
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Probabilistic estimation of the application-level impact of precision scaling in approximate computing applications /
Traiola, Marcello; Savino, Alessandro; DI CARLO, Stefano. - In: MICROELECTRONICS RELIABILITY. - ISSN 0026-
2714. - ELETTRONICO. - 102:No. 1013309(2019). [10.1016/j.microrel.2019.06.002]

Original

Probabilistic estimation of the application-level impact of precision scaling in approximate computing
applications

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.microrel.2019.06.002

Terms of use:

Publisher copyright

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.microrel.2019.06.002

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2750652 since: 2019-09-09T13:35:55Z

Elsevier

Probabilistic Estimation of the Application-Level Impact of Precision Scaling in
Approximate Computing Applications

Marcello Traiola

LIRMM - University of Montpellier / CNRS - France

Alessandro Savino, Stefano Di Carlo
Politecnico di Torino - Italy

Abstract

The introduction of Approximate Computing (AxC) into software allows to achieve several optimizations such

as performance improvement, energy reduction, and area reduction by paying with a decreased precision of the

computed results. In order to find an effective balance in the application of approximate operators within the

software, the approximation techniques proposed in the literature run several versions of the software with different

configurations of the given technique. It is very clear how the common issue of this kind of approaches is the lack of

a methodology to estimate the impact on the application-level accuracy without facing time intensive simulations.

In this paper, we evaluate the application-level accuracy by means of a Bayesian network modeling the propa-

gation of the approximation across data. Once modeled the classes of accuracy required, the approach predicts the

probability of the outcomes to reach each accuracy class. We performed experiments on a set of well-known target

applications, both resilient and non-resilient. Specifically, as case study applications we used matrix multiplication,

Discrete Cosine Transform (DCT), a Finite Impulse Response (FIR) filter and the image blending algorithm. Re-

sults show that the proposed approach is able to estimate the approximation error with good accuracy (98− 99%)

and very low computation time (i.e., few seconds, in the worst case).

Keywords: Approximate computing; Functional approximation; Quality Metrics; Bayesian Networks

1. Introduction

Approximate computing (AxC) is an approach widely used in error-tolerant applications (i.e., they may accept

results with a controlled level of inaccuracy) to trade-off accuracy for efficiency. The idea is to relax the accuracy

of the results to gain benefits in other design parameters, e.g., power consumption, execution time, etc.

Approximate computing techniques try to maintain a controlled level of error by exploiting the resiliency of the5

computation to the approximation, which depends on the application domain. Algorithms dealing with noisy real-

world input data (e.g., sensor data processing, speech recognition, etc.), applications whose outputs are interpreted

by humans (e.g., digital signal processing of images or audio), data analytic algorithms, web search algorithms and

wireless communications algorithms are all examples of applications resilient to errors [1, 2, 3].

The literature is rich of publications demonstrating how this computing paradigm is effectively applied to:10

algorithms (e.g., to reduce the number of iterations) [4, 5], data (e.g., to reduce the storage burden in data-intensive

Preprint submitted to Microelectronics Reliability June 3, 2019

scenarios) [6, 7, 8] or hardware (e.g., to reduce area or delay by accepting internal inaccuracies) [2, 9, 10, 11].

Recently, Barrois et al. compared these approaches with the goal of improving awareness when choices are taken [12].

Among the different approximation techniques, this paper focuses on a class of approaches named precision

scaling. These approaches work in general by changing the precision (bit-width) of input or intermediate operands15

of an operation in order to reduce storage/computing requirements. Despite the literature is rich of different

techniques to perform precision scaling (the reader may refer to [13] for a review of these techniques), techniques

to select the operators to approximate are still not well explored. The general approach is to rely on large and

computation intensive campaigns of executions and profiling of the target application.

In order to provide design space exploration tools to support the design of approximate computing applications,20

Barbareschi et al. [14, 15] proposed IDEA, a tool to generate variants of a C/C++ application including different

AxC techniques. The space of possible variants is analyzed using a branch and bound technique. Variants are

generated manipulating the Clang version of the application. While this approach solves the problem of automating

the application of different AxC techniques to a program, the problem of assessing the impact of the approximation

applied to each generated variant still remains.25

A totally different approach was proposed in [16]. The paper models the approximation error as a white noise

and uses the noise linearity property to evaluate the output quality of DSP approximated blocks. However, as shown

in [17], the white noise assumption is not always correct, since the error is dependent on the input. Moreover, the

noise linearity assumption limits its application to approximate adders, only.

When considering a complex application, modeling the effect of an AxC operation on the application result30

requires to correlate its error propagation with the behavior of all other operations. This paper proposes a stochastic

approach based on a Bayesian prediction model able to estimate the error affecting the result of a complex software

application when precision scaling is applied to different portions of the computation. Bayesian networks (BN) [18]

are a class of graphical stochastic models well suited to describe stochastic phenomena represented by a set of

correlated random variables. The approximation is obtained by scaling the precision of hardware operations and35

data registers. The application is modeled in the form of a BN whose nodes represent data and operators, while

arcs model the data-flow. Overall, the network models the error propagation along the data-flow of the application.

To construct the model, the application is profiled only once to extract its data-flow. Then, the operators are

characterized with required probabilities to be embedded in the model. Finally, the error distribution of the

application can be quickly estimated exploiting the Bayesian inference theory.40

An extensive set of experiments shows the proposed technique at work, highlighting its accuracy and low

computation time when compared with state-of-the-art techniques.

The remainder of this paper is organized as follows: Section 2 overviews related publications in the field, Section

3 presents the proposed approach and Section 4 presents results of the application of the proposed technique on a

set of case studies. Finally, Section 5 summarizes the main contributions and concludes the paper.45

2

2. Background

When dealing with the introduction of the approximation into an application, two challenging problems must be

faced: the selection of the portion of the application to approximate and the identification of the best combination

of AxC techniques to use. In both cases, the goal is to satisfy the accuracy requirements of the final result and the

investigation is usually very expensive.50

Several publications address the above mentioned problems by profiling the executing of the application several

times after applying different combinations of AxC operators. The results of the executions are then compared

with those produced by a golden (i.e., approximation-free) implementation [19, 6, 20, 21, 22]. The comparison is

done exploiting metrics that suit the specific application domain (e.g., the structural similarity index in the image

processing domain [23]).55

A first attempt to model the approximation resorting to statistic in order to reduce the impact of the analysis

can be found in [24]. The paper proposes a circuit level model to systematically characterize different AxC circuits.

Despite the impact of the use of these circuits in a full application is not analyzed, the paper introduces the concept

of error profile, which opens a path to the use of statistical methods in AxC characterization.

A different approach is reported in [25, 26], where the authors try to formalize the error introduced by different60

implementations of AxC operators to model its propagation within the application. Despite this approach does

not require several executions of the applications, the formal model is complex and the formalization is rather

application dependent.

In general, the idea of studying the statistics of errors due to approximations is not completely new in literature.

However, available papers consider only approximate hardware components such as adders and multipliers. Ayub et65

al. [27] proposed an algorithm to assess the error probability for a specific adder implementation, i.e., the Low Power

Approximate Adder (LPAA). The proposed approach takes into account the different probability distributions of

the input bits of each two-bits adder composing the full implementation. Also in this case, the paper does not

consider a full application using the adder as a computing block.

