
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Testing permanent faults in pipeline registers of GPGPUs: A multi-kernel approach / SONZA REORDA, Matteo;
Rodriguez Condia Josie, E.. - STAMPA. - (2019). (Intervento presentato al convegno 2019 IEEE 25th International
Symposium on On-Line Testing And Robust System Design (IOLTS) tenutosi a Rhodes (Greece) nel 1-3 July 2019)
[10.1109/IOLTS.2019.8854463].

Original

Testing permanent faults in pipeline registers of GPGPUs: A multi-kernel approach

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/IOLTS.2019.8854463

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2750456 since: 2020-12-02T13:39:21Z

Institute of Electrical and Electronics Engineers

Testing permanent faults in pipeline registers of

GPGPUs: A multi-kernel approach

Josie E. Rodriguez Condia†, Matteo Sonza Reorda‡,

Politecnico di Torino, Dept. of Control and Computer Engineering, Torino, Italy

{†josie.rodriguez, ‡matteo.sonzareorda}@polito.it

Abstract 1 —In the last decade, General Purpose Graphics

Processing Units (GPGPUs) have been widely employed in high

demanding data processing applications including multimedia and

high-performance computing due to their parallel processing

capabilities. Nowadays, these devices are considered as promising

solutions also for high-performance safety-critical applications,

such as autonomous and semi-autonomous vehicles. Current

GPGPUs are designed targeting challenging execution

requirements, e.g., related to performance and power constraints,

forcing designers to use aggressive technology scaling solutions.

Nevertheless, some implementation technologies are prone to

introduce faults in the device during the operative life adding

unaffordable effects and errors for the safety-critical domain.

Hence, effective in-field test solutions are required to guarantee

the target reliability levels. In this paper, we propose in-field test

solutions based on Software-Based Self-Test (SBST) targeting the

control-path of pipeline registers located in the Streaming

Multiprocessor (SM) of a GPGPU. We resort to a multiple-kernel

approach to detect permanent faults in these register fields. The

solutions were designed employing NVIDIA CUDA, when

possible, and lower level constructs elsewhere. Several usages and

compilation restrictions are also described. Fault simulation

results on an open-source VHDL GPGPU (FlexGrip)

implementation of the G80 architecture of NVIDIA are reported,

showing the effectiveness and limitations of the approach.

Keywords— fault simulation, functional testing, GPGPUs,

pipeline registers, SBST.

I. INTRODUCTION

General Purpose Graphics Processing Units (GPGPUs) have
been used in the last years in highly demanding applications to
process large amounts of data including multimedia and high-
performance computing. Nowadays, these devices are
considered as feasible solutions also in new complex and safety-
critical applications, such as autonomous and semi-autonomous
cars [1]. These devices are designed following execution
requirements, including performance and power constraints,
forcing designers to employ aggressive technology scaling
solutions. Moreover, it has been shown that some
implementation technologies are more prone to introduce faults
(permanent or transient) during the operative life of the device
[2, 3] causing unaffordable failures in the safety-critical domain.
Unfortunately, the architectural complexity of GPGPUs
aggravates the design of effective and affordable test techniques

1 This work has been partially supported by the European Commission through

the Horizon 2020 RESCUE-ETN project under grant 72232.

oriented to verify the integrity of internal modules during in-
field operation [4].

In the industry, testing solutions for complex embedded
systems are based on Design for Testability (DfT) approaches,
such as Built-In Self-Test (BIST), and functional test. DfT is
effective for end of manufacturing test. However, new
reliability challenges exist in GPGPU devices, and DfT
structures are not commonly accessible during in-field
operation. On the other hand, functional test methods based on
Software-Based Self-Test (SBST) employ the available
modules in the device to perform the test. In SBST, a set of
instructions is employed to generate test patterns on target
modules and detect faults or verify the functionality of them,
thus, checking the internal structures of the device.

A GPGPU is mainly composed of groups of Streaming
Multiprocessors (SMs). Each SM includes multiple levels of
pipeline stages to improve application performance. A register
is placed between each pair of adjacent stages to temporarily
store information about the multiple instructions executed in the
stage. These registers are crucial for the SM operation and
stores temporary information about the data and control signals
employed in the different stages of the SM. A fault affecting
these structures could generate critical and unexpected
behaviors, from an erroneous result, if the affected location is a
data-path register field, until a system crash, when a control-
path register field is affected. Hence, faults in these structures
could often be unacceptable for safety-critical applications. In
particular, faults in control-path fields of Pipeline Registers
(PRs) are complex to detect during the device operation.
Moreover, systematic solutions for in-field test of faults in these
GPGPU structures are still missing.

