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Abstract1—General Purpose Graphics Processing Units (GPGPUs) 
have been used in the last decades as accelerators in high 
demanding data processing applications, such as multimedia 
processing and high-performance computing. Nowadays, these 
devices are becoming popular even in safety-critical applications, 
such as autonomous and semi-autonomous vehicles. However, 
these devices can suffer from the effects of transient faults, such as 
those produced by radiation effects. These effects can be 
represented in the system as Single Event Upsets (SEUs) and are 
able to generate intolerable application misbehaviors in safety-
critical environments. In this work, we extended the capabilities of 
an open-source VHDL GPGPU model (FlexGrip) in order to 
study and analyze in a much more detailed manner the effects of 
SEUs in some critical modules within a GPGPU. Simulation 
results showed that scheduler controller has different levels of 
SEU sensibility depending on the affected location. Moreover, a 
reduced number of execution units, in the GPGPU can decrease 
the system reliability. 

Keywords—GPGPUs, functional safety, transient faults, SEUs, 
fault simulation. 

I. INTRODUCTION 

In the last decades, GPGPUs have been used as accelerators 
in high demanding data processing applications including 
multimedia processing and high-performance computing. 
Nowadays, these devices are increasingly adopted in several 
data-intensive safety-critical applications, such as autonomous 
and semi-autonomous cars [1]. These devices are manufactured 
employing aggressive technology scaling techniques in order to 
satisfy performance and energy requirements. Nevertheless, 
some studies have shown that these advanced semiconductor 
technologies are prone to suffer from external transient radiation 
effects [2-5]. These effects can be represented as Single Event 
Upsets (SEUs) and may generate intolerable misbehaviors in 
safety-critical environments.  

In real devices, the impact of SEU effects is analyzed 
through radiation experiments in special facilities using 
expensive and complex equipment. Other methods include 
compiler instrumentation tools adding the behavior of soft-
errors in the application code [6]. However, in both cases, 
detailed structural information about the device architecture and 
implementation are commonly unknown and detailed analysis 
of the fault effects is complex to be performed. Moreover, the 
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injection tools are helpful in targeting data-path modules, but 
these cannot inject faults in most control-path units.  

The results are employed to assess the device reliability or to 
identify structural or application weaknesses in GPGPU devices 
in order to design mitigation strategies [7]. Potential solutions 
may include acting on the program coding style and on the 
adopted algorithm [8]. 

A detailed analysis could be crucial to choose the most 
suitable countermeasures to achieve given reliability and can 
provide some guidelines in the application development. 
Moreover, it contributes to identifying critical modules and the 
incidence of faults on the application failure rate. 

Solutions to perform these analyses are based on fault 
injection via simulation on representative device models at 
various abstraction levels. In the GPGPUs field, there are 
relatively few available models and fault injectors. Moreover, 
most of them are described using a high abstraction level [9-14] 
or a mix of them [15], thus foiling a complete and detailed 
analysis of SEU effects on complex units such as control-path 
modules. On the other hand, there are a few RTL behavioral 
GPGPU models, such as FlexGrip [16], which can be used to 
analyze the SEU effects in these special-purpose modules. 
Unfortunately, the FlexGrip model presents some restrictions 
related to technology dependency and instructions format 
support, thus limiting the development of new applications and 
its flexibility, which could support the detailed analysis 
mentioned above. 

In the work reported in this paper, we first performed a 
detailed analysis of the FlexGrip model in order to remove 
some of these limitations and bugs. Moreover, we developed a 
new release of the FlexGrip model which has no direct 
dependency on a technology platform and is able to execute an 
increased set of instruction formats compatible with commercial 
compilers.  

Some representative applications were designed for the new 
model and were used as benchmarks for SEU fault injection 
campaigns. Finally, some results are presented about the SEU 
effects on some data-path and control-path modules using such 
applications and multiple application parameters and GPGPU 
configuration modes. 