Mazahir et al. proposed a methodology to evaluate the error distribution at the output of an approximate adder70

[11] and an approximate multiplier [17]. Both works improve previous approaches by considering not only single

adders or multipliers but evaluating the error at the end of a cascade of elements of the same type. Nevertheless,

both papers still do not consider cases in which different sequences of approximate operations are performed.

Eventually, the same authors in [28] used a similar concept to provide run-time adaptation to the approximate

arithmetic data-path.75

More recently, Wu et al. [29] proposed a methodology to calculate the error statistics of block-based approximate

adders. The approach enumerates all possible output deviations and then evaluates their occurrences. This is

interesting for the error characterization of a single component. However, the work focuses only on approximate

adders and it does not take into account precision scaling techniques. Moreover, the paper evaluates the error

probability for a single operation, without considering cumulative effects of several operations. Therefore, it does80

not allow assessing the approximation impact on the overall application error.

3

Overall, solutions able to model how the error distribution at the output of an approximate component propa-

gates while executing the operations composing a complex application are still not well explored.

The general idea of the model proposed in this paper was first introduced by the same authors in [30]. However,

despite moving a first step toward constructing a Bayesian model able to estimate the error introduced by precision85

scaling operators in a complex program, the model proposed in [30] suffered from inaccuracies for those applications

in which the same approximated data is reused in long cascades of operations. In fact, to reduce complexity, the

model proposed in [30] assumed that a given operator is always characterized by the same error profile at its output,

regardless its position in the computation flow. However, this assumption does not hold in real applications, and

despite it introduces acceptable estimation errors in several cases, it can lead to strong inaccuracies for selected90

cases as will be discussed later in Section 4.

This paper relaxes this assumption adapting the description of each operator in the model to its depth level and

thus overall improving the accuracy of the model. This comes at the cost of an additional effort in characterizing

the operators, and an additional complexity of the model that slightly increase the computation time. However,

the model still provides estimations with a computation time orders of magnitude smaller than performing multiple95

application executions.

A second strong limitation introduced by our preliminary model proposed in [30] was the introduction of a

strong link between the number k of bits reduced when applying precision scaling operators and the maximum error

accepted at the output of the application. In particular, the assumption was to accept as maximum error at the

output of the application the Worst Case Error (WCE) of an operator (WCE = 2k − 1). However, this assumption100

is too strong. If applied, most of the time the applications generate unacceptable results after few operations. In

real cases, given an accepted approximation error α, the designer must be able to apply precision scaling techniques

reducing the number of bits in such a way that WCE = 2k − 1 < α. This paper extends the model to take this

into account.

3. Methods105

Figure 1 sketches the workflow proposed in this paper to estimate the effect of precision scaling applied to

different operations of a complex computation. The workflow is composed of three main phases:

1. Model construction: this phase is strictly application dependent. It analyzes the source code of the application

in order to extract its data-flow. The data-flow of the application is than used to build a BN where nodes

represent data and operators, and edges model the relationships among them. Both precise and approximate110

operators can be used in this model. The Conditional Probability Table (CPT) of each node models the prop-

agation of the approximation error through the data-flow and is computed in the operators characterization

phase.

2. Operators characterization: this phase builds a library of characterized operators (e.g., mathematical oper-

ators) to be used in the model construction phase. Each operator is characterized in order to quantify the115

error introduced at its outputs when applying different precision scaling factors at its inputs or intermediate

4

Model construction
Operators

characterization

Accuracy
analysis

Application
model

Application
source code

Operators Scaling
factors

Characterized
operators

(CPTs)

Accuracy
Statistics

Figure 1: Approximation estimation workflow.

operands. This includes the characterization of precise operators working on approximated data. To be useful

in a Bayesian model, each operator is characterized in terms of a CPT modeling the conditional probability of

the operator to produce an approximation error at its output, depending on the level of approximation of its

inputs. Despite its complexity, this activity must be performed only once for each considered AxC technique.120

All results can then be reused several times.

3. Accuracy analysis: this phase estimates the approximation introduced at the application level by the use

of instructions exploiting hardware blocks introducing precision scaling. This is done by classifying the

approximation into a set of accuracy classes. Bayesian inference is used here to quickly estimate how errors

propagate to the output of the application [31]. This operation can be performed several times evaluating125

different combinations of approximated operators, thus providing a valuable tool to perform Design Space

Exploration (DSE) in the AxC domain.

3.1. Model construction

The final accuracy of an application depends on the propagation of the error introduced by approximate operators

at intermediate steps of the computation. To properly capture this error propagation, the application must be130

modeled in such a way to formally represent:

• all data and operators involved in the computation;

• all relations between data and operators;

• the mechanisms that propagate approximation errors through the data of the application.

To achieve this goal, the application is modeled in the form of a BN in which:135

5

• nodes represent both data and operators;

• edges model the dependency between data and operators;

• each node is associated with a CPT able to express how the approximation of the parents nodes impacts the

outcome of the computation (see Subsection 3.2)

Once built, this model enables to analyze how errors are propagated from the root nodes down to the leaves140

representing the outcome of the application. The construction of the BN structure starts by profiling the target

software application. The application is instrumented in order to extract a trace of all performed operations. Each

operation in the trace is recorded together with the list of used inputs and outputs resources. The generated

application trace is used as input of Algorithm 1 to generate the related BN model.

The algorithm processes one operation at the time (lines 1-24), first computing its inputs and outputs resources145

(lines 2-3). For each output resource (lines 6-9) a new node is created and the node is annotated with the operation.

For each input resource (lines 11-20), the algorithm checks whether a new node must be instantiated or not. Since

each resource can be used in the application multiple times, the BN can be populated with more than one node for

each resource. If an input resource i was previously written (line 12), its associated node (ni) is already present and

can be connected to all output nodes (lines 17-19). If not (lines 13-16), a new node is created and then connected150

with the output nodes as in the previous case.

6

Finally, all output nodes are marked as the last write operation of the related resources (lines 21-23).
Algorithm 1: Bayesian Network generation algorithm

Data: AC = Application Trace

Result: BN = Algorithm’s Bayesian Network

1 foreach operation ∈ AC do

2 in[] = inputs of the operation;

3 out[] = outputs of the operation;

4 op = operation_label;

5 outnodes[] = ∅ ;

6 foreach o ∈ out do

7 no = add_node_to_BN(o);

8 annotate_node(no, op);

9 outnodes[o] = no

10 end

11 foreach i ∈ in do

12 ni = Get_Last_Written_Instance(i);

13 if ni does not exist then

14 ni = add_node_to_BN(i);

15 Set_Last_Written_Instance (i, ni) ;

16 end

17 foreach no ∈ outnodes do

18 add_edge_to_BN(ni, no);

19 end

20 end

21 foreach no ∈ outnodes do

22 Set_Last_Written_Instance (o, no)

23 end

24 end

To better understand the model construction phase, let us consider the example depicted in Figure 2-a. The

considered application is composed of a short sequence of instructions computing the sum of the values contained155

in a vector of four elements.