Some works [5-7] proposed tools to inject soft-errors at the
low-level code in real o micro-architectural models of GPGPUs,
in particular, to support the analysis of transient faults effects.
However, the injection locations are limited to some data-path
units and it is not possible to determine a Fault Coverage (FC)
for permanent faults resorting to these solutions. In other works,
the authors employ RT-level models and real GPGPUs to
propose test techniques targeting permanent faults in some
modules, such as register files (RF) [8], memories [9] and
controllers [10]. Similarly, other works [11, 12] analyzed the
effect of transient faults on data-path and found a relation
among the fault effects, the employed instructions and the
module usage. In [13], the authors proposed hardening
techniques to mitigate the effect of transient faults in the PRs
calculating the effects of faults affecting each register for some
selected applications. However, to the best of our knowledge,
there are no works proposing methods addressing permanent

fault detection in GPGPU PRs and reporting experimental data
on their effectiveness.

In this paper, we analyze the feasibility of using Software-
Based Self-Test (SBST) techniques to detect permanent faults
in the PRs in the Streaming Multiprocessors (SMs) of a
GPGPU. This work targets the control-path fields in the pipeline
registers considering that these structures are present in GPGPU
technologies and include control and management information.
This information is crucial for SM operation and instruction
execution. Moreover, these are not easy testable and are located
across PRs in the SM. We neglected data-path fields since it is
known that the test of data-path structures is more dependent on
low-level implementation details and can be successfully
achieved using techniques such as the one proposed in [14].

We resort to a multiple-kernel approach targeting different
sub-sections of the control-path fields in the PRs, showing that
traditional in-field functional techniques developed for CPUs
can be applied in this case, provided that a careful combination
of high- and low-level programming structures are adopted.
Experiments were performed employing fault simulation on an
open-source VHDL GPGPU (FlexGrip) implementation of the
G80 architecture of NVIDIA [15]. The NVIDIA’s terminology
is employed to describe the proposed techniques. However, it
should be noted that these methods can be adapted to other
GPGPU technologies.

Results show the effectiveness and limitations of the
approach. As far as we know, this is the first work presenting an
experimental evaluation (i.e., assessing the achieved FC) of
SBST approaches to detect permanent faults in the PRs of a
GPGPU.

The paper is organized as follows: Section II briefly
introduces the basic architecture of a GPGPU, the pipeline
registers in the FlexGrip model and some operative restrictions
of FlexGrip. Section III introduces the proposed SBST
techniques to detect permanent faults in the pipeline registers.
Section IV describes the fault injection environment. Section V
reports some experimental results and Section VI finally draws
some conclusions.

II. BACKGROUND

GPGPUs are special purpose parallel processors designed to
process simultaneously multiple tasks in groups (32 threads or
a warp) using SMs. Each SM includes execution units (Scalar
Processors, or SPs), caches, (shared) memories, RFs, a task
scheduler, and a dispatcher controller. The SM executes the
same instruction (warp instruction) on different SPs using
particular thread operands. Internally, the SM employs multiple
pipelines stages to process the warp instruction and improve
performance. The next section describes the pipeline register
structures in the FlexGrip GPGPU.

A. Pipeline registers in FlexGrip

These registers are placed between every pair of pipeline
stages to store temporary information from the previous stage
and supply information into the next one. In FlexGrip, PRs are
distributed between the five stages in the SM, named Fetch,
Decode, Read, Execution and Write-back. An additional stage is
considered, Warp, which is the interconnection stage between
the Warp scheduler and the Fetch stage (see Figure 1).

Every pipeline stage partially manages the execution of
warp instructions in the SM. The execution starts with the Warp
scheduler dispatching a warp to be executed in the SM. The
Fetch stage translates the warp program counter into the
instructions to operate. The Decode stage converts the
instruction operational code into memory or register locations,

including operands and destinations, and instructions formats.
The Read stage collects the different operators and assigns data
formats for the active threads. The Execution stage executes
control-flow or logic-arithmetical operations depending on
predicate conditions and input format parameters. The Write-
back stage stores result in the target memory or register
locations. Finally, the Warp scheduler checks the instruction
operation and dispatches a new instruction for the next cycle.

FIG 1. THE GENERAL SCHEME OF THE SM IN THE FLEXGRIP GPGPU

The PRs store mainly operands for warp instruction
execution. Nevertheless, these also include control information
related to the warp instruction status. In the Warp-Fetch (W-F)
registers, these are composed of control fields related to the
actual instruction warp status and execution on the SM
including the Warp program counter (WPC), the initial and
active thread mask (AThM), parameters for shared memory and
general purpose registers size configuration. The PR in the
Fetch-Decode (F-D) stage includes the same information of the
previous stage, adding the warp instruction operational code.
The Decode-Read (D-R) PR stores the format of the specific
instructions fields to activate some operational modes or sub-
modules in the next stage. The Read-Execution (R-E) PR
additionally includes the Temporary Registers (TRs), which
handle operands and predicate conditions for each SP in the
execution stage. The Execution-Writeback (E-Wr) PR also
contains some TRs. However, they store the result or partial
result of a warp instruction. Table 1 summarizes the basic
information about the control-path fields of PRs.

