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Abstract  

Laser Powder Bed Fusion (LPBF) is an advanced metal additive manufacturing 
process, which allows to fabricate components with sophisticated shapes by locally 
melting subsequent layers of powders with a computer-controlled laser beam. Over 
the last years, LPBF has gained much interest not only for its inherent advantages 
related to the high design freedom but also for its opportunities from a material 
point of view. During LPBF process, in fact, the highly focused laser beam creates 
a small and highly dynamic melt pool in which the alloy rapidly solidifies and 
undergoes complex thermal cycles with kinetics significantly different from that 
occurring in conventional manufacturing processes. This contributes in creating 
new materials with different microstructures and unique properties. Recently, broad 
material research opportunities for LPBF have been perceived in the exploitation 
of the metallurgical effects associated to the rapid solidification conditions during 
the process, namely the refinement of the segregation scale, the formation of 
supersatured solid solutions and metastable phases as well as the retention of 
disordered crystalline phases. These effects have been considered promising for 
heading ad-hoc alloying strategies aimed to develop novel Aluminium alloys with 
high strength and for boosting maturity of recently discovered High Entropy Alloys 
(HEAs). Nevertheless, to date, major obstacles to the development of novel alloys 
by LPBF come from the high-cost, poor availability and large size of purchased 
batches of the gas-atomized powders. Novel, economically affordable as well as 
stimulating material research opportunities for LPBF could come both from the in-
situ synthesis of alloys from mixtures of different powders and from the use of alloy 
powders synthesized by other alloying techniques than atomization, i.e. mechanical 
alloying. The present thesis investigated both the scenarios, according also to the 
compositional complexity of the alloy system. Novel Al-Si-Ni and Al-Si-Ni-Cr-Fe 
aluminium alloys and two HEA systems were studied in the present thesis.  
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The first study investigated the consolidation, the alloying behavior as well as 
the microstructure and the mechanical properties of an Al-Si-Ni alloy in-situ 
synthesized from a powder mixture constituted by AlSi10Mg and pure Ni powders. 
By properly tailoring the alloy composition, it was possible to manufacture nearly 
full dense and crack free samples. The physical phenomena occurring within the 
melt pool during LPBF together with the continuous heating/melting of the material 
during the building were effective in mixing the starting powders. The material 
microstructure consisted of wide regions with composition close to that of the 
powder mixture alternated to coarse and randomly distributed Ni-rich precipitates, 
globally designating a heterogeneous microstructure. Notwithstanding this, the 
addition of Ni was effective in producing an alloy with high hardness due to the 
precipitation of sub-micrometric strengthening Al3Ni phase.  

The second study investigated an Al-Si-Ni-Cr-Fe aluminium alloy synthesized 
starting from a powders system by far more complex than the previous one, 
constituted by a mixture of AlSi10Mg and Hastelloy X nickel-base superalloy 
powders. The consolidated samples were porous due to adoption of a powder layer 
thickness not appropriated with respect to the other processing parameters. 
Nevertheless, the alloy composition synthesized was promising due to the absence 
of composition-related defects, such as cracks. The scanning speed during LPBF 
controlled the extent of the reaction between the starting powders, the alloying 
process and the fraction of product phases formed as well as the mechanical 
properties of the synthesized alloy. Alloying with Hastelloy X resulted into an 
enhancement of the microhardness up to 50% with respect to AlSi10Mg. Major 
concerns were found in the capability of LPBF of effectively in-situ mixing a 
powder system constituted by many species from different alloy powders.  

