
Doctoral Dissertation

Doctoral Program in Control and Computer Engineering (31thcycle)

High Performance Computing using
InfiniBand-based clusters

By

Masoud Hemmatpour

Supervisor(s):
Prof. Bartolomeo Montrucchio

Doctoral Examination Committee:
Prof. Maurizio Rebaudengo, Politecnico di Torino
Prof. Giancarlo Iannizzotto, Universitá degli Studi di Messina
Prof. Sorin Moraru, University of Brasov
Prof. Davide Quaglia, Universitá di Verona
Prof. Claudio Zunino, Istituto di Elettronica e Ingegneria dell’Informazione e delle
Telecomunicazioni (IEIIT)

Politecnico di Torino

2019

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Masoud Hemmatpour
2019

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to my mother who is priceless in my life.

Acknowledgements

First and foremost, I would thank my outstanding advisor Prof. Bartolomeo Mon-
trucchio for giving me all the research freedom and support. Furthermore, a great
thank to Prof. Maurizio Rebaudengo for his outstanding help. Then, I would carry
on with a list of great friends in all over the world, specially those who had tons
of patience for various reasons. A special thanks, of course, would go to the thesis
jury members for taking their time to thoroughly review the thesis. Also, I would
like to thank Prof. Sadoghi for all his support in my thesis. Then, I would express
my deepest gratitude to my beloved family that has always been there as an eternal
source of inspiration, support, and understanding. Most importantly, thank to my
mother for teaching me the real values of life. I hope my life and my choices have
honored her. Last but not least, an special thank to Mahsa for her unconditional
support. But despite the urge to elaborate on my thanks, the next few lines will be
somewhat different. They will summarize some important lessons I have learned
during these three years, which is what I am most thankful for. When this journey
started, my belief was that doing a doctorate means proposing totally a novel method
in my project. But it turned out that shiny and polished ideas are the outcome of
hardworking for a long period of time and one of the things that doing a PhD teaches
me is that, just I should work hard and be optimistic maybe the reward is just around
the corner!

Abstract

As demand for big data analytics grows every day, companies have become aware
of the critical role of real-time data-driven decision making to gain a competitive
edge. This creates a challenge for companies needing to accelerate (fine-grained)
access to massively distributed data, in particular, those dealing with online services.
NoSQL systems, in particular distributed in-memory key-value stores, are vital in
accelerating memory-centric and disk-centric distributed systems.

A distributed key-value store offers a flexible data model with more performant
but weaker consistency to partition data across many nodes on a computer network.
Starting in mid-2000, numerous commercial key-value stores have emerged, each
with its own unique characteristics, such as Google Bigtable, Amazon Dynamo,
and Facebook Cassandra to enable managing massively distributed data at unseen
scale, which simply was not feasible with traditional relational database systems
running on commodity hardware. These systems have become critical for large-scale
applications, such as social networks, realtime processing, and recommendation
engines to achieve higher performance.

Distributed systems are commonly built under the assumption that the network
is the primary bottleneck, however this assumption no longer holds by emerging
high-performance protocols in datacenters. Designing distributed applications over
such protocols requires a fundamental rethinking in communication components in
comparison with traditional protocols (i.e., TCP/IP). Much research has been carried
out in order to improve the communication performance either by optimizing the
existing protocol or inventing new communication standards.

A great deal of work on high-performance communication has led to modern
high-speed networks including InfiniBand, RoCE, and iWARP, which support Re-
mote Direct Memory Access (RDMA). RDMA blurs the boundary of each machine
by creating a virtual distributed, shared memory among connected nodes, i.e., sub-

vi

stantially reducing communication and processing on the host machine. Through
RDMAs, clients can now directly access remote memory without the need to invoke
the NoSQL’s traditional client-server model. This motivates the NoSQL community
to invest in developing purely in-memory key-value stores with RDMA capability,
such as HydraDB, Herd, Pilaf, DrTM, FaRM. RDMA capable protocol (i.e., In-
finiBand) supports legacy socket applications through IP over InfiniBand (IPOIB);
however, running existing in-memory systems on top of it can not efficiently exploit
the benefits in the infrastructure. So existing in-memory key-value stores strive to re-
duce latency and achieve higher performance by exploiting RDMA operations. In this
thesis, commonly used underlying structure and data concurrency in RDMA-enabled
in-memory key-value store are discussed. Furthermore, performance challenges of
the RDMA operations have been investigated. State of the art are reviewed and
evaluated based on the achieved knowledge on the RDMA operation. Finally, a novel
in-memory key-value store is presented and evaluated in comparison with the state
of the art.

Riassunto

L’analisi dei big data svolge un ruolo fondamentale negli ultimi anni e molte aziende
hanno preso coscienza dei vantaggi competitivi che le decisioni real-time data-driven
offrono. Ciò crea una sfida per le aziende che hanno bisogno di accelerare l’accesso
(a grana fine) a enormi quantità di dati distribuiti, in particolare per coloro che si
occupano di servizi online. I paradigmi NoSQL, in particolare distributed in-memory
key-value stores, sono fondamentali per velocizzare i sistemi distribuiti del tipo
memory-centric e disk-centric. Il distributed key-value store offre un modello di
dati flessibile più efficiente ma meno consistente. Tale modello risulta più debole
nel partizionare i dati su molti nodi di una rete di computer. A partire dalla metà
degli anni 2000, sono emersi numerosi key-value stores commerciali, ciascuno con
caratteristiche uniche, come ad esempio Google Bigtable, Amazon Dynamo, and
Facebook Cassandra. Essi consentono la gestione di una enorme quantità di dati
su scala invisibile, che semplicemente non era possibile con i tradizionali sistemi
basati su database relazionali eseguiti su hardware. Questi sistemi sono diventati
di vitale importanza per le applicazioni su larga scala, come i social network o il
trattamento in tempo reale dei dati, al fine di ottenere prestazioni più elevate. I sistemi
distribuiti sono comunemente creati assumendo che la rete rappresenti il collo di
bottiglia principale. Tuttavia questa ipotesi non è più valida a causa di protocolli
ad alte prestazioni emergenti nei data center. La progettazione di applicazioni
distribuite su tali protocolli richiede un ripensamento fondamentale delle componenti
di comunicazione rispetto ai protocolli tradizionali (cioè TCP/IP). Molte ricerche
sono state condotte, ottimizzando i protocolli esistenti o definendo nuovi standard di
comunicazione, al fine di migliorare tali prestazioni comunicative. La grande quantità
di lavoro svolta sulle comunicazioni high-performance ha portato alle moderne reti
ad alta velocità, tra cui InfiniBand, RoCE e iWARP, che supportano il Remote
Direct Memory Access (RDMA). RDMA crea una memoria virtuale distribuita
e condivisa tra i nodi connessi e ciò riduce, sostanzialmente, la comunicazione e

viii

l’elaborazione dei dati sulle macchine. Tramite gli RDMA, i client possono ora
accedere direttamente alla memoria remota senza dover richiamare il tradizionale
modello client-server di NoSQL. Questo ultimo aspetto motiva la comunità NoSQL
a investire nello sviluppo di in-memory key-value stores puri con capacità RDMA,
come HydraDB, Herd, Pilaf, DrTM, FaRM. I protocolli compatibili con RDMA, per
esempio InfiniBand, supportano le applicazioni basate sui socket legacy tramite IP
over InfiniBand (IPOIB); tuttavia, l’esecuzione di in-memory system esistenti su
IPOIB, non possono sfruttare in modo efficiente i vantaggi dell’infrastruttura. Quindi,
i sistemi in-memory key value stores si sforzano di ridurre la latenza e ottenere
prestazioni più elevate sfruttando le operazioni RDMA. In questa tesi vengono
discussi la struttura sottostante e la concorrenza negli in-memory key-value store
con RDMA-enabled prima discussi. Inoltre, sono state studiate le sfide prestazionali
delle operazioni RDMA. Lo stato dell’arte è stato analizzato e valutato sulla base
delle conoscenze acquisite sulle operazioni con RDMA. Infine un nuovo in-memory
key-value store viene presentato e confrontato con lo stato dell’arte.

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Problem statement . 2

1.2 Research Contributions . 2

1.3 Thesis structure . 3

2 Background and preliminaries 5

2.1 NOSQL Database Motives . 5

2.2 Remote Direct Memory Access (RDMA) 7

2.2.1 Opportunities . 9

2.2.2 Challenges . 10

2.2.3 Suitability . 11

3 Key-value store 12

3.1 Hash Tables . 13

3.1.1 Chained hashing . 14

3.1.2 Cuckoo hashing . 14

3.1.3 Hopscotch hashing . 15

x Contents

3.2 Concurrency control . 15

3.2.1 Self verification . 15

3.2.2 Versioning . 16

3.2.3 Flag and lease . 16

3.2.4 Hardware Transactional Memory 16

4 State of the art 17

4.1 HydraDB . 17

4.2 Pilaf . 18

4.3 HERD . 20

4.4 FaRM . 20

4.5 DrTM . 22

4.6 Memcached . 23

4.7 Redis . 23

4.8 Systems Comparison . 25

5 Performance challenges in modern systems 26

5.1 Memory . 26

5.2 Host Bus communication . 28

5.3 NIC Memory . 31

5.4 RDMA Features . 32

5.5 Communication . 35

5.6 Application level issues . 38

6 Kanzi: RDMA-enabled in-memory key-value store 40

6.1 Structure . 41

6.2 Kanzi Protocol . 42

Contents xi

7 Experimental Evaluation 47

7.1 Settings and operation noise . 47

7.2 Optimization Experiments . 50

7.3 Analyzing state of the art . 55

7.3.1 Throughput . 55

7.3.2 Latency . 58

7.3.3 Value size . 58

7.3.4 Uniformity Ratio . 60

7.4 Kanzi Analysis . 61

8 Conclusion and Future work 63

References 66

Appendix A Doctoral Period’s Publications 76

List of Figures

1.1 Thesis structure. 4

2.1 InfiniBand Architecture. 8

2.2 RDMA communication cutting view. 9

3.1 Chained hashing. 14

4.1 Schematic view of HydraDB. 18

4.2 Schematic view of Pilaf system. 19

4.3 Schematic view of HERD system. 20

4.4 Schematic view of FaRM system. 21

4.5 Schematic view of DrTM. 22

4.6 Schematic view of Memcached. 23

4.7 Schematic view of Redis. 24

5.1 System view. 27

5.2 RDMA operations execution paths. 31

5.3 DMA operations costs. 31

5.4 Synchronous and asynchronous RDMA communications. 36

5.5 Communication paradigms. 37

6.1 Kanzi Architecture. 40

List of Figures xiii

6.2 Kanzi shard data structures. 41

6.3 Kanzi client data structures. 42

6.4 State transition. 45

6.5 Transactions. 46

7.1 RDMA Send bandwidth difference on far and close socket to NIC. . 49

7.2 Variation on the RDMA operations. 49

7.3 Payload size impact on performance. 50

7.4 Unsignaled operations impact on performance. 51

7.5 Inline and connection type impact on the SEND performance. 51

7.6 Inline and connection type impact on the WRITE performance. . . . 51

7.7 Performance comparison on unreliable connections. 52

7.8 Performance comparison on reliable connections. 52

7.9 Scaling different operations. 53

7.10 Throughput of communication paradigms. 54

7.11 Latency of communication paradigms. 54

7.12 Uniform throughput with single shard. 56

7.13 Uniform and zipfian distributions throughput varying value size for
clustered and unclustered insertions. 56

7.14 Zipfian throughput with single shard. 57

7.15 Throughput comparison when varying read-write ratio for 24 clients. 58

7.16 Latency Zipfian. 59

7.17 Latency Uniform. 59

7.18 Value size impact on the performance of the systems with 8 clients
and 50% Get and Put. 60

7.19 Uniformity Ratio on 2 machines. Names are summarized to the first
two letters. 60

7.20 Kanzi result. 62

List of Tables

4.1 Decoupling the communication of the existing systems. 24

4.2 Decoupling the client amplification of the existing systems. 24

4.3 Data consistency and indexing of existing systems. 25

5.1 Comparing communication paradigms. 38

Chapter 1

Introduction

The challenge to accelerate fine-grained access to massively distributed data is a hot
debate these years. The quick access to data is enabled out of essential services and
hardware technologies. KEY-VALUE STORE is a typical solution for quick access
to data. Key-value store uses an associative array as the fundamental data model
where each key is associated with one and only one value in a collection to store and
to retrieve data. Application of key-value store is not limited to sciences, it can be
exploited in highly complex computing environments. Surprisingly, key-value store
is not only becoming more affordable, but also its application beyond the sciences
is broadening to include numerous business applications. It can deliver significant
value if company is looking to boost the frequency and speed of calculations and
analysis of data with much higher accuracy.

The first generation of key-value stores first turned to storage-class memory such
as solid-state disks (SSDs) to achieve higher performance. This approach focused on
exploiting SSDs as a cache between main memory and disks. Subsequently, as the
size of main memory increases and the technology to assemble a large shared memory
space among a set of machines becomes cheaper, there is a rising interest to develop
purely in-memory key-value stores. However, scaling an in-memory key-value store
was challenging with Remote Procedure Call (RPC) over traditional Ethernet due
to the network overheads and it requires scalable high-performance interconnect
infrastructure. High performance computing innovations provide larger and faster
access to the shared data. One of the fastest and most efficient interconnect solution is
InfiniBand adapters. The applications that run on top InfiniBand adapter are managed

2 Introduction

the same as applications running on Ethernet Network Interface Card (NIC). One
of the significant features of the Infiniband adapters is supporting remote Direct
Memory Access (RDMA). The RDMA enables to access the memory of remote
machine bypassing the operating system and CPU processing of the remote machine
which significantly reduce the latency of process. In-memory key-value stores
embrace RDMA technology in their design in order to achieve higher performance,
emerging the RDMA-enabled in-memory key-value store.

1.1 Problem statement

Network bandwidth is not a bottleneck in RDMA-based in-memory key-value stores
since they deal with small message sizes. However, new RDMA-based in-memory
stores strive to come up with a novel design which differs in the memory management,
choice of the RDMA operations and the connection types to saturate the message
rate. Although the existing RDMA-enabled in-memory key-value stores perform
well, in some aspects these designs are not well-suited. This thesis strives to crystal
clear the challenges of designing a high-performance in-memory key-value store and
propose methods to overcome the bottlenecks.

1.2 Research Contributions

In this section, the key research contributions that address the aforementioned
problem are described.

This thesis presents one-of-a-kind comprehensive study of modern RDMA-
based in-memory key-value systems including HydraDB [1], Pilaf [2], HERD [3],
FaRM [4], and DrTM [5] as well as well-known legacy in-memory systems such
as Memcached [6] and Redis [7]. Modern key-value stores are illustrated in an
unified representation to show architectural differences along with strengths and
weaknesses of each system. The key performance challenges of how to exploit
RDMA in in-memory key-value stores are reviewed and a comprehensive evaluation
methodology and extensive analysis of existing systems are presented.

Our key evaluation findings are summarized as follows:

1.3 Thesis structure 3

• Exploiting one-sided RDMA-operation (i.e., WRITE) in exchanging the re-
quest/response is not always the best choice

• the performance distribution of memory access is greatly influenced by when
the data is clustered or unclustered, and the clustered access achieves higher
performance

• RDMA-based systems can serve request in an uniform way comparing to the
traditional TCP systems

• the latency of the legacy systems are up to two order of magnitude higher than
the RDMA-based systems

• systems using inline RDMA message are more sensitive to the size of message
comparing to non-inline RDMA message

• increasing the size of the value will decrease the performance.

Finally, through exploiting the knowledge of analysing the state of the art, Kanzi,
a distributed RDMA-enabled in-memory key-value store is proposed in this thesis.

1.3 Thesis structure

As illustrated in Figure 1.1, this thesis is divided into 8 chapters, as follows: Chapter
2 presents movement to NOSQL systems and preliminaries of the RDMA operations;
Chapter 3 describes key-value stores as well as exploited underlying data structures
and concurrency controls. Chapter 4 provides an overview of the state of the
art which is part of this thesis, focusing on indexing, concurrency control, and
RDMA operations. Chapter 5 contains the main performance challenges of the
RDMA operations. In this chapter, different components such as memory, hostbus
communication, network adaptor memory, RDMA features, network communication,
and application level issues are investigated. Chapter 6 describes Kanzi and RDMA-
enabled in-memory key-value store. Chapter 7 describes experimental evaluation of
the performance challenges in RDMA operations as well as the results achieved on
Kanzi. Finally, Chapter 8 draws some conclusions, and outlines the future research
activities.

4 Introduction

Background and preliminaries Key-value store State of the art

Performance challenges
in modern
systems

Kanzi: RDMA-enabled in-memory key-
value store

Conclusion and future work

Chapter 8

Chapter 7 Chapter 6

Experimental Evaluation

Chapter 5

Chapter 4 Chapter 3 Chapter 2

Literature review

Designing high-performance in-
memory key-value store

Conclusion

Fig. 1.1 Thesis structure.

Chapter 2

Background and preliminaries

In this chapter, motivations and main drivers of the NoSQL movement will be briefly
described along with a classification and characterization of NoSQL databases. Then,
the Remote Direct Memory Access (RDMA) in high-performance protocols will be
discussed.

2.1 NOSQL Database Motives

Although, traditional databases with relational data model provide various features
such as strict data consistency, these features might be more than necessary for
several use cases. Moreover, with the development of the Internet, the traditional
relational databases faced many challenges such as efficient big data storage and
access. NoSQL (Not Only SQL) databases emerged to provide high scalability in
storing and accessing big data. NoSQL is the another type of data storage that is
used to store huge amount of data in high-demand environment. NoSQL databases
can be classified to four categories according to the types of data: column-oriented
databases, document databases, graph databases, and key-value databases.

Column-oriented databases are designed to store data in columns, unlike rela-
tional databases where data are stored in contiguous rows. This change in storage
design results a better performance. For example, in row-oriented databases all
columns of rows that satisfies a query are retrieved which cause unnecessary in-
put/output, however column-oriented databases only retrieve the required columns.
Furthermore, column-oriented databases can be stored efficiently since data-type and

6 Background and preliminaries

range of values are fixed for each column which can help to compress data. On the
contrary, row-oriented storage deals with multiple data types for different columns
on each row.

