
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An extended model to support detailed GPGPU reliability analysis / Du, B.; RODRIGUEZ CONDIA, JOSIE ESTEBAN;
Reorda, M. S.. - ELETTRONICO. - (2019), pp. 1-6. (Intervento presentato al convegno 14th IEEE International
Conference on Design and Technology of Integrated Systems In Nanoscale Era, DTIS 2019 tenutosi a grc nel 2019)
[10.1109/DTIS.2019.8735047].

Original

An extended model to support detailed GPGPU reliability analysis

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DTIS.2019.8735047

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2750455 since: 2019-09-08T11:51:01Z

Institute of Electrical and Electronics Engineers Inc.

An extended model to support detailed GPGPU
reliability analysis

B. Du*, Josie E. Rodriguez Condia†, Matteo Sonza Reorda‡,
Politecnico di Torino, Dept. of Control and Computer Engineering, Torino, Italy

{*boyang.du, †josie.rodriguez, ‡matteo.sonzareorda}@polito.it

Abstract1—General Purpose Graphics Processing Units (GPGPUs)
have been used in the last decades as accelerators in high
demanding data processing applications, such as multimedia
processing and high-performance computing. Nowadays, these
devices are becoming popular even in safety-critical applications,
such as autonomous and semi-autonomous vehicles. However,
these devices can suffer from the effects of transient faults, such as
those produced by radiation effects. These effects can be
represented in the system as Single Event Upsets (SEUs) and are
able to generate intolerable application misbehaviors in safety-
critical environments. In this work, we extended the capabilities of
an open-source VHDL GPGPU model (FlexGrip) in order to
study and analyze in a much more detailed manner the effects of
SEUs in some critical modules within a GPGPU. Simulation
results showed that scheduler controller has different levels of
SEU sensibility depending on the affected location. Moreover, a
reduced number of execution units, in the GPGPU can decrease
the system reliability.

Keywords—GPGPUs, functional safety, transient faults, SEUs,
fault simulation.

I. INTRODUCTION

In the last decades, GPGPUs have been used as accelerators
in high demanding data processing applications including
multimedia processing and high-performance computing.
Nowadays, these devices are increasingly adopted in several
data-intensive safety-critical applications, such as autonomous
and semi-autonomous cars [1]. These devices are manufactured
employing aggressive technology scaling techniques in order to
satisfy performance and energy requirements. Nevertheless,
some studies have shown that these advanced semiconductor
technologies are prone to suffer from external transient radiation
effects [2-5]. These effects can be represented as Single Event
Upsets (SEUs) and may generate intolerable misbehaviors in
safety-critical environments.

In real devices, the impact of SEU effects is analyzed
through radiation experiments in special facilities using
expensive and complex equipment. Other methods include
compiler instrumentation tools adding the behavior of soft-
errors in the application code [6]. However, in both cases,
detailed structural information about the device architecture and
implementation are commonly unknown and detailed analysis
of the fault effects is complex to be performed. Moreover, the

1 This work has been partially supported by the European Commission through
the Horizon 2020 RESCUE-ETN project under grant 72232.

injection tools are helpful in targeting data-path modules, but
these cannot inject faults in most control-path units.

The results are employed to assess the device reliability or to
identify structural or application weaknesses in GPGPU devices
in order to design mitigation strategies [7]. Potential solutions
may include acting on the program coding style and on the
adopted algorithm [8].

A detailed analysis could be crucial to choose the most
suitable countermeasures to achieve given reliability and can
provide some guidelines in the application development.
Moreover, it contributes to identifying critical modules and the
incidence of faults on the application failure rate.

Solutions to perform these analyses are based on fault
injection via simulation on representative device models at
various abstraction levels. In the GPGPUs field, there are
relatively few available models and fault injectors. Moreover,
most of them are described using a high abstraction level [9-14]
or a mix of them [15], thus foiling a complete and detailed
analysis of SEU effects on complex units such as control-path
modules. On the other hand, there are a few RTL behavioral
GPGPU models, such as FlexGrip [16], which can be used to
analyze the SEU effects in these special-purpose modules.
Unfortunately, the FlexGrip model presents some restrictions
related to technology dependency and instructions format
support, thus limiting the development of new applications and
its flexibility, which could support the detailed analysis
mentioned above.