The third study adopted a Single Scan Track (SST) technique for preliminarily 
investigating the processability and the alloying behaviour of compositionally 
complex AlTiCuNb and AlTiVNb HEAs powder compositions by using both 
mixture of the constitutive elemental powders and alloy powder synthesized by 
mechanical alloying. The characterization of the SSTs revealed that the 
microstructure homogeneity as well as the chemical composition accuracy within 
the melt pool were enhanced by using alloy powders synthesized by mechanical 
alloying rather than elemental powders mixtures. The broad ranges into the physical 
as well as powder properties of the elemental powders mixtures contributed in 
creating inhomogeneous distribution of the elements and unmelted powder 
particles. SSTs on compositionally complex HEAs powders synthesized by 
mechanical alloying can represent a fast and cost-effective technique for 
preliminarily assessing the behaviour of novel HEAs powders during LPBF. 
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unprecedented freedom in fabricating complex structures with high degree of 
precision thanks to the direct translation of design to component, without the need 
for creation of part-specific tooling. The use of lattice design and hollow structures 
have made possible to manufacture flexible and lightweight components and new 
functions such as complex internal channels can be included to the part design. AM 
has the capability of manufacturing the component to its final (net) or near final 
(near net) shape, reducing the excessive consumption of raw material and cutting 
down the number of subsequent processing steps. In addition, it has the potential of 
reducing the cost and the time of the overall product development, from design to 
manufacturing, leading to quicker transfer of products to the market [7].  

Historically, the first generation of AM machines worked almost exclusively 
with polymers and they were specifically addressed to the rapid fabrication of 
prototypes [8]. The EOS German Company did the first step in AM of metals in the 
early 90s, fabricating the first prototype of a Direct Metal Laser Sintering (DMLS) 
machine working with a metal powder-bed fused by a laser beam. Over the last 25 
years, intensive research into processes, software, equipment and materials has 
allowed to apply AM processes to face a broad variety of research problems into 
different technical fields, spanning from aerospace to automotive, energy, medical 
and tooling going through the production of consumer goods [9]. The incentive 
from industry has stimulated the change of AM techniques from the rapid 
prototyping to the rapid manufacturing of small or medium quantities of end-use 
products and nowadays this latter represents the main market field for AM 
technologies [10]. Although the significant benefits brought by AM to the 
manufacturing industry in terms of design freedom in the manufacturing of 
complex-shaped products and virtually resource saving, care must be paid in 
generalizing that AM would be suitable for business regardless of their needs and 
sizes. In 2014, Conner et al. [11] developed a map as reference system for 
evaluating the suitability of a product to be produced by AM. By means of this map, 
the manufacturer can assess, based on the complexity, customization and 
production volume, whether AM provides an advantage over traditional 
manufacturing routes. 

One of the most important consequences of the transformation of AM from 
rapid prototyping to rapid manufacturing has been the flourishing of many different 
processes and companies. In the field of Metal Additive Manufacturing (MAM), 
the industrially most relevant processes are categorized according to the type of 
feedstock material, namely wires, blown-powders and powder-bed [12]. Both wire- 
and blown-powder systems are generally referred as Direct Energy Deposition 
(DED) technologies, since they are based on the same principle of melting and 
depositing the material using a concentrated energy source. Wire-feed systems are 
versatile technologies for manufacturing large metal components with medium-to-
low complexity, while blown-powder systems allow the direct fabrication of near-
net shape components at high building rates [12]. On the contrary, beam powder-
bed systems, namely Laser Powder Bed Fusion (LPBF) and Electron Beam Melting 
(EBM), use a focused energy source, either a laser or an electron beam, for 
selectively melting a loose powder bed, which rapidly consolidate to create the 3D 
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object. Nowadays, beam powder-bed based systems represent the most mature and 
researched MAM processes and - differently to generic DED systems - allow 
manufacturing parts with a high resolution of features, a high dimensional control 
and nearly unlimited part complexity [13]. In medical sector, LPBF and EBM have 
already achieved manufacturing readiness (MRL 9-10) in the series production of 
standard orthopaedic prosthesis, patient-specific implants for cranial or facial 
reconstruction but also surgical instruments and medical devices adopting Ti, 
Ti6Al4V and CoCr alloys [14]. In the aerospace and automotive field, process 
development and complex operational environment testing are ongoing (MRL 4-7) 
but the intended applications span from turbine parts and fuel injection nozzles to 
special components for motorsport vehicles, i.e. cooling ducts [13], with the great 
potential of improving the performance of the components and to save resources. 
In particular, LPBF, which is the technology of interest in the present thesis, is 
leader for the manufacturing of high quality objects with sophisticated shapes. As 
the scheme reported in Figure 1 visualizes, LPBF dominates in terms of number of 
companies on the market. The market size for LPBF has been expanding, boosted 
by the high number of system producers, the constant growth of the machines sold 
as well as the ongoing improvements in machine accuracy, laser technology and 
costs [15].  