Since in column-oriented databases columns share nothing, parallel actions can
be performed on different columns. This feature enables columnar databases to
be compatible with MapReduce framework, which speeds up processing of large
amount of data by distributing the query on large number of systems [8]. Popular
column-oriented databases are Hypertable [9], HBase [10], HadoopDB [11], and
Cassandra [12].

Document-oriented databases store any format of documents such as XML
(eXtensible Markup Language) [13] and JSON (JavaScript Object Notation) [14] as
a record in the database, which can be addressed via a unique key. Since different
documents can have different number and type of fields, these databases provide
more flexibility in comparison with relational databases. Furthermore, this feature
allows document-oriented databases to store data efficiently by avoiding empty
fields in different documents. Practical usability of these databases are in content
management systems, mobiles, gaming and archiving. The widely used document-
oriented databases are MongoDB [15], CouchDB [16], and RavenDB [17].

Graph databases represent data as a network structure containing nodes and
edges. Nodes and edges have their own properties to describe the real data with their
relationships. Unlike relational databases, graph databases are suitable for finding
relationships within huge amounts of data without performing a join operation. Use
cases for graph databases are where relationships among data is as important as
data itself such as location based services, social networking websites, knowledge
representation, recommendation systems, and path finding. The commonly used
graph databases are Neo4j [18], Titan [19], AllegroGraph [20], InfiniteGraph [21],
and InfoGrid [22].

Key-value databases organize data as an associative array of entries consisting
of key-value pairs. Each key is unique and is used to retrieve the values associated
with it. Lookup time in key-value databases are very efficient comparing to relational
databases, which make them highly suitable for applications where schema is prone
to evolution. Most key-value stores favor high scalability over consistency. Popular
key-value stores are Riak [23], Voldemort [24], Redis [7], Dynamo [25], SILT [26],
Memcached [6], HERD [3], FaRM [4], Nessie [27], Pilaf [2], HydraDB [1].

2.2 Remote Direct Memory Access (RDMA) 7

2.2 Remote Direct Memory Access (RDMA)

Cluster-based computing are becoming popular for a wide range of applications
such as distributed deep learning [28–30], and distributed in-memory/disk data
storage [31, 2, 4]. These systems are typically built from connected computers
with high speed Local Area Networks (LANs). Much research has been carried out
in order to improve the communication performance in cluster-based computing
either by optimizing the existing protocol [32] or inventing new communication
standards. A great deal of work on high-performance communication, such as
Arsenic Gigabit Ethernet [33], U-Net [34], VIA [35], (Myricom/CSPi)’s Myrinet
[36], Quadrics’s QSNET [37] has led to modern high-speed networks including
InfiniBand [38], RoCE [38], iWARP [39], and Intel’s Omni-Path [40], which support
Remote Direct Memory Access (RDMA) [41]. RDMA blurs the boundary of each
machine by creating a virtual distributed, shared memory among connected nodes,
i.e., substantially reducing communication and processing on the host machine.

RDMA allows direct memory access from the memory of one host to the mem-
ory of another one. Examples of such network fabrics are internet Wide-Area
RDMA Protocol (iWARP) [39], RDMA over Converged Ethernet (RoCE) [38], and In-
finiBand [38]. In contrast with conventional protocols, RDMA implements the
entire transport logic in network interface card—commonly known as Host Channel
Adapter (HCA)—to boost the performance.

Although iWARP, RoCE, and InfiniBand protocols provide a unique set of
operations, however adopting an appropriate protocol requires the awareness of
advantages and drawbacks of each protocol. The iWARP [39] is a complex protocol
published by Internet Engineering Task Force (IETF) which only supports reliable
connected transport [42]. It was designed to convert TCP to RDMA semantics which
limits the efficiency of iWARP products. On the contrary, RoCE is an Ethernet-based
RDMA solution published by InfiniBand Trade Association (ITA) supporting reliable
and unreliable transports. InfiniBand is an advanced network protocol with low
latency and high bandwidth commonly used in commodity servers.

The OpenFabrics Alliance (OFA) publishes and maintains user-level Application
Programming Interface (API) for the RDMA protocols (i.e., iWARP, RoCE, and In-
finiBand) [43] along with useful utilities, called OpenFabrics Enterprise Distribution
(OFED).

8 Background and preliminaries

As Figure 2.1 shows, RDMA allows an application to queue up a series of
requests to be executed by HCA. Queues are created in pairs, called Queue Pair
(QP), to send and receive operations. An application submits a Work Queue Element
(WQE) on the appropriate queue. Then, channel adapter executes WQEs in the FIFO
order on the queue. Each WQE can work with multiple scatter/gather entries to read
multiple memory buffers and to send them as one stream and write them to multiple
memory buffers. When the channel adapter completes a WQE, a Completion Queue
Element (CQE) is enqueued on a Completion Queue (CQ). RDMA provides various
work requests consisting of different operations as following:

• SEND/RECV sends/receives a message to/from a remote node

• Fetch-And-Add (FAA) atomically returns and increments the value of a virtual
memory location in the remote machine

• Compare-and-Swap (CAS) atomically compares the value of a virtual memory
address with a specified value and if they are equal, a new value will be stored
at the specified address

• READ/WRITE reads/writes a data from/to a remote node exploiting the Direct
memory Access (DMA) engine of the remote machine (i.e., bypassing the CPU
and kernel)

QP

WQE

Host Channel Adapter (HCA)

send recv

...
send recv

CQE
CQ

Fig. 2.1 InfiniBand Architecture.

Figure 2.2 shows a possible RDMA communication between machines A and
B. Firstly, the user application issues a SEND request in step 1 to communicate with
the channel adapter through CPU in step 3. Kernel space operation in the step

2.2 Remote Direct Memory Access (RDMA) 9

2 is used only for starting an RDMA connection, and there is not any operation
or buffering when connection is set up. Furthermore, the existence of the fourth
operation depends on the request type. If the data are inlined, the HCA does not
need to perform an extra DMA operation to read the payload from the user-space
memory. Afterwards, the request is enqueued in the send queue and is waiting for its
turn to be processed by the Network Processor (NP). When the message is received
by machine B, it can be performed on a memory address (step 4) without any reply
to machine A or with a reply to machine A (step 5).

InfiniBand Channel Adapter

Kernel memory

User Application memory

CPU

 1

 2

 3

InfiniBand Channel Adapter

Kernel memory

CPU

 5 4
 4

Machine A Machine B

Fabric

User Application memory

Fig. 2.2 RDMA communication cutting view.

2.2.1 Opportunities

RDMA-enabled protocols provide important features to accelerate data transfer
without network software stack involvement (zero-copy), context switches (kernel
bypass), and any intervention (e.g., cache pollution, CPU cycles) of the remote pro-
cessor (no CPU involvement). These features allow RDMA applications to saturate
the network using few cores, unlike traditional distributed systems. RDMA applica-
tions use CPU in an efficient way which can be beneficial in shared CPU environment
(i.e., cloud solution). Furthermore, these features enrich RDMA-enabled application
to achieve the highest communication throughput, in particular for small messages.
RDMA provides a distributed shared memory over a reliable loss-less infrastructure
through hardware-based re-transmission of lost packets [3].

10 Background and preliminaries

Compatibility with legacy protocols is an important capability of RDMA-enabled
protocols. For example, iWARP and RoCE are designed to be compatible with
legacy Ethernet protocol, and InfiniBand supports legacy socket applications through
IP over InfiniBand (IPOIB).

2.2.2 Challenges

Although RDMA provides higher performance compared with traditional protocols,
the dilemma between RDMA performance achievement and redesign cost of an ex-
isting application according to RDMA semantic can be a challenging task. Redesign
can be as broad as the whole system or limited to the communication component
with the RDMA send/receive counterpart. It should be noted that the performance
achievement by the latter approach is restricted.

One of the challenging problems in an RDMA-enabled distributed application is
orchestrating local and remote memory accesses, since these are transparent to each
other. Practically, synchronizing these concurrent accesses hinder the RDMA perfor-
mance through the concurrency control mechanism. Typically, applying concurrency
control incurs access amplification to guarantee the data consistency. However,
there are some limited hardware-based solutions such as Hardware Transactional
Memory (HTM). Furthermore, this concurrency problem is not limited to remote and
local memory accesses, and there is a race among the remote memory accesses as
well. For such condition, RDMA supports atomic operations such as CAS and FAA.
The performance of these atomic operations intrinsically depends on its implementa-
tion in hardware [44]. Furthermore, the size of an atomic operation is limited (e.g., 64
bit). RDMA atomic operations can be configured to global (IBV_ATOMIC_GLOB)
or local (IBV_ATOMIC_HCA) granularity. The local granularity guarantees that all
the atomic operations to a specific address within the same HCA will be handled
atomically, the global one guarantees that all the atomic operations on a specific
address within the system (i.e., multiple HCAs) will be handled atomically. However,
until now, only local mode is implemented in the existing HCAs.

2.2 Remote Direct Memory Access (RDMA) 11

2.2.3 Suitability

RDMA can perform one operation in each Round Trip Time (RTT), however tra-
ditional protocols provide more flexibility by fulfilling multiple operations. Thus,
it makes RDMA more suitable for environments with single and quick operations.
Furthermore, RDMA is more suitable for small and alike message sizes. Addi-
tionally, exploiting RDMA with dynamic connections cannot be beneficial due to
the heavy initial cost of RDMA. Moreover, although RDMA provides high-speed
communication, it limits scaling in both distance and size, meaning that the distance
among nodes and the number of nodes cannot be arbitrarily large [45].

RDMA offers simple READ, WRITE and atomic operations (CAS and FAA) as well
as an operation to send messages (SEND). However, it does not support sophisticated
operations such as dereferencing, conditional read, on-the-fly operations, results
consolidation [46]. Dereferencing indicates accessing to the content of a pointer
to read its value. Conditional read represents reading memory based on a specific
condition. On-the-fly operation means performing operations within the data transfer
such as compression and decompression. Results consolidation indicates merging
the result of multiple operations.

Chapter 3

Key-value store

A distributed key-value store offers a flexible data model with weaker consistency
to partition data across many nodes on a computer network. Starting in mid-2000,
numerous commercial key-value stores have emerged, each with its own unique
characteristics, such as Google Bigtable [47], Amazon Dynamo [25], and Facebook
Cassandra [12] to enable managing massively distributed data at unseen scale, which
simply was not feasible with traditional relational database systems running on com-
modity hardware. These systems have become critical for large-scale applications,
such as social networks [48, 25], realtime processing [49], and recommendation
engines [50–52] to achieve higher performance.

Given the rise of key-value store over the last decade there have been two major
efforts to accelerate NoSQL platform using modern hardware. The first approach
was to employ storage-class memory, e.g., such as solid-state disks (SSDs), that
focused on exploiting SSDs as a cache between main memory and disks [53], such as
cassandraSSD [54], Flashstore [55], Flashcache [56], BufferHash [57]. The second
approach has been to capitalize on the ever-increasing size of the main memory in
each machine. These machines can now be connected through fast optical interfaces
from a massive virtual shared memory space at an affordable cost such as RAMCloud
[58], Memcached [6], MICA [59], SILT [26] and Redis [7].

Much research has been carried out in order to improve the communication
performance either by optimizing the existing protocol [32] or inventing new com-
munication standards.

3.1 Hash Tables 13

A great deal of work on high-performance communication has led to modern
high-speed networks including InfiniBand [38], RoCE [38], iWARP [39], and Intel’s
Omni-Path [40], which support Remote Direct Memory Access (RDMA) [41].
RDMA blurs the boundary of each machine by creating a virtual distributed shared
memory among connected nodes, i.e., substantially reducing communication and
processing on the host machine. Through RDMAs, clients can now directly access
remote memory without the need to invoke the NoSQL’s traditional client-server
model. This motivates the NoSQL community to invest in developing purely in-
memory key-value stores with RDMA capability, such as HydraDB [1], Herd [3],
Pilaf [2], DrTM [5], FaRM [4]. RDMA capable protocol (i.e., InfiniBand) supports
legacy socket applications through IP over InfiniBand (IPOIB); however, running
existing in-memory systems on top of it can not efficiently exploit the benefits in
the infrastructure [1, 2]. So existing in-memory key-value stores strive to reduce
latency and achieve higher performance by exploiting RDMA operations [60]. In
this chapter, commonly used underlying data structure and data concurrency in
RDMA-enabled in-memory key-value store are discussed.

3.1 Hash Tables

The most common and efficient underlying data structure in modern in-memory
key-value stores is based on hash table. Hash tables are dictionaries, where keys are
mapped to a table with a hash function. Hash function is a one-way function which
maps an input key to a value. The important properties of a hash table are lookup
time, storage space, collision resolution, and hashing types.

The expected number of memory probes for all operations can be made arbitrarily
close to 1 using a simple universal hash function by an appropriate load factor.
However, worst case lookup time is important in particular in distributed hash table
because the cost of each probe is particularly high. Therefore, the challenge is to
hold constant lookup time with a reasonable space usage.

The critical point of every hash table is the handling of collisions. A Collision
happens when different keys are mapped to the same location of the hash table by the
hash function. Finding an alternate location for the collided key is called collision
resolution. Typically, collisions are resolved by either close addressing or open
addressing.

14 Key-value store

Close addressing (chaining) uses a link list through dynamic memory allocation
to hold the key in the same index. However, open addressing resolves the collision
by probing through a set of alternate locations in an array of buckets [61].

Hash function has a key role in distributing keys over the hash table. Mainly,
there are two types of hashing: static and dynamic hashing. In static hashing, when
a search-key value is provided, the hash function always computes the same address.
The problem of this approach is that it does not expand or shrink dynamically as the
size of the database grows or shrinks. Dynamic hashing provides a mechanism in
which data buckets are added and removed dynamically. In short, "close" always
refers to some sort of strict guarantee that objects are always stored directly within
the hash table (closed hashing). Then, the opposite of "close" is "open" in which
there is not such guarantees.

3.1.1 Chained hashing

Chained hashing scheme consist of an array of buckets each with a linked list of
items, as can be seen in Fig. 3.1 [62]. Since this hashing mechanism has dynamic
memory allocation, it implies dynamic memory reclamation and concurrency control.
Furthermore, link traversal in this approach causes cache pollution which harms the
performance [63].

Bucket0

Bucket1

Bucket2

BucketN

. . .

A,1

F,4 G,10

Z,6

B,10

I,8

K,5

Y,3

Fig. 3.1 Chained hashing.

3.1.2 Cuckoo hashing

Cuckoo hashing is a dynamic hashing which uses two hash tables and two hash func-
tions. Every key is stored in one of the hash tables but never in both. The algorithm
is named cuckoo similar to the birds nesting habits. Cuckoo hashing provides worst
case constant lookup time and a good memory utilization. Experimental analysis

3.2 Concurrency control 15

shows that cuckoo hashing is appropriate for modern computer architectures and
distributed environments. The main idea in cuckoo hashing is using different hash
functions and tables to resolves collisions. If the place presented by the first hash
function is occupied it goes for the next location in the second table.

3.1.3 Hopscotch hashing

Hopscotch hashing is a static hashing scheme with the open addressing method for
collision resolution in hash tables. Hopscotch hashing is interesting because it guar-
antees a small number of lookups to find entries. The main idea behind hopscotch
hashing is that each bucket has a neighborhood of size H. The neighborhood of a
bucket B is defined as the bucket itself and the (H-1) buckets following B contigu-
ously in memory (H buckets total). This also means that at any bucket, multiple
neighborhoods are overlapping (H to be exact). Hopscotch hashing guarantees that
an entry will always be found in the neighborhood of its initial bucket. As a result,
at most H consecutive lookups will be required in contiguous memory locations.

3.2 Concurrency control

Concurrency control deals with the issues involved with allowing simultaneous
access to shared entities. Concurrency control is used to address conflicts with
simultaneous access. Concurrency controls coordinates simultaneous transactions
while preserving data integrity. In the following, the commonly used concurrency
control in RDMA-enabled in-memory key-value stored are discussed.

3.2.1 Self verification

In self verification mechanism each hash table entry is protected by a checksum.
Each entry stores a self-verifying pointer which contains a checksum covering the
memory area being referenced. A self-verifying data structure allows clients to
perform consistent reads in the face of concurrent writes. In this approach commonly
a cyclic redundancy check (CRC)-n is used. CRCs are a type of error-detecting code
used to implement checksums. CRCs are specifically designed to satisfy the property
that they can detect transmission errors in data. The idea is to detect any data loss or

16 Key-value store

data corruption [2]. In order to find the appropriate n, the important points are the
number of CRC execution in unit of time (N), and the collision probability 1/(2n).
Knowing them, the probability of a collision in unit of time is (2n)/N. Through this
computation the appropriate CRC-n can be chosen.

3.2.2 Versioning

Versioning relies on cache coherency of DMA [4]. Cache coherency guarantees the
uniformity of shared resource data that stored in multiple local caches. When one
bucket is stored in multiple cache lines, it stores version number of each bucket at the
start of each consumed cache line. Through update, an object is updated by updating
the data in each cache line. Through a read, the header version is checked with all
the cache line versions. If the check succeeds, the read is strictly serializable with
transactions. Otherwise, the RDMA is retried after a randomized backoff.

3.2.3 Flag and lease

For each key-value pair a guardian word is appended at the end of the value to indicate
whether the data has been updated [1]. Upon receiving an update request, firstly the
guardian word of the value is flipped in an atomic manner, then a new area for the
updated key-value is created. In this approach, efficient memory reclamation is a
challenging task, which is solved through a lease-based deferred memory reclamation
to guarantees the data integrity. Lease is a time agreement which guarantee the
memory availability in that period.

3.2.4 Hardware Transactional Memory

Since an Hardware Transactional Memory (HTM) provides strong atomicity and
one-sided RDMA operations are cache-coherent [5]. Thus, combining these two
can work as a concurrency control mechanism. The one-sided RDMA operation can
access to the remote memory as a non-transactional operation, and HTM as a locall
access on the target machine. In this case, any RDMA operation inside an HTM
transaction will unconditionally cause an HTM abort and thus we cannot directly
access remote memory through RDMA within HTM transactions.