In the work reported in this paper, we first performed a
detailed analysis of the FlexGrip model in order to remove
some of these limitations and bugs. Moreover, we developed a
new release of the FlexGrip model which has no direct
dependency on a technology platform and is able to execute an
increased set of instruction formats compatible with commercial
compilers.

Some representative applications were designed for the new
model and were used as benchmarks for SEU fault injection
campaigns. Finally, some results are presented about the SEU
effects on some data-path and control-path modules using such
applications and multiple application parameters and GPGPU
configuration modes.

The paper is organized as follows: Section II summarizes
the FlexGrip model and the improvements introduced in its new
version. Section III presents the fault injection methodology, the
targeted modules, and the selected benchmarks. Section IV
reports some experimental results, and Section V finally draws
some conclusions and future works.

II. FLEXGRIP GPGPU MODEL

A. FlexGrip architecture

FlexGrip is an open source soft-GPGPU model described in
VHDL developed by the University of Massachusetts [16]
employing the Nvidia’s G80 microarchitecture. This model is
compatible with the CUDA programming environment under
the 1.0 architecture. 27 instructions are supported by the model.
The model was originally designed for Xilinx FPGAs platforms.

This GPGPU model is based on a Streaming Multiprocessor
(SM) including a memory system and two schedulers (Block
and Warp). The Block scheduler is employed to manage and
distribute the block tasks among the SMs. The Warp scheduler
is used to control the execution of the group of 32 threads tasks
denoted as warp. Both schedulers employ a round-robin
algorithm. The SM is composed of five pipeline stages (Fetch,
Decode, Read, Execute and Write-back) to process warp
instructions. The total number of execution units (Scalar
Processors, or SPs) in the execution stage is selectable before
synthesis and can be used to select the best performance in
terms of area and power consumption of the GPGPU. The SP
programmability can be selected among 8, 16 and 32 cores.

A warp instruction is executed on the SM when the warp
scheduler selects one available warp and dispatch the instruction
address to Fetch stage. This stage processes the address and
finds the equivalent instruction. The Decode stage interprets the
instruction formats and selects the execution units and memory
operands. Read stage loads from the memory system the
required operands. Then, the Execution stage processes the warp
instructions employing parallel execution units and temporary
registers for each thread. The Write-back stage stores the results
in registers or memory locations. Finally, a new instruction is
dispatched by the warp scheduler.

The model includes a custom branch management unit for
thread (intra-warp) divergence. This module is composed of a
control unit and a divergence stack memory to store the
addresses of warp convergence points. This model supports up
to 32 levels of divergence. Fig 1 represents the general
architecture of the SM in the FlexGrip model.

Fig 1. The general architecture of the SM in the FlexGrip model. Adapted from
[16].

B. Improvements in the FlexGrip GPGPU model

A detailed analysis of each internal module showed some
operational limitations. Thus, we introduced a set of
improvements which allow us to analyze transient fault effects
on internal modules. Moreover, those simplify and increase the
flexibility of the model for applications development. The
improvements can be divided into three groups:

- Technology dependency.
- Instruction format support.
- Compilation restrictions.

1) Technology dependency

FlexGrip was originally designed to be implemented on
specific FPGAs technologies. Moreover, some internal modules

were automatically described employing high-level compilation
tools, such as Matlab. However, these codes are not easily
understandable and cannot be analyzed in an easy manner.

We modified each module by removing any reference or
dependency to specific technology libraries and compilation
tools and replacing them with equivalent generic descriptions.
Moreover, the name of signals and interconnections was
clarified in order to simplify the analysis during the fault
campaigns. In the end, 38.8% of the modules were corrected or
modified for this purpose. The model can now be imported in
model simulation environments, such as ModelSim. Moreover,
this can be synthesized employing other technology libraries,
such as the ASIC OpenCell [17] library.