 

Figure 1. MAM processes available today and companies. LPBF process plays a leading role 

in the market [16]. 

II. The development of materials for LPBF 

Over the last years, many studies and reviews have pointed out that vast market 
and research opportunities for AM not only stay in design but also in materials [17]. 
As it will be further discussed along this thesis, to date, the number of alloys 
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technique can accelerate the development of new materials for LPBF, limiting the 
material consumption. In SST, in fact, only a thin layer of powder is laser scanned, 
providing preliminarily information into the processability and/or alloying 
behaviour of the selected material when irradiated by the laser beam during LPBF. 
Then, the use of powders mixtures or alloy powders synthesized by other alloying 
technique than gas-atomization, i.e. mechanical alloying, would allow the required 
compositional flexibility for experimenting several HEA compositions, by 
providing few amounts of customized powder compositions to investigate through 
SST experiments.  

III. The aim and the objectives of the thesis 

Within this broad research field, this thesis will investigate the alloying 
behaviour of different powders during LPBF with the major aim of assessing the 
feasibility of adopting the mixing approach for developing Aluminium alloys or 
HEAs for LPBF.  

To achieve this aim, the research is divided into two sections: the first section 
focuses on Aluminium alloys and the second one on HEAs. The choice of dividing 
the thesis in two sections is a requirement arising from the difference in which the 
same topic, that is the use of the powder mixing approach for developing new 
materials for LPBF, has been developed. In addition, the alloy families investigated 
in this thesis are significantly different. Aluminium alloys are commercially 
available for LPBF, well-researched both in academia and industry and with well-
established criteria for designing compositions with desired microstructures and/or 
properties, within a relatively narrow compositional space. On the contrary, HEAs 
are recently discovered, currently of academic interest only and with complex and 
sometimes bias criteria for designing compositions with targeted microstructures 
and properties, mainly established for conventional casting route. 

III.I Specific aim and objectives of the first section 

The specific aim of the first section is that of improving the mechanical 
properties of AlSi10Mg, the most processed Aluminium alloy by LPBF, adopting 
an alloying strategy based on the addition of transition metals (TM) in the form of 
commercially available pure Ni or Ni-, Cr- and Fe-rich nickel-base superalloy 
Hastelloy X powders.  

The objectives of this section are: 

1. Designing the compositions of two Aluminium alloys suitable to be 
processed by LPBF.  

2. Evaluating the densification and alloying behaviours as well as the 
phases and the mechanical properties of the in-situ synthesized bulk 
alloy samples. This includes the characterization of the microstructures 
of the samples in the as-built condition. 
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It is worth to mention here that the two alloys experimentally investigated in 
the first section were synthesized using different source materials and equipment 
because the studies were carried out at Istituto Italiano di Tecnologia - IIT (Turin, 
Italy) or at the Department of Material Science and Engineering of the Monash 
University (Melbourne, Australia), as part of a scientific collaboration between 
Politecnico di Torino and Monash University. 

III.II Specific aim and objectives of the second section 

The specific aim of the second section is that of investigating the feasibility of 
producing compositionally homogenous SSTs of two selected HEAs based on 
refractory species without resorting to gas-atomized alloy powders but using 
different powders systems, namely elemental powders mixtures corresponding to 
the HEA compositions or alloy powders synthesized by mechanical alloying. 

The objectives of the second section are: 

1. Designing, screening and selecting the HEAs compositions. 

2. Optimizing the milling time for producing chemically and 
morphologically homogenous HEAs alloy powders from the elemental 
powders mixtures. 

3. Conducting a comparative analysis on the alloying behaviour of the 
elemental powders mixtures and the milled HEAs powders when 
irradiated with the laser beam during the formation of the SSTs. 