TABLE 1. GENERAL INFORMATION ABOUT PRS IN FLEXGRIP (CONTROL-PATH

ONLY).

Regs
Warp

Instructions
Warp Status

Instruction

Opcode

Instruction

Formats
Bits per Reg

F-D X X 237

D-R X X X X 391

R-E X X X 302

E-Wr X X X 251

Wr-W X X 133

W-F X X 140

The high number of bits per register in the R-E and E-Wr
registers is caused by the large number of registers employed in
the TRs to handle the operands for each SP. These structures
temporary store operands and results of logical, arithmetical and
control-flow operations of each thread on an SP in the SM. TRs
are organized in sets, one per SP. Each register set is composed
of 6 groups of registers and each group includes four 32-bit
registers. The group of registers 0, 2 and 4 in the R-E register
store the operands (SRC1, SRC2, and SRC3). Similarly, Group
0 in E-Wr register stores the result (DST).

B. FlexGrip restrictions

The work reported in this paper has been performed on a
modified version of the original Flexgrip model described in
[15], where we fixed some bugs, removed some restrictions and
added some extensions. There are still some operational

restrictions in the adopted Flexgrip model related to the
programming environment. Those are: i) FlexGrip executes one
kernel per time. In order to launch other kernels, it is required to
load memories and configuration parameters. ii) The shared
memory and RF parameters are programmed during the
configuration stage. iii) Flexgrip supports 27 instructions in 78
formats, only. Moreover, it does not provide any floating point
support. iv) The CUDA compiler may generate unsupported
instructions for FlexGrip, and the optimizations may change the
type and order of the instruction, thus possibly creating code
which cannot be executed by FlexGrip.

III. PROPOSED SBST METHOD

We adopted a bottom-up approach designing multiple
programs (kernels) to test permanent faults in the control-path
fields of the GPGPU pipeline registers. Each kernel focuses on
some specific parts of the register fields. In the end, the
cumulative FC achieved by all the kernels is assessed. Each
kernel is written through a high-level compiler (CUDA) when
possible. Moreover, we added some assembly instructions
(SASS) if required. It is worth noting that SASS assembly
language is not fully known as it has not been released by
NVIDIA. In FlexGrip, a file generation description was added
in order to represent the global memory results after kernel
termination.

A. Proposed functional test methods

PRs are divided into two main groups and multiple sub-sets
for the purpose of developing multiple functional test methods,
one for each target. Fig 2 represents the pipeline fields division.
The proposed test methods are explained in the following
sections.

FIG. 2. DIVISION OF PIPELINE REGISTER FIELDS

B. Algorithms to test the warp instruction status registers

As shown in Table 1, each PR stores warp instruction and
status information across the SM. It means that, when targeting
one sub-set of registers in one PR, it is enough to generate the
detection on other PRs. The test method for the WPC field and
AThM are introduced in the next subsections.

1) WPC technique

This method (PC_T) employs a main program which calls a
set of sub-routines, strategically placed in memory, in order to
generate test patterns in the WPC registers of each PR. Each
sub-routine is composed of a Signature-per-Thread (SpT) and a
Counter-per-Thread (CpT). These two elements increase the
observability of the target registers in the memory of the test
program and also stop the execution if a permanent fault affects
one of these fields.

The CpT verifies if a fault generates loop conditions and a
hanging effect in the system. Kernel termination instructions
(RET) are placed in memory locations between two subroutines
to solve this issue. These instructions stop the kernel execution
when a control-flow instruction does not reach a target memory
location due to a fault turning hanging conditions into fault
detections. Each subroutine checks the CpT value. If this value
corresponds to the expected one, the SpT is loaded, actualized
and stored. Then, a new subroutine is launched. Otherwise, the
kernel is stopped. Fig 3 shows the operations performed by a
subroutine.

In the PC_T implementation, it was necessary to replace the
CALL and RETURN instructions, not supported by Flexgrip,
with unconditional and control-flow instructions (BRA). Thus,
the test program consists of multiple unconditional jumps to and
from subroutines. The lower bits in WPC registers were not
explicitly tested with subroutines considering that instructions
in master program implicitly generate patterns for them.

The program kernel is configured with 32 TpB and one
BpG. The execution of one warp checks the state of the WPC
fields, considering that WPC is shared for all threads in a warp.
The program kernel was designed to skip thread divergence and
avoid the incidence of other modules during execution.