The paper is organized as follows: Section II summarizes 
the FlexGrip model and the improvements introduced in its new 
version. Section III presents the fault injection methodology, the 
targeted modules, and the selected benchmarks. Section IV 
reports some experimental results, and Section V finally draws 
some conclusions and future works. 



II. FLEXGRIP GPGPU MODEL 

A. FlexGrip architecture 

FlexGrip is an open source soft-GPGPU model described in 
VHDL developed by the University of Massachusetts [16] 
employing the Nvidia’s G80 microarchitecture. This model is 
compatible with the CUDA programming environment under 
the 1.0 architecture. 27 instructions are supported by the model. 
The model was originally designed for Xilinx FPGAs platforms. 

This GPGPU model is based on a Streaming Multiprocessor 
(SM) including a memory system and two schedulers (Block 
and Warp). The Block scheduler is employed to manage and 
distribute the block tasks among the SMs. The Warp scheduler 
is used to control the execution of the group of 32 threads tasks 
denoted as warp. Both schedulers employ a round-robin 
algorithm. The SM is composed of five pipeline stages (Fetch, 
Decode, Read, Execute and Write-back) to process warp 
instructions. The total number of execution units (Scalar 
Processors, or SPs) in the execution stage is selectable before 
synthesis and can be used to select the best performance in 
terms of area and power consumption of the GPGPU. The SP 
programmability can be selected among 8, 16 and 32 cores. 

A warp instruction is executed on the SM when the warp 
scheduler selects one available warp and dispatch the instruction 
address to Fetch stage. This stage processes the address and 
finds the equivalent instruction. The Decode stage interprets the 
instruction formats and selects the execution units and memory 
operands. Read stage loads from the memory system the 
required operands. Then, the Execution stage processes the warp 
instructions employing parallel execution units and temporary 
registers for each thread. The Write-back stage stores the results 
in registers or memory locations. Finally, a new instruction is 
dispatched by the warp scheduler. 

The model includes a custom branch management unit for 
thread (intra-warp) divergence. This module is composed of a 
control unit and a divergence stack memory to store the 
addresses of warp convergence points. This model supports up 
to 32 levels of divergence. Fig 1 represents the general 
architecture of the SM in the FlexGrip model. 

 
Fig 1. The general architecture of the SM in the FlexGrip model. Adapted from 
[16]. 

B. Improvements in the FlexGrip GPGPU model 

A detailed analysis of each internal module showed some 
operational limitations. Thus, we introduced a set of 
improvements which allow us to analyze transient fault effects 
on internal modules. Moreover, those simplify and increase the 
flexibility of the model for applications development. The 
improvements can be divided into three groups: 

- Technology dependency. 
- Instruction format support. 
- Compilation restrictions. 

1) Technology dependency 

FlexGrip was originally designed to be implemented on 
specific FPGAs technologies. Moreover, some internal modules 

were automatically described employing high-level compilation 
tools, such as Matlab. However, these codes are not easily 
understandable and cannot be analyzed in an easy manner. 

We modified each module by removing any reference or 
dependency to specific technology libraries and compilation 
tools and replacing them with equivalent generic descriptions. 
Moreover, the name of signals and interconnections was 
clarified in order to simplify the analysis during the fault 
campaigns. In the end, 38.8% of the modules were corrected or 
modified for this purpose. The model can now be imported in 
model simulation environments, such as ModelSim. Moreover, 
this can be synthesized employing other technology libraries, 
such as the ASIC OpenCell [17] library. 

2) Instruction format support 

FlexGrip was designed to be compatible with the CUDA 
programming environment and execute SASS instructions. 
Nevertheless, the use of high-level Electronic Design 
Automation (EDA) tools during design and its optimizations 
seems to be one of the factors for some missing instruction 
formats. Moreover, some internal parts in modules, such as 
intermediate registers, decoding logic, and interconnections 
were not removed by the optimization. 

The previous behavior was checked during the development 
of custom applications employing the CUDA environment. In 
these applications, some instructions failed during execution. 
Exhaustive analysis and revisions were performed on the 
simulation traces. However, in some cases, the analyzed signals 
behavior showed that some supported instructions were only 
partially implemented. This restriction limits the transient fault 
analysis and its incidence under different applications. 
Moreover, it reduces the model flexibility and its employability. 