Figure 2-b shows the BN architecture for the considered example. For simplicity, the figure does not report those

resources not involved in the approximation (e.g., the integer counter variable i). Whenever multiple operations

are performed into a single instruction, intermediate nodes are created to properly model the intermediate results.

Each node with a parent is associated with the information of the operator used to compute its value in order to160

keep track of all hardware operators required by the computation.

Figure 2-b depicts three node types. Yellow nodes are input nodes. All intermediate nodes (in white), represent

7

int x [4] = { random data } ;

// for a l l vec tor elements

int yaxc = x [0] ;

for (int i = 1 ; i < 4 ; i++) {

yaxc = add_aprx (x [i] , yaxc) ;

}

int Sum = yaxc ;

(a)

x[0] x[1] x[2] x[3]

Sum
(=)

yaxc
(=)

Level 0

Level 1

Level 2

Level 3

yaxc
(add_aprx)

yaxc
(add_aprx)

yaxc
(add_aprx)

(b)

Figure 2: Vector element sum code and associate BN model

computations involving different operators. Eventually, orange nodes identify the leaves of the network representing

the output of the computation. They are the observation points from which the accuracy of the computation

must be observed. The full BN creation process has been automated using a publicly available BN library and165

engine SMILE [32]. The SMILE library is a C++ library that supports the creation of complex BNs, and offers

several already implemented solving algorithms. The developed tool extracts from an annotated code the list of

approximate-related instructions and parses them to create the network resorting to the SMILE engine.

3.2. Operators characterization

As mentioned in Section 1, among the different functional approximation techniques presented in the literature,170

this paper focuses on the precision scaling approach [13]. This subsection shows how the impact of precision scaling

on selected operators can be modeled in terms of CPTs in the proposed model. Each node of a BN is characterized

in terms of the set of states it can assume. In the proposed model different states are associated to different accuracy

levels. The characterization of an operator means computing the probability of the output of the operator to be in

a certain state (accuracy level) conditioned to the state of its parent nodes.175

In the proposed model, we define three different classes of accuracy (states) for each node: (i) precise, when the

result is error free regardless of the precision scaling operation; acceptable, when the introduced error remains under

a user-define threshold (α); unacceptable, when the introduced error cannot be tolerated. Given the aforementioned

classes, the CPT of an operator expresses the probability that the outcome of an operator belongs to a specific class,

conditioned to the state of its inputs. Looking at a full application, the final accuracy depends on the probabilities180

of its data to belong to one of the three accuracy classes.

8

3.2.1. Input nodes characterization

Given a general n bits data type, precision scaling works by reducing the size of the data type cutting its k less

significant bits. Therefore, given a number x (which can be any of the inputs in Figure 2-b) expressed on n bits,

its approximated value x̃ on n− k bits can be expressed as:185

x̃ =

n−1∑
i=k

xi · 2i (1)

where xi is the i-th bit of x. From the definition of approximated value in eq. (1), the introduced approximation

error can be computed as:

Ex = |x− x̃| =
k−1∑
i=0

xi · 2i ≤ 2k − 1 (2)

The error Ex can be used to assess whether the introduced approximation is tolerable or not.

Let us denote with α the threshold indicating the maximum value of Ex that can be tolerated by the application

domain. Based on its approximation error Ex, each data x̃ can be classified into three different accuracy classes190

defined as:

Class(x̃) =


P (Precise) if Ex = 0

A (Acceptable) if Ex ≤ α

U (Unacceptable) if Ex > α

(3)

The value of α must be selected based on a given quality metric for the application. However, following eq. (2),

it should be grater than 2k − 1 to avoid the generation of data with unacceptable accuracy at the beginning of the

application.

As an example, let us apply a 2 bits precision scaling (k = 2) on an integer number and let us choose α = 4.195

According to eq. (2), the approximation error Ex can vary from 0 to 3. For each possible value of Ex, Table 1

reports the corresponding class of approximation computed according to eq. (3).

Ex Class

0 P

1 A

2 A

3 A

Table 1: Error Enumeration

Starting from the enumeration reported in Table 1, and reasonably presuming that the possible values of x are

9

uniformly distributed, the probability to have x̃ in P, A or U can be computed as:

P (x̃ is P) = P (Ex = 0) = 1
4

P (x̃ is A) = P (Ex ≤ α) = 3
4

P (x̃ is U) = P (Ex > α) = 0

(4)

Eq. (4) allows us to quantify the probability of introducing an error on a single value by using precision scaling200

k = 2 and a threshold value α = 4. This can be translated in the CPT reported in Table 2. This CPT can be used

to characterize all inputs nodes (the Yellow ones in Figure 2) of the model. The Input Data CPT defines the input

Output

P 0.25

A 0.75

U 0

Table 2: Input Data CPT

data distribution over the three classes (P, A and U) due to precision reduction on original data. It is the only CPT

that does not need to be conditioned on the status of its parent nodes.

3.2.2. Operation nodes characterization205

Operation nodes propagate the error introduced on precision scaled data by performing a specific computation.

Their characterization requires determining how this propagation takes place. Indeed, the local error can be either

masked or amplified, changing the way the results of the application are distributed in the three accuracy classes

(P, A or U).

In order to explain the approach to compute the CPT of a single operator, we refer to the example shown in210

Figure 2.

The characterization of the assignment operator (=) is trivial because the input data is replicated at the output

without alterations. The probability of each output state (OS ∈ {P,A,U}) can be evaluated using the Bayes

Theorem with respect to the probability of its parents (inputsi) to be in a given state (IS ∈ {P,A,U}):

P (output = OS) =
∑

∀IS∈{P,A,U}

P (output = OS | input0 = IS0, · · · , inputn = ISn) ·
∏

∀i∈{0,··· ,n}

P (inputi = ISi)


(5)

This leads to the CPT shown in Table 3.

input P A U

output

P 1 0 0

A 0 1 0

U 0 0 1

Table 3: Assignment operator CPT

10

Let us now focus on the characterization of the accumulation operator (+ =). Since the assignment operator

does not alter the accuracy of the data, the accumulation operator can be treated as a sum operator (+). Given

two precise numbers x0 and x1 and their approximated versions x̃0 and x̃1 (see eq. (1)), the application of the sum

operator generates two different results denoted as ypr and yaxc:

yaxc = x̃0 + x̃1

ypr = x0 + x1 = (x̃0 + Ex0
) + (x̃1 + Ex1

)

The error introduced by the + operator can therefore be defined as:

Eyaxc
= |ypr − yaxc| = Ex0

+ Ex1
(6)

According to eq. (2), we can express eq. (6) based on the k parameter as follows:

Eyaxc
=

k−1∑
i=0

(xi
0 + xi

1) · 2i ≤ 2 · (2k − 1) (7)

Eq. (7) shows that the effect of a sum can double the error introduced by the precision scaling technique to the

original data. Consequently, depending on the value of α, a sum operator can generate results in the U accuracy

class.215

In the + operator case, the CPT determines the conditional probability of the result (yaxc, in this case) to

belong to one of the three aforementioned accuracy classes (P, A, U), given the classes of the operands (x̃0 and x̃1,

in this case). Therefore, we need to evaluate the following equations:

P (yaxc is P) = P (Eyaxc
= 0) = P (Ex0

+ Ex1
= 0) (8)

P (yaxc is A) = P (Eyaxc
≤ α) = P (Ex0

+ Ex1
≤ α) (9)

P (yaxc is U) = P (Eyaxc
> α) = P (Ex0

+ Ex1
> α) (10)

To evaluate eq. (8), we can simply observe that, since errors Ex are additive, the only possible combination of

errors leading to sum = 0 is Ex0
= Ex1

= 0. All other equations require a further analysis. Eq. (10) is surely220

satisfied if at least one operand among x̃0 and x̃1 belongs to U , i.e., Ex̃0
> α or Ex̃1

> α. Similarly, eq. (9) is surely

satisfied when one among x̃0 and x̃1 belongs to A and the other to P . Both eq. (9) and eq. (10) also include a

subset of cases when both x̃0 and x̃1 belong to the A class. In these cases, depending on the errors, Ex0 +Ex1 can

still be below α or raising above it. All combinations are summarized in Table 4.

Considering the case of α = 4, Table 5 enumerates all possible acceptable accuracy cases.225

Table 5 allows us to easily compute the following conditional probabilities by enumerating all possible cases:

P (yaxc is P | x̃0 is A and x̃1 is A) = 0

P (yaxc is A | x̃0 is A and x̃1 is A) = 2/3

P (yaxc is U | x̃0 is A and x̃1 is A) = 1/3

(11)

Eventually, Table 6 reports the full CTP of the + operator.

11

x0 P A U

x1 P A U P A U P A U

yaxc
Possible P A U A A if Ex0

+ Ex1
≤ α U U U U

States U if Ex0 + Ex1 > α

Table 4: Accuracy state of yaxc after a + operator depending on the accuracy of x0 and x1

x̃0 class x̃1 class Ex0 Ex1 Eyaxc yaxc class

A A 1 1 2 A

A A 1 2 3 A

A A 2 1 3 A

A A 1 3 4 A

A A 2 2 4 A

A A 3 1 4 A

A A 2 3 5 U

A A 3 2 5 U

A A 3 3 6 U

Table 5: yaxc classification when both x̃0 and x̃1 belong to the A class, sorted by Eyaxc , according to eq. (6) and the resulting yaxc

class according to eq. (4).

The first two rows list all possible combinations of classes for x̃0 and x̃1. The remaining rows provide the

probability for the output classification based on the combination of inputs. In absolute terms, the maximum

possible approximation error at this level is 6. This case corresponds to having Ex0 = 3 and Ex1 = 3.

According to eq. (6) and (7), if yaxc is used as input of a new computation, its error will be now ≤ 2 · (2k − 1),230

which is bigger then the maximum error introduced by an input operator when evaluating the previous CPT+.

Therefore, it is necessary to define the CPT for a second sum operator +. We refer to it as a level-two operator.

Hence, by considering the second sum in Figure 2, we have to analyze the following equation:

yaxc = yaxc + x̃2 (12)

First, we can apply the same observations we made for eq. (8), (9) and (10) with a wider set of error values

x0 P A U

x1 P A U P A U P A U

yaxc

P 1 0 0 0 0 0 0 0 0

A 0 1 0 1 2/3 0 0 0 0

U 0 0 1 0 1/3 1 1 1 1

Table 6: CPT+: Conditional Probability Table for the + Operator

12

for one operator. Thus, we have to analyze the cases when both the operands (yaxc and x̃2) belong to the A class.235

Table 7 shows what happens in those cases.

yaxc class x̃2 class Eyaxc Ex̃2 final Eyaxc final yaxc class

A A 1 1 2 A

A A 1 2 3 A

A A 2 1 3 A

A A 1 3 4 A

A A 2 2 4 A

A A 3 1 4 A

A A 2 3 5 U

A A 3 2 5 U

A A 4 1 5 U

A A 3 3 6 U

A A 4 2 6 U

A A 4 3 7 U

Table 7: yaxc Classification when both x̃0 and x̃1 belong to the A class

According to Table 7, we can compute the following probabilities:

P (yaxc is P | both operands are A) = 0

P (yaxc is A | both operands are A) = 1/2

P (yaxc is U | both operands are A) = 1/2

(13)

Finally, in Table 8, we report the CPT for the level-two sum of the analyzed application.

yaxc P A U

x2 P A U P A U P A U

yaxc

P 1 0 0 0 0 0 0 0 0

A 0 1 0 1 1/2 0 0 0 0

U 0 0 1 0 1/2 1 1 1 1

Table 8: CPT+: Conditional Probability Table for the level-two + Operator

In absolute terms, the maximum possible approximation error at this level is 9. This case corresponds to having

Eyaxc
= 6 (thus Ex0

= 3 and Ex1
= 3) and Ex2

= 3.

At this point, referring to Fig. 2, the CPT of the addiction reported at Level 2 is ready but the same operator240

recurs also a third time (the Level 3 accumulation). This means that the characterization must be done again,

following the same approach, in order to be able to properly model the results of the following equation:

yaxc = yaxc + x̃3 (14)

13

In general, the way an operator is characterized depends on: the level where input operands have been computed,

the precision scaling cut value k and threshold α for the accuracy classification. This requires to characterize all

necessary levels, increasing the operator characterization time. Nevertheless, as we will show in Section 4, this extra245

time still makes the model faster than running the application.

A similar analysis can be performed to characterize other operators such as difference (−), multiplication (∗)

and quotient (/).

3.3. Accuracy analysis

Once the BN is built, Bayesian inference can be used to analyze the network in order to predict the level of250

accuracy at the output of the application [31].

The prediction can be made computing the posterior probability of the leaves of the network (orange nodes in

Figure 2-b) to be in one of the three accuracy approximation classes defined in eq. (4). The posterior probability

that a node y of the BN is in one of the three accuracy classes (i.e., P, A and U) can be computed resorting to the

Bayes Theorem reported in eq. 5).255

Depending on the BN structure the eq. (5) can be a recursive equation since the probability of each parent

(referred as P (inputi = ISi) in the equation) may denote a conditional probability itself. The equation takes into

account the states of all operators from the bottom of the model up to the top. It can be solved by applying

different update beliefs algorithms proposed in the literature. In particular, the library used to implement the

proposed framework already provides two solvers: (1) the exact solver proposed by Lauritzen in [33] that can be260

used with medium size models (i.e., tens of nodes), and (2) the Estimated Posterior Importance Sampling (EPIS)

approximate stochastic solver proposed in [34] that can be used with very large models (i.e., thousands of nodes).

The flexibility of the proposed model can be very useful to have a quick insight on the accuracy level of the

application, thus enabling to quickly explore different design solutions.

Moreover, we can also resort to the BN capability of updating all beliefs of the network based on the knowledge265

(evidence) that selected nodes of the network are in a given state. This allows us to evaluate the effect of selected

functional approximations on the application. Such approach enables to explore how the presence or the absence

of the approximation, i.e., an operator that produces only non-approximate (evidence set on P state) values or an

operator with approximate output (evidence set on A state), impacts the final output. This allows us to perform a

very simple and preliminary design exploration that can help taking actions on the program implementation and270

usage of approximate operators.

