43 67 42 21 70

cases, t4p4s presents the worst latency. For 0.99𝑅+ load, its latency
is much higher than for other switches, reflecting the instability of
its processing pipeline. Under the normal 0.50𝑅+ load, its latency
is at least two times higher, reflecting the inefficiency of its pro-
cessing pipeline. OvS-DPDK is also unstable under high input load
yielding very high latency. Note that in the 4-VNF scenario under
0.99𝑅+ load, its latency (336𝜇s) is smaller than for other scenarios
(≥ 514𝜇s). We conjecture the reason to be that the processing of
VNFs becomes the dominating overhead as service chain length
grows. Snabb presents a huge latency leap in the 4-VNF test since
it is overloaded at this point and fails to keep up with input traffic.
The same phenomenon was observed in its throughput test.

v2v scenario. Thanks to the good compatibility with the oper-
ating system, standard tools can be used to measure the latency
for VALE in this scenario. We simply configure routing using ip
command for each VM. We then ping the second VM from the
first and get the average RTT. Other switches do not support sys-
tem tools. Instead, as mentioned before, we measure latency using
the software time-stamping feature of MoonGen since hardware
time-stamping is not supported by virtual interfaces. The setup
is similar to loopback tests: we configure two virtio interfaces for
each VM. All the interfaces are attached to the SUT. In the first VM,
we launch an instance of MoonGen with software time-stamping
enabled. Packets are time-stamped and transmitted from one virtio
interface towards the SUT, which forwards traffic to the second
VM. The second VM in turn forwards the packets back to the SUT
using the DPDK l2fwd application. Then the SUT sends the packets
to the first VM. The MoonGen instance in the first VM time-stamps
the received packets and calculates the RTT based on the differ-
ence between RX and TX time-stamps. Packets are transmitted at
672 Mbps (=1 Mpps) for all the tests. Although not as accurate as
hardware time-stamping, this approach reveals the main character-
istics of the solutions. Results are listed in Table 4. As for the v2v
throughput test, VALE outperforms other switches with only 21 𝜇s
latency. BESS, FastClick, VPP, and OvS-DPDK realize very similar
latencies (37-45 𝜇s) as they all use vhost-user to interconnect VMs.
While ptnet requires two packet copying operations between VALE
ports, solutions based on vhost-user have to incur four copies on
virtio rings. Snabb incurs a higher latency of 67 𝜇s, because of the
delay imposed by its internal ring buffers. t4p4s presents the worst
latency of 70 𝜇s due to its less efficient internal pipeline.

5.4 Software switch use cases
Our experience in conducting the present evaluation leads us to
make the following remarks on possible use cases for the considered
switches. These remarks complement the taxonomy previously
presented in Table 1.

BESS achieves both high throughput and low latency in p2p,
p2v, and 1-VNF loopback scenarios. It is a viable choice to switch
traffic between physical NICs and one or multiple paralleled VMs.
It has reasonable performance in 2 and 3-VNF loopback scenarios

but suffers from its incompatibility with newer versions of QEMU
hypervisors when the number of VMs increases (i.e., > 3).

Snabb performs well in most cases but suffers from overload
in the loopback scenario with a chain of more than 3 VNFs. It is
easier to deploy than other solutions based on DPDK or netmap
and is thus a good choice when the time-to-production of specific
applications is critical.

OVS-DPDK and t4p4s have the advantage of supporting Open-
Flow and P4, respectively, and are thus the only solutions that work
with third-party SDN controllers and newly introduced protocols.
OVS-DPDK appears the best option for a stateless SDN scenario
while t4p4s is preferable when some state is required (e.g., for a
firewall).

FastClick and VPP have good performance in all scenarios and
simplify VNF migration and redeployments thanks to the isolation
provided by virtio. Moreover, unlike BESS, they are compatible with
newer hypervisor versions and can therefore be used to build both
linear and parallel NFV environments with reasonable trade-offs.
Of these two solutions, VPP might be preferred when latency is
the primary concern since it generally has lower RTT and avoids
severe latency degradation at low input rates (e.g., 0.1𝑅+).