RET (*) ► Added before starting the routine

Init: CpT_S ← Expected_param ► Load expected CpT in subroutine

 load_CpT(i); ► Load CpT from global memory

 If CpT[i] == CpT_S then ► Compare CpT and CpT_S

 CpT[i] ← CpT[i] + 1 ► Actualize the CpT
 Store_CpT(i); ► Store the CpT in Global memory

 load_SpT(i); ► Load the SpT from global memory
 SpT[i] ← SpT[i] + S_Param ► Actualize the SpT
 Store_SpT(i); ► Store the SpT in Global memory
 else ►
 RET (*) ► Finish kernel Execution

FIG 3. PSEUDO-CODE OF THE SUBROUTINE TARGETING THE WPC FIELDS. (*)

ADDED ASSEMBLY INSTRUCTIONS. SUBROUTINES WERE EXPLICITLY PLACED IN

THE SYSTEM MEMORY.

2) AThM technique

This technique is an adaptation of the M3 algorithm,
introduced in [10]. This was originally intended to detect
permanent faults in entry-lines of the warp status memory in the
warp scheduler of GPGPUs. The same warp status information
is presented in the warp status memory and pipeline registers.
Thus, is possible to adapt this method targeting AThM fields.
The method generates thread divergence operations to supply
test patterns targeting the AThM fields. Two control-flow
instructions are employed to start and finish the divergence in
the model. The first instruction, a conditional control–flow type,
is activated through logical comparisons between the Thread
Identifier and a set of constant values. These values are all the
potential Thread Identifiers in a warp (0-31). The divergence
generates two potential paths (Taken and not-taken). In the first
one (Taken), an SpT is actualized and stored in memory. The
other path (not-taken) is not employed and an unconditional
control-flow instruction returns to the convergence point for a
new comparison. In the end, 32 comparisons are performed in a
sequential fashion and each bit register is tested. The SpT is
employed as observability mechanism of a fault in memory. Fig
4 shows the general procedure to test AThM fields.

Load_ThreadId(); ► Load the Thread.Id

Load_SpT(i); ► Load signature
for i ϵ {set of ThreadId in a warp} do ► Evaluate for every Thread.Id
 j ← Params[k]; ► Load the comparison parameter

 if i == j then ► Comparison of Thread.Id and Constant
 Load_SpT(i); ► Load SpT from global memory
 SpT [i] ← SpT [i] + 1 ► Set signature
 Store_SpT(i); ► Store SpT to global memory
 else
 NOP (*) ► Not used path
 k ←k+1 ► Change constant value (Convergence Point)

FIG. 4. PSEUDO-CODE OF THE TEST PROGRAM FOR THE ATHM FIELDS.

(*)ADDED ASSEMBLY INSTRUCTIONS.

We proposed two solutions by changing one logic operation
in order to select between detection and diagnosis test. In the
first case, a fast fault detection test is designed with logical
comparison through an AND operator. On the other hand, XOR
operators are used in the diagnosis test version.

The diagnosis test (WS_T_D) is able to identify an
individual permanent fault in the AThM field. On the other
hand, a detection test requires only two comparisons. For this
purpose, two variations where proposed. In the first (WS_T_V1),

Pipeline Registers

Control-path Registers

Data-path Registers

Warp Instruction

Status Registers

Other Registers

fields

Kernel parameters

Registers

Temporary

Registers

Other Registers

the divergence is performed on even and odd thread groups (16
threads per time). Initially, an even constant is loaded and the
comparison generates divergence on even threads. Those
threads actualize the SpT and return to convergence. Then, an
odd constant is loaded and the previous process is repeated with
the odd threads. Finally, a comparison of SpTs in memory is
performed to detect a permanent fault. The (WS_T_V2) test
version employs only one comparison to generate the
divergence (an even constant parameter). Nevertheless, in both
paths (even and odd) the SpTs are actualized. All test programs
are configured with 32 TpB and one BpG taking into account
that the execution of one warp in the SM is enough to test the
fields in the pipeline registers.

C. Method to test the kernel parameters fields

1) The GPRS size

These fields define the number of registers to be employed
for each thread during kernel execution and are programmed
during the device configuration stage. Thus, one kernel is not
able to generate the required test patterns. The proposed method
is based on designing three program kernels forcing the
compiler to use an expected number of registers and generate
the patterns.

Test kernels GPR_T_3R, GPR_T_12R and GPR_T_63R
were designed using 3 (0x03), 12 (0x0C) and 63 (0x3F)
registers, respectively, which are also the patterns for the target
field. The pattern selection followed the guidelines of the
CUDA Tool-kit manual. The GPGPUs with computer capability
1.0 is able to handle up to 63 registers per thread. Over this
limit, the compiler generates optimizations or data transfer to
other memories.