2) Instruction format support

FlexGrip was designed to be compatible with the CUDA
programming environment and execute SASS instructions.
Nevertheless, the use of high-level Electronic Design
Automation (EDA) tools during design and its optimizations
seems to be one of the factors for some missing instruction
formats. Moreover, some internal parts in modules, such as
intermediate registers, decoding logic, and interconnections
were not removed by the optimization.

The previous behavior was checked during the development
of custom applications employing the CUDA environment. In
these applications, some instructions failed during execution.
Exhaustive analysis and revisions were performed on the
simulation traces. However, in some cases, the analyzed signals
behavior showed that some supported instructions were only
partially implemented. This restriction limits the transient fault
analysis and its incidence under different applications.
Moreover, it reduces the model flexibility and its employability.

The improvement reported here required a methodical
revision of all supported assembly instructions (SASS) in the
model and the addition or correction of the missing description
to implement the instructions under the expected format. As a
result, we identified a minimal subset of instructions required to
implement basic application codes, and focused our work on
fixing existing bugs, thus allowing complete support of these
instructions.

As the SASS op-code, i.e., the instruction formats for the
GPGPU, has not been released by Nvidia, the op-code format of
some instructions was decoded employing the CUDA
compilation tools (NVCC and CUOBJDUMP). Multiple
applications were designed targeting selected instructions in
order to force the compiler to generate the instruction op-code.
Then, all the required changes (e.g., missing registers,
connections or incomplete modules) were introduced in order to
fully support the selected minimal set of instructions with all the
potential instruction format variations. After this process, the set
included 27 instructions and 74 formats. Table 1 shows the
supported instructions.

4.8% of the whole model description required an addition or
modification in its description in order to be able to execute the
expected instruction formats and its variation. Finally, some
bugs and unused interconnections were removed from the
project hierarchy in order to clean the modules and remove any
redundant logic which may create problems during the fault
campaigns.

3) Compilation restrictions

FlexGrip is able to execute applications compiled employing
the CUDA-toolkit by NVIDIA. Moreover, an SM 1.0 micro-
architectural compatibility must be selected. However, the

CUDA compiler is protected and, as commented below, the op-
code of the instructions is not released.

In multiple attempts to design new applications for FlexGrip
we discovered several SASS instructions not supported by the
model, so in order to maintain the compatibility with the
CUDA-toolkit, a SASS checker tool was developed to check the
supported SASS instruction formats. This tool is able to identify
and notify the user of those unsupported instructions formats in
FlexGrip. Additionally, a SASS parser tool was designed to
directly write SASS assembly instructions and replace the
unsupported ones. Using both tools, a new application can be
designed, verified and corrected without the necessity of
executing the instructions in the model, thus reducing the
application time development. Sub-section III.C introduces two
benchmarks developed for FlexGrip employing these tools.

TABLE 1 SUPPORTED INSTRUCTIONS IN FLEXGRIP MODEL.

Mnemonic Description
I2I Integer to integer conversion

IMUL / IMUL32 /I MUL32I Integer multiplication
SHL Shift left
SHR Shift right

IADD / IADD32 / IADD32I Integer add
IMAD / IMAD32 / IMAD32I Integer multiply and Add

LOP Bitwise logical Operation
ISET Integer comparison
MVC Load from constant memory
GLD Load from global memory
GST Store to global memory

MOV / MOV32 Move register to register/load from shared memory
MVI Move immediate to destination
R2G Store to Shared Memory
R2A Move general purpose register to address register
A2R Move address register to general purpose register
BRA Branch
BAR barrier synchronization
RET Return from kernel
SSY Set synchronization point
NOP No operation

III. FAULT INJECTION METHODOLOGY

In order to evaluate the effect of SEUs in the improved
version of the FlexGrip model, we developed a fault injection
tool employing the ModelSim simulator. The injector tool was
designed following the guidelines introduced in [18] regarding
transient fault injection using simulator commands.
Additionally, the tool implements techniques to reduce the fault
simulation time (multi-thread fault simulation and module de-
rating factor (UDR) usage). Details about these techniques can
be found in [19, 20].