IV. The structure of the thesis 

This thesis will consists of seven chapters and two distinct sections, as 
previously anticipated. 

The current preface is basically an introduction to AM, to the interest in this 
topic and to the opportunities of LPBF. It provides background information and 
clarifies the context of the investigated research field. This section identifies also 
the main challenges in the development of materials for LPBF and motivates the 
significance of the present research. In conclusion, it contains the aims and the 
objectives of the studies. 

Chapter 1 provides a comprehensive description of the LPBF process, from the 
main physical phenomena controlling the melting and solidification of the powder 
bed to the variables mostly affecting its densification behaviour and passing through 
the thermal regimes determining the microstructure development of materials. 
Capturing the main features of these phenomena is crucial not only for the industrial 
aspects of LPBF, aimed to manufacture high-quality, dense and defects-free 
objects, but also for its material science and engineering ones, aimed to develop 
materials with optimized processability, microstructure and properties.  

The first section of the thesis, which includes Chapter 2 and Chapter 3, 
addresses to Aluminium alloys and it consists of the literature review on Aluminium 
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alloys and of the experimental part on the in-situ synthesis of Al-Si-Ni and Al-Si-
Ni-Cr-Fe alloys from powders mixtures, respectively.  

In particular, Chapter 2 begins with the description of the strengthening 
mechanism for Aluminium alloys. Then, it focuses on reviewing the efforts did in 
the past for developing new generations of Aluminium alloys using rapid 
solidification techniques, i.e. melt spinning. Such techniques were extensively 
studied in the past since they offered new opportunities for developing new 
compositions, which exploited several strengthening mechanisms in an effective 
way. In conclusion, the literature review goes through the microstructure and 
properties of AlSi10Mg - the base alloy used within this thesis in the experimental 
part - and the most significant trials already done for the development of Aluminium 
alloys by LPBF.  

Chapter 3 provides details of the experimental work carried out and shows the 
results achieved over the investigation of the feasibility of improving the 
mechanical properties of commercial AlSi10Mg by mixing this latter with small 
quantities of commercially available pure Ni or Hastelloy X powders.  

The second section of the thesis, which includes Chapter 4 and Chapter 5, 
addresses to High Entropy Alloys and - again - it consists of the literature review 
on HEAs and of the experimental part on the development of HEAs by SSTs 
technique on different powder systems, respectively.  

In particular, Chapter 4 provides a comprehensive analysis of the material 
development opportunities opened up by the discovery of HEAs Theoretically, in 
HEAs, the composition can be designed as for exhibiting desired microstructures 
and targeted sets of properties, often unusual for conventional alloys. Nevertheless, 
the relationship between composition, microstructure and properties, which is 
fundamental for designing materials, is still weak established for this young class 
of alloys. For this reason, the scope of this chapter will be that of providing a critical 
summary of the relationship between composition, microstructure and properties 
up to know established for the most studied HEA families produced by casting 
route, where most of the efforts has concentrated up to now. Great attention is given 
also to the description of the thermodynamic parameters that affect phase selection 
in HEAs and to review the efforts did in the past for designing empirical parameters 
to use as alloy design criteria for predicting the formation of HEAs. A crucial point 
concerning the development of HEAs, in fact, is that of having methods able to 
predict which type of phases (solid solutions, intermetallic, amorphous phase or 
multiple phases) would form for a given composition (type, number and 
concentration of the constitutive elements). This point is of great for searching 
and/or designing HEAs with selected microstructures/properties. In addition, a 
detailed summary of the pros and cons of main HEAs manufacturing techniques 
(casting, mechanical alloying, AM) is provided, emphasizing the role played by the 
cooling rate on the final phase constitution in HEAs. In conclusion, the literature 
review goes through the trials already done for the in-situ synthesis of HEAs from 
mixtures of different powders by AM technologies. 

Chapter 5 provides details of the experimental work carried out. It describes the 
methodology used for selecting the HEAs systems here investigated and the 
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experimental equipment used during mechanical alloying and it presents the results 
achieved over the investigation of the feasibility of producing SSTs of HEA by 
using different powders systems, namely mixtures of the elemental constitutive 
species or alloy powders synthesized by mechanical alloying. 