Chapter 4

State of the art

Modern in-memory key-value stores [1], [3], [2], [5], [4] adopt RDMA to alleviate
the communication and remote processing overheads. In this chapter, a comprehen-
sive review of state-of-the-art RDMA-based key-value stores, examining indexing,
consistency models, and communication protocols is provided. Furthermore, two
legacy and well-known in-memory key-value stores are described in order to compare
with RDMA-based systems.

4.1 HydraDB

HydraDB is a general-purpose in-memory key-value store designed for low latency
and high availability environment [1]. HydraDB partitions data into different in-
stances coupled with a single-threaded execution model, called shard. HydraDB
adopts single-threaded model on an exclusive core to avoid shared memory access
and context switching to fully exploit the computational power and the cache of
each core. Each shard maintains a cache-friendly hash table with the location of
the key-value stores instead of their actual content. This hash table (called compact
hash table) is not visible to the clients and each bucket is aligned to 64 bytes with 7
slots and a header to an extended slot to avoid link list traversal. Each slot contains
a signature of the key-value and a pointer. The server processes a request if its
signature (i.e., a short hash key) matches to the requested key. Values are stored with
a word-size flag in order to show the validity of the value content. Fig. 4.1 shows

18 State of the art

Fig. 4.1 Schematic view of HydraDB.

the schematic view of HydraDB. The scheme shows the indexing, communication
protocol, and the required operations for Get and Put transactions.

HydraDB supports single-statement Get or Put transactions. Each client locates
key-values according to the consistent hashing algorithm [64]. Clients and servers
use WRITE to send and receive requests/responses, WRITE outperforms the other
RDMA communications. In this method, the process keeps polling a memory area to
detect a new arrival message (i.e., sustained-polling). Each shard uses a single thread
to poll the buffer requests. In the case of Get, shard firstly finds the corresponding
key-value address in the compact hash table. Then, it replies to the client the address
of the key-value pairs. So for the next request of the same key from the client, it
exploits the READ based on the cached address.

Put operation fully relies on the server; the server finds the key in the compact
hash table, then it flips the flag of the key-value atomically to notify the readers
about the update. Since a READ and a local write may conflict, shard exploits out-of-
place update with lease-based time to guarantee the data consistency and memory
reclamation, respectively [65].

4.2 Pilaf

Pilaf [2] is a distributed in-memory key-value store exploiting RDMA operation with
the goal of reducing latency and improving the performance of traditional in-memory
key-value stores (i.e., Redis [7] and Memcached [6]). As Fig. 4.2 demonstrates, Pilaf

4.2 Pilaf 19

Fig. 4.2 Schematic view of Pilaf system.

exploits two distinct memory regions visible to the client: a variable extent area and
a fixed-size self-verifying hash table. The extent area is the region to store the actual
value. Each bucket in the fixed-size self-verifying hash table keeps the address of the
key-value, its checksum, its value size, and the checksum of the bucket itself.

Pilaf supports single-statement transactions Get and Put. Unlike the Get, the Put
operation is fully server-driven. The Get operation probes fixed-size self-verifying
hash table through READ to find the appropriate bucket for the key with the valid
content (i.e., in_use). Since the address of the value is stored in the bucket, client
can read the value in the extent area. The Put operation fully relies on the server to
avoid the write-write race condition.

The Pilaf client and server use SEND message to exchange request and response
in Put operation. Once the Pilaf server receives a Put operation, first, it allocates
a new memory location and updates it with the new value. Then it updates the
corresponding bucket in the self-verifying hash table and disassembles the previous
key-value content. Each bucket equipped with a checksum over the value to guarantee
the data integrity. Disassembling the previous content notifies the clients about the
recent update by the inconsistency between the read value and its checksum in the
corresponding bucket. Moreover, each bucket is equipped with a checksum over the
bucket itself to solve the race condition between the client’s read and server’s update
on the same bucket. Once a client detects this inconsistency, it initiates the lookup in
the hash table to retrieve the updated address of the key and its content.

20 State of the art

Fig. 4.3 Schematic view of HERD system.

4.3 HERD

HERD is an in-memory key-value store designed for efficient use of RDMA oper-
ations [3]. HERD adopts a simple lossy associative index, and a circular log for
storing values (i.e., MICA back-end data structures [59]), illustrated in Fig. 4.3.
The clients write their requests (i.e., Get, Put) to the server using WRITE on an
unreliable connection and server replies using SEND over an unreliable datagram.
Adopting these operations are due to the scaling of WRITE and SEND in inbound and
outbound communications. HERD’s designers claim that single RTT communica-
tions (i.e., WRITE, SEND) combining with a memory lookup can outperform multiple
RTT communications (i.e., READ).

Although zero packet loss is detected in 100 trillion packets over unreliable
datagram [66], there is the belief that unreliable transports may bring the unreli-
ability of the enterprise applications [4]. HERD designers propose FaSST which
is a transactional in-memory store with a loss detection algorithm over unreliable
connection [66].

4.4 FaRM

FaRM is a distributed in-memory transaction processing system designed to improve
the latency and throughput of the TCP/IP communication [4]. FaRM exploits
symmetric model in which each machine uses its local memory to store data. This
symmetric model helps to exploit the local memory and the CPU which is mostly
idle. The FaRM adopts two memory areas for storing and handling transactions: a
chained associative hopscotch hash table and a key-value store area. FaRM employs

4.4 FaRM 21

Fig. 4.4 Schematic view of FaRM system.

a modified version of hopscotch hashing [67] that uses a chain in the bucket. A chain
is used to keep the new data in the bucket instead of resizing the table in the overflow
situation. However, it attempts to remove this chain and to move the last element
of the chain to the available slot. Each bucket in the hopscotch hash table consists
of an incarnation, the address of the value, and its size. FaRM stores small value
sizes into the bucket and the bigger sizes in the key-value store area and keeps its
address in the bucket. Values in FaRM are stored in a structure called object. Each
object consists of a header version (Vob j), a lock (L), an incarnation (I), and cache
line versions (Vc). The incarnation is used to determine the validity in case of the
removed object. Lock, header and cache line versions are used to guarantee the data
consistency.

The FaRM supports multi-statement Put and Get transactions. Fig. 4.4 shows
the FaRM data model and the interaction of the two transactions. Get operation uses
READ for lookup process. It is performed by reading consecutive buckets according
to the size of the neighbourhood (H) in hopscotch, where H=6 in FaRM. In addition,
the client checks the lock and the header version to be matched with all the cache
line versions to guarantee the data consistency. In case of failure, the client retries to
read after a backoff time. In case of Put transaction, client fetches the desired key
from the shard, then it locks the key by sending a request to the shard. Shard sets
the lock atomically (i.e., compare and swap) and sends the acknowledgment to the
client. Afterwards, client validates the key by reading the key and sends the update
(i.e., key and updated value) to the shard. Shard updates the value and finally, the
cache line and header versions are incremented and the object is unlocked. FaRM

22 State of the art

Fig. 4.5 Schematic view of DrTM.

uses fences after each memory write to guarantee the memory ordering in case of
concurrent read. FaRM uses WRITE and sustained-polling mechanism to exchange
requests and responses as HydraDB. However, this approach is incompatible with
out-of-order packet delivery and retransmitted packet from an old message which
might cause a memory overwritten and causes inconsistency in the execution [68].

4.5 DrTM

DrTM [5] and its successor DrTM+R [69] are in-memory key-value systems, which
exploit concurrency instruction provided by modern CPUs. DrTM adopts traditional
hash table with collocated memory regions for keys and values, called cluster hashing.
Memory regions are managed in three different areas, called main header, indirect
header, and entry, as shown in Fig. 4.5. The main header includes the incarnation,
key, and its offset. The indirect header has the same structure as the main header
and it is used in the overflow situation of the slots of the bucket in the main header.
In this case, the last slot of the bucket points to an available indirect header. The
value in DrTM is stored in a structure called entry containing the incarnation, value,
version and status. Status represents the state of the key to perform Get and Put.

DrTM supports multi-statement transaction Get and Put. To guarantee the
data consistency, it uses a lease-based in combination with lock and Hardware
Transactional Memory (HTM). At the beginning of a transaction, the executor locks
the remote key through the one-sided atomic RDMA verb (i.e., compare-and-swap)
and fetches the keys, then a local HTM is started. DrTM uses the strong consistency

4.6 Memcached 23

Fig. 4.6 Schematic view of Memcached.

and atomicity of RDMA and HTM, concurrent RDMA and HTM operations on the
same memory will abort the HTM transaction. Once the transaction is committed,
all remote keys are updated and locks are released.

4.6 Memcached

Memcached is a legacy in-memory key-value store based on TCP/IP protocol. It
stores keys with their values into an internal hash table as shown in Fig. 4.6. It uses
slab allocator to efficiently manage the memory according to the size of the key and
value. Since Memcached supports multithreaded access to the hash table, the server
orchestrates access through the locks. Memcached supports single-statement Get
and Put transactions. Once the server receives a Get request, it finds the appropriate
bucket and acquires the lock. Then, it replies the value or a miss, in case of missing
the key, to the client. Once the server receives the Put request, it acquires the
corresponding bucket lock, then updates the item. Memcached keeps an expiration
(exptime) and the recent access time (time) to the key to replace the new items with
the old ones in case of memory shortage according to the Least Recently Used (LRU)
algorithm.

4.7 Redis

Redis is an in-memory key-value store with the ability to asynchronously store
data on the disk. Flushing data to the disk can release memory space. Redis

24 State of the art

Fig. 4.7 Schematic view of Redis.

uses the TCP/IP communication scheme, and supports single-statement Get and
Put transactions considering that it is single threaded and does not use locks for
accessing the data. One of the main advantages of Redis is supporting the various
value data types, such as lists and sets. Fig. 4.7 shows the communication and data
model of the Redis. It uses LRU algorithm to flush the data to the disk; however,
there is a high probability of data loss in case of system power loss events.

KV Store One-sided / (Two-sided) Request / (Response) connection type Client-driven / (Server-driven) operations Architecture model
HydraDB ✓/ (✗) RC / (RC) ✗/ (Get,Put) Asymmetric

Pilaf ✓/ (✓) RC / (RC) Get / (Put) Asymmetric
HERD ✓/ (✓) UC / (UD) ✗/ (Get,Put) Asymmetric
FaRM ✓/ (✗) RC / (RC) Get / (Put) Symmetric
DrTM ✓/ (✗) RC / (RC) Get,Put / (✗) Symmetric

Memcached ✗/ (✗) RC / (RC) ✗/ (Get,Put) Asymmetric
Redis ✗/ (✗) RC / (RC) ✗/ (Get,Put) Asymmetric

Table 4.1 Decoupling the communication of the existing systems.

KV Store Size Get / (Put) Amplification Computation Get / (Put) Amplification
HydraDB Word / (0) lease validity + check flag / (0)

Pilaf (0) / (0) (2.6) × CRC64 / (0)
HERD 0 / (0) 0 / (0)
FaRM Vob j + I + L + (#cache lines - 1) * Vc1 / (0) check lock / (0)
DrTM 2 × State + I + version / (2 × State) 0 / (0)

Memcached 0 / (0) 0 / (0)
Redis 0 / (0) 0 / (0)

Table 4.2 Decoupling the client amplification of the existing systems.

4.8 Systems Comparison 25

KV Store Data Consistency Indexing Transaction
HydraDB flag & lease compact hash table Single

Pilaf self-verifying cuckoo hashing Single
HERD ✗ lossy associative index Single
FaRM versioning chained hopscotch hashing Multiple
DrTM lock and HTM cluster chaining hashing Multiple

Memcached lock chaining hash table Single
Redis ✗ chaining hash table Single

Table 4.3 Data consistency and indexing of existing systems.

4.8 Systems Comparison

Table 4.1 differentiates aforementioned systems based on the usage of one-side
or two-sided verbs, connection type in sending/receiving request/response, client-
driven/server-driven operations, and architecture model of the systems. Client-
driven/server-driven are operations that fully managed by the client/server. Architec-
ture model captures the usage of client local memory in storing key-values.

Table 4.2 classifies the systems based on amplification in size and computation.
Amplification highlights the extra amount of bytes or computation a client must
exchange or compute in Get and Put operations. The word-size flag is the overhead
of Get operation in HydraDB system. HydraDB client must check the flag and lease
time which has computation overhead. In Pilaf, the client performs a lookup in the
self-verifying hash table to find the address of the value, then it reads the value. To
guarantee the consistency, the client must compute the checksum of the bucket and
value. Client on average performs 1.6 probes in the self-verifying hash table plus
one more READ to read the value. So on average, client requires computing 2.6 times
the checksum. In FaRM, the header and cache line versions are amplification to
the value. The DrTM requires to read and set the State in Get and Put operations.
Moreover, Get operation requires to read an Incarnation (I) and version.

Table 4.3 shows the data consistency, indexing, and transaction type of the
systems. In-memory key-value stores can be categorized to single-statement (also
called caching systems) and multi-statement transactions. In the single-statement
systems, such as HydraDB [1], Pilaf [2], Herd [3], Memcached [3], and Redis [7]
there is one operation in the transaction. However, multi-statement transaction, such
as FaRM [4], and DrTM [5], have multiple operations in the transaction.

Chapter 5

Performance challenges in modern
systems

In high-performance applications not only board-to-board communication is critical,
but also core-to-core, CPU-to-CPU, and I/O communications require careful investi-
gation to explore the performance tradeoffs. For example, hardware message passing
among cores [70–72], CPU-to-CPU Intel QuickPath Interconnect (QPI) and AMD
HyperTransport (HT) [73, 74], and I/O PCI express, Intel Data Direct I/O [75, 76]
all strive to enhance the communication performance.

Fig. 5.1 shows the schematic view of a node equipped with InfiniBand card
[77–79] in a modern cluster. It shows the architecture of request queues in an
InfiniBand channel adapter and the components of a system. Although the network
architecture in the cluster affects the contention for resources, its impacts are outside
the scope of this chapter. In this chapter, different components such as memory, host
bus communication, HCA memory, RDMA features, network communication, and
application level issues are investigated.

5.1 Memory

Although remote memory access through RDMA operation is quite fast compared
to traditional network operations, they are still substantially slower than a local

5.1 Memory 27

DMA

Core1
Core2

Coren

.

.

L1
L2

L2

.. L3
L1

L1
. . .

HT/QPI

Core1
Core2

Coren

ra
nk

 0

ra
nk

 1

ra
nk

 0

ra
nk

 1

Ch0
Memory
channel Ch1

CPU socket 1 CPU socket 2

PCI-E/PCI-X

Ch0 Ch1
Memory
channel

.

.

L1
L2

L2

.. L3
L1

L1

ra
nk

 0

ra
nk

 1

ra
nk

 0

ra
nk

 1

QP

WQE

In
fin
iB
an
d

C
ha
nn
el
 A
da
pt
er

Send Recv

Packet
Port

Root Complex/
Host Bridge

Host Bus
(HT/QPI)

...

Send Recv

Transport

CQE

Cache

Fig. 5.1 System view.

memory access [4]. Thus, a better management of the local memory can influence
the performance. The main RDMA challenges are described in the following.

Memory registration RDMA device requires to register a memory to read and
write data from/to this memory. The cost of the memory registration can be divided
into three parts: (1) mapping virtual to physical memory, (2) pinning the memory
region (3) registering the memory region to NIC driver. Memory registration is
a costly operation because of the kernel call and the write operation to the NIC
driver. Pre-registering the memory can eliminate this cost in runtime. However, if
the applications can not store their data in a pre-register memory, then data need to
be copied within a register memory region.

[80] shows that comparing the cost of copying memory versus registering the
new memory depends on the memory size and the power of the host. [80] shows that
the cost of the memory registration can be even more than RDMA operation itself
(i.e., WRITE). So different techniques are proposed to solve this problem. Registering
a memory region resides the page of that region in the memory; if the page is not
resident in the memory, then the cost of page fault is added to the mentioned 3 parts.
So ensuring the residency of the memory page before registering a memory region
can decrease the cost of the memory registration. Memory allocation from kernel
space (i.e., _get_free_pages) and registering in the kernel (e.g., ib_reg_phys_mr)

28 Performance challenges in modern systems

instead of resorting to user space can decrease the memory registration latency [81].
Consequently, the first two steps of memory registration are eliminated since kernel
memory space are physically contiguous and never swapped out. Since submitting a
work request is not a blocking function, the overlapping memory registration with
communication can hide the cost of registration. Yet comparing the cost of Round
Trip Time (RTT) with the cost of memory registration reveals that it fully depends
on the size of memory registration [80]. Parallel memory registration can also hide
the cost. This technique is particularly effective when pages are resident in memory.

Cache miss The experiment on cache miss rate of the requester once the RDMA
message uses different memory addresses (i.e., the cache is never hit), and once the
message uses the same memory address (i.e., cache is always hit) shows that high
cache miss rate of the requester can reduce the performance [82].

Data Alignment Since NICs work more efficiently on aligned data [83], using
aligned message size can improve the performance of RDMA systems [82].

NUMA Affinity The distance between processor and data has a critical role
on the performance. Generally speaking, better latency can be achieved through
confining the memory access to local NUMA node. However, the appropriate
deployment of processes and data can exploit memory bandwidth of other NUMA
nodes [84–86]. Since the operating systems delegate the burden of NUMA-related
issues on the application, designer must be aware of the data distribution on the main
memory in order to reduce the latency and to increase bandwidth in memory access.
[82] shows the impact of the NUMA affinity on the RDMA applications.

Memory Prefetching Software prefetching is a classical technique for overcom-
ing the speed gap between the processor and the memory [87, 88]. Modern CPUs
equipped with automated prefetching (e.g., Smart Prefetch) predict and preload the
potentially needed data [89]. [3] shows that software prefetching in RDMA-based
applications can improve the performance.