GPR_T_3R program executes one logical and one
arithmetical operation. This is configured with 1024 TpB and
one BpG in order to use a complete SM. GPR_T_12R kernel
executes a set of addition operations on global memory
locations. This program is configured with 64 TpB and one
BpG. Considering that RF placement policy assigns the
registers of each thread in a consecutive way, it is possible to
detect faults with this configuration. Finally, GPR_T_63 kernel
computes an accumulative addition using each register as part
of the result avoiding the optimization by the CUDA compiler.
The kernel is configured with 256 TpB and 1 BpG. Each test
program includes an SpT. Kernel termination and SpTs are used
as observability mechanism for fault detection.

GPR_T_3R is employed to test permanent faults in “1” on
the higher part of the register field. Similarly, GPR_T_12R
detects those in the higher part and the lower part of the field.
GPR_T_63R is employed to test permanent faults in “0”,
considering that a fault would overlap other thread registers,
thus, corrupting the result. GPR_T_3R kernel was also able to
generate patterns to test other control-path fields by employing
a large number of threads in the kernel.

2) GPRS and shared memory base fields.

These fields are also programmed during the device
configuration stage. Nevertheless, the execution of multiple
blocks or a large set of threads per block, in the same SM, is
able to generate test patterns on these fields. The proposed
approach is a combination of both approaches.

GPR_T_3R kernel is reused to test the low part of the target
fields, considering that it uses the maximum number of threads
per block and a low number of registers. On the other hand, the
high part requires the assignation of distributed memory
addresses across the RF. For this purpose, we designed one
kernel (B_T) employing 16 registers per thread and configured

with 8 BpG. In this way, the 9 bits in the GPRS base field can
be tested. The test kernels execute a set of arithmetical
operations in order to employ the selected number of registers;
finally, the SpT is stored in global memory.

D. Other register fields.

This kernel targets the missing register fields in the control-
path fields. Most of them are presented in D-R register and are
composed of the instructions op-codes, predicate registers flags,
immediate operands values, and logical and arithmetic selectors.
It was considered to employ a pseudo-random kernel employing
most instructions, thus generating most test patterns.
Nevertheless, this solution is feasible only when the ISA of the
GPGPU is well known and it is directly generated at the
assembly level. Nevertheless, CUDA employs multiple
compiler optimizations removing instructions or modifying
those that do not contribute to a thread result in memory. This
restriction minimizes the effectiveness of this method.

As a solution, this kernel employs most representative
instruction op-code to increase missing FC through selective
operations. Then kernel (PSR_T) is designed to generate the
highest number of potential variations on some selected target
fields. Those fields are: i) operand order and sign, ii) immediate
operand parameters, iii) predicate flags and iv) op-code, which
represent a high percentage of the missing faults.

Targets (i and ii) require the generation of multiple
arithmetic operations. On the other hand, the pattern for (iii)
requires the explicit comparison of parameters. In order to avoid
the compilation optimizations and force it to generate the
expected pattern in those fields, the comparisons are made
based on memory locations. An initial approach considered
seven comparisons (!=, <, ==, <=, >, < | >, >=) to generate
the patterns considering an unknown op-code. In the optimized
version, it was required only two comparisons.

The op-code generation was carried out employing memory
and kernel parameters movement combined with shift
operations. Those instructions were analyzed following the
CUDA compilation and analyzing the assembly code of
multiple arithmetics and movement operations. The kernel is
configured with 32 TpB and one TpG, since SM shares those
fields during the execution of a warp.

E. Compiler restrictions in kernel implementation

In some of the proposed methods, problems and restrictions
were faced during kernel implementation. Those restrictions are
caused by the CUDA environment, which employs advanced
algorithms for resource reduction and performance
improvement in the application.

In the PC_T program, the RET instructions were manually
added in free memory locations to terminate the program
execution, since; CUDA compiler removes all instructions
without any direct relation with the kernel execution. Besides,
each subroutine was placed in the target location. Similarly, in
WS_T_x kernels, the implementation required the explicit
comparison of each thread identifier with the constant parameter
independently in order to generate the expected divergence.

In the description, the GPR_T_xR kernels avoid arrays and
matrices definitions. In these kernels, the register declaration is
replaced with an independent declaration of each variable. A
consecutive register declaration, such as an array would be
interpreted by the compiler as local memory locations for the
kernel, so limiting the target of the test kernel. Moreover, the
command to increase the registers usage per thread was required
in order to guarantee the total of registers employed in the test
kernel. Finally, every register, in a thread, should be part of a

memory store operation in order to avoid optimizations and
reduce the number of registers employed.

IV. FAULT INJECTION ENVIRONMENT

The environment was developed based on a high-level
controller described in Python language. This controller
translates a fault location into the command sequence for the
simulator hosting the model (ModelSim), following the
guidelines introduced in [16]. The tool is composed of a fault
controller, a fault decoder and a fault checker and classifier.
This framework also employs a multi-thread fault simulation
approach [17, 18] to increase fault simulation performance. This
method is implemented by dividing the fault list in equal size
chunks and launching different faults campaigns, each working
on a fault list chunk. 10 chunks were employed per fault
campaign.