Chapter 6 summarizes the key findings for both the sections, followed by some 
closing remarks.  

Finally, Chapter 7 provides details on the experimental equipment and 
characterization methods used to study the materials and samples produced within 
this thesis.  

In favour of the reader, the overall thesis structure is summarized in Figure 2. 
 

 

Figure 2. Thesis structure 
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Chapter 1 

Laser Powder Bed Fusion 

Laser Powder Bed Fusion (LPBF) is a breakthrough AM technology for the 
manufacturing of net-shape metal objects with high design freedom and high 
resolution of features for the automotive, aerospace, medical, tooling and energy 
industrial fields. From a material engineering perspective, the growing interest in 
LPBF motivates the development of new alloys, whose compositions are 
specifically tailored for exploiting to the best the unique manufacturing features of 
LPBF and the properties are optimized for catching the broad opportunities opened 
by MAM in several industrial fields.  

The comprehension of the physical phenomena taking place during LPBF, 
which lead to the melting and subsequent rapid consolidation of the powder 
material, are crucial for gaining confidence with the process, for defining those 
conditions rendering a material suitable to be processed by LPBF and for 
developing new materials.  

 
In the present chapter, the LPBF manufacturing process will be described and 

the physical phenomena occurring within the time-scale governing the interaction 
between the laser and the powder material will be summarized, aside with the main 
LPBF process parameters and powders properties, which control the manufacturing 
of high-quality dense and defect-free objects. In conclusion, an overview of 
materials commercially available for LPBF will be provided and some material 
development opportunities will be outlined.  

1.1 The manufacturing process 

A generic representation of a LPBF system is shown in Figure 3. For this kind 
of MAM systems, a powder bed lays on a building platform. A laser energy source 
is focused on the powder bed and selectively melts the upper layer of this latter that 
rapidly consolidates. After the powder material representing the 2D layer of the 
final object has been melted and it has consolidated into the desired shape, the 
platform is lowered, an additional layer of powder is spread across the work area 
and the cycle is repeated until the 3D solid object is fully built, embedded in the 
unprocessed powder [12]. During the process, the 3D object grows along the 
vertical axis, fixed to the building platform by means of support structures, whose 
main function is that of supporting overhanging or horizontally aligned surfaces 
and of dissipating process heat [20]. At the end of the process, the as-built object 
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Figure 10. Schematic representation of the physical mechanism associated with keyhole 

formation [46]. 

As regard the third point related to evaporation, a common phenomenon 
occurring during LPBF is the ejection of melt drops from the melt pool and even 
powder particles from the powder bed into the surrounding.  

The ejection of melt drops is very common in laser manufacturing and it is 
known as spattering. The current accepted explanation for spatter formation during 
LPBF is that the recoil pressure exerted by metal vapours evaporating from the melt 
pool surface pushes the liquid alloy towards the melt pool borders. When the recoil 
pressure exceeds a threshold, which depends on the surface tension of the alloy, 
small droplets of liquid can be ejected from the melt pool [48].  

Recently, Wang et al. [49] investigated the mechanism of spatters formation 
during LPBF and spatters features, indicating the existence of three main types of 
spatters (Figure 11), namely (i) spherical metallic jet, directly ejected by the molten 
metal under the effect of the recoil pressure. The long ejection distance and rapid 
cooling of these particles allow them to exhibit a smooth spherical morphology; (ii) 
coarse spherical droplet spatter with a large amount of unmolten particles adhered 
onto the surface; (iii) irregular coarse powder spatter highly deformed and with 
many unmolten particles adhered onto the surface [49].  

 

Figure 11. The formation mechanism of three different types of spatter [49]. 

The formation of spatter during LPBF process is detrimental for the quality of 
the part. In fact, spatter represent inclusion that can negatively affect the final 
properties of the material, including the density, microstructure and mechanical 
properties. When a spatter is ejected from the melt pool, it may redistribute over the 
manufacturing surface (Figure 12a) [50]. If the deposited spatter is large enough, it 




































































































































































































































































































































































































































