5.2 Host Bus communication

PCI Express (PCIe) technology [90] is an ubiquitous scalable, high-speed and
serialized protocol standard for device communication and mainly a replacement for
the PCI-X bus. Both PCIe and PCI-X allowed the device to initiate an independent

5.2 Host Bus communication 29

communication, called first-party DMA [91]. InfiniBand vendors nowadays adopt
PCIe bus family for host communication due to the high-speed serial and dedicated
link [92–94]. PCIe generations are evolved based on the speed of the link (i.e., lane
speed and number of lanes), encoding, traffic, and packet overheads [95]. PCIe
provides a root-tree based network topology, where all I/Os are connected, through
switches and bridges, to a root complex. The root complex connects one or more
processors and their associated memory subsystems.

Any movement through PCIe has an overhead on the performance, so it is impor-
tant to understand the CPU and InfiniBand NIC interaction for high-performance
applications. Aside from protocol and traffic overhead, maximum payload size and
maximum read request size [95] may impact the performance in a PCIe system.
These parameters might cause a limitation on transaction rate over PCIe. Though
tuning these parameters have an impact on the performance of InfiniBand devices
[96]. Moreover, interrupt request affinity on PCIe can improve application scalability
and latency [97].

Profiling PCIe transactions are important to have a comprehensive view of the
CPU-NIC interaction [44, 98]. Modern CPUs provide a list of events in Performance
Monitoring Unit (PMU) to measure micro-architectural events of PCIe. For example,
the events PCIeRdCur and PCIeItoM monitor DMA reads and writes from PCIe,
respectively.

CPU can submit a work request to the NIC out of writing to the memory mapped
I/O (MMIO) register (i.e., BlueFlame in Mellanox) or sending a list of works (i.e.,
Doorbell). It is recommended to use BlueFlame in the light load and Doorbell in
high-bandwidth scenarios [99]. Each PCIe device equipped with a DMA engine can
access to main memory independently. Firstly, the device sends a memory Read
Request to the root complex. Then, it returns the desired memory by completion
with a data packet. Comparing the CPU MMIO overhead with NIC DMA memory
access reveals that the best trade-off is obtained by reducing the number of MMIOs
[44].

The cache coherency between the NIC and CPU is a critical issue which is not
written in the specification of InfiniBand protocol and is fully vendor specific. [4]
reveals that there is a single cache line coherency for Mellanox adapters on x86
processors. In addition, memory order on READ/WRITE verbs over PCIe are important
concerns which are vendor specific.

30 Performance challenges in modern systems

Fig. 5.2 illustrates the execution path of READ, WRITE, SEND, and FAA/CAS
operations. Firstly, CPU initiates operation by sending a work request to the HCA
via Mapped device memory (MMIO) over PCIe. Then, NPP of HCA processes the
WQE as following:

• In case of READ, the request are sent over fabric. Then, NPP of HCA in remote
side handles the request by a DMA read over PCIe, which requires two PCIe
transaction i.e, request data from memory (MRd) and read completions (CplD)
to read the data. Afterwards, the requested data are sent back to the sender.
HCA of the sender issues a DMA write over PCIe (MWr) to store the data in a
pre-defined memory address.

• In case of WRITE, the HCA needs to fetch the payload by a DMA read. How-
ever, if the payload is inlined in the WQE this DMA operation is eliminated
from the path. Next, the request is sent over fabric. HCA in the remote side
fulfills the operation by a DMA write to store the data in a pre-defined memory
address.

• In case of SEND, the HCA needs to fetch the payload by a DMA read as well
as WRITE operation. Next, the request is sent over fabric. HCA in remote host
requires to consume a RECV operation to determine the store memory address.
Thus, it needs a MMIO action. Next, the payload is written by a DMA write.

• In case of FAA/CAS, the request are sent over fabric. Then, NPP of HCA in
remote side handles the request either by an internal locking mechanism for
the target address and issuing a read-modify-write or an atomic operation over
PCIe. It should be noted that all intermediate routing elements of PCIe must
support the atomic operation capabilities. Afterwards, the return value are sent
back to the sender. Then, HCA of the sender issues a DMA write over PCIe
(MWr) to store the data in a pre-defined memory.

Fig. 5.3 shows an analytical comparison of DMA operations over PCIe 3.0
according to the model presented in [100, 44]. A DMA read always uses less PCIe
bandwidth than an equal-sized MMIO, and higher than a DMA write since there
is not a response for a write. However, it should be considered that supported
optimizations by the hardware can alter the presented performance [100].

5.3 NIC Memory 31

CPU MEMORY NIC

MMIO

DMA write

CPUMEMORYNIC

READ

MMIO

DMA write
WRITE

MMIO

SEND

MMIO

DMA write

FAA/CAS

CPU MEMORY NIC CPUMEMORYNIC

DMA read

MMIO

DMA write

DMA
AtomicOP

DMA read DMA read

DMA read

Fig. 5.2 RDMA operations execution paths.

8 16 32 64 128 256 512 1024

Size

0

500

1000

1500

2000

2500

3000

3500

B
y

te
 T

ra
n

sf
er

READ

WRITE

MMIO

Fig. 5.3 DMA operations costs.

Considering the mentioned analysis, RDMA has asymmetric performance, thus
it does not incur the same overhead at either sides. Since the destination memory
address is carried by READ, WRITE, FAA, and CAS operations, they can fulfill without
the intervention of the remote CPU. On the contrary, SEND operation doesn’t carry
memory information, and destination needs to post a receive WQE to capture the data.
Thus, a synchronous rate between sending SENDs and RECVs is required. This rate
can be managed either by Shared Receive Queue (SRQ) [79] or over provisioning
the RECV in combination with a backoff between SENDs.

Roughly speaking, the overhead of READ is higher than WRITE, and SEND higher
than READ. Furthermore, the performance of atomic FAA and CAS operations depends
on the amount of parallelism in the workload with respect to the HCA’s internal
locking mechanism.

5.3 NIC Memory

First InfiniBand products (developed by Mellanox) provided memory on the NIC
board. However, recently essential resources have been moved to the host memory

32 Performance challenges in modern systems

and only a cache memory remains on the board since the memory access time of the
host does not have a significant impact on the performance [101].

The NIC cache memory, particularly in Mellanox adapters, are served for several
purposes such as maintaining page tables of registered memory (to translate virtual to
physical address) or queue pair (QP) data (i.e., state and elements) [44]. Since adapter
has limited resources, the optimization of this scope can improve the performance.
Adopting larger memory pages will reduce the number of entries of page tables,
reducing fetching page table entries from system memory to NIC (i.e., page faults)
[4, 80]. Reducing the number of queue pairs can reduce the memory usage [4]. In
addition, the work request submission rate is quite important for avoiding cache miss
in the NIC [44].

5.4 RDMA Features

Choosing the right RDMA features is critical to the scalability and the reliability
of the application. In this section, several RDMA features and their impact on the
performance are described in more detail.

Transport Type RDMA supports unreliable and reliable types of connections.
Reliable connection guarantees the delivery and the order of the packet by the
acknowledgment from the responder. An unreliable connection does not guarantee
the delivery and the order of the message.

RDMA provides two types of transports: unconnected and connected. Each
QP is connected to exactly one QP of a remote node in connected mode unlike
unconnected (datagram). Since for each connected connection between two nodes,
two QPs are required one for the requester and one for the responder, the number of
QPs increases 2× with the number of connections. There are different approaches
to reduce the number of QPs. In a reliable connection, threads can share QPs to
reduce the QP memory footprint [4]. Sharing QP reduces CPU efficiency because
threads contend for the cache lines for QP buffers between CPU cores [66, 102]. In
the Annex A14 of the InfiniBand specification 1.2, eXtended Reliable Connection
(XRC) was introduced to connect nodes [103]. Multiple connections of a process in
a node can be reduced to one.

5.4 RDMA Features 33

Shared receive queue (SRQ) shares receive queue on multiple connections and re-
duce the number of QPs. SRQ solves the two-sided communication synchronization
problem between the requester and the responder which previously was solved by
using backoff in the requester and over provisioning of receive WQEs in responder
[79]. SRQ can solve this problem since an incoming receive message on any QP
associated with an SRQ can use the next available WQE to receive the incoming
data.

Inline Data Inlining the data to the work queue element (WQE) eliminates the
overhead of memory access through DMA for payload after submitting a WQE
and expecting the performance raising. However, an inline message has limitation
according to the size of the payload.

Message Size The size of the message could be bottlenecked in two places:
host bus communication (i.e., PCIe) or the Path Maximum Transfer Unit (PMTU).
Maximum payload size and maximum read request size in the PCIe communication
affects the performance of memory access from the InfiniBand adapter [95, 96].
It basically specifies the number of essential completion with data packets. The
higher read-request size increases the efficiency of packet transfers. When a QP
(reliable/unreliable connected) is created, the PMTU is determined in the queue and
if the desired message to be sent is larger than the PMTU of the queue, the message
is divided into multiple messages. However, if InfiniBand receives a message larger
than its port Maximum Transfer Unit (MTU) it silently drops the message [104].

Reducing the number of cache lines used by a WQE can improve throughput
drastically [44]. Roughly speaking, increasing the size of the message increases the
communication latency. [44] demonstrates that increasing the size of the message
will decrease the performance.

Completion Detection While InfiniBand adapter completes a work request, it
enqueues a CQE in the completion queue. Mainly, two approaches can be adopted
to detect completion of a work request: busy polling and event handling. In the
former mechanism, the application polls the completion queue to receive a CQE.
This approach has high CPU utilization; however, the cost of polling is quite low
since the operating system is bypassed. In the second approach, a notification is
received when a CQE arrives to the completion queue. This approach is much better
based on CPU utilization. However, it requires the operating system intervention.

34 Performance challenges in modern systems

Busy polling outperforms event handling in all possible RDMA operations [82, 105].
However, in large message size, both methods converge.

Completion Signaling A work request can be sent with signaled or unsignaled
opcode. If the opcode of the work request is set to signaled, once the work request is
completed a work completion element is generated. Unsignaled opcode generates
no element to the completion queue and consequently, there isn’t extra overhead.
However, the latter approach cannot be adopted due to the resource depletion, and
a signaled work request must be sent periodically to release the taken resources by
unsignaled work requests. Finding the best period to send a signaled work request is
a challenging task. The send queue depth and the message size can be considered as
parameters in finding the best period [82].

Batching Once the CPU sends a list of requests to NIC instead of sending one
request per each is called batching. The advantage of batching is reducing the
number of CPU-NIC and network communications due to coalescing the requests.
However, hardware limitation does not allow to batch requests of different QPs
[44]. The batching scheme is more appropriate for the datagram transport due to
its intuitive multicast support. So this scheme can be used to batch requests over
datagram connections to multiple remote QPs. In addition, sending multiple requests
in a message is another approach that allows the requester to send several requests to
a specific responder and amortize communication overheads [48].

Atomic operations RDMA intrinsically provides a shared memory region in a
distributed environment. Cross-access to the same memory region must be handled
in order to avoid the race condition. RDMA supports two types of primitives
to avoid concurrent access from other RDMA operations (not only atomic) on
the same NIC: fetch-and-add and compare-and-swap. These operations adopt an
internal lock mechanism of the NIC. The performance of these primitives depends on
both the NIC atomic implementation mechanisms and the level of parallelism [44].
The atomicity of RDMA CAS is hardware-specific with different granularity (i.e.,
IBV _ATOMIC_HCA, IBV _ATOMIC_GLOB) [106]. However, there is no concurrency
control between the operation from local and the remote RDMA operations. To solve
the concurrency problem, concurrent data structures [2, 4] have been proposed or
special hardware instructions providing strong atomicity (i.e., hardware transactional
memory in Intel processor) are exploited [5].

5.5 Communication 35

RDMA support protocols InfiniBand is different from Ethernet in different
aspects [107]. There are several InfiniBand alternative protocols supporting the
RDMA technologies including RoCE and iWARP. Adopting an appropriate protocol
requires the awareness of their advantages and drawbacks. The iWARP [39] is a
complex protocol published by Internet Engineering Task Force (IETF). It only
supports reliable connected transport (i.e., it does not support multicast) over a
generic non-lossless network [42]. It was designed to convert TCP to RDMA
semantics. On the contrary, RoCE is an Ethernet-based RDMA solution published
by InfiniBand Trade Association supporting reliable and unreliable transports over
lossless network [68]. There are several studies comparing these protocols over time
[108–111]. The consensus is that iWARP is unable to achieve the same performance
of InfiniBand and RoCE.

Wire Speed Mellanox InfiniBand has been made in 5 speeds: Single-Data Rate
(SDR), Dual-Data Rate (DDR), Quad-Data Rate (QDR), Fourteen-Data Rate (FDR),
and Enhanced Data Rate (EDR) offering 2.5, 5, 10, 14, 25 Gbps respectively, so
enhancing the link speed increases the performance and decreases the latency [112].

Adaptor Connection InfiniBand adapters are based on PCI-X, PCIe. Different
studies show that NIC based on PCIe outperforms PCI-X [93, 113, 114]. InfiniBand
host communication has been started to be integrated on the chip of the processor
[115, 116, 44].

5.5 Communication

RDMA allows several communication paradigms based on its primitives. There
are two main actors on each communication, those that make requests (clients) and
those that respond to the requests (servers). Communication can be categorized
as synchronous or asynchronous according to the type of message passing. In a
synchronous communication, the client sends a message, and it is blocked until a
response arrives, then it returns to its normal execution. In this mode, a message
represents a synchronization point between the two processes. In an asynchronous
communication, the client sends a message, then continues its execution till the
response is ready. Since in an RDMA-based synchronous communication there is
not a common clock between client and server to agree on a data transfer speed,

36 Performance challenges in modern systems

...

...

send queue

completion queue

Blocked

ibv_post_recv()
ibv_post_send()

Channel Adapter Fabric

ibv_get_cq_event() ibv_poll_cq()

ibv_get_cq_event()

User application

Busy Polling Continue SE
N

D
 R

EQ
U

ES
T

W
A

IT
 F

O
R

 R
ES

PO
N

SE

...

recv queue

completion queue

Channel Adapter User application

Busy Polling

W
A

IT FO
R

 R
EQ

U
EST

Blocked

ibv_post_send()

ibv_get_cq_event() ibv_poll_cq()

ibv_get_cq_event()

Busy Polling Continue

SEN
D

 R
ESPO

N
SE

...

send queue

...

ibv_post_recv() Busy Polling

...

recv queue

Fig. 5.4 Synchronous and asynchronous RDMA communications.

busy polling or blocking functions is exploited. Meanwhile, an RDMA-based
asynchronous communication can be implemented through events with notification.

Fig. 5.4 shows possible synchronous and asynchronous RDMA communica-
tions. Firstly, the client sends its request by posting a work request to the send
queue through ibv_post_send(). Then, it receives the completion of its work re-
quest through ibv_get_cq_event() or ibv_poll_cq(). ibv_get_cq_event()
is a blocking function while ibv_poll_cq() cannot make block with any flag or
timeout parameter, thus it can be blocked by busy polling. According to the type of
communication, the client can either use ibv_post_recv() or busy polling to get
its response. Generally speaking, the server receives the request and responds to it
on the same manner but in the opposite order.

When statements in a transaction require to be executed sequentially, a syn-
chronous communication is exploited. Synchronous communications are chal-
lenging due to the blocking essence of them. This blocking mechanism incurs
a bottleneck in a system. Therefore, more attention is required in order to select
a proper synchronous communication paradigm to achieve the best performance.
Thus, this section focuses on synchronous implementation of the main communica-
tion paradigms. However, the possibility of asynchronous implementation of each
paradigm is discussed as well.

Fig. 5.5 shows the main communication paradigms without middleware layer
exploiting the above-mentioned communication primitives. In model (a), the client
and the server exchange a pre-defined memory address for requests and replies. The
server is polling the memory address for a new request, and the client writes its

5.5 Communication 37

request to the pre-defined memory address in the server. Then, the server replies
by writing to the client memory address. In model (b), the client writes its request
in a local memory address and the server polls this memory to find a new request.
Afterwards, the server replies to the client by writing to a pre-defined memory in the
client. In model (c), the server is almost passive and the client writes its request in a
pre-defined memory address in the server and polls to check the response. In model
(d), the client writes its request in a local memory address, and the server polls over
this memory to find a new request. Then, the client polls in a pre-defined memory in
the server to check the response. In model (e), the client sends a request message to
the server, then the server returns a response message to the client. Finally, model (f)
is the traditional socket communication request and reply.

Model (a), (b), and (c) rely on sustained-polling mechanism for synchronous
communication, which can be implemented in different manners [1, 4]. Typically,
polling is relying on the last packet of a written message to detect request completion.
However, the correctness of this polling-based approach depends on the delivery of
the message in order to avoid anticipated last packet delivery or memory overwritten
by an older message [68].

Client Server Client Server

WRITE

WRITE

READ

WRITE

Client Server
WRITE

READ

Client Server
READ

READ

(a) (b)

(d)(c)

Client Server
SEND

SEND

(e)

Client Server
SOCKET

SOCKET

(f)

WRITEPoll READ SEND RECV LOCAL read/write SOCKET send/recv

Fig. 5.5 Communication paradigms.

According to the mentioned definition, model (a) can be fully implemented in
an asynchronous manner through WRITE with immediate data, and synchronously
by the polling mechanism. Although the client in model (b) can be implemented
asynchronously, the server can not be asynchronous due to the lack of notification
in READ. Model (d) doesn’t support asynchronous communication in either sides.
Model (e) and (f) can be implemented in both manners.

38 Performance challenges in modern systems

METHOD CLIENT OVERHEAD SERVER OVERHEAD NETWORK TRAFFIC COMMUNICATION CONNECTION
WRITE-WRITE high high low a/synchronous RC/UC
READ-WRITE low high high synchronous RC
WRITE-READ high low high synchronous RC
READ-READ fair fair high synchronous RC
SEND-SEND high high low a/synchronous RC/UC

SOCKET-SOCKET high high low a/synchronous RC/UC

Table 5.1 Comparing communication paradigms.