A fault injection campaign starts by defining and sending
the fault list. This list includes all faults locations and the
selected fault model (stuck-at faults model). Then, the fault
controller performs a fault-free (golden) simulation and the
memory results and kernel time simulation are stored as
reference parameters during the fault campaign. The fault
decoder reads one line from the fault list and translates it into
the command sequence for Modelsim. This command is applied
and the fault simulation starts. The maximum fault execution
time is fixed at twice the golden execution time in order to
consider potential performance degradation effects by the fault.

The fault checker and classifier compares the memory
results and execution time to classify the fault. In the tool, the
faults are classified as i) Silent Data Corruption fault (SDC),
when the fault generates mismatches in memory results, ii)
Hanging (Crash) fault, if the fault stops or prevents the kernel
execution, iii) Timeout, if the fault affects the system
introducing a delay in the kernel execution while the results are
not affected, and iv) Silent, when the fault does not affect the
system execution and results.

The fault campaign starts again by reading another line from
the fault list. In the end, two files are created describing the
effect of every fault in the system and the total classification of
faults. One fault simulation was performed per injected fault.

V. EXPERIMENTAL RESULTS

In the experiments, we injected 2,382 faults in the control-
path fields of the PRs. For the purpose of this paper, we only
considered the RT-level model of the GPGPU: hence, we
limited our analysis to the stuck-at faults on the inputs and
outputs of the Flip-Flops composing each register. FlexGrip was
configured with one SM and 32 SP-cores in the SM during the
fault injection campaigns. Fault simulation campaigns required
about 6 hours to be completed. The experiments were
performed on a workstation with an Intel Xeon CPU running at
2.5 GHz, equipped with 12 cores, and 256 GB of RAM.

We performed injection campaigns on four representative
benchmarks to compare the FC of applications with the one
provided by the proposed solutions. The selected applications
are: an embarrassingly parallel operation (Vector_Add)
performing the addition of two arrays of 64 elements, the matrix
multiplication of two (8x8) matrices, the FFT of a signal with
64 elements and the Edge Detection, based on the Sobel
algorithm with a (5x5) stencil element applied to an (16x16)
image.

Table 2 shows the characteristics of the developed SBST
programs and the four applications. It shows that most of the
kernels are composed of a low number of instructions and have
a short execution time. Tables 3 and 4 show the achieved FC in

the targeted structures. The total FC does not consider
functionally untestable faults (FUFs) in the system, i.e., faults
that cannot be tested resorting to a functional approach. For the
identification of FUFs we adopted a method derived from the
one presented in [19]; unfortunately, the identification of all
FUFs in a complex circuit goes beyond the state of the art
techniques. For the considered applications, Table 3 presents the
average result of multiple simulations employing various data
input sets. Results show that benchmarks provide a relatively
moderate FC (32-57%). Moreover, a high percentage of fault
effects are detected through hanging conditions in the system,
stopping the operative state of the device.

TABLE 2. CHARACTERISTICS OF THE IMPLEMENTED TEST KERNELS AND

APPLICATIONS. (*) USING CPT

SBST kernels or

Benchmark

Execution time

(Clock Cycles)

Memory size

(Bytes)

WS_T_D 16,449 128

WS_T_V1 2,175 128

WS_T_V2 1,913 128

TR_T 2,273 384

GPR_T_3R 23,586 8,192

GPR_T_12R 103,930 400

GPR_T_63R 283,714 1500

PC_T 31,570 128 / 256(*)

B_T 178,750 9,256

PSR_T 7,313 2,304

VectorAdd 28,565 768

MatrixMul 201,365 768

Edge Detection 688,305 2048

FFT 584,265 512

TABLE 3. FC OF SELECTED APPLICATIONS IN CONTROL-PATH FIELDS OF PRS

Kernel SDC

(%)

Hanging

(%)

Timeout

(%)

Total FC

(%)

Testable FC

(%)

VectorAdd 18.10 20.82 0.62 32.37 39.54

MatrixMul 9.74 42.67 0.92 43.66 53.33

Edge Detection 19.89 49.44 1.03 57.60 70.36

FFT 21.89 42.36 0.67 53.15 64.92

TABLE 4. FC OF THE PROPOSED SBST APPROACH

Kernel SDC

 (%)

Hanging

(%)

Timeout

(%)

Total FC

(%)

Testable FC

(%)