4. Experimental Results

4.1. Experimental setup

The capability of the proposed model was evaluated on five software applications with different complexity (use

cases). They were implemented in C/C++ to easily simulate hardware precision scaling implementations using275

different operators. The list of use cases is as follows:

14

• Consecutive sums (CSs): a simple program performing a cascade of three consecutive sums (see Section 3.1)

on integer numbers.

• Matrix multiplication (MM): a function that is widely used in several computations including linear equations

solvers. Two variants of this use case working on 2x2 and 4x4 matrices (MM2 and MM4) of 8- and 16-bits280

elements were considered.

• Discrete cosine transform (DCT): a transformation that can be considered similar to the discrete Fourier

transform (DFT), but using only real numbers. The function has important applications in science and

engineering, such as audio (e.g., lossy compression of audio) and image (e.g., JPEG compression algorithm)

processing.285

• Finite impulse response (FIR): a convolution-based filter that can be implemented either in software or

hardware. It was applied to an image processing application (box blur).

• Image Blending (IB): an algorithm that blends two input images of the same size. The value of each pixel in

the output image is a linear combination of the corresponding pixels in the input images. They are 24-bit per

pixel images, where each byte represents a chromatic component.290

Two sets of experiments were performed. The first set aimed at assessing the accuracy of the estimations

performed using the proposed model and the analysis time required to obtain the estimations. All five use cases

were analyzed by considering different configurations of the precision reduction factor (k) and the accuracy threshold

(α), defined based on the characteristics of the use case.

The considered range of values for the accuracy threshold α was selected based on the bit width of the output295

values produced by the use case. For all use cases the minimum considered acceptable error was 1 and the maximum

was 2
bit−width

2 . Table 9 summarizes this parameter for all use cases. Please note that for MM2 and MM4 this

parameter indicates the bit width of each element composing the output matrix. Similarly, for DCT, FIR and IB,

the parameter represents the width of each single pixel component (R,G,B) of the resulting image.

For each value of α, different precision scaling factors k were considered. Starting from k = 1, for each use case,300

the maximum k was defined as the one generating unacceptable results (U class) for the higher value of α. The

ration behind this setup is to stop the analysis when, even with a very relaxed value of α, the approximation is so

high to produce unacceptable results.

The second set of experiments reproduced the experimental campaign proposed in [30] to fairly compare the

capability of the proposed model with those of our previously presented approach.305

In all experiments, we built the BN model of the selected use cases and estimated the probabilities of each

output value to be in the three accuracy classes defined in eq. (3).

To evaluate the accuracy of the estimations, we compared the obtained results with those computed resorting

to a campaign of executions of the applications. This required the implementation of both an approximation free

(golden) and an approximate version of each use case. For every execution, a random workload was generated and310

provided to both the golden and the approximate version of the application in order to estimate the error on each

15

output value and classify the output according to eq. (3). The number of samples required to have meaningful

results was defined using the randomized block design approach [35] and it is reported in Table 9. To prevent the

number of samples to become too high to be analyzed on time, we added a threshold to evaluate the deviation in

the error estimation between two consecutive samples, stopping the analysis as soon as this deviation was smaller315

than 0.001% for all classes. Table 9 also reports the mathematical operators involved in each case study together

with the overall number of instances per case.

Case Study CSs
MM2 MM4

DCT FIR IB
8-bit 16-bit 8-bit 16-bit

Output bit-width 11 16 32 16 32 8 8 8

α range [20 − 26] [20 − 28] [20 − 216] [20 − 28] [20 − 216] [20 − 24] [20 − 24] [20 − 24]

Number of samples 108 2 · 108 2 · 108 2 · 108 2 · 108 108 108 5.5 · 107

Involved Operators 4 Add
4 Add

8 Mul

16 Add

64 Mul

4 Add

8 Mul

16 Add

64 Mul

12 Add

20 Mul

2 Sqrt∗

16 Cos∗

1536 Add

1728 Mul

192 Div

12288 Add

24576 Mul

∗ by means of a pre-caculated LUT

Table 9: Experimental setup

4.2. Accuracy of the model

To evaluate the accuracy of the proposed approach, for each output value of a use case, we computed the absolute

error between the probabilities estimated using the Bayesian model (denoted as P̂ (y in C)) and the probabilities320

computed by executing campaigns of executions of the application (P (y in C)):

eC(y) = P̂ (y in C)− Pα(y in C), where C ∈ {P,A,U} (15)

Table 10 reports for each benchmark, for each accuracy class (see eq. (3)) and for each value of k, the mean and

the standard deviation of the absolute error defined in eq. (15) computed over all outputs and values of α. Results

show that, on average, the error is negligible with a very small variance, thus confirming that the proposed model

can be used as an instrument for the designer to qualitatively explore the resiliency of an application to precision325

scaling without executing it several times. This is favored by the fast analysis time of the proposed approach, which

is one of the strength of this technique. Few experiments report a 0 value both in mean and standard deviation:

those cases are due to the fact that the application did not produced outputs belonging to the specific class, while

the model correctly predicted a 0 probability for the same class.

4.3. Analysis time330

Table 11 shows the average time expressed in seconds required to analyze each use case. Reported times represent

average values computed among all experiments performed for each use case. The table compares the analysis time

16

required to analyze the use cases using campaign of executions (denoted with App) and the time required to perform

the same operation using the proposed model (denoted with BN). The percentage of reduction has been calculated

as:

% Reduction =
App Time − BN time

App Time · 100 (16)

The model execution times are split into: (i) Operators characterization, (ii) BN generation and (iii) BN analysis.

This enables to appreciate the low computation time required to perform the BN generation and the final analysis

that are the only steps that must be executed several times for the different applications and for different parameters.

Results were collected on a workstation equipped with an Intel Core i7 7500U / 2.7 GHz, 8 GB RAM at 1866 MHz

and running Linux Ubuntu 18.04.335

Reported times clearly show how the proposed approach is faster compared to precise evaluation through re-

peated application runs.

4.4. Use cases comparison

Given the accuracy of the proposed model and the low analysis time, a very interesting aspect is the possibility

of using it to quickly perform design exploration when applying precision reduction to an application. Figures 3,340

4, 5, 6, 7 and 8 show, for each use case, the average classification projection of the output values (i.e., the average

probability of the output values to be in one of the accuracy classes) for all considered values of α and k.

Figure 3 shows that CS is quite resilient to precision scaling, enabling to increase k up to four bits when α = 64.

This is due to the fact that this use case does not include any multiplication. In fact, multiplications quickly amplify

the approximation error,thus leading to unacceptable results even for small values of k. This is for example the345

case for MM2 and MM4 in Figures 4 and 5.

Concerning both MM2 and MM4, for the sake clarity we did not plot some the of the α values for the 16-bit

versions. As already mentioned, due to the massive use of multiplications, MM is not resilient to precision scaling.

Indeed, already for k = 1 the outputs contain unacceptable values for all considered α values.