As can be seen, each paradigm has its own unique characteristic which makes
it suitable for a particular environment. Model (a) and (d) share the effort for
communication in a fair manner. Model (c) puts the burden of communication on
the client side and model (b) on the server side. Model (a) incurs higher CPU usage
in both client and server sides due to polling. Model (b), (c), and (d) generate more
network traffic for polling remote side. Model (e) and (f) don’t induce a pre-defined
memory address but they require synchronization in sending and receiving messages.

Each communication paradigm supports a series of connection types according
to the adopted RDMA operation. RDMA supports unreliable and reliable connection
types. Unlike unreliable, reliable connection guarantees the delivery and the order
of the packet through an acknowledgment message from the receiver. Furthermore,
RDMA supports unconnected and connected connections. Unlike unconnected,
each QP in connected communication connects exactly to one QP of a remote node.
This chapter only considers the connected connections, i.e, Reliable Connected
(RC) and Unreliable Connected (UC). Table 5.1 compares different communication
paradigms according to client and server overheads, network traffic, communication,
and connection types. Each model is named according to the operations presented in
Fig. 5.5.

5.6 Application level issues

Application level parameters that impact on the performance are presented in the
following.

Data Structures Hash table is a popular data structure in a multi-client and
multi-threaded server environment due to its fast direct lookups; however, hash
collision is inevitable, which leads the increased number of probes. The higher
number of probes in a hash table naturally increases the cost of lookup and pollutes

5.6 Application level issues 39

the CPU cache by keys which are irrelevant. In many modern RDMA-based NoSQL
systems [4, 2], Cuckoo and Hopscotch hashing are often employed [63, 67]. These
hash tables strive to have the constant lookup cost by keeping the key in a bounded
neighborhood to its original hash position.

Pipelining Pipeline allows simultaneous tasks at different stages. [117] proposes
pipeline for memory registration and communication in order to hide the cost of
registration. This approach can improve the performance depending on the size of
memory. However, [1] compares multi-threaded request handling pipeline versus
single threaded request handling which multi-threaded request handling harms the
performance.

Flow Isolation Latency-sensitive and throughput-sensitive applications may need
to share the network resources (i.e., NIC) in large-scale environment. The application
deployment is critical in such scenario to avoid the performance isolation of either
types of applications. [118] shows that in presence of both type of applications, a
latency-sensitive flow will suffer. So throughput-sensitive and latency-sensitive flows
are better to be isolated.

In-bound vs. Out-bound Requests can be categorized to inbound and outbound
according to the requester [3]. Sending the request from multiple clients to one
server is called inbound, and sending requests from one server to multiple clients is
called outbound. Before designing an RDMA-based application, measuring inbound
and outbound throughput is important. Outbound is bottlenecked by PCIe and NIC
processing power while inbound is bottlenecked by NIC processing power and
InfiniBand bandwidth [44].

Chapter 6

Kanzi: RDMA-enabled in-memory
key-value store

After a comprehensive analysis of the state of the art RDMA-enabled in-memory
key-value store and challenging performance issues in modern RDMA based clusters,
Kanzi was proposed. Kanzi distributes data across a set of servers, where each
server is further partitioned into a set of shards (referred to as Kanzi shard). Each
Kanzi shard consists of 3 important parts: memory groomer, structure manager, and
memory pool. Memory pool is a logical storage of each shard. Structure manager
handles the mentioned structures in the memory pool. Memory groomer is operated
by an exclusive thread to reclaim unused memory in memory pool. Fig. 6.1 shows
the architecture of the Kanzi consisting of Kanzi shards and Kanzi clients.

Memory Groomer

Kanzi shard

Structure Manager

Memory Pool

Memory Groomer

Kanzi shard

Structure Manager

Memory Pool

Distributed keys

c1

cm

.

.

.
c1

cm

.

.

.

Node 1 Node k

End users

Cluster

N
od
e
r

N
od
e
n

Kanzi clients Kanzi clients

[k1kp]

Fig. 6.1 Kanzi Architecture.

6.1 Structure 41

own size inc

daddr

Ilv hv

iaddr inc

....

tag

slot

Node Storage Area (NSA)

key value flag

slot

Indirection Table (IT)
c

Compact Hash Table (CHT)

extheader

0 0 0 1 0 0 1 0
header

Fig. 6.2 Kanzi shard data structures.

6.1 Structure

As can be seen in Fig. 6.2, each shard exposes three logical memory regions:
Compact Hash Table (CHT), Indirection Table (IT), and Node Storage Area (NSA).

Each bucket in compact hash table is 64 bytes which can be located in one cache
line. It consists of a header, 5 slots and a pointer (ext) to extend the bucket when there
is not an empty slot. Header indicates the free/busy status of each slot. Furthermore,
each bucket includes two fields low version (lv) and high version (hv) for the sake of
data consistency. Each slot includes 4 bytes indirection address (iaddr), 2 bytes tag
(tag), and 1 bit incarnation (inc). The iaddr indicates key offset in the indirection
table, and the inc bit determines the validity of the key in the system. The compact
hash table is only updated by server to insert a new key-value item in the system.
Clients only use this table at membership time to construct their local indirection
hash table. Multislot and cache-line size of bucket diminish the membership time
through avoiding a long linked list traversal and lower cache misses.

Indirection mechanism already has been employed to enhance the performance
of traditional relational databases [119–121]. It is a pointer to the latest version of a
record in the system. According to our experiment, maintaining an indirection pointer
inside a key-value structure incurs a link-list, which hinders the performance due
to long list traversal. Thus, the use of an indirection table was proposed. Clients in
our design access to the latest version of each key-value item through the indirection
table. Each entry in the indirection table consists of immutable field (l), ownership
(own), size, inc, and the address of the associated key in the storage area (daddr). The
l field is used for data consistency to avoid write-write race, the own filed determines
the node that the corresponding key resides, size indicates the size of value, and inc
represent the validity of data.

Node storage area keeps the actual key-value items in the system. In the design,
a head pointer in NSA points to a free memory area and memory behind the head
pointer is already allocated. A memory groomer in the background always keeps

42 Kanzi: RDMA-enabled in-memory key-value store

Client Storage Area

CSA1 CSAn

NSA
Node Storage Area

iaddr daddr own inc

Indirection Hash Table
(IHT)

size

Fig. 6.3 Kanzi client data structures.

track of the allocated memory. When it finds an unused memory chunk, it reclaims
it. This design was chosen due to the fast memory allocation and reclamation which
is interesting for high-performance dynamic memory management. Each key-value
item in node storage area consists of key, value, flag, and commit (c) fields.

As can be seen in Fig. 6.3, clients on a node has a dedicated and a shared
memory region. Each client has its own storage area called Client Storage Area
(CSA), and there is a shared region called Node Storage Area (NSA). NSA is a
particular hybrid memory region since it is shared for all clients resident on the
node, and also accessible from remote clients. Each node has a shared Indirection
Hash Table (IHT) which keeps the essential information to access each key. Each
bucket in IHT consists of size, iaddr, daddr, own, and inc. iaddr is the offset of the
corresponding key in the IT, daddr indicates the address of the key-value item in
the NSA of the owner. Finally, inc is the incarnation of the corresponding key from
the CHT. An important point in client data structure is the size of the IHT and NSA.
We exploit over-provisioning memory size in IHT to avoid any loss. However, in
case of limited memory a lossy mechanism can be replaced to evict one key from
the memory to purge IHT for new key. Moreover, invalid memories in NSA are
reclaimed with a background process.

6.2 Kanzi Protocol

Kanzi’s protocol is supported by RDMA investigations in Section 7. It basically
provides four single statement transactions: GET, PUT, INSERT, and DELETE. End
users in the system connect to any Kanzi clients through the conventional TCP/IP
protocol to request their keys. When a Kanzi client receives an end user’s request,
then a set of messages are exchanged between Kanzi clients and shard on behalf of
the end user to perform the request from the appropriate shard. Kanzi clients employ
a mesh-based topology that the memory of all machines in the cluster are exposed as
a shared address space. A single QP on each node is responsible for managing the

6.2 Kanzi Protocol 43

distributed memory region. This mechanism reduces significantly the maintaining
QP list on each node instead of connecting each client together.

In order to avoid the overhead of concurrency control and to efficiently utilize the
CPU, each Kanzi shard is managed by a single thread and is mapped to a single core
which exclusively manages a partition of keys. Partition-based design may not be a
suitable choice to handle highly skewed workloads [1], however exploiting the IHT
to cache the latest updated items can alleviate skewed workload contention. Since
the location of the data and its movement across NUMA nodes in Kanzi shard can
directly influence the access latency, the memory allocation and access within the
same memory node are confined.

Lazy synchronization A Kanzi client at the membership process reads the entire
CHT of the shard and constructs its own IHT. Since the CHT is shared among all the
clients and shard, a read-write race can happen. A non-blocking mechanism called
lazy synchronization was proposed which allows concurrent access to the CHT.

Each bucket in CHT is enclosed with two fields: lv and hv. A bucket is updated
exclusively by the responsible shard firstly by updating the lv field, then by writing
the slots, and finally updating the hv. The IB specification does not guarantee cache
line atomicity or write ordering, however the cache-coherency of DMA of NIC (on a
x86-based system) exhibits each cache line according to the memory barriers between
writes [4]. Thus, writes are separated by compiler memory barriers to provide the
essential ordering. Furthermore, according to the best of our knowledge the READ
reads the memory in left-to-right order (it is completely vendor specific feature).
Thus, the writing from right-to-left (opposite direction) guarantees the consistency.
Once a client reads a bucket, it checks the hv and lv fields. The equivalence of these
fields guarantees the consistency of the read data.

GET transaction Kanzi provides a latch-free GET transaction to be more
adoptable in read-intensive environment. Each GET starts firstly by a lookup in
the IHT followed by a READ in NSA of the owner node to access the actual key-
value item. Afterwards, the client must verify the validity of the item by checking
the flag entity. If the flag is set, the client must access IT on the shard to read
the latest update. If the item still exists (controlling the inc), it again performs
a READ to access the actual key-value item. One of the main advantages of the
mentioned mechanism is the constant lookup time for either small and large key
value items. Pilaf [2] optimistically requires two READs (one cuckoo hash table, and

44 Kanzi: RDMA-enabled in-memory key-value store

one storage area) to fulfill a GET transaction. FaRM [4] fixes the lookup time in
chained hopscotch hashing table at the expense of higher payload size to read a
complete neighborhood of a bucket which incurs overhead. However, Kanzi fixes
the lookup time regardless of the key-value item size through decoupling the index
and actual values, and proposing the indirection table. Such light implementation of
GET, puts the burden of keeping consistency on PUT transaction. The challenges of
coping with consistency is described in the PUT section.

PUT transaction Although decoupling design enhances flexibility with respect
to the location of stored data, it incurs overhead on PUT transaction to update both
index and actual value in case of out-of-place update. Furthermore, it requires
the invalidation of the previous version to keep consistency. Thus, one of the
challenging problem in PUT transaction is compromising between data consistency
and performance due to multiple points of update. Consistency control must handle
clashes among PUTs and GETs such a way that avoid hindering the performance.
Thus, Kanzi came up with a light concurrency mechanism.

When a Kanzi client receives a PUT transaction, firstly it stores the new key-value
item in its local NSA with uncommitted state (C), then performs a lookup in IHT to
find the desired entry. Next, Kanzi client updates the corresponding entry in IT. This
update basically locks the entry by setting the C field, and passes the ownership (own)
of the key-value item to the node that client resides and set the key-value address
(daddr). The new uncommitted version is in-stalled state till fulfilling the transaction
and committing the new version through updating C. Since client operations are
transparent, shard can not perform any concurrency control. So, PUT transaction
exploits atomic operation (CAS) to wipe any possible inconsistencies. Atomic CAS
guarantees the data consistency if there are in-flight operations on the same entry
at the time of memory update. This approach is feasible since each entry in the IT
is managed in 64 bits which can be engaged by RDMA atomic operations. RDMA
atomic operations can be configured to global (IBV_ATOMIC_GLOB) or local
(IBV_ATOMIC_HCA) granularity. The local granularity guarantees that all atomic
operations to a specific address within the same NIC will be handled atomically,
the global one guarantees that all atomic operations on a specific address within
the system (i.e. multiple HCAs) will be handled atomically. However, until now,
only local mode is implemented in the existing NICs. Thus, in our deployment
all the clients send their request through a single HCA, and each HCA handles
request of one particular IT to avoid inconsistency. After updating the IT entry,

6.2 Kanzi Protocol 45

PUT transaction invalidates the previous version (flag), then it unlocks the IT entry
and resets the commit (C) field in the local NSA. Fig. 6.4 illustrates the possible
states of a key-value item with its transition. A new uncommitted key-value item
has valid:uncommit state which will be changed to valid:commit once the PUT
transaction is committed. Within the PUT transaction Kanzi client invalidates the
previous version of item which causes valid:commit to invalid:commit transition. It
should be noted that there is not invalid:uncommit state to avoid a concurrent update.
Once the memory is reclaimed it changes to reclaimed state to be used for new items.

After transferring the ownership of a key-value item, the new owner must handle
all requests for the migrated item but the corresponding shard still retains the associ-
ated entry in its indirection table. Such mechanism allows us to use the local memory
of the clients to store data. Moreover, subsequent requests from the same node can
be handled from the shared memory NSA and eliminates the network communica-
tion overhead. However, increasing the number of updates can incur performance
degradation due to the data migration. The data migration can be beneficial for large
size values to save the network bandwidth. However, the symmetric model and data
migration can raise the performance if updated keys are hosted on the same node.
Otherwise, it incurs a burst network traffic due to data migration among nodes. To
inhibit this phenomenon, clients must be partitioned and connected to a particular
shard.

valid:uncommit valid:commit

invalid:commitreclaimed

Fig. 6.4 State transition.

INSERT & DELETE transactions Kanzi clients are not allowed to insert a
new key-value item. However, they are enabled to delete an existing one. When a
client receives a DELETE transaction, the key-value item is evicted by incrementing
the inc field in the corresponding entry in the IT. It performs the DELETE transaction
by an atomic CAS to the corresponding entry in the IT. All the insert operations are
performed through the Kanzi shard by allocating a new item in the CH and the IT.
This policy enables the Kanzi shard to provide the logging facility to asynchronously
logs all INSERT operation to the local disk similar to the other key-value stores such
as Redis [7].

46 Kanzi: RDMA-enabled in-memory key-value store

txGet txPut txFree

START

COMMIT

READ IT

CAS IT

WRITE NSA

READ NSA

read IHT

write NSA
REMOTE OPERATION LOCAL OPERATION

LORO

write IHT

LO

RO LORO

fla
g!
=0

WRITE IT

Fig. 6.5 Transactions.

Kanzi programming model seeks to let users work at a much higher level of
abstraction than dealing with the internal components. We implemented Kanzi in
C using the libibverbs library from the OpenFabrics Alliance. Kanzi provides a
set of interfaces like txGet(), txPut(), and txFree() to support GET, PUT, and
DELETE transactions respectively. Fig. 6.5 shows the internal mechanism of each
interface.

Chapter 7

Experimental Evaluation

Since our study firstly focused on performance challenges of RDMA operations, it
allows us to capture bottlenecks of RDMA-based in-memory key-value stores. Thus,
a comprehensive set of unified experiments are designed and performed under the
same conditions for the sake of fair comparison in order to evaluate the state-of-the-
art systems. In this approach, the bottleneck of different approaches can be captured
through a deep analysis.

Redis 3.2.9 [7], Memcached 1.4.37 [6], and HERD [122] are employed from the
original source. However, HydraDB, Pilaf, and FaRM are implemented from scratch
since they are not publically available. All messages in HydraDB and FaRM are
exchanged using the inline RDMA messages. Since DrTM uses a special limited
CPU feature that is not widely accessible, it is not included in the analysis. FaRM
is the only system that supports multi-statement transaction, which is unified to
be comparable to the other systems. The only modification is in the Put operation
in which client sends the key and new value to the shard for update request as it
presented in [3]. In addition, Redis and Memcached are executed over IPOIB and
the other systems have native RDMA over InfiniBand support.

7.1 Settings and operation noise

To provide the reproducibility and interpretability of the experiments, the non-
deterministic and deterministic parameters which can impact on the performance are
described in the following.

48 Experimental Evaluation

Non-deterministic Setting Query distribution (i.e., object popularity) is one
of the main parameters in the experiments. Facebook analysis reported that web
requests follow Zipfian-like distribution [123] [124] and the majority of in-memory
systems present experiments based on the Zipfian distribution with high α ratio
(α = 0.99) indicating skew curve [4, 1, 3, 2]. Zipfian distribution refers more
generally to frequency distributions of rank data which can indicate the contention
in the request. For comprehensiveness, two distributions are considered that closely
model the real-world traffic: Uniform and Zipfian. Uniform distribution represents
that each interval of the same length are equally probable.

The number of keys is an important parameter in the experiment. For example,
the server needs to register corresponding memory size to the number of keys which
can increase the cache misses in the NIC to fetch the page table entries and influence
on the performance. In the experiment, 4 million key-value pairs with 16 and 32
bytes sizes were considered close to real-world workloads [48, 125].

Real-world workload ratio of read and write vary from 68% to 99% [126].
However, various read-write ratio workload ranging from read-only to write-only
are considered.

Deterministic Setting All benchmarks are compiled with the gcc version 4.4.7
with 50 seconds warmup and 25 seconds measuring time. In addition, to achieve the
certainty on the result the experiments are repeated three times.

Benchmarks are executed on a machine with 2 sockets AMD Opteron 6276
(Bulldozer) 2.3 GHz equipped with 20 Gbps DDR ConnectX Mellanox on PCI-E
2.0 with offload processing. The network topology is a direct connection with a
Infiniscale-III Mellanox switch. Each machine has 4 NUMA nodes connecting to
two sockets.

Each process is mapped to a single core to avoid context switching and uses its
local NUMA node. Since NIC (i.e., Mellanox adapters) over PCIe is closer to one of
the CPUs on the board [96], an experiment is conducted to examine the impact when
both sender and receiver are mapped on the closer CPU and once on the far CPU to
NIC on two machines. Fig. 7.1 shows the bandwidth difference on SEND operation
when the processes are bind to close and far CPU from the NIC. According to the
result, performance is higher when processes are pined to the closer CPU to the NIC.