The fault injector was developed employing a high-level
language (Python) and is composed of a fault controller, a fault
injector and a fault checker and classifier. The fault controller
manages the fault campaign execution and it is able to start and
finish the tool execution. The fault injector decodes and applies
a fault command in the selected fault location. Finally, the fault
checker and classifier checks the simulations termination and
classifies the faults.

Initially, the fault controller configures the program kernel
parameters, loads the FlexGrip model into the ModelSim
environment and the program instructions to be executed. The
kernel parameters include the number of SP-Cores presented in
the SM, the total number of blocks and threads in the task, the
total number of blocks per SM and the file register size.

Once the model is loaded in the simulator, the fault
controller starts the fault injector and this loads and decodes the
fault to be injected into the GPGPU model. The fault injector
reads, from a fault list, the location and the injection time of the
fault. Then, the injector translates those parameters into the

equivalent commands for ModelSim. The tool is able to handle
permanent and transient faults. For the purpose of this work, we
employed the transient fault capabilities of the designed tool.
One fault simulation is performed for each element in the fault
list, once the fault is injected in the model.

Finally, the fault checker and classifier waits for simulation
termination and checks memory results and simulation time
parameters in order to classify the effects of the fault in the
system. This unit classifies the faults in four categories: Silent
Data Corruption (SDC) when the SEU affects the memory
results, Detected Unrecoverable Error (DUE) when the model
is hanged by the SEU effect, Timeout when the SEU produces
performance degradation in simulation time and Silent when the
SEU does not generates any effect.

A. Fault campaign description

In SEU fault injection campaigns, two elements are
considered: the SEU location and the SEU injection time. The
SEU location depends on the fault universe and spans over the
registers and memory elements employed by a benchmark
during execution time on each targeted module. The fault
universe was carefully checked and selected through a golden
execution. The injection time for each fault is randomly chosen.

A fault campaign starts with a golden simulation to define
the reference execution time and the reference memory results.
Then, the fault controller starts a loop in which this unit loads
the fault list and the fault injector applies the equivalent
command in the simulation model. The simulation time is
selected as twice the reference execution time in order to allow
the tool to detect timeout effects. Moreover, the model is
instrumented with a memory generator which stores the
memory results into a file for each simulation. The fault checker
checks the presence of this file and performs the classification
phase. Finally, a new fault is loaded for the fault list and the
simulation loop starts again. The fault injection campaign
finishes when the fault list is empty.

The multi-thread fault injection approach is employed in the
tool by dividing the fault list in chunks of faults. Each fault list
is composed of the SEU fault location (signal name) and the
SEU injection time.

B. Targeted modules

One Data-Path and two Control-Path modules were targeted
during fault campaigns. Their characteristics are briefly
described in the following.

1) Data-path module

File Registers: The 32 bit-size registers are employed as
source and destination operands and addresses during a warp
instruction execution. These registers are organized and
distributed according to the total number of warps and blocks to
be executed in an SM.

2) Control Path modules

SM Warp Scheduler: The warp scheduler manages the warp
execution inside an SM. This unit is able to select an available
warp, dispatch the warp instruction to the SM and check its
execution. This module is composed of various memories and
control logic. The internal warp memory is employed to store
the status information of each warp execution. This information
is updated after each instruction execution and is composed of
the active thread mask (aTM), the actual program counter and
some additional warp configuration parameters.

Divergence Stack memory: This unit stores the divergence
addresses generated by a divergent warp. A special-purpose

memory stores the address, warp index and aTM to trace the
number of executed threads on each divergence path.

C. Benchmarks

Three applications were developed for the improved version
of FlexGrip to evaluate the SEU effects on the targeted
modules. They are briefly described in the following.

FFT: This typical signal processing application was
implemented based on the Coley-Turkey algorithm [21]. In this
application, the butterfly element was described employing the
CUDA-C environment. Although the model does not provide
support for division operations, they were replaced by a
software approach based on logarithm methods using shift and
logical displacements.