Looking at the results’ projection of the DCT (Figure 6) and the FIR (Figure 7), again the two applications350

are quite resilient to precision scaling. This result is particularly unexpected for FIR since it includes approximate

multiplications. However, it is fair to highlight that the FIR maximum acceptable error (24 = 16) was lower than

the CS one (26 = 64).

Finally, the Image Blending case study shows interesting resilience to the precision scaling (Figure 8). In

particular, for k < 3 this use case is the one with higher probability to generate precise results.355

This analysis is just an example of how the proposed model can be efficiently explored to analyze different design

options for a given application.

4.5. Comparison with previous works

Eventually, the proposed model was compared in terms of accuracy and computation time with the preliminary

model presented in [30]. In order to provide a fair comparison, we considered the same set of applications (i.e.,360

CSs, MM2, MM4 and DCT) and the same experimental setup (i.e., k = 2 and α = 2k − 1 = 3) presented in [30].

Table 12 reports both error and execution time for the two considered models.

17

α = 1 α = 2 α = 4 α = 8 α = 16 α = 32 α = 64

k
=

1
k

=
2

k
=

3
k

=
4

k
=

5

App BN App BN App BN App BN App BN App BN App BN

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Experiment (App versus BN)

P
ro

b
ab

il
it

y
 (

st
ac

k
ed

)

Class

U

A

P

Figure 3: CS results projection

Overall, the results presented in Table 12 show that the proposed model is more accurate w.r.t. the model

presented in [30]. Few cases report a slightly higher error on one class that is always compensated by improving the

accuracy on all other classes. The gain can be particularly appreciated for complex applications such as the DCT,365

in which the combinations of different operations are less trivial than other uses cases.

Interestingly enough, the improved precision does not significantly impact the execution time, with a time

overhead always lower than < 0.1 seconds.

5. Conclusion

The paper proposes a probabilistic model able to analyze the impact of precision scaling techniques on the370

accuracy of a software application. The approach is based on the characterization of a library of approximated

operators used to build a Bayesian model able to predict how errors introduced by precision scaling propagate

to the outcome of the computation. This is done without executing the application several times. This enables

to obtain fast predictions that can be used at design time to take informed decisions on how to apply precision

scaling approximation techniques. The validation was performed on a set of relevant software case studies. To375

assess the accuracy of the obtained estimations, the same case studies were analyzed by comparing the precise and

approximated application under a large amount of executions with random data. Experimental results show that

the proposed model enables qualitative evaluations of the accuracy of the application with a remarkable gain in

terms of computation time. This makes the model a candidate instrument to perform design space exploration in

18

α = 1 α = 2 α = 4 α = 8 α = 16 α = 32 α = 64 α = 128 α = 256

k
=

1

App BN App BN App BN App BN App BN App BN App BN App BN App BN

0.00

0.25

0.50

0.75

1.00

Experiment (App versus BN)

P
ro

b
ab

il
it

y
 (

st
ac

k
ed

)

Class

U

A

P

(a) 8-bit version with maximum α = 28 = 256

α = 1 α = 4 α = 16 α = 64 α = 256 α = 1024 α = 4096 α = 16384 α = 65536

k
=

1

App BN App BN App BN App BN App BN App BN App BN App BN App BN

0.00

0.25

0.50

0.75

1.00

Experiment (App versus BN)

P
ro

b
ab

il
it

y
 (

st
ac

k
ed

)

Class

U

A

P

(b) 16-bit version with maximum α = 216 = 65536

Figure 4: MM2 results projection

the approximate computing domain. There are several interesting research directions that can be further pursued380

to improve the model. New functional approximation techniques can be included to expand the investigation

capabilities of the model. Further, it may be interesting to model techniques that approximate the control flow,

such as loop perforation.

References

[1] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze, M. Oskin, Accept: A programmer-guided385

compiler framework for practical approximate computing, University of Washington Technical Report UW-

CSE-15-01 1 (2) (2015).

[2] J. Han, M. Orshansky, Approximate computing: An emerging paradigm for energy-efficient design, in: Test

Symposium (ETS), 2013 18th IEEE European, IEEE, 2013, pp. 1–6 (2013).

[3] X. Wu, X. Zhu, G. Wu, W. Ding, Data mining with big data, IEEE Transactions on Knowledge and Data390

Engineering 26 (1) (2014) 97–107 (Jan 2014). doi:10.1109/TKDE.2013.109.

[4] V. K. Chippa, S. T. Chakradhar, K. Roy, A. Raghunathan, Analysis and characterization of inherent application

resilience for approximate computing, in: Proceedings of the 50th Annual Design Automation Conference,

ACM, 2013, p. 113 (2013).

19

https://doi.org/10.1109/TKDE.2013.109

α = 1 α = 2 α = 4 α = 8 α = 16 α = 32 α = 64 α = 128 α = 256

k
=

1

App BN App BN App BN App BN App BN App BN App BN App BN App BN

0.00

0.25

0.50

0.75

1.00

Experiment (App versus BN)

P
ro

b
ab

il
it

y
 (

st
ac

k
ed

)

Class

U

A

P

(a) 8-bit version with maximum α = 28 = 256

α = 1 α = 4 α = 16 α = 64 α = 256 α = 1024 α = 4096 α = 16384 α = 65536

k
=

1

App BN App BN App BN App BN App BN App BN App BN App BN App BN

0.00

0.25

0.50

0.75

1.00

Experiment (App versus BN)

P
ro

b
ab

il
it

y
 (

st
ac

k
ed

)

Class

U

A

P

(b) 16-bit version with maximum α = 216 = 65536

Figure 5: MM4 results projection

[5] S. Venkataramani, S. T. Chakradhar, K. Roy, A. Raghunathan, Approximate computing and the quest for395

computing efficiency, in: Proceedings of the 52nd Annual Design Automation Conference, ACM, 2015, p. 120

(2015).

[6] K. Nepal, Y. Li, R. Bahar, S. Reda, Abacus: A technique for automated behavioral synthesis of approximate

computing circuits, in: Proceedings of the conference on Design, Automation & Test in Europe, European

Design and Automation Association, 2014, p. 361 (2014).400

[7] A. Ranjan, S. Venkataramani, X. Fong, K. Roy, A. Raghunathan, Approximate storage for energy efficient

spintronic memories, in: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, pp. 1–6

(June 2015). doi:10.1145/2744769.2744799.

[8] B. Barrois, O. Sentieys, Customizing fixed-point and floating-point arithmetic — a case study in k-means

clustering, in: 2017 IEEE International Workshop on Signal Processing Systems (SiPS), 2017, pp. 1–6 (Oct405

2017). doi:10.1109/SiPS.2017.8109980.

[9] F. S. Snigdha, D. Sengupta, J. Hu, S. S. Sapatnekar, Optimal design of jpeg hardware under the approximate

computing paradigm, in: 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2016, pp. 1–6

(June 2016). doi:10.1145/2897937.2898057.