The improvement reported here required a methodical 
revision of all supported assembly instructions (SASS) in the 
model and the addition or correction of the missing description 
to implement the instructions under the expected format. As a 
result, we identified a minimal subset of instructions required to 
implement basic application codes, and focused our work on 
fixing existing bugs, thus allowing complete support of these 
instructions. 

As the SASS op-code, i.e., the instruction formats for the 
GPGPU, has not been released by Nvidia, the op-code format of 
some instructions was decoded employing the CUDA 
compilation tools (NVCC and CUOBJDUMP). Multiple 
applications were designed targeting selected instructions in 
order to force the compiler to generate the instruction op-code. 
Then, all the required changes (e.g., missing registers, 
connections or incomplete modules) were introduced in order to 
fully support the selected minimal set of instructions with all the 
potential instruction format variations. After this process, the set 
included 27 instructions and 74 formats. Table 1 shows the 
supported instructions. 

4.8% of the whole model description required an addition or 
modification in its description in order to be able to execute the 
expected instruction formats and its variation. Finally, some 
bugs and unused interconnections were removed from the 
project hierarchy in order to clean the modules and remove any 
redundant logic which may create problems during the fault 
campaigns. 

3) Compilation restrictions 

FlexGrip is able to execute applications compiled employing 
the CUDA-toolkit by NVIDIA. Moreover, an SM 1.0 micro-
architectural compatibility must be selected. However, the 



CUDA compiler is protected and, as commented below, the op-
code of the instructions is not released. 

In multiple attempts to design new applications for FlexGrip 
we discovered several SASS instructions not supported by the 
model, so in order to maintain the compatibility with the 
CUDA-toolkit, a SASS checker tool was developed to check the 
supported SASS instruction formats. This tool is able to identify 
and notify the user of those unsupported instructions formats in 
FlexGrip. Additionally, a SASS parser tool was designed to 
directly write SASS assembly instructions and replace the 
unsupported ones. Using both tools, a new application can be 
designed, verified and corrected without the necessity of 
executing the instructions in the model, thus reducing the 
application time development. Sub-section III.C introduces two 
benchmarks developed for FlexGrip employing these tools. 

TABLE 1 SUPPORTED INSTRUCTIONS IN FLEXGRIP MODEL. 

Mnemonic Description 
I2I Integer to integer conversion 

IMUL / IMUL32 /I MUL32I Integer multiplication 
SHL Shift left 
SHR Shift right 

IADD / IADD32 / IADD32I Integer add 
IMAD / IMAD32 / IMAD32I Integer multiply and Add 

LOP Bitwise logical Operation 
ISET Integer comparison 
MVC Load from constant memory 
GLD Load from global memory 
GST Store to global memory 

MOV / MOV32 Move register to register/load from shared memory 
MVI Move immediate to destination 
R2G Store to Shared Memory 
R2A Move general purpose register to address register 
A2R Move address register to general purpose register 
BRA Branch 
BAR barrier synchronization 
RET Return from kernel 
SSY Set synchronization point 
NOP No operation 

III. FAULT INJECTION METHODOLOGY 

In order to evaluate the effect of SEUs in the improved 
version of the FlexGrip model, we developed a fault injection 
tool employing the ModelSim simulator. The injector tool was 
designed following the guidelines introduced in [18] regarding 
transient fault injection using simulator commands. 
Additionally, the tool implements techniques to reduce the fault 
simulation time (multi-thread fault simulation and module de-
rating factor (UDR) usage). Details about these techniques can 
be found in [19, 20]. 

The fault injector was developed employing a high-level 
language (Python) and is composed of a fault controller, a fault 
injector and a fault checker and classifier. The fault controller 
manages the fault campaign execution and it is able to start and 
finish the tool execution. The fault injector decodes and applies 
a fault command in the selected fault location. Finally, the fault 
checker and classifier checks the simulations termination and 
classifies the faults. 