7.1 Settings and operation noise 49

8 16 32 64 128

Message size

0

200

400

600

800

1000

B
an

d
w

id
th

 (
M

B
/s

ec
)

Far socket to NIC

Near socket to NIC

Fig. 7.1 RDMA Send bandwidth difference on far and close socket to NIC.

To measure the variation in the throughput of RDMA operations, four client
processes reside on one host connected to one server process on another host, per-
forming consecutive RDMA operations. This experiment has been repeated 100
times and each time a client is executed for 50 seconds. The throughput of each client
have been measured, then they are unified to find the total value. Figure 7.2 shows
the results of this experiment. As can be seen, the variance between the observed
throughputs is negligible, with only a few outliers.

WRITE READ SEND

0.5

1

1.5

2

2.5

T
h

ro
u

g
h

p
u
t

×10
6

Fig. 7.2 Variation on the RDMA operations.

50 Experimental Evaluation

7.2 Optimization Experiments

Optimizations make a substantial difference in the overall performance of RDMA-
based applications. Thus, primarily the experimental results of applying optimiza-
tions on RDMA operations are evaluated.

Payload size - Fig. 7.3 shows the impact of payload size on the throughput. In
the experiment, one client performs RDMA operations with different payload sizes.
As can be seen, increasing the payload size incurs the performance degradation,
since the payload size affects the CPU-HCA interactions as well as the number of
exchanged messages. Moreover, Fig. 7.3 illustrates that WRITE delivers an higher
throughput than READ despite both operations have identical InfiniBand path. The
reason behind is that WRITE requires less states to be maintained both at the RDMA
and at the PCIe level [3]. In a WRITE operation, the client does not need to wait for
a response. However, a READ request must be maintained in the client’s memory
till a response arrives. Furthermore, at the PCIe level, READ is performed using
heavier transactions comparing to WRITE. In addition, SEND presents much lower
performance comparing to the READ and WRITE, since it does not bypass the remote
CPU, and it requires RECV at the server side which is a slow operation due to its
DMA interaction for writing data and CQE [3].

8 16 32 64 128 256

Payload size

0

0.5

1

1.5

2

2.5

3

3.5

T
h
ro

u
g
h
p
u
t

(O
P

S
/s

ec
)

×10
6

READ

WRITE

SEND

Fig. 7.3 Payload size impact on performance.

Unsignaled operation - When an WQE completes its operation, it pushes a
completion signal to the CQ via a DMA write. Pushing this signal adds extra
overhead on the operation due to its PCIe interaction [3]. Fig. 7.4 shows the
throughput of RDMA operations when a selective signal is used. In this experiment,
consecutive operations with 8 bytes payload size are sent unsignaled, i.e., completion

7.2 Optimization Experiments 51

signals are not generated for these operations, then a signaled operation is sent
to release the taken resources. It should be noted that the number of unsignaled
operations cannot exceed the size of the queue pairs, which is set to 2048 units in this
experiment. As Fig. 7.4 illustrates, increasing the unsignaled operations increases
the performance.

16 32 64 128 256 512 1024

Number of Unsignaled

4

5

6

7

8

9

10

T
h
ro

u
g
h
p
u
t

(O
P

S
/s

ec
)

×10
5

SEND

WRITE

READ

Fig. 7.4 Unsignaled operations impact on performance.

16 32 64 128 256 512 1024

Number of Unsignaled

0

1

2

3

4

5

T
h

ro
u

g
h
p

u
t

(O
P

S
/s

ec
)

×10
6

SEND

SEND-RC-INLINE

SEND-UC-INLINE

Fig. 7.5 Inline and connection type impact
on the SEND performance.

16 32 64 128 256 512 1024

Number of Unsignaled

0

1

2

3

4

5

T
h

ro
u
g

h
p
u

t
(O

P
S

/s
ec

)

×10
6

WRITE

WRITE-RC-INLINE

WRITE-UC-INLINE

Fig. 7.6 Inline and connection type impact
on the WRITE performance.

Inline message - An WQE can inline its payload up to the maximum pro-
grammed input/output size, otherwise the payload can be fetched via a DMA read
[3]. Increasing the WQE size will increase the MMIO and DMA operations in the
inline and non-inline messages. The key difference between the inline and non-inline
RDMA operations relies on the fact that CPU puts the payload in the message, and
non-inline message requires to read the payload by a DMA read operation [44].
Although inline message has higher throughput, it poses a limit on the message
payload size. For example, it must be less than 1K bytes in the NIC employed in

52 Experimental Evaluation

our evaluation. Moreover, increasing the payload size causes higher throughput
degradation in inline message comparing to non-inline messages.

Connection types - Although reliable and unreliable connections (RC/UC) have
the same header size (i.e., 36 B), they present different performances. For example,
both connected transports (RC/UC) require as many queue pairs as the number of
connections in HCA comparing to unconnected connections. These queue pairs can
increase memory consumption in HCA and may consequently affect the performance
because of the increased number of cache misses.

Fig. 7.5, 7.6 show the impact of inline messages and connection types on SEND
and WRITE operations while increasing the number of unsignaled operations. READ
operation is not reported since it only supports reliable connections. Furthermore, it
does not transfer payload, thus it does not support inline features. In this experiment,
one client performs RDMA operations with 8 bytes payload size. As can be seen, the
impact of inline and connection type is not the same on SEND and WRITE operations.
WRITE is more sensible to inline and SEND is more sensible to connection type. These
features can increase the performance up to 4.9 times in either cases.

16 32 64 128 256 512 1024

Number of Unsignaled

0

1

2

3

4

5

T
h

ro
u
g

h
p

u
t

(O
P

S
/s

ec
)

×10
6

READ

WRITE-RC-INLINE

SEND-RC-INLINE

Fig. 7.7 Performance comparison on
unreliable connections.

16 32 64 128 256 512 1024

Number of Unsignaled

0

1

2

3

4

5

T
h

ro
u
g

h
p

u
t

(O
P

S
/s

ec
)

×10
6

READ

WRITE-UC-INLINE

SEND-UC-INLINE

Fig. 7.8 Performance comparison on
reliable connections.

Fig. 7.7, 7.8 illustrate the comparison of READ with SEND and WRITE in reliable
and unreliable connections. As can be seen, WRITE with inline payload outperforms
the other RDMA operations in both RC and UC connections.

Scaling is an important experiment because in real cases more than one client
is typically connected to the server. So, an experiment was devised to investigate
the impact of scaling on the performance. In this experiment, several clients send
their requests towards the server. The server processes new requests in a round robin

7.2 Optimization Experiments 53

1 2 4 8 12 16 20 24 28

Number of clients

0

2

4

6

8

T
h
ro

u
g
h
p
u
t

(O
P

S
/s

ec
)

×10
6

SEND-UC-INLINE

WRITE-UC-INLINE

READ

SOCKET

Fig. 7.9 Scaling different operations.

fashion. If the server finds a request from a client, it responds to the request. Each
client is mapped to one dedicated core to avoid context switching. Each client sends
8 bytes message request with 512 unsignaled operations.

Fig. 7.9 shows the performance by increasing the number of clients. The
degradation of SEND and WRITE throughput occurs because the SENDs and WRITEs
are unsignaled, i.e., client processes get no indication of operation completion. This
leads the client processes overwhelming with too many outstanding operations,
causing cache misses inside the HCA. As can be seen, WRITE and READ outperform
the other operations. Furthermore, with few clients the WRITE outperforms the READ
operation. Surprisingly, SEND underperforms socket communication with higher
number of clients. It should be noted that socket is implemented in non-blocking
mode in this experiment. Furthermore, only one machine is adopted to deploy the
client processes. However, increasing the number of client machines can alter the
performance because the overhead of maintaining the QP states is distributed among
different machines [44].

54 Experimental Evaluation

4 8 12 16 20 24 28

Number of clients

0

2

4

6

8

10

T
h

ro
u
g

h
p
u
t

(O
P

S
/s

ec
)

×10
5

WRITE-WRITE

READ-READ

WRITE-READ

READ-WRITE

SEND-SEND

SOCKET-SOCKET

Fig. 7.10 Throughput of communication
paradigms.

4 8 12 16 20 24 28

Number of clients

0

50

100

150

200

250

300

350

L
at

en
cy

 (
u

se
c)

WRITE-WRITE

READ-READ

WRITE-READ

READ-WRITE

SEND-SEND

SOCKET-SOCKET

Fig. 7.11 Latency of communication
paradigms.

Communication paradigms - Fig. 7.10, 7.11 show the performance and the
latency of communication paradigms, respectively. According to the experiments
reported in Fig. 7.9, WRITE operation has the best performance, thus it was expected
that WRITE-WRITE outperforms the other communication paradigms. Surprisingly,
the WRITE-READ has much larger (i.e., 2.4 ×) throughput than WRITE-WRITE. The
reason is that in WRITE-WRITE communication, a client sends its request and polls
the response area, and increasing the number of clients overwhelms the server to
process requests and replies to them by WRITE operation. However, WRITE-READ
paradigm lightens the server burden, since server replies to requests by writing
to local memory. So, it can process more requests and reduce the response time
of clients, consequently achieving a better throughput. Furthermore, Fig. 7.11
demonstrates that the latency of WRITE-READ paradigm is the lowest among the
other paradigms. Unlike WRITE-READ, READ-WRITE overloads server by reading
requests through READ and replies by WRITE. So, the READ-WRITE underperforms
the WRITE-READ. The READ-READ has better throughput than the READ-WRITE
because server only performs a READ operation comparing to a READ and a WRITE in
READ-WRITE paradigm. As demonstrated in Fig. 7.10, SEND-SEND and SOCKET-
SOCKET perform poorly due to their heavy operations, which was expected based
on the results in Fig. 7.9.

WRITE-READ is the only paradigm in the experiment that scales well by increas-
ing the number of clients, however the primary drawback of this approach is that
the client requires more effort in exchanging request-response. Thus, it can not be a
good option for environments where clients are placed with other processes on the
same machine because the amount of CPU that must be allocated to client processes
is significantly high. READ-READ is a good option to act fairly in both client and

7.3 Analyzing state of the art 55

server sides. However, it performs 3.9 times lower than WRITE-READ. Moreover,
READ-READ incurs huge network traffic to poll remote host.

7.3 Analyzing state of the art

To evaluate the state-of-the-art RDMA-enabled in-memory key-value stores a set
of unified experiment are designed to measure throughput, latency, fairness, and
uniformity ratio. These metrics are chosen since they are commonly used metrics
in highly cited papers in this scope. In order to stress each system, one machine is
dedicated as the server with a single shard and one machine with multiple clients in
the experiments.

7.3.1 Throughput

Impact of varying the number of clients and workload read-write ratio on
throughput Fig. 7.12 shows the results on different workload read-write ratios
on an Uniform distribution. As expected, the throughput of Redis and Memcached is
an order of magnitude less than RDMA-based system in particular in a read-intensive
environment. HydraDB scales well by increasing the number of clients and almost
outperforms the other systems. In read-intensive environment, we explain this by
considering the smaller amplification in the HydraDB and the use of READ for Get
statement.

HydraDB reads only the desired value in case of valid lease time. FaRM uses
hopscotch hashing which requires reading a neighborhood consisting of 6 buckets;
thus, FaRM results in a heavier lookup.

Although Pilaf uses READ in Get statement, it can not outperform HydraDB and
FaRM due to the higher number of READs and cost of CRC64. In particular, the
latency of CRC64 computation can even increase higher than READ latency [65].

HERD uses WRITE over unreliable connection for sending request and SEND over
datagram for its response. Each client creates one QP to send its requests while the
server creates one QP for each client to receive the requests. The server uses one QP
for all clients to respond their requests and each client creates one QP for each server
to receive the response. This mechanism puts more overhead on the clients due to

56 Experimental Evaluation

0 10 20 30

1

2

4

5
M

o
p

s/
se

c
100% Get

Redis Memcached Herd HydraDB Pilaf FaRM

0 10 20 30

1

2

4

6
90% Get, 10% Put

0 10 20 30

Number of clients

1

2

4

6

8

M
o

p
s/

se
c

50% Get, 50% Put

0 10 20 30

1

2

4

6

8

10
100% Put

Fig. 7.12 Uniform throughput with single shard.

2 4 8 16 32 64

Value size (Bytes)

2

3

4

5

6

7

8

M
o
p
s/

se
c

Clustered-Zipfian
Clustered-Uniform
Unclustered-Zipfian
Unclustered-Uniform

Fig. 7.13 Uniform and zipfian distributions throughput varying value size for clustered and
unclustered insertions.

the higher number of QPs. In the experiment, HERD is bottlenecked with the SEND
operation [3]. Moreover, HERD is executed without the hugepages which have an
impact on the performance.

Throughput impact of the memory access distribution To isolate the impact
of the memory access distribution on the performance, an experiment has been
performed with 24 processes reading remote memory either using Zipfian and
Uniform distributions. We deploy data in the clustered (i.e., in order) and unclustered
(i.e., random) way. We observed that both distributions perform identically with the
small value size due to the locality of the data in the smaller portion of the memory.

7.3 Analyzing state of the art 57

However, increasing the value size results reducing the locality and Zipfian memory
access outperforms (i.e., 2.1×) the Uniform due to higher data locality, as can be
seen in Fig. 7.13. Furthermore, Zipfian distribution with clustered deployment has
higher (i.e., 1.4×) performance comparing to the unclustered deployment due to the
higher data locality. Generally speaking, Zipfian distribution increases the chances
of reusing cached data for hotkeys. However, it will increase the race condition when
updating hotkeys. Fig. 7.14 shows the throughput results for Zipfian distribution.

Throughput impact varying the workload read-write ratio To highlight the
impact of decreasing the workload read-write ratio for both Zipfian and Uniform
distributions, an experiment has been devised with 24 clients while varying workload
read-write ratio. As can be seen in Fig. 7.15, HydraDB and FaRM scale grace-
fully when decreasing the read-write ratio due to the higher performance of WRITE
exploited in Put transaction comparing to the READ in Get transaction. The perfor-
mance difference of READ and WRITE is due to the limited number of outstanding
READ requests for each QP (i.e., our case 24) and the overhead of maintaining their
state in the NIC. Moreover, READ uses PCIe non-posted transaction comparing to
cheaper posted transactions for WRITE [3]. A non-posted transaction is a type of
PCIe request, which requester needs a response from the destination device unlike
the posted transaction. Pilaf does not scale with decreasing the read-write ratio due
to increased overhead of two-sided verb in Put operations. In the case of HERD,

0 5 10 15 20 25 30

1

2

4

5

M
o
p
s/

se
c

100% Get

Redis Memcached Herd HydraDB Pilaf FaRM

0 5 10 15 20 25 30

1

2

4

6

90% Get, 10% Put

0 5 10 15 20 25 30

Number of clients

1

2

4

6

8

M
o
p
s/

se
c

50% Get, 50% Put

0 5 10 15 20 25 30

1

2

4

6

8

10
100% Put

Fig. 7.14 Zipfian throughput with single shard.

58 Experimental Evaluation

100% 50% 0%

Get Percentage

0

2

4

6

8

10

M
o

p
s/

se
c

Zipfian

Redis
Memcached
HERD
HydraDB
Pilaf
FaRM

100% 50% 0%
0

2

4

6

8

10
Uniform

Fig. 7.15 Throughput comparison when varying read-write ratio for 24 clients.

decreasing the read-write ratio does not have a noticeable impact on the performance,
since HERD is bottlenecked by the two-sided verb.

7.3.2 Latency

Fig. 7.16 and 7.17 show the latency of Uniform and Zipfian distributions. Increasing
the number of clients will increase the number of requests and consequently will
increase the latency.

HydraDB and FaRM on both distributions are two order of magnitude lower than
legacy systems and decrease 2.5 and 2.3 times by decreasing the read-write ratio
respectively. The drop is due to the lower latency of WRITE operation compared
to READ used in Put and Get operations. However, decreasing the read-write ratio
will increase the latency up to 2 times on Pilaf due to the higher latency of the verb
messages comparing to READ. Since HERD uses the same operations in both Get
and Put operations, there is no noticeable impact on the latency by decreasing the
read-write ratio. Moreover, the latency of the Redis and Memcached are higher than
RDMA-based systems because the use of the IP over InfiniBand instead of RDMA
operations.

7.3.3 Value size

The payload size of RDMA message influences the throughput. Increasing the
value size up to 64 bytes does not have impact on the throughout. The throughput
degradation after 64 bytes (i.e., cache line size) is due to the use of the multiple
cache lines in the Work Queue Element (WQEs). we performed an experiment with

7.3 Analyzing state of the art 59

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

L
at

en
cy

 (
u

s)
100% Get

Redis Memcached HERD HydraDB Pilaf FaRM

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

90% Get, 10% Put

0 5 10 15 20 25 30

Number of clients

10
0

10
1

10
2

10
3

L
at

en
cy

 (
u

s)

50% Get, 50% Put

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

100% Put

Fig. 7.16 Latency Zipfian.

0 5 10 15 20 25 30
100

101

102

103

L
at

en
cy

 (
u

s)

100% Get

Redis Memcached HERD HydraDB Pilaf

0 5 10 15 20 25 30
100

101

102

103
90% Get, 10% Put

0 5 10 15 20 25 30

Number of clients

100

101

102

103

L
at

en
cy

 (
u

s)

50% Get, 50% Put

0 5 10 15 20 25 30
100

101

102

103
100% Put

Fig. 7.17 Latency Uniform.

8 clients and 50% read-write ratio to measure the impact of varying the value size on
the throughput. As Fig. 7.18 shows, the throughput of the systems reduce up to 1.7×
by increasing the value size. Moreover, the HydraDB and FaRM are more sensitive
to the size of the value due to inline WRITE in the experiment. The transition point
when performance begins to drop depends on the NIC and the size of the value [44].

60 Experimental Evaluation

8 16 32 64 128 256 512

Value size

0

1

2

3

4

M
o
p
s/

se
c

Redis
Memcached
HERD
HydraDB
Pilaf
FaRM

Fig. 7.18 Value size impact on the performance of the systems with 8 clients and 50% Get
and Put.