[10] Q. Fan, S. S. Sapatnekar, D. J. Lilja, Cost-quality trade-offs of approximate memory repair mechanisms for410

20

https://doi.org/10.1145/2744769.2744799
https://doi.org/10.1109/SiPS.2017.8109980
https://doi.org/10.1145/2897937.2898057

α = 1 α = 2 α = 4 α = 8 α = 16

k
=

1
k

=
2

k
=

3
k

=
4

App BN App BN App BN App BN App BN

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Experiment (App versus BN)

P
ro

b
ab

il
it

y
 (

st
ac

k
ed

)

Class

U

A

P

Figure 6: DCT results projection

image data, in: 2017 18th International Symposium on Quality Electronic Design (ISQED), 2017, pp. 438–444

(March 2017). doi:10.1109/ISQED.2017.7918355.

[11] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, J. Henkel, Probabilistic error modeling for approximate adders,

IEEE Transactions on Computers 66 (3) (2017) 515–530 (March 2017). doi:10.1109/TC.2016.2605382.

[12] B. Barrois, O. Sentieys, D. Menard, The hidden cost of functional approximation against careful data sizing —415

a case study, in: Design, Automation Test in Europe Conference Exhibition (DATE), 2017, 2017, pp. 181–186

(March 2017). doi:10.23919/DATE.2017.7926979.

[13] S. Mittal, A survey of techniques for approximate computing, ACM Comput. Surv. 48 (4) (2016) 62:1–62:33

(Mar. 2016). doi:10.1145/2893356.

URL http://doi.acm.org/10.1145/2893356420

[14] M. Barbareschi, F. Iannucci, A. Mazzeo, A pruning technique for b&b based design exploration of approximate

computing variants, in: VLSI (ISVLSI), 2016 IEEE Computer Society Annual Symposium on, IEEE, 2016, pp.

707–712 (2016).

[15] M. Barbareschi, F. Iannucci, A. Mazzeo, An extendible design exploration tool for supporting approximate

computing techniques, in: 2016 International Conference on Design and Technology of Integrated Systems in425

Nanoscale Era (DTIS), IEEE, 2016, pp. 1–6 (2016).

[16] M. Pashaeifar, M. Kamal, A. Afzali-Kusha, M. Pedram, A theoretical framework for quality estimation and

21

https://doi.org/10.1109/ISQED.2017.7918355
https://doi.org/10.1109/TC.2016.2605382
https://doi.org/10.23919/DATE.2017.7926979
http://doi.acm.org/10.1145/2893356
https://doi.org/10.1145/2893356
http://doi.acm.org/10.1145/2893356

α = 1 α = 2 α = 4 α = 8 α = 16

k
=

1
k

=
2

k
=

3
k

=
4

k
=

5

App BN App BN App BN App BN App BN

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Experiment (App versus BN)

P
ro

b
ab

il
it

y
 (

st
ac

k
ed

)

Class

U

A

P

Figure 7: FIR filter results projection

optimization of dsp applications using low-power approximate adders, IEEE Transactions on Circuits and

Systems I: Regular Papers 66 (1) (2019) 327–340 (Jan 2019). doi:10.1109/TCSI.2018.2856757.

[17] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, Probabilistic error analysis of approximate recursive multipliers,430

IEEE Transactions on Computers 66 (11) (2017) 1982–1990 (Nov 2017). doi:10.1109/TC.2017.2709542.

[18] F. V. Jensen, Introduction to Bayesian Networks, 1st Edition, Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 1996 (1996).

[19] S. Lee, L. K. John, A. Gerstlauer, High-level synthesis of approximate hardware under joint precision and

voltage scaling, in: Design, Automation Test in Europe Conference Exhibition (DATE), 2017, 2017, pp. 187–435

192 (March 2017). doi:10.23919/DATE.2017.7926980.

[20] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, D. Grossman, Enerj: Approximate data types

for safe and general low-power computation, ACM SIGPLAN Notices 46 (6) (2011) 164–174 (2011).

[21] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D. H. Bailey, C. Iancu, D. Hough,

Precimonious: Tuning assistant for floating-point precision, in: Proceedings of the International Conference on440

High Performance Computing, Networking, Storage and Analysis, ACM, 2013, p. 27 (2013).

[22] M. Barbareschi, F. Iannucci, A. Mazzeo, Automatic design space exploration of approximate algorithms for big

22

https://doi.org/10.1109/TCSI.2018.2856757
https://doi.org/10.1109/TC.2017.2709542
https://doi.org/10.23919/DATE.2017.7926980

α = 1 α = 2 α = 4 α = 8 α = 16

k
=

1
k

=
2

k
=

3
k

=
4

k
=

5

App BN App BN App BN App BN App BN

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Experiment (App versus BN)

P
ro

b
ab

il
it

y
 (

st
ac

k
ed

)

Class

U

A

P

Figure 8: IB results projection

data applications, in: IEEE International Conference on Advanced Information Networking and Applications

(AINA-2016). IEEE, 2016 (2016).

[23] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to445

structural similarity, IEEE Transactions on Image Processing 13 (4) (2004) 600–612 (April 2004). doi:10.

1109/TIP.2003.819861.

[24] R. Venkatesan, A. Agarwal, K. Roy, A. Raghunathan, Macaco: Modeling and analysis of circuits for approxi-

mate computing, in: 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2011,

pp. 667–673 (Nov 2011). doi:10.1109/ICCAD.2011.6105401.450

[25] K. N. Parashar, D. Menard, O. Sentieys, Accelerated performance evaluation of fixed-point systems with un-

smooth operations, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33 (4)

(2014) 599–612 (April 2014). doi:10.1109/TCAD.2013.2292510.

[26] R. Rocher, D. Menard, P. Scalart, O. Sentieys, Analytical approach for numerical accuracy estimation of fixed-

point systems based on smooth operations, IEEE Transactions on Circuits and Systems I: Regular Papers455

59 (10) (2012) 2326–2339 (Oct 2012). doi:10.1109/TCSI.2012.2188938.

[27] M. K. Ayub, O. Hasan, M. Shafique, Statistical error analysis for low power approximate adders, in: 2017

23

https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/ICCAD.2011.6105401
https://doi.org/10.1109/TCAD.2013.2292510
https://doi.org/10.1109/TCSI.2012.2188938

54th ACM/EDAC/IEEE Design Automation Conference (DAC), 2017, pp. 1–6 (June 2017). doi:10.1145/

3061639.3062319.

[28] S. Mazahir, O. Hasan, M. Shafique, Adaptive approximate computing in arithmetic datapaths, IEEE Design460

Test 35 (4) (2018) 65–74 (Aug 2018). doi:10.1109/MDAT.2017.2772874.

[29] Y. Wu, Y. Li, X. Ge, Y. Gao, W. Qian, An efficient method for calculating the error statistics of block-based

approximate adders, IEEE Transactions on Computers 68 (1) (2019) 21–38 (Jan 2019). doi:10.1109/TC.

2018.2859960.

[30] M. Traiola, A. Savino, M. Barbareschi, S. D. Carlo, A. Bosio, Predicting the impact of functional approximation:465

from component- to application-level, in: 2018 IEEE 24th International Symposium on On-Line Testing And

Robust System Design (IOLTS), 2018, pp. 61–64 (July 2018). doi:10.1109/IOLTS.2018.8474072.

[31] G. E. Box, G. C. Tiao, Bayesian inference in statistical analysis, Vol. 40, John Wiley & Sons, 2011 (2011).