Edge detection: This common image processing application
is based on the Sobel algorithm and was described as a 3x3 size
dimensions stencil element. The stencil describes an image filter
and it is applied to a 2-dimensions input. As described below for
FFT, the division operations are implemented employing the
same logarithmic approach.

Vector add: This typical embarrassingly parallel application
operates on two individual arrays and stores the result in a
specified memory area. This program kernel is selected
considering that most applications include execution segments
with fully data-parallel operations. This application employs
data-path modules and execution units to process the operations.

IV. EXPERIMENTAL RESULTS

The fault campaigns considered two different sets of
parameters, the GPGPU model configuration, and the
benchmark configuration. The GPGPU model was configured
employing 8, 16 and 32 SP-cores. Moreover, the benchmarks
were configured with two application threads per block (TPB)
distributions: A 32 threads and B 64 threads. Benchmarks
under each configuration are named as follow: benchmark
name, thread configuration, SP-cores configuration. For
example, VectorAdd with 32 TPB and 16 SP-Cores is named as
V_32_16.

In order to take into account the different duration of
different versions of the same benchmark, the Mean Execution
Between Failures (MEBF)[22] metric is calculated for the
different benchmarks in the targeted modules. It is worth noting
that, the DUE errors are not considered for MEBF computation.
The SM warp Scheduler was divided into two parts, the warp
memory, and the logic. Table 2 reports the gathered results,
expressed in terms of clock cycles.

TABLE 2 MEBF RESULTS
 FFT EDGE Vector Add

Module
 Config
SP-
Cores

A B A B A B

File
register

32 7.6 11.5 22.0 43.5 139.2 111.6
16 5.6 6.8 16.4 34.3 79.7 83.9
8 3.7 8.5 10.6 40.1 57.0 60.2

Warp
memory

32 565.4 766.2 2,570.7 12,468.5 16,163.7 2,208.1
16 1,695.9 33.6 974.1 220.7 2,165.9 585.0
8 570.3 7.5 174.5 81.8 361.1 194.7

Warp logic
32 102.2 140.1 210.4 780.5 1,766.9 1,985.3
16 34.3 85.6 285.4 186.9 970.7 1,083.9
8 20.0 25.4 104.7 84.8 615.7 640.7

Divergence
Stack

memory

32 399.8 259.9 2,688.4 2,158.0 - -
16 269.1 155.7 1,903.3 1,084.2 - -
8 207.6 63.7 1,338.1 390.6 - -

The SEU sensitivity in the modules depends on the SP-cores
configuration. Dropping the number of SP-cores reduces the
reliability of the system. This behavior is constant for each
module and kernel configuration. The file register is more

reliable to SDC and timeout errors by increasing the TPB. In
contrast, the divergence stack, the warp logic, and the warp
memory seem to be more reliable with kernels configured with
a lower number of TPB. A detailed analysis for each module is
provided in the following sub-sections.

A. Data-Path module results

1) Register File Results

A total of 27 fault injection campaigns were performed
injecting 34,816 faults for the FFT and Edge programs. For
VectorAdd, 10,240 faults were injected in 32-SP cores and
8,192 faults in the 16- and 8-SP cores configurations. In the
multi-thread fault simulation campaigns, the fault list was
divided into ten parts and the simulations were performed in
parallel helping to reduce the fault simulation time from about
150 hours to less than 16 hours and the total amount of faults to
inject in up to 95% by the UDR factor.

Results in Fig. 2 shows that the FFT and Edge benchmarks
present a similar behavior. In both cases, the error rate reduces
by increasing the number of SP-cores and by increasing the
number of TPB. In FFT, a slight increment in the SDC error-
rate is generated by increasing the TPB. This behavior can be
explained through the relation of the model execution time and
kernel configuration. In principle, data stored in active registers
for long periods are more prone to SEU effects (case B) than
registers with periodical write and read activity (case A).

Fig. 2. Register File results for FFT (a), VectorAdd (b) and Edge (c) kernels.
Each axis represents one SP-core configuration and parallelism level in TPB.
Discriminated results of faults detected, expressed in percentage, are presented
on each axis.