Finally, VALE, augmented by ptnet pass-through, achieves rela-
tively high throughput in v2v and loopback scenarios. It is therefore
well-suited to construct linear service chains in environments with
high workloads. On the other hand, as ptnet is highly dependent on
the host netmap module, it does not have the same level of memory
isolation as the virtio paravirtualized driver. Migrating its VNFs
may therefore additionally require synchronization at host level. A
further caveat is that VALE, as a simple Ethernet switch, has limited
scope for classification compared to the other solutions and may
require enhancement to support advanced traffic routing between
VNFs.

6 CONCLUSION
The emergence of high-speed packet I/O frameworks and the prolif-
eration of NFV have given rise to intense research on the design of
software switches running on COTS platforms. Many different de-
signs have been proposed and implemented to route traffic between
NICs and VNFs in NFV applications. In this paper we have sought
to improve understanding of the performance of these alternative
designs by defining a performance measurement methodology and
providing sample results for seven state-of-the-art proposals.

The methodology is based on four test scenarios, physical to
physical (p2p), physical to virtual (p2v), virtual to virtual (v2v)
and loopback (with multiple VNFs), designed to explore the per-
formance of typical NFV configurations where traffic is steered
between multiple physical and virtual interfaces. In the interest
of reproducibility, the paper describes the experimental set-up in
detail, including specifications of tested software and hardware ver-
sions and the packet generation and monitoring tools used. All the
scripts and instructions used to run our experiments are available
on GitHub [2].

The measurement results reveal that no one switch prevails in
all scenarios. This is as expected given the different design objec-
tives of the considered software switches but is a useful reminder
that the best switch choice depends significantly on the intended
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Table 5: Software Switches Use Cases Summary

Best at Remarks
BESS Forwarding between physical NICs Incompatible with newer versions of QEMU
Snabb Fast deployment, runtime optimization Bottlenecked with multiple VNFs
OvS-DPDK Stateless SDN deployments Supports OpenFlow protocol
FastClick VNF chaining Supports live migration, high latency at low workload
VPP VNF chaining Supports live migration
VALE VNF chaining with high workload Limited traffic classification and live migration capability
t4p4s Stateful SDN deployments Supports P4 language

NFV context. The presented results and related discussion enable
a more informed choice and should guide the design of potential
enhancements to relieve identified bottlenecks.

Our planned future work will include consideration of multi-
core solutions and the use of containers instead of VMs. It is worth
noting that the present wide-ranging comparison has required
considerable effort, both to understand the detail of the considered
switches and to set up and conduct the experiments. We hope
therefore that other researchers will be able to profit from our
experience in further exploring the performance dimensions of
existing and emerging software switches and in further refining
the evaluation methodology.
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A SWITCH CONFIGURATIONS
To enhance reproducibility, we provide the most critical configura-
tion details for each test scenario. More detailed descriptions can
be found in our Github repository [2].

A.1 p2p
Each switch requires a unique configuration to realize the p2p
scenario. We only show the most critical configuration snippet for
each design. For BESS, we composed a configuration script in which
physical interfaces are hooked to the bessd daemon process with
the built-in PMDPort module. Physical queues (input/output) of
the hooked interfaces are instantiated using QueueInc/QueueOut
modules. Packet forwarding is realized by linking different queues
with the right arrow:
inport::PMDPort(port_id=0,...)
outport::PMDPort(port_id=1,...)

in0::QueueInc(port=inport, qid=0)
out0::QueueOut(port=outport, qid=0)

in0 -> out0

For FastClick, we compose a similar configuration file with
FromDPDKDevice/ToDPDKDevice modules that hook and link two
physical interfaces as follows:

FromDPDKDevice(0,...)->ToDPDKDevice(1,...)