Initially, the fault controller configures the program kernel 
parameters, loads the FlexGrip model into the ModelSim 
environment and the program instructions to be executed. The 
kernel parameters include the number of SP-Cores presented in 
the SM, the total number of blocks and threads in the task, the 
total number of blocks per SM and the file register size. 

Once the model is loaded in the simulator, the fault 
controller starts the fault injector and this loads and decodes the 
fault to be injected into the GPGPU model. The fault injector 
reads, from a fault list, the location and the injection time of the 
fault. Then, the injector translates those parameters into the 

equivalent commands for ModelSim. The tool is able to handle 
permanent and transient faults. For the purpose of this work, we 
employed the transient fault capabilities of the designed tool. 
One fault simulation is performed for each element in the fault 
list, once the fault is injected in the model. 

Finally, the fault checker and classifier waits for simulation 
termination and checks memory results and simulation time 
parameters in order to classify the effects of the fault in the 
system. This unit classifies the faults in four categories: Silent 
Data Corruption (SDC) when the SEU affects the memory 
results, Detected Unrecoverable Error (DUE) when the model 
is hanged by the SEU effect, Timeout when the SEU produces 
performance degradation in simulation time and Silent when the 
SEU does not generates any effect. 

A. Fault campaign description 

In SEU fault injection campaigns, two elements are 
considered: the SEU location and the SEU injection time. The 
SEU location depends on the fault universe and spans over the 
registers and memory elements employed by a benchmark 
during execution time on each targeted module. The fault 
universe was carefully checked and selected through a golden 
execution. The injection time for each fault is randomly chosen. 

A fault campaign starts with a golden simulation to define 
the reference execution time and the reference memory results. 
Then, the fault controller starts a loop in which this unit loads 
the fault list and the fault injector applies the equivalent 
command in the simulation model. The simulation time is 
selected as twice the reference execution time in order to allow 
the tool to detect timeout effects. Moreover, the model is 
instrumented with a memory generator which stores the 
memory results into a file for each simulation. The fault checker 
checks the presence of this file and performs the classification 
phase. Finally, a new fault is loaded for the fault list and the 
simulation loop starts again. The fault injection campaign 
finishes when the fault list is empty. 

The multi-thread fault injection approach is employed in the 
tool by dividing the fault list in chunks of faults. Each fault list 
is composed of the SEU fault location (signal name) and the 
SEU injection time.  

B. Targeted modules 

One Data-Path and two Control-Path modules were targeted 
during fault campaigns. Their characteristics are briefly 
described in the following. 

1) Data-path module 

File Registers: The 32 bit-size registers are employed as 
source and destination operands and addresses during a warp 
instruction execution. These registers are organized and 
distributed according to the total number of warps and blocks to 
be executed in an SM. 

2) Control Path modules 

SM Warp Scheduler: The warp scheduler manages the warp 
execution inside an SM. This unit is able to select an available 
warp, dispatch the warp instruction to the SM and check its 
execution. This module is composed of various memories and 
control logic. The internal warp memory is employed to store 
the status information of each warp execution. This information 
is updated after each instruction execution and is composed of 
the active thread mask (aTM), the actual program counter and 
some additional warp configuration parameters. 

Divergence Stack memory: This unit stores the divergence 
addresses generated by a divergent warp. A special-purpose 



memory stores the address, warp index and aTM to trace the 
number of executed threads on each divergence path. 

C. Benchmarks 

Three applications were developed for the improved version 
of FlexGrip to evaluate the SEU effects on the targeted 
modules. They are briefly described in the following. 

FFT: This typical signal processing application was 
implemented based on the Coley-Turkey algorithm [21]. In this 
application, the butterfly element was described employing the 
CUDA-C environment. Although the model does not provide 
support for division operations, they were replaced by a 
software approach based on logarithm methods using shift and 
logical displacements. 

Edge detection: This common image processing application 
is based on the Sobel algorithm and was described as a 3x3 size 
dimensions stencil element. The stencil describes an image filter 
and it is applied to a 2-dimensions input. As described below for 
FFT, the division operations are implemented employing the 
same logarithmic approach. 