Re Me He Hy Pi Fa

1

2

3

4

5

U
n
if

o
rm

it
y
 R

at
io

Zipfian 100% Get

Re Me He Hy Pi Fa

1
2

4

6

8

10

50% Get, 50% Put

Re Me He Hy Pi Fa

1

2

3

4

5
100% Put

Re Me He Hy Pi Fa

1

2

3

4

5

U
n
if

o
rm

it
y
 R

at
io

Uniform 100% Get

Re Me He Hy Pi Fa

1

2

3

4

5
50% Get, 50% Put

Re Me He Hy Pi Fa

1

2

3

4

5

6
100% Put

Fig. 7.19 Uniformity Ratio on 2 machines. Names are summarized to the first two letters.

7.3.4 Uniformity Ratio

Since the server copes with a large number of simultaneous access, satisfying the
uniformity of the client requests is essential. The uniformity ratio indicates the
maximum number of completed requests over the minimum number of completed
requests among the clients. Closer ratio to 1 indicates the better uniformity and
further ratio indicates the worse. We employ the uniformity ratio as it is an indicator
of fairness [127]. As shown in Fig. 7.19, all RDMA-based systems have the
uniformity ratio close to 1.

7.4 Kanzi Analysis 61

7.4 Kanzi Analysis

Our first major design decision in Kanzi is client-driven capability which allows
clients to perform Get and Put transactions without intervention of server. This
feature is important since server does not require to perform any polling operation
to observe the new requests. Furthermore, Kanzi exploits a novel indirection table
mechanism which drastically simplifies the problem of synchronization, since all
clients observe the indirection table and RDMA atomic operations can be used to
guarantee its consistency. In fact, the beauty of this design is that in case of update
Kanzi clients only observe indirection table to retrieve the address of latest update,
and it can be done by a single READ operation. The other novelty in Kanzi design is
introducing lazy synchronization which is based on cache coherency of DMA and
CPU on x86-based systems. This mechanism guarantee consistency on CHT when
a new client join to the system. Moreover, latch-free Get transaction can help to
achieve better performance. In the Kanzi design memory space efficiency is one of
the concern to avoid network traffic.

To explore the performance characteristics of the design, the Kanzi prototype on
the InfiniBand cluster is implemented. The specification of the experimental setup
was described in Section 7.1. According to the design in order to evaluate the real
performance at least three isolated nodes of cluster are required. One node to put the
Kanzi shard and the two others are used to place the Kanzi clients. Two separated
nodes for clients are required since putting all clients on one machine can bypass
some part of the design and shows higher performance.

As described, workload is an important parameter which can influence on the
performance. According to the design, if each client requests freely on every key on
the shard, system can encounter a big overhead due to the ping pong on the request.
For example, if two clients resides on two different machines are making request
(i.e., Put) on the same key. If this key is hot key in both clients, then a ping pong loop
will happen and the key is moving between these two machines. It happens because
in each Put the key is moved to the client that issued the request. So, apart from the
architecture a key management is required. However, this scenario will happen only
when both clients have Put requests. Therefore, keys must be distributed among
clients on different machines.

62 Experimental Evaluation

0 5 10 15 20 25 30
0

2

4

6

8

M
o
p
s/

se
c

99% Get

Redis Memcached Herd HydraDB Pilaf FaRM Kanzi

Fig. 7.20 Kanzi result.

According to the literature, most of the real-world workload are read-intensive.
In spite of the fact that a list of experiment was designed to evaluate the performance
of the Kanzi the limitation on the usage of the cluster did not let us to fully cover all
the performance aspects and only the performance on the %99 percent read workload
was experimentally presented.

Fig. 7.20 shows the performance of the Kanzi. As can be seen, Kanzi outper-
forms the state-of-the-art with higher number of clients. Although FaRM performs
better in lower number of clients however this implementation of FaRM is for small
message size which embed the value in the bucket. The performance achievement
can be described by non-blocking Get operation in Kanzi as well as low ampli-
fication in Get operation. We believe that Kanzi outperforms much better than
the state-of-the-art by increasing the Put ratio since the clients on the same node
performs only one local access to read the data.

Chapter 8

Conclusion and Future work

The main motivation for the work presented in this thesis is rooted in exploiting
RDMA in the design of in-memory key-value store. The focus was on the perfor-
mance of the RDMA operations as well as analysing the state-of-the-art RDMA-
enabled in-memory key-value stores. Then, proposing a novel RDMA-enabled
in-memory key-value store based on the findings in the analysis. The performance
analysis of RDMA operations helped us to have better insight on exploiting the
RDMA operation in in-memory key-value stores. Towards this analysis, a good
knowledge of design changes over time has been achieved to detect anomalies over
systems.

In this thesis, motivations and main drivers of the NoSQL movement have
been briefly described along with a classification and characterization of NoSQL
databases. Then, the Remote Direct Memory Access (RDMA) in high-performance
protocols have been discussed. Commonly used underlying data structure and
concurrency control mechanisms in RDMA-enabled in-memory key-value store have
been discussed.

Different performance challenging components in modern clusters such as mem-
ory, host bus communication, HCA memory, RDMA features, network communi-
cation, and application level issues have been investigated. One-of-a-kind compre-
hensive study of modern RDMA-based in-memory key-value systems including
HydraDB [1], Pilaf [2], HERD [3], FaRM [4], and DrTM [5] as well as well-known
legacy in-memory systems such as Memcached [6] and Redis [7] have been pre-

64 Conclusion and Future work

sented. Mentioned systems have been illustrated in an unified representation to show
architectural differences along with strengths and weaknesses of each system.

To evaluate the RDMA-enabled in-memory key-value stores a set of unified
experiment have been designed to measure throughput, latency, fairness, and unifor-
mity ratio. These metrics are chosen since they are commonly used metrics in highly
cited papers in this scope. To provide the reproducibility and interpretability of the
experiments, the non-deterministic and deterministic parameters which can impact
on the performance have been investigated. Redis 3.2.9 [7], Memcached 1.4.37 [6],
and HERD [122] are employed from the original source. However, HydraDB, Pilaf,
and FaRM are implemented from scratch since they are not publically available.

Finally, an RDMA-enabled in-memory key-value design, called Kanzi have
been presented that allows concurrent reads and writes by clients. It supports Get
and Put operations from remote clients. Get leverages RDMA read operations on
the key-value store and Put exploits RDMA write and atomic operations.

To make concurrent operations possible, a memory management that provides
explicit regions to clients to write and read in combination with a special memory
reclamation method as well as concurrency control was proposed. The proposed
memory management scheme allows the client to write to a region of memory not
only in the server but also in the client address spaces. Kanzi also proposes a novel
concurrency mechanism based on cache coherency called lazy synchronization. It
exploits a central table to keep the latest update of each key and let clients to modify
it with RDMA compare-and-swap (CAS) operations.

We plan to expand our evolution by analyzing other parameters presented in
Section 7.3. Also, we intend to apply our approach in real-world use cases to further
verify the results. Moreover, for consistency characteristics, we plan to present the
formal verification of the proposed methods. As a future work, we plan also to
perform additional evaluations on the key distribution impact on the performance.
We will explore the impact of hash table load factors on the performance. Moreover,
we intend to investigate how well Kanzi scales with multiple servers. Finally, we
intend to perform a power-efficiency comparison against conventional key-value
stores.

Examining large amounts of data can help to uncover hidden patterns and cor-
relations. The area of this research will be particularly important as far as the role
of big data and data science is growing in the society. Data Science helps humans

65

to make better decisions. Moreover, it can add value to all the business models to
get the right information and make the right decisions. So, one need is accelerating
data access. Many of the presented insights in this thesis can be used in the design
of RDMA-enabled in-memory key-value store to enhance the performance of data
access.

References

[1] Yandong Wang, Li Zhang, Jian Tan, Min Li, Yuqing Gao, Xavier Guerin,
Xiaoqiao Meng, and Shicong Meng. HydraDB: A resilient RDMA-driven
key-value middleware for in-memory cluster computing. In SC’15.

[2] Yifeng Geng Christopher Mitchell and Jinyang Li.
Using One-Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store.
In Presented as part of the 2013 USENIX Annual Technical Conference
(USENIX ATC 13), pages 103–114, San Jose, CA, 2013. USENIX.

[3] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using RDMA efficiently for key-value services. In Special Interest
Group on Data Communication, volume 44, pages 295–306. ACM, 2014.

[4] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel
Castro. FaRM: Fast remote memory. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation, pages 401–
414, 2014.

[5] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen.
Fast In-memory Transaction Processing Using RDMA and HTM. In Sympo-
sium on Operating Systems Principles, pages 87–104. ACM, 2015.

[6] http://memcached.org/. Accessed: 12-October-2018.

[7] Salvatore Sanfilippo. http://redis.io/. Accessed: 12-October-2018.

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[9] http://www.hypertable.org/. Accessed: 12-October-2018.

[10] https://hbase.apache.org/. Accessed: 12-October-2018.

[11] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz,
and Alexander Rasin. Hadoopdb: an architectural hybrid of mapreduce
and dbms technologies for analytical workloads. Proceedings of the VLDB
Endowment, 2(1):922–933, 2009.

References 67

[12] Avinash Lakshman and Prashant Malik.
Cassandra: a decentralized structured storage system. Special interest
Group in Operating Systems, 44(2):35–40, 2010.

[13] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible markup language (xml). World Wide Web Journal,
2(4):27–66, 1997.

[14] http://www.json.org/. Accessed: 12-October-2018.

[15] https://www.mongodb.com. Accessed: 12-October-2018.

[16] http://couchdb.apache.org. Accessed: 12-October-2018.

[17] https://ravendb.net. Accessed: 12-October-2018.

[18] https://neo4j.com/. Accessed: 12-October-2018.

[19] http://titan.thinkaurelius.com/. Accessed: 12-October-2018.

[20] http://www.franz.com/agraph/allegrograph/. Accessed: 12-October-2018.

[21] https://www.objectivity.com/products/infinitegraph/. Accessed: 12-October-
2018.

[22] http://infogrid.org/trac/. Accessed: 12-October-2018.

[23] http://basho.com/products/riak-kv. Accessed: 12-October-2018.

[24] http://www.project-voldemort.com/voldemort/. Accessed: 12-October-2018.

[25] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-
nathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: amazon’s highly available key-value store. Special interest
Group in Operating Systems, 41(6):205–220, 2007.

[26] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky.
SILT: A Memory-efficient, High-performance Key-value Store. In Sympo-
sium on Operating Systems Principles, pages 1–13, New York, NY, USA,
2011. ACM.

[27] Benjamin Cassell, Tyler Szepesi, Bernard Wong,
Tim Brecht, Jonathan Ma, and Xiaoyi Liu.
Nessie: A Decoupled, Client-Driven Key-Value Store Using RDMA. IEEE
Transactions on Parallel and Distributed Systems, 28(12):3537–3552, 2017.

[28] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lintao Zhang, and Lidong
Zhou. Rpc considered harmful: Fast distributed deep learning on rdma. arXiv
preprint arXiv:1805.08430, 2018.

68 References

[29] Yufei Ren, Xingbo Wu, Li Zhang, Yandong Wang, Wei Zhang, Zijun Wang,
Michel Hack, and Song Jiang. irdma: Efficient use of rdma in distributed deep
learning systems. In High Performance Computing and Communications;
International Conference on Smart City, pages 231–238. IEEE, 2017.

[30] Chengfan Jia, Junnan Liu, Xu Jin, Han Lin, Hong An, Wenting Han, Zheng
Wu, and Mengxian Chi. Improving the performance of distributed tensorflow
with rdma. International Journal of Parallel Programming, pages 1–12, 2017.

[31] Brent Callaghan, Theresa Lingutla-Raj, Alex Chiu, Peter Staubach, and Omer
Asad. Nfs over rdma. In Proceedings of the ACM SIGCOMM workshop on
Network-I/O convergence: experience, lessons, implications, pages 196–208.
ACM, 2003.

[32] David Sidler, Zsolt István, and Gustavo Alonso.
Low-latency TCP/IP stack for data center applications. In Field Pro-
grammable Logic and Applications, pages 1–4. IEEE, 2016.

[33] Ian Pratt and Keir Fraser. Arsenic: A user-accessible gigabit ethernet interface.
In Joint Conference of the IEEE Computer and Communications Societies,
volume 1, pages 67–76. IEEE, 2001.

[34] Thorsten Von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels.
U-Net: A user-level network interface for parallel and distributed computing.
In Special interest Group in Operating Systems, volume 29, pages 40–53.
ACM, 1995.

[35] Dave Dunning, Greg Regnier, Gary McAlpine, Don Cameron, Bill Shu-
bert, Frank Berry, Anne Marie Merritt, Ed Gronke, and Chris Dodd.
The virtual interface architecture. IEEE micro, 18(2):66–76, 1998.

[36] Nanette J Boden, Danny Cohen, Robert E Felderman, Alan E.
Kulawik, Charles L Seitz, Jakov N Seizovic, and Wen-King Su.
Myrinet: A gigabit-per-second local area network. IEEE micro, 15(1):29–36,
1995.

[37] Jon Beecroft, David Addison, David Hewson, Moray McLaren,
Duncan Roweth, Fabrizio Petrini, and Jarek Nieplocha.
QSNET/sup II: defining high-performance network design. IEEE micro,
25(4):34–47, 2005.

[38] http://infinibandta.org/index.php. Accessed: 12-October-2018.

[39] https://tools.ietf.org/html/rfc5040. Accessed: 12-October-2018.

[40] Mark S Birrittella, Mark Debbage, Ram Huggahalli, James Kunz, Tom Lovett,
Todd Rimmer, Keith D Underwood, and Robert C Zak. Intel® omni-path ar-
chitecture: Enabling scalable, high performance fabrics. In High-Performance
Interconnects, pages 1–9. IEEE, 2015.

References 69

[41] Kevin Gildea, Rama Govindaraju, Donald Grice, Peter Hochschild, and
Fu Chung Chang. Remote direct memory access system and method, Au-
gust 30 2004. US Patent App. 10/929,943.

[42] https://www.mellanox.com/pdf/whitepapers/wp_roce_vs_iwarp.pdf. Ac-
cessed: 12-July-2018.

[43] https://www.openfabrics.org/. Accessed: 12-July-2018.

[44] Anuj Kalia Michael Kaminsky and David G Andersen.
Design guidelines for high performance RDMA systems. In 2016 USENIX
Annual Technical Conference, 2016.

[45] Allyn Romanow and Stephen Bailey. An overview of rdma over ip. In
Proceedings of the First International Workshop on Protocols for Fast Long-
Distance Networks, 2003.

[46] Claude Barthels, Gustavo Alonso, and Torsten Hoefler.
Designing Databases for Future High-Performance Networks. IEEE
Data Eng. Bull., 40(1):15–26, 2017.

[47] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gru-
ber. Bigtable: A distributed storage system for structured data. ACM Trans-
actions on Computer Systems, 26(2), 2008.

[48] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman
Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab,
et al. Scaling Memcache at Facebook. In Networked Systems Design and
Implementation, volume 13, pages 385–398, 2013.

[49] Dong Dai, Xi Li, Chao Wang, Mingming Sun, and Xuehai Zhou. Sedna: A
memory based key-value storage system for realtime processing in cloud. In
Cluster Computing Workshops, pages 48–56. IEEE, 2012.

[50] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi,
Antoine Atallah, Ralf Herbrich, Stuart Bowers, et al. Practical lessons from
predicting clicks on ads at facebook. In International Workshop on Data
Mining for Online Advertising, pages 1–9. ACM, 2014.

[51] Cheng Li, Yue Lu, Qiaozhu Mei, Dong Wang, and Sandeep Pandey.
Click-through prediction for advertising in twitter timeline. In International
Conference on Knowledge Discovery and Data Mining, pages 1959–1968.
ACM, 2015.

[52] Yanxiang Huang, Bin Cui, Wenyu Zhang, Jie Jiang, and Ying Xu.
Tencentrec: Real-time stream recommendation in practice. In International
Conference on Management of Data, pages 227–238. ACM, 2015.

70 References

[53] Goetz Graefe. The five-minute rule twenty years later, and how flash memory
changes the rules. In International workshop on Data management on new
hardware. ACM, 2007.

[54] Prashanth Menon, Tilmann Rabl, Mohammad Sadoghi, and Hans-Arno Ja-
cobsen. CaSSanDra: An SSD boosted key-value store. In International Con-
ference on Data Engineering, pages 1162–1167. IEEE, 2014.

[55] Biplob Debnath, Sudipta Sengupta, and Jin Li.
FlashStore: high throughput persistent key-value store. Proceedings of
the Very Large Database Endowment, 3(2):1414–1425, 2010.

[56] https://www.facebook.com/note.php?note_id=388112370932. Accessed: 12-
October-2018.

[57] Ashok Anand, Steven Kappes, Aditya Akella, and Suman Nath.
Building cheap and large cams using bufferhash. University of Wisconsin
Madison Technical Report TR1651, 2009.

[58] Diego Ongaro, Stephen M Rumble, Ryan Stutsman, John Ousterhout, and
Mendel Rosenblum. Fast crash recovery in RAMCloud. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles, pages
29–41. ACM, 2011.

[59] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. MICA: A Holistic Approach to Fast In-Memory Key-Value Storage. In
11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 429–444, Seattle, WA, 2014. USENIX Association.

[60] Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md Wasi-
ur Rahman, Nusrat S Islam, Xiangyong Ouyang, Hao Wang, Sayantan Sur,
et al. Memcached design on high performance rdma capable interconnects.
In International Conference on Parallel Processing, pages 743–752. IEEE,
2011.

[61] Charles Chen. An overview of cuckoo hashing.

[62] Donald Ervin Knuth. The art of computer programming: fundamental algo-
rithms, volume 1. Addison Wesley Longman, 1997.

[63] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In European
Symposium on Algorithms, pages 121–133. Springer, 2001.

[64] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In Proceedings of
the twenty-ninth annual ACM symposium on Theory of computing, pages
654–663. ACM, 1997.