Note that it is easier just to whitelist the required physical interfaces
using DPDK EAL "-w" option.

For t4p4s, we select its l2fwd application which forwards pack-
ets according to a predefined flow table. The table is configured
with “destination MAC address/output port" as Match/Action fields.
Traffic generators need to send packets with the corresponding
destination MAC addresses to realize the required forwarding.

For VPP, we specify the PCI addresses of the interfaces in the
configuration file. We interconnect the ports with the l2patch func-
tion, as this is functionally equivalent to the configuration of other
switches:
test l2patch rx port0 tx port1
test l2patch rx port1 tx port0

For Snabb switch we similarly write a custom module that hooks
the ports by PCI addresses and recompile the Snabb software to
make the module executable. Inside the module, we start a new
configuration object and instantiate two logical port “apps" using
the PCI port addresses which are then interconnected through the
“link" method:
local c = config.new()
config.app(c, "nic1",...,{pciaddr = pci1})
config.app(c, "nic2",...,{pciaddr = pci2})
config.link(c, "nic1.tx -> nic2.rx")

For OvS-DPDK, we configure a new bridge and attach the phys-
ical interfaces to it by specifying their PCI addresses using the
ovs-vsctl command. Then we populate the flow table with di-
rect forwarding rules between the interfaces using the ovs-ofctl
command.

For netmap, we need to unload the ixgbe kernel module and
load its netmap counterpart. The physical ports are thus bound to
the netmap device driver. Then we simply bind physical ports to a
VALE instance (in this case vale0) using the vale-ctl command:
vale-ctl -a vale0:p1
vale-ctl -a vale0:p2

A.2 p2v
As for p2p, we need to follow switch specific approaches. The only
difference is that we have to consider the virtual interface con-
necting software switches to VNFs. To interact with virtualized
environments such as virtual machines or containers, each switch
must create a virtual interface. Snabb, VPP, OvS-DPDK, FastClick
and BESS achieve this using the vhost-user protocol. Netmap so-
lutions, on the other hand, achieve this using ptnet [47]. Some
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configurations are required on the VNF side to realize p2v work-
flow. These are described in Sec. 5. Here we specifically detail the
minimal configuration required for each software switch. In par-
ticular, for BESS we configure a virtual interface “v1" using the
PMDPort module by specifying the name and Unix domain socket
path. Then physical interface “inport" is linked to “v1" to realize
p2v workflow:

inport::PMDPort(port_id=0, ...)
in0::QueueInc(port=inport, qid=0)

v1::PMDPort(vdev="name,iface=path,...")

in0 -> PortOut(port=v1.name)

Similarly, for FastClick, t4p4s, and VPP, we create a virtual in-
terface by specifying name and socket path through the DPDK
"–vdev" option. Note that, by default, t4p4s does not work with vir-
tual interfaces. We therefore disabled some offloading features and
recompiled the source code to make it compatible with vhost-user.
OvS-DPDK accomplishes the same by setting the type of virtual
interface to dpdkvhostuser. The created interfaces behave just like
physical ones and they can be linked to render the intended traffic
steering behavior.

Unlike solutions based on DPDK, Snabb implements its own
version of vhost-user backend. Consequently, we create a virtual
interface “vi1" leveraging its customized “vhostuser" module:

config.app(c,"vi1",vhostuser.VhostUser,...)

As for netmap, we just create a virtual interface using vale-ctl and
attach it to a VALE instance which relies traffic from the physical
interface to the VNF:

vale-ctl -n v0
vale-ctl -a vale0:v0

A.3 v2v
To configure software switches realizing v2v workflow, we sim-
ply instantiate two virtual interfaces and interconnect them as
described in the p2v scenario.

A.4 loopback
For loopback, physical and virtual interfaces are interconnected as
described for p2p/p2v scenarios. Note that for t4p4s in the loopback
scenario, the VNFs need to modify the destination MAC address of
each traversing packet to realize the required forwarding behavior.
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