[32] BayesFusion, LLC. SMILE Engine [online].

[33] C. Huang, A. Darwiche, Inference in belief networks: A procedural guide, International journal of approximate470

reasoning 15 (3) (1996) 225–263 (1996).

[34] C. Yuan, M. J. Druzdzel, An importance sampling algorithm based on evidence pre-propagation, in: Proceed-

ings of the Nineteenth conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc.,

2002, pp. 624–631 (2002).

[35] S. E. Maxwell, Randomized block designs, Encyclopedia of Statistics in Behavioral Science (Oct 2005). doi:475

10.1002/0470013192.bsa535.

URL http://dx.doi.org/10.1002/0470013192.bsa535

24

https://doi.org/10.1145/3061639.3062319
https://doi.org/10.1145/3061639.3062319
https://doi.org/10.1109/MDAT.2017.2772874
https://doi.org/10.1109/TC.2018.2859960
https://doi.org/10.1109/TC.2018.2859960
https://doi.org/10.1109/IOLTS.2018.8474072
www.bayesfusion.com
http://dx.doi.org/10.1002/0470013192.bsa535
https://doi.org/10.1002/0470013192.bsa535
https://doi.org/10.1002/0470013192.bsa535
https://doi.org/10.1002/0470013192.bsa535
http://dx.doi.org/10.1002/0470013192.bsa535

Case Study k
P A U

MAE1 SD2 MAE1 SD2 MAE1 SD2

CSs 1 1.05·10−03 1.08·10−03 5.03·10−03 9.41·10−03 4.24·10−03 9.80·10−03

CSs 2 1.96·10−04 1.71·10−04 1.56·10−02 2.96·10−02 1.56·10−02 2.97·10−02

CSs 3 6.14·10−05 3.85·10−05 1.74·10−02 2.65·10−02 1.75·10−02 2.65·10−02

CSs 4 2.14·10−05 1.57·10−05 1.77·10−02 2.78·10−02 1.77·10−02 2.77·10−02

CSs 5 4.29·10−06 5.35·10−06 1.76·10−02 2.93·10−02 1.76·10−02 2.93·10−02

MM2 8-bit 1 1.39·10−03 1.16·10−03 1.43·10−02 3.22·10−02 1.54·10−02 3.19·10−02

MM2 16-bit 1 4.80·10−04 3.90·10−04 1.23·10−02 3.43·10−02 1.24·10−02 3.41·10−02

MM4 8-bit 1 1.76·10−04 1.19·10−04 6.18·10−03 1.23·10−02 6.34·10−03 1.23·10−02

MM4 16-bit 1 2.91·10−04 2.59·10−04 1.08·10−03 2.09·10−03 1.35·10−03 2.05·10−03

DCT 1 3.44·10−04 1.69·10−04 9.27·10−03 2.00·10−02 9.11·10−03 2.04·10−02

DCT 2 1.01·10−04 1.02·10−04 7.24·10−03 1.03·10−02 7.15·10−03 1.03·10−02

DCT 3 1.68·10−05 1.59·10−05 6.33·10−03 1.11·10−02 6.32·10−03 1.11·10−02

DCT 4 3.73·10−06 1.98·10−06 6.06·10−03 1.14·10−02 6.06·10−03 1.14·10−02

FIR 1 3.90·10−03 1.23·10−04 3.90·10−03 1.23·10−04 0 0

FIR 2 1.00·10−05 7.07·10−06 1.00·10−02 2.01·10−02 1.00·10−02 2.01·10−02

FIR 3 0 0 8.35·10−03 1.14·10−02 8.35·10−03 1.14·10−02

FIR 4 0 0 1.46·10−02 2.89·10−02 1.46·10−02 2.89·10−02

FIR 5 0 0 7.39·10−03 1.62·10−02 7.39·10−03 1.62·10−02

IB 1 1.08·10−03 7.56·10−04 1.08·10−03 7.56·10−04 0 0

IB 2 1.00·10−03 6.25·10−04 1.03·10−03 8.31·10−04 7.26·10−04 1.37·10−03

IB 3 3.86·10−04 4.29·10−04 9.65·10−04 7.44·10−04 7.87·10−04 1.00·10−03

IB 4 1.04·10−04 1.33·10−04 9.58·10−04 1.13·10−03 1.04·10−03 1.15·10−03

IB 5 3.34·10−04 1.85·10−04 2.12·10−03 3.20·10−03 2.30·10−03 3.32·10−03

1MAE = Mean Absolute Error 2SD = Standard deviation

Table 10: Accuracy analysis. For each benchmark and value of k, the table reports the mean and the standard deviation of the absolute

error for each class, computed among all outputs and considered values of α. When both MAE and SD are 0, no differences between

the BN predictions and the actual application values were observed. This happened only when both the application and the BN did

not produce any output belonging to the related class.

25

Case study
App

Time (s)

BN Time (s)
% Reduction

Operator

Characterization
Generation Analysis Total

CS 4.79 0.00310 0.00033 0.00002 0.00345 99.93%

MM2 8-bit 30.24 0.02500 0.00043 0.00004 0.02547 99.92%

MM2 16-bit 31.7 1.56940 0.00051 0.00003 1.56994 95.05%

MM2 8-bit 54.8 0.02280 0.00043 0.00004 0.02327 99.96%

MM2 16-bit 56.3 4.12880 0.00051 0.00003 4.12934 92.67%

DCT 130.7 0.05360 0.00261 0.30990 0.36611 99.72%

FIR 101.6 0.00560 0.00067 0.03961 0.04588 99.95%

IB 120.1 0.00270 0.00038 0.01398 0.01706 99.99%

Table 11: Average execution time comparison for all use cases.

Case study Classes BN Exec.

P A U Time (s)

CSs

Abs. Error [30] 1.00·10−06 9.10·10−03 9.10·10−03 0.002

Abs. Error in current work 6.20·10−05 1.27·10−03 1.20·10−03 0.004

∆ -6.10·10−05 7.83·10−03 7.90·10−03 -0.002

MM2

Abs. Error [30] 4.67·10−03 2.00·10−05 4.69·10−03 0.004

Abs. Error in current work 7.99·10−04 1.40·10−06 8.00·10−04 0.007

∆ 3.87·10−03 1.86·10−05 3.89·10−03 -0.003

MM4

Abs. Error [30] 2.00·10−05 2.00·10−08 2.00·10−05 0.005

Abs. Error 9.00·10−07 2.00·10−10 1.00·10−06 0.019

∆ 1.91·10−05 1.98·10−08 1.90·10−05 -0.014

DCT

Abs. Error [30] 3.44·10−02 3.42·10−02 3.00·10−05 0.297

Abs. Error in current work 1.56·10−04 8.14·10−03 8.30·10−03 0.35

∆ 3.42·10−02 2.61·10−02 -8.27·10−03 -0.053

Table 12: Comparison between current model and the one presented in [30]

26

	Introduction
	Background
	Methods
	Model construction
	Operators characterization
	Input nodes characterization
	Operation nodes characterization

	Accuracy analysis

	Experimental Results
	Experimental setup
	Accuracy of the model
	Analysis time
	Use cases comparison
	Comparison with previous works

	Conclusion