References 71

[65] Yandong Wang, Xiaoqiao Meng, Li Zhang, and Jian Tan. C-hint: An effective
and reliable cache management for rdma-accelerated key-value stores. In
Proceedings of the ACM Symposium on Cloud Computing, pages 23:1–23:13.
ACM, 2014.

[66] Anuj Kalia, Michael Kaminsky, and David G Andersen. Fasst: Fast, scalable
and simple distributed transactions with two-sided (rdma) datagram rpcs. In
Operating Systems Design and Implementation, pages 185–201, 2016.

[67] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch hashing. In
International Symposium on Distributed Computing, pages 350–364. Springer,
2008.

[68] Radhika Mittal, Alex Shpiner, Aurojit Panda, Eitan Zahavi,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker.
Revisiting Network Support for RDMA.

[69] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen.
Fast and general distributed transactions using RDMA and HTM. In Pro-
ceedings of the Eleventh European Conference on Computer Systems. ACM,
2016.

[70] Omid Shahmirzadi. High-performance communication primitives and data
structures on message-passing manycores:broadcast and map. 2014.

[71] http://www.mellanox.com/page/multi_core_overview?
mtag=multi_core_overview. Accessed: 12-October-2018.

[72] http://www.kalrayinc.com/. Accessed: 12-October-2018.

[73] David Slogsnat, Alexander Giese, Mondrian Nüssle, and Ulrich Brüning.
An open-source HyperTransport core. ACM Transactions on Reconfigurable
Technology and Systems, 1(3), 2008.

[74] Dimitrios Ziakas, Allen Baum, Robert A Maddox, and Robert J Safranek. In-
tel® quickpath interconnect architectural features supporting scalable system
architectures. In High Performance Interconnects, pages 1–6. IEEE, 2010.

[75] http://pcisig.com/specifications/pciexpress/. Accessed: 12-October-2018.

[76] https://www.intel.com/content/www/us/en/io/data-direct-i-o-
technology.html. Accessed: 12-October-2018.

[77] Frank Mietke, Robert Rex, Robert Baumgartl, Torsten Mehlan, Torsten Hoe-
fler, and Wolfgang Rehm. Analysis of the memory registration process in the
mellanox infiniband software stack. International European Conference on
Parallel and Distributed Computing, pages 124–133, 2006.

72 References

[78] Donghyuk Lee, Lavanya Subramanian, Rachata Ausavarungnirun, Jongmoo
Choi, and Onur Mutlu. Decoupled direct memory access: Isolating cpu and
io traffic by leveraging a dual-data-port dram. In Parallel Architecture and
Compilation, pages 174–187. IEEE, 2015.

[79] https://cw.infinibandta.org/document/dl/7859. Accessed: 12-October-2018.

[80] Philip Werner Frey and Gustavo Alonso.
Minimizing the hidden cost of RDMA. In International Conference
on Distributed Computing Systems, pages 553–560. IEEE, 2009.

[81] Li Ou, Xubin He, and Jizhong Han.
An efficient design for fast memory registration in RDMA. Journal of
Network and Computer Applications, 32(3):642–651, 2009.

[82] Qian Liu and Robert D Russell. A performance study of infiniband four-
teen data rate (fdr). In Proceedings of the High Performance Computing
Symposium. Society for Computer Simulation International, 2014.

[83] Randal E Bryant, O’Hallaron David Richard, and O’Hallaron David Richard.
Computer Systems A Programmer’s Perspective, volume 2. Prentice Hall Up-
per Saddle River, 2003.

[84] Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova.
Thread and Memory Placement on NUMA Systems: Asymmetry Matters.
In USENIX Annual Technical Conference, pages 277–289, 2015.

[85] Tan Li, Yufei Ren, Dantong Yu, and Shudong Jin. Analysis of numa effects in
modern multicore systems for the design of high-performance data transfer
applications. Future Generation Computer Systems, 74:41–50, 2017.

[86] Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, and Thomas Robertazzi. De-
sign and performance evaluation of numa-aware rdma-based end-to-end data
transfer systems. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. ACM, 2013.

[87] Abdel-Hameed A Badawy, Aneesh Aggarwal, Donald Yeung, and Chau-Wen
Tseng. Evaluating the impact of memory system performance on software
prefetching and locality optimizations. In Proceedings of the 15th interna-
tional conference on Supercomputing, pages 486–500. ACM, 2001.

[88] David Callahan, Ken Kennedy, and Allan Porterfield. Software Prefetching. In
Proceedings of the Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 40–52. ACM,
1991.

[89] http://www.amd.com/en/technologies/sense-mi. Accessed: 12-October-2018.

[90] https://newsroom.intel.com/news-releases/pci-sig-introduces-pci-express-
formerly-3gio-high-speed-serial-interconnect-specification/. Accessed:
12-October-2018.

References 73

[91] Robert Bruce Thompson and Barbara Fritchman Thompson.
PC Hardware in a Nutshell, 3rd Edition. O’Reilly & Associates, Inc.,
2003.

[92] Ranjit Noronha and Dhabaleswar K Panda. Can high performance software
dsm systems designed with infiniband features benefit from pci-express? In
Cluster, Cloud and Grid computing, volume 2, pages 945–952. IEEE, 2005.

[93] Jiuxing Liu, Amith Mamidala, Abhinav Vishnu, and Dhabaleswar K Panda.
Performance evaluation of infiniband with pci express. In High Performance
Interconnects, 2004. Proceedings. 12th Annual IEEE Symposium on, pages
13–19. IEEE, 2004.

[94] https://community.mellanox.com/docs/doc-2491. Accessed: 12-October-
2018.

[95] https://www.xilinx.com/support/documentation/white_papers/wp350.pdf. Ac-
cessed: 12-October-2018.

[96] https://community.mellanox.com/docs/doc-2496. Accessed: 12-October-
2018.

[97] https://community.mellanox.com/docs/doc-2123. Accessed: 12-October-
2018.

[98] Mario Flajslik and Mendel Rosenblum.
Network Interface Design for Low Latency Request-Response Protocols. In
USENIX Annual Technical Conference, pages 333–346, 2013.

[99] http://www.mellanox.com/related-docs/user_manuals/ ether-
net_adapters_programming_manual.pdf. Accessed: 12-October-2018.

[100] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and Andrew W Moore. Understanding pcie performance
for end host networking. pages 327–341. ACM, 2018.

[101] Sayantan Sur, Abhinav Vishnu, H-W Jin, DK Panda, and W Huang. Can
memory-less network adapters benefit next-generation infiniband systems?
In High Performance Interconnects, 2005. Proceedings. 13th Symposium on,
pages 45–50. IEEE, 2005.

[102] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale,
Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro.
No compromises: Distributed transactions with consistency, availability, and
performance. In Symposium on Operating Systems Principles, pages 54–70.
ACM, 2015.

[103] https://cw.infinibandta.org/document/dl/7146. Accessed: 12-October-2018.

[104] Tom Shanley. Infiniband Network Architecture. Addison-Wesley Profes-
sional, 2003.

74 References

[105] Patrick MacArthur and Robert D Russell.
A Performance Study to Guide RDMA Programming Decisions. In In-
ternational Conference on High Performance Computing and Communication
& International Conference on Embedded Software and Systems, pages
778–785. IEEE, 2012.

[106] http://www.mellanox.com/related-docs/prod_software
/rdma_aware_programming_user_manual.pdf. Accessed: 12-October-
2018.

[107] Patrick MacArthur, Qian Liu, Robert D Russell, Fab-
rice Mizero, Malathi Veeraraghavan, and John M Dennis.
An integrated tutorial on InfiniBand, Verbs and MPI. IEEE Communi-
cations Surveys & Tutorials, 2017.

[108] Jerome Vienne, Jitong Chen, Md Wasi-Ur-Rahman, Nusrat S Islam, Hari
Subramoni, and Dhabaleswar K Panda. Performance analysis and evaluation
of infiniband fdr and 40gige roce on hpc and cloud computing systems. In
High-Performance Interconnects, pages 48–55. IEEE, 2012.

[109] Motti Beck and Michael Kagan. Performance evaluation of the rdma over
ethernet (roce) standard in enterprise data centers infrastructure. In Proceed-
ings of the 3rd Workshop on Data Center - Converged and Virtual Ethernet
Switching, pages 9–15. International Teletraffic Congress, 2011.

[110] Hari Subramoni, Ping Lai, Miao Luo, and Dhabaleswar K Panda.
RDMA over Ethernet—A preliminary study. In Cluster Computing and
Workshops, 2009. CLUSTER’09. IEEE International Conference on, pages
1–9. IEEE, 2009.

[111] Luke Anthony Kachelmeier, Faith Virginia Van Wig, and Kari Natania Er-
ickson. Comparison of high performance network options: Edr infiniband
vs. 100gb rdma capable ethernet. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2016.

[112] Matthew J Koop, Wei Huang, Karthik Gopalakrishnan, and Dhabaleswar K
Panda. Performance analysis and evaluation of pcie 2.0 and quad-data rate
infiniband. In High Performance Interconnects, pages 85–92. IEEE, 2008.

[113] Jiuxing Liu, Amith Mamidala, Abhinav Vishnu, and Dhabaleswar K Panda.
Evaluating infiniband performance with pci express. IEEE Micro, 25(1):20–
29, 2005.

[114] Infiniband pci pcie. Accessed: 12-October-2018.

[115] https://www.intel.in/content/dam/www/public/us/en/documents/product-
briefs/xeon-processor-d-brief.pdf. Accessed: 12-October-2018.

[116] https://www.nersc.gov/assets/uploads/knl-isc-2015-workshop-keynote.pdf.
Accessed: 12-October-2018.

References 75

[117] Dennis Dalessandro and Pete Wyckoff.
Memory management strategies for data serving with RDMA. In High-
Performance Interconnects, pages 135–142. IEEE, 2007.

[118] Yiwen Zhang, Juncheng Gu, Youngmoon Lee, Mosharaf Chowdhury, and
Kang G Shin. Performance Isolation Anomalies in RDMA. In Workshop on
Kernel-Bypass Networks, pages 43–48, 2017.

[119] Mohammad Sadoghi, Kenneth A. Ross, Mustafa Canim, and Bishwaranjan
Bhattacharjee. Exploiting SSDs in operational multiversion databases. Very
Large Database, 25(5):651–672, 2016.

[120] Mohammad Sadoghi, Mustafa Canim, Bishwaranjan Bhattacharjee, Fabian
Nagel, and Kenneth A. Ross. Reducing Database Locking Contention Through
Multi-version Concurrency. Very Large Database.

[121] Mohammad Sadoghi, Mustafa Canim, Bishwaranjan
Bhattacharjee, Fabian Nagel, and Kenneth A Ross.
Reducing database locking contention through multi-version concurrency.
Proceedings of the Very Large Database Endowment, 7(13):1331–1342, 2014.

[122] https://github.com/efficient/rdma_bench. Accessed: 12-October-2018.

[123] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker.
Web caching and Zipf-like distributions: Evidence and implications. In IN-
FOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 1, pages 126–134.
IEEE, 1999.

[124] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev Kumar,
and Harry C. Li. An Analysis of Facebook Photo Caching. In Symposium on
Operating Systems Principles, pages 167–181. ACM, 2013.

[125] Bin Fan, David G Andersen, and Michael Kaminsky. MemC3: Compact
and Concurrent MemCache with Dumber Caching and Smarter Hashing. In
Symposium on Networked Systems Design and Implementation, volume 13,
pages 371–384, 2013.

[126] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
Workload analysis of a large-scale key-value store. In ACM SIGMETRICS
Performance Evaluation Review, volume 40, pages 53–64. ACM, 2012.

[127] Darko Petrović, Thomas Ropars, and André Schiper.
Leveraging Hardware Message Passing for Efficient Thread Synchronization.
In Symposium on Principles and Practice of Parallel Programming, pages
143–154. ACM, 2014.

Appendix A

Doctoral Period’s Publications

This doctoral thesis is based on the following publications:

1. [URL] Hemmatpour, M., Montrucchio, B., Rebaudengo, M., & Sadoghi, M.
Kanzi: A distributed, in-memory key-value store. In Proceedings of the Posters
and Demos Session of the Middleware Conference, pp. 3-4, 2016.

2. [URL] Hemmatpour, M., Montrucchio, B., Rebaudengo, M. Communicating
Efficiently on Cluster-Based Remote Direct Memory Access (RDMA) over
InfiniBand Protocol. In Applied sciences vol. 8, no. 11, 2018.

In addition, an extended version of [1] has been submitted to the IEEE Trans-
actions on Knowledge and Data Engineering (TKDE). Furthermore, the list of
publications in the PhD period is as follows:

1. [URL] Hemmatpour, M., Ghazivakili, M., Montrucchio, B., & Rebaudengo,
M. DIIG: A distributed industrial IoT gateway. In IEEE Annual Conference
Computer Software and Applications Conference vol. 1, pp. 755-759, 2017

2. [URL] Hemmatpour, M., Ferrero, R., Montrucchio, B., & Rebaudengo, M. A
Neural Network Model Based on Co-occurrence Matrix for Fall Prediction.
In Proceedings of the Conference on Wireless Mobile Communication and
Healthcare , vol. 192, p. 241, 2016.

3. [URL] Hemmatpour, M., Ferrero, R., Montrucchio, B., & Rebaudengo, M.
Eigenwalk: a novel feature for walk classification and fall prediction. In
Proceedings of the Conference on Body Area Networks, pp. 86-90, 2016.

https://dl.acm.org/citation.cfm?id=3007594
https://www.mdpi.com/2076-3417/8/11/2034
https://ieeexplore.ieee.org/abstract/document/8029694/
https://link.springer.com/chapter/10.1007/978-3-319-58877-3_32
https://dl.acm.org/citation.cfm?id=3068637

77

4. [URL] Hemmatpour, M., Ferrero, R., Montrucchio, B., & Rebaudengo, M.
A baseline walking dataset exploiting accelerometer and gyroscope for fall
prediction and prevention systems. In Proceedings of the Conference on Body
Area Networks, pp. 81-85, 2016.

5. [URL] Ferrero, R., Gandino, F., Hemmatpour, M., Montrucchio, B., & Re-
baudengo, M. Exploiting accelerometers to estimate displacement. In IEEE
Mediterranean Conference on Embedded Computing, pp. 206-210, IEEE.

6. [URL] Hemmatpour, M., Ferrero, R., Gandino, F., Montrucchio, B., & Rebau-
dengo, M. Nonlinear Predictive Threshold Model for Real-Time Abnormal
Gait Detection. Journal of healthcare engineering, vol. 2018, pp. 1-9, 2018.

7. [URL] Hemmatpour, M., Ferrero, R., Gandino, F., Montrucchio, B., & Rebau-
dengo, M. Data Reduction Techniques for Near Real-Time Decision Making in
Fall Prediction Systems. In Big Data Management and the Internet of Things
for Improved Health Systems, pp. 52-64, 2018.

8. [URL] Hemmatpour, M., Ferrero, R., Gandino, F., Montrucchio, B., & Re-
baudengo, M. Cost Evaluation of Synchronization Algorithms for Multicore
Architectures. In Encyclopedia of Information Science and Technology, Fourth
Edition, pp. 3989-4003, 2018.

9. [URL] Ferrero, R., Gandino, F., Hemmatpour, M., Montrucchio, B., & Re-
baudengo, M. Urban dust monitoring from ground level to last floor. In IEEE
Conference on Mobile Computing and Ubiquitous Network, pp. 1-4, 2017.

10. [URL] Hemmatpour, M., Karimshoushtari, M., Ferrero, R., Montrucchio, B.,
Rebaudengo, M., & Novara, C. Polynomial classification model for real-time
fall prediction system. In IEEE Annual Computer Software and Applications
Conference, pp. 973-978, 2017.

11. [URL] Hemmatpour, M., Ferrero, R., Gandino, F., Montrucchio, B., & Re-
baudengo, M. Internet of Things for fall prediction and prevention. Journal
of Computational Methods in Sciences and Engineering, vol. 18, no. 2, pp.
511-518, 2018.

https://dl.acm.org/citation.cfm?id=3068636
https://ieeexplore.ieee.org/abstract/document/7525741/
https://www.hindawi.com/journals/jhe/2018/4750104/abs/
https://www.igi-global.com/chapter/data-reduction-techniques-for-near-real-time-decision-making-in-fall-prediction-systems/196039
https://www.igi-global.com/chapter/cost-evaluation-of-synchronization-algorithms-for-multicore-architectures/184107
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8330072
https://ieeexplore.ieee.org/document/8029725
https://content.iospress.com/articles/journal-of-computational-methods-in-sciences-and-engineering/jcm806

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem statement
	1.2 Research Contributions
	1.3 Thesis structure

	2 Background and preliminaries
	2.1 NOSQL Database Motives
	2.2 Remote Direct Memory Access (RDMA)
	2.2.1 Opportunities
	2.2.2 Challenges
	2.2.3 Suitability

	3 Key-value store
	3.1 Hash Tables
	3.1.1 Chained hashing
	3.1.2 Cuckoo hashing
	3.1.3 Hopscotch hashing

	3.2 Concurrency control
	3.2.1 Self verification
	3.2.2 Versioning
	3.2.3 Flag and lease
	3.2.4 Hardware Transactional Memory

	4 State of the art
	4.1 HydraDB
	4.2 Pilaf
	4.3 HERD
	4.4 FaRM
	4.5 DrTM
	4.6 Memcached
	4.7 Redis
	4.8 Systems Comparison

	5 Performance challenges in modern systems
	5.1 Memory
	5.2 Host Bus communication
	5.3 NIC Memory
	5.4 RDMA Features
	5.5 Communication
	5.6 Application level issues

	6 Kanzi: RDMA-enabled in-memory key-value store
	6.1 Structure
	6.2 Kanzi Protocol

	7 Experimental Evaluation
	7.1 Settings and operation noise
	7.2 Optimization Experiments
	7.3 Analyzing state of the art
	7.3.1 Throughput
	7.3.2 Latency
	7.3.3 Value size
	7.3.4 Uniformity Ratio

	7.4 Kanzi Analysis

	8 Conclusion and Future work
	References
	Appendix A Doctoral Period’s Publications