In simulations, the A configuration models required longer
execution time. However, the individual block execution time is
lower than the time required by B configurations. Moreover,
FFT in A configuration uses half of the registers of those
employed in B configuration and employs them to process
threads data, in different interval times, belonging to different
blocks. In this case, the increment in TPB increases the SDC
error rate, as it happens in the 32 and 16-SP cores
configurations.

Another factor affecting the error rate is the instruction type.
The FFT includes control-flow instructions depending on
predicate conditions, which are generated evaluating register
operands. In this way, some registers are included in control-

a) b)

c)

flow operations. Those registers can be considered as control-
flow critical registers (CFRs). If an SEU fault affects one of
these CFRs, the effect is DUE.

According to results, a higher number of CFRs is generated
by decreasing the TPB. This can be explained considering the
registers employed in the A configuration and the CFRs mapped
among threads with the same address locations. During kernel
execution, one register location will store, in different time
intervals, data belonging to two CFRs, increasing the
probability to generate a DUE.

A different behavior is shown by the Vector_Add
benchmark. An increment in the TPB corresponds to an
increase in the SDC error rate. This trend is visible for all SP-
cores configurations and depends on the increased SEU
sensibility due to the additional time required by the SM to
dispatch other warps belonging to the same block. Moreover,
the execution time to process an instruction under a large
number of threads (B configuration) is the double of a block
with fewer threads (A configuration). Additionally, SEU effects
slightly increase by reducing the SP-core configuration. This
behavior can be explained by the additional time employed by
the scheduler to process one instruction of each thread with the
limited number of SP cores. The number of SEU faults
generating DUE and Time-Out effects is zero as this application
does not use any control-flow instruction.

In the Edge Detection application, we can observe an
inverse relationship between the SDC error rate and the TPB.
This behavior is visible in each SP-Core configuration. It can be
explained noting that this kernel includes a large number of
control-flow, divergence generation, and arithmetic-intense
instructions. Regarding the DUE error rate, results also show an
inverse relation between TPB and the error rate. This can be
explained due to the SEU sensibility of CFRs. Results (Edge
Detection and FFT) are similar to those shown in [18] for
control-flow applications.

B. Control-Path results

1) Warp Scheduler results

36 fault campaigns were performed targeting this module.
The model flexibility allows us to divide the module into two
parts for analysis purposes: the internal memories (Warp, State
and Predicate) and the sequential logic components in the
module. Results are presented in Fig 3. At first glance, results
contradict the criticality of this module in the GPGPU
operation. Nevertheless, a deep analysis of its architectural
organization and the role employed by the scheduler helps to
clarify.

The error rate in the sequential logic is caused by the SEU
sensibility and criticality of the internal registers employed in
processing and storing the warp information. Although the
sequential logic corresponds to 14.3% of the elements in the
scheduler controller, the percentage of DUE effects lies in a
range between 85% and 92% in all kernels. It means that errors
in those registers directly compromise kernel termination.

The unexpectedly low error rate for faults in the warp
memory is caused by a loop existing between the scheduler and
the SM pipelines stages, which contributes to masking and
reducing the SEU effects in the memory. In this way, the
information is presented in the pipeline registers and in
memory. After each instruction execution, this memory is
written refreshing the information and correcting any SEU.
Moreover, this special memory allows performing the write and
read process in a few clock cycles, during a new instruction
load, reducing the error propagation. The SEU effect on the

state and predicate memories is zero for the selected
benchmarks.

Results show that increasing the TPB raises the SDC and
DUE error rate. The program, under B Configuration, uses more
memory locations and requires the execution of two warps to
process one instruction including warp line exchange. This
exchange generates a temporary short in the loop and the
memory location cannot correct any SEU.

Fig. 3. Warp Scheduler results in memory (a, c and e) and sequential logic (b,
d and f) for the FFT (a, c), VectorAdd (b, d) and Edge (e, f) kernels.