WS_T_D 4.61 25.23 16.67 38.08 43.51

WS_T_V1 4.77 23.33 13.85 34.34 41.95

WS_T_V2 4.82 23.64 13.95 34.72 42.41

GPR_T_3R 14.51 21.85 0.82 30.35 37.07

GPR_T_12R 16.77 21.49 0.51 31.74 38.77

GPR_T_63R 20.10 22.49 0.56 35.10 42.87

B_T 9.13 22.51 1.23 26.91 32.87

PC_T 21.69 17.59 0.41 38.37 39.69

PSR_T 19.74 23.54 4.46 39.08 47.74

Overall 38.31 23.44 18.51 65.70 80.26

VectorAdd and MatrixMul applications employ mainly data-
path structures including data-path fields in the PRs of
GPGPUs. However, the execution is affected by the incidence
of a fault in the control-path fields. In the first application, faults
are distributed among a system hanging condition and an SDC
in results. In contrast, most faults in MatrixMul generate
hanging conditions, due to the execution of flow-control and
conditional instructions. Similarly, FFT and Edge Detection
kernels, which are composed of multiple control-flow
instructions, are more prone to fault effects belonging to the
system hanging category.

Every proposed SBST kernel achieves a low FC (lower than
40%). Nevertheless, as explained below, the multi-kernel test
approach is composed of multiple kernels, designed to target
different pipeline registers fields, and executed independently.
The FC in the control path is obtained as the cumulative number
of faults detected by all the test kernels. The joint testable FC of
those kernels reaches a relatively high percentage (80% in
control-path). Moreover, the multi-kernel SBST approach is
able to detect up to 38.31% of the permanent faults employing
only memory results, a traditional mechanism for in-field test.
On the other hand, the benchmarks are only able to detect 21%

of the faults with the same detection mechanism, showing the
effectiveness of the SBST approach.

Edge detection is able to detect 70% of the permanent faults
in the control-path field of the PRs. Nevertheless, 49.4% of it is
through hanging detection. On the other hand, the proposed
kernels reduced in up to 26% the hanging conditions and
translating them into memory errors.

The multi-kernel approach also guarantees that the in-field
test can be performed employing chunks (multiple kernels) with
short execution time. In Table 4, we reported both the total and
the Testable FC%. The total FC has been computed excluding
FUFs. Multiple FUFs can be found in the control-path of the
GPGPU. These include faults affecting the two lowest bits of
each WPC pipeline register, the initial active thread mask, and
some other fields that are present in the design but did not affect
the benchmarks or the SBST kernels execution. In the end, 456
faults in the control-path are labeled as FUFs.

Table 5 reports the FC in the control-path fields for each PR
using the proposed multi-kernel approach. The proposed
method seems to be globally effective for fault detection on
most of the fields in the pipeline registers.

TABLE 5. FAULT COVERAGE IN THE PIPELINE REGISTERS (PRS) STAGES

Pipeline

Register

SDC

(%)

Hanging

(%)

Timeout

(%)

Total FC

(%)

Testable FC

(%)

F-D 51.24 16.17 9.20 64.98 76.62

D-R 27.89 8.45 6.06 38.49 42.39

R-E 36.21 25.0 19.82 46.69 81.03

E-Wr 33.96 14.71 18.45 50 67.11

Wr-W 45.36 28.35 16.49 65.79 90.21

W-F 50.48 25.48 15.38 68.21 91.83

Overall 38.31 23.44 18.51 65.70 80.26

The relatively low FC in some PRs (D-R, and E-Wr) is
mainly caused by restrictions stemming from the adoption of a
high-level kernel description and implementation using the
CUDA compilation tool. This tool sometimes removes or
changes the execution order, instruction type, and operand
placement in the device depending on the program description,
the compiler configuration, and the optimizations options. This
behavior is intended to increase the execution performance in
the device. Nevertheless, from the reliability viewpoint, this
abstraction level introduces restrictions for test pattern
generation in fields, such as instruction op-codes, special
operand types, physical memory addresses and fields that
depend on external configuration units such as the block
scheduler. Most previous registers fields are found in the D-R
and E-Wr PRs. A naïve solution to improve the FC is the
addition of assembly instructions, as we did in some of the
proposed methods and increasing by up to 10% the obtained
FC. However, this solution is limited by the incomplete
knowledge of the SASS specifications as released by NVIDIA.

It is worth noting that, the proposed approaches target the
fault detection employing the SDC mechanisms (i.e., looking at
the memory content). This effect can be observed in all PRs
results. Moreover, the proposed methods were partially
effective in detecting faults in the targeted data-path fields by
checking memory errors without affecting the system operation.

VI. CONCLUSIONS

Thanks to the availability of an improved RT-level model of
a GPGPU, we could for the first time assess the Fault Coverage
of SBST programs on the pipeline registers of the internal SPs.
A multi-kernel test approach composed of multiple SBST
programs was proposed to test the control-path fields in the
pipeline registers. Resorting to an RT-level fault simulation
environment we could compute the related FC, which amounts
to more than 80%. The test kernel implementation was based on
a combination of a high-level environment (CUDA) and an

assembly level tool to add suitable SASS instructions. This
work revealed and detailed multiple compiler restrictions and
constraints during test kernel implementation at high-level.
Each proposed SBST kernel targeted different portions of the
control-path fields in the pipeline register. An overlap of the
proposed solutions is able to detect a considerable percentage of
faults employing only memory results comparisons as the
detection mechanism.