Vector add: This typical embarrassingly parallel application 
operates on two individual arrays and stores the result in a 
specified memory area. This program kernel is selected 
considering that most applications include execution segments 
with fully data-parallel operations. This application employs 
data-path modules and execution units to process the operations. 

IV. EXPERIMENTAL RESULTS 

The fault campaigns considered two different sets of 
parameters, the GPGPU model configuration, and the 
benchmark configuration. The GPGPU model was configured 
employing 8, 16 and 32 SP-cores. Moreover, the benchmarks 
were configured with two application threads per block (TPB) 
distributions: A 32 threads and B 64 threads. Benchmarks 
under each configuration are named as follow: benchmark 
name, thread configuration, SP-cores configuration. For 
example, VectorAdd with 32 TPB and 16 SP-Cores is named as 
V_32_16. 

In order to take into account the different duration of 
different versions of the same benchmark, the Mean Execution 
Between Failures (MEBF)[22] metric is calculated for the 
different benchmarks in the targeted modules. It is worth noting 
that, the DUE errors are not considered for MEBF computation. 
The SM warp Scheduler was divided into two parts, the warp 
memory, and the logic. Table 2 reports the gathered results, 
expressed in terms of clock cycles. 

TABLE 2 MEBF RESULTS 
 FFT EDGE Vector Add 

Module 
    Config 
SP- 
Cores 

A B A B A B 

File 
register 

32 7.6 11.5 22.0 43.5 139.2 111.6 
16 5.6 6.8 16.4 34.3 79.7 83.9 
8 3.7 8.5 10.6 40.1 57.0 60.2 

Warp 
memory 

32 565.4 766.2 2,570.7 12,468.5 16,163.7 2,208.1 
16 1,695.9 33.6 974.1 220.7 2,165.9 585.0 
8 570.3 7.5 174.5 81.8 361.1 194.7 

Warp logic 
32 102.2 140.1 210.4 780.5 1,766.9 1,985.3 
16 34.3 85.6 285.4 186.9 970.7 1,083.9 
8 20.0 25.4 104.7 84.8 615.7 640.7 

Divergence 
Stack 

memory 

32 399.8 259.9 2,688.4 2,158.0 - - 
16 269.1 155.7 1,903.3 1,084.2 - - 
8 207.6 63.7 1,338.1 390.6 - - 

 

The SEU sensitivity in the modules depends on the SP-cores 
configuration. Dropping the number of SP-cores reduces the 
reliability of the system. This behavior is constant for each 
module and kernel configuration. The file register is more 

reliable to SDC and timeout errors by increasing the TPB. In 
contrast, the divergence stack, the warp logic, and the warp 
memory seem to be more reliable with kernels configured with 
a lower number of TPB. A detailed analysis for each module is 
provided in the following sub-sections. 

A. Data-Path module results 

1) Register File Results 

A total of 27 fault injection campaigns were performed 
injecting 34,816 faults for the FFT and Edge programs. For 
VectorAdd, 10,240 faults were injected in 32-SP cores and 
8,192 faults in the 16- and 8-SP cores configurations. In the 
multi-thread fault simulation campaigns, the fault list was 
divided into ten parts and the simulations were performed in 
parallel helping to reduce the fault simulation time from about 
150 hours to less than 16 hours and the total amount of faults to 
inject in up to 95% by the UDR factor. 

Results in Fig. 2 shows that the FFT and Edge benchmarks 
present a similar behavior. In both cases, the error rate reduces 
by increasing the number of SP-cores and by increasing the 
number of TPB. In FFT, a slight increment in the SDC error-
rate is generated by increasing the TPB. This behavior can be 
explained through the relation of the model execution time and 
kernel configuration. In principle, data stored in active registers 
for long periods are more prone to SEU effects (case B) than 
registers with periodical write and read activity (case A).  

  

  
Fig. 2.  Register File results for FFT (a), VectorAdd (b) and Edge (c) kernels. 
Each