A reduction in SP-Cores produces a direct increment in the
error rate. It can be explained by the additional work performed
by the scheduler (twice and four times) for thread execution in
the 16 and 8 SP-Cores configurations.

2) Divergence Stack memory

Vector_Add program was not considered in the fault
campaigns because this kernel does not use the Divergence
Stack memory. Multi-thread fault campaigns with 50,688 faults
were performed for the FFT and Edge benchmarks. Results are
presented in Fig. 4. These show that the divergence stack
memory does not generate a relevant contribution to error rate
by SEU effects. This low error rate is explained by the partial
usage during kernel execution. Each memory location (line) is
employed for the time fraction of a divergence generation. This
means that each line has a different SEU sensibility. A detailed
inspection to this unit, for both kernels, revealed that its usage is
limited to less than two-thirds of the total simulation time.
Moreover, each additional pushed line presents fewer activities
generating a low SEU sensibility in this unit.

The difference in terms of error rate between the two

a)

c)

e)

b)

d)

f)

benchmarks is explained analyzing the instructions, its
description, and the divergence paths length. Moreover, the
number of synchronization point instructions (SSY) determines
the usage of each memory location. The Edge kernel uses seven
independent SSY instructions with a short path length and
seems to be reliable to SEU effects. In contrast, FFT includes
two SSY instructions and long divergence paths. The long
interval time between writing and reading seems to increase the
SEU sensitivity for this program.

Fig. 4. Divergence stack result for FFT (left) and Edge (right) benchmarks.

Regarding the DUE and SDC error rates, they depend on the
affected location. The difference, for both applications, is
mainly caused by the ability of the program counter and mask
fields to generate hang conditions. An SEU in the program
counter may generate Timeout or DUE errors. Similarly, an
SEU affecting the aTM may generate SDC, by inactive threads,
or DUE effects, by threads missing the taken path. Finally, an
SEU in the warp ID field generates Timeout effects.

The model with A Configuration uses the same lines in the
divergence stack, but these lines are employed in different time
slots and the execution time per block is lower than that
required in B Configuration. The additional time in B
Configuration seems to be responsible for the increasing SEU
sensitivity. A decrement in TPB could help to reduce, in more
than twice, the SDC error rate.

V. CONCLUSIONS

We introduced an improved version of the open source
GPGPU model FlexGrip. This detailed model description was
crucial to explain the behavior observable in the control unit
modules when affected by transient faults. Although the
FlexGrip model does not completely match the architecture of
the most recent GPGPU devices, we still claim that the
performed analysis may be valid for some of them as well. The
new model version is technology independent. Moreover, each
instruction was checked and listed. Additionally, further tools
have been implemented to provide assistance in the
development of new applications employing the CUDA
environment.

SP-cores customization in the model could be useful for area
and energy optimization. However, according to Table 2, a
lower number of SP-cores increases the SEU sensibility and
reduces system reliability. We performed several fault injection
campaigns to analyze the effects of SEUs in different modules
within the GPGPU with different applications. The results
showed that the behavior of the error rate (measured via the
MEBF metric) when changing the configuration parameters
depends on the application. Thanks to the availability of the
FlexGrip model, we provided explanations about the observed
phenomena.

VI. FUTURE WORKS

We are currently working to extend the analysis of the SEU
effects to other modules within the GPGPU architecture

employing different program kernel characteristics. We also
plan to extend the instruction and hardware support of the
GPGPU model following the SM 1.0 microarchitecture
compatibility. Moreover, new execution units, such as floating
point units or other hardware accelerators are also potential
extensions for the model. The inclusions of different warp
scheduler controller algorithms are also planned as future work.

REFERENCES

[1] W. Shi, M. B. Alawieh, X. Li, and H. Yu, "Algorithm and hardware
implementation for visual perception system in autonomous vehicle: A
survey," Integration, vol. 59, pp. 148-156, 2017/09/01/ 2017.

[2] S. Hamdioui, D. Gizopoulos, G. Guido, M. Nicolaidis, A. Grasset, and P.
Bonnot, "Reliability challenges of real-time systems in forthcoming
technology nodes," in 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2013, pp. 129-134.