We are currently working to further improve the proposed
SBST methods, to assess which of the still untested faults are
functionally untestable, and to extend the work to other GPGPU
units.

REFERENCES

[1] W. Shi, et al., "Algorithm and hardware implementation for visual

perception system in autonomous vehicle: A survey," Integration, vol.
59, pp. 148-156, 2017/09/01/ 2017.

[2] S. Hamdioui, D. Gizopoulos, G. Guido, M. Nicolaidis, A. Grasset, and

P. Bonnot, "Reliability challenges of real-time systems in forthcoming
technology nodes," in 2013 Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2013, pp. 129-134.

[3] E. Ibe, et al., "Impact of Scaling on Neutron-Induced Soft Error in
SRAMs From a 250 nm to a 22 nm Design Rule," IEEE Transactions on

Electron Devices, vol. 57, pp. 1527-1538, 2010.

[4] L. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang, S.
Gurumurthi, et al., "GPGPUs: How to combine high computational

power with high reliability," in 2014 Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2014, pp. 1-9.
[5] S. K. S. Hari, et al, "SASSIFI: An architecture-level fault injection tool

for GPU application resilience evaluation," in 2017 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS),
2017, pp. 249-258.

[6] S. Tselonis, et al, "GUFI: A framework for GPUs reliability

assessment," in 2016 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2016, pp. 90-100.

[7] N. Farazmand, et al., "Statistical fault injection-based AVF analysis of a

GPU architecture," Proceedings of SELSE, vol. 12, 2012.
[8] S. Di Carlo, et al., "A software-based self test of CUDA Fermi GPUs,"

in 2013 18th IEEE European Test Symposium (ETS), 2013, pp. 1-6.

[9] S. Di Carlo, et al., "Increasing the robustness of CUDA Fermi GPU-
based systems," in On-Line Testing Symposium (IOLTS), 2013 IEEE

19th International, 2013, pp. 234-235.

[10] B. Du, J. E. R. Condia, M. Sonza Reorda, and L. Sterpone, "About the
functional test of the GPGPU scheduler," In On-Line Testing Symposium

(IOLTS) 2018 IEEE 24th International, Platja d’Aro, Costa Brava,

Spain, 2018.
[11] M. Gonçalves, M. Saquetti, F. Kastensmidt, and J. R. Azambuja, "A

low-level software-based fault tolerance approach to detect SEUs in

GPUs' register files," Microelectronics Reliability, vol. 76-77, pp. 665-
669, 2017/09/01/ 2017.

[12] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, "Impact of GPUs

parallelism management on safety-critical and HPC applications
reliability," in Dependable Systems and Networks (DSN), 2014 44th

Annual IEEE/IFIP International Conference on, 2014, pp. 455-466.

[13] M. Gonçalves, M. Saquetti, and J. R. Azambuja, "Evaluating the
reliability of a GPU pipeline to SEU and the impacts of software-based

and hardware-based fault tolerance techniques," Microelectronics

Reliability, vol. 88, pp. 931-935, 2018.

[14] S. Gurumurthy, S. Vasudevan, and J. A. Abraham, "Automatic

generation of instruction sequences targeting hard-to-detect structural

faults in a processor," in 2006 IEEE International Test Conference,
2006, pp. 1-9.

[15] K. Andryc, M. Merchant, and R. Tessier, "FlexGrip: A soft GPGPU for
FPGAs," in 2013 International Conference on Field-Programmable

Technology (FPT), 2013, pp. 230-237.

[16] W. Nedel, F. L. Kastensmidt, and J. R. Azambuja, "Evaluating the
effects of single event upsets in soft-core GPGPUs," in Test Symposium

(LATS), 2016 17th Latin-American, 2016, pp. 93-98.

[17] D. Alexandrescu, "Circuit and System Level Single-Event Effects
Modeling and Simulation," in Soft Errors in Modern Electronic Systems,

ed: Springer, 2011, pp. 103-140.

[18] H. Ziade, R. A. Ayoubi, and R. Velazco, "A survey on fault injection
techniques," Int. Arab J. Inf. Technol., vol. 1, pp. 171-186, 2004.

[19] R. Cantoro, A. Firrincieli, D. Piumatti, M. Restifo, E. Sanchez, and M.

Sonza Reorda, "About on-line functionally untestable fault identification
in microprocessor cores for safety-critical applications," in 2018 IEEE

19th Latin-American Test Symposium (LATS), 2018, pp. 1-6.