[3] V. Sridharan, et al, "Memory errors in modern systems: The good, the
bad, and the ugly," ACM SIGARCH Computer Architecture News, vol.
43, pp. 297-310, 2015.

[4] H. L. Hughes and J. M. Benedetto, "Radiation effects and hardening of
MOS technology: devices and circuits," IEEE Transactions on Nuclear
Science, vol. 50, pp. 500-521, 2003.

[5] E. Ibe, et al, "Impact of Scaling on Neutron-Induced Soft Error in
SRAMs From a 250 nm to a 22 nm Design Rule," IEEE Transactions on
Electron Devices, vol. 57, pp. 1527-1538, 2010.

[6] S. K. S. Hari, et al, "SASSIFI: An architecture-level fault injection tool
for GPU application resilience evaluation," in 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2017, pp. 249-258.

[7] L. B. Gomez, et al, "GPGPUs: How to combine high computational
power with high reliability," in 2014 Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2014, pp. 1-9.

[8] L. L. Pilla, et al, "Software-Based Hardening Strategies for Neutron
Sensitive FFT Algorithms on GPUs," IEEE Transactions on Nuclear
Science, vol. 61, pp. 1874-1880, 2014.

[9] S. Collange, M. Daumas, D. Defour, and D. Parello, "Barra: A Parallel
Functional Simulator for GPGPU," in 2010 IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 2010, pp. 351-360.

[10] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, "gem5-
gpu: A Heterogeneous CPU-GPU Simulator," IEEE Computer
Architecture Letters, vol. 14, pp. 34-36, 2015.

[11] A. Bakhoda et al., "Analyzing CUDA workloads using a detailed GPU
simulator," in Performance Analysis of Systems and Software, 2009.
ISPASS 2009. IEEE International Symposium on, 2009, pp. 163-174.

[12] A. Vallero, D. Gizopoulos, and S. Di Carlo, "SIFI: AMD southern
islands GPU microarchitectural level fault injector," in 2017 IEEE 23rd
International Symposium on On-Line Testing and Robust System Design
(IOLTS), 2017, pp. 138-144.

[13] N. Farazmand, et al, "Statistical fault injection-based AVF analysis of a
GPU architecture," Proceedings of SELSE, vol. 12, 2012.

[14] S. Tselonis, et al, "GUFI: A framework for GPUs reliability assessment,"
in 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2016, pp. 90-100.

[15] R. Balasubramanian, et al, "MIAOW - An open source RTL
implementation of a GPGPU," in 2015 IEEE Symposium in Low-Power
and High-Speed Chips (COOL CHIPS XVIII), 2015, pp. 1-3.

[16] K. Andryc, M. Merchant, and R. Tessier, "FlexGrip: A soft GPGPU for
FPGAs," in 2013 International Conference on Field-Programmable
Technology (FPT), 2013, pp. 230-237.

[17] J. Knudsen, "Nangate 45nm Open Cell Library," CDNLive, 2008.
[18] W. Nedel, F. L. Kastensmidt, and J. R. Azambuja, "Evaluating the

effects of single event upsets in soft-core GPGPUs," in 17th IEEE Latin-
American Test Symposium (LATS), 2016, 2016, pp. 93-98.

[19] H. Ziade, R. A. Ayoubi, and R. Velazco, "A survey on fault injection
techniques," Int. Arab J. Inf. Technol., vol. 1, pp. 171-186, 2004.

[20] D. Alexandrescu, "Circuit and System Level Single-Event Effects
Modeling and Simulation," in Soft Errors in Modern Electronic Systems,
ed: Springer, 2011, pp. 103-140.

[21] J. W. Cooley, et al., "The Fast Fourier Transform and Its Applications,"
IEEE Transactions on Education, vol. 12, pp. 27-34, 1969.

[22] T. Santini, P. Rech, G. Nazar, L. Carro, and F. R. Wagner,
"Reducing embedded software radiation-induced failures through cache
memories," in 2014 19th IEEE European Test Symposium (ETS), 2014,
pp. 1-6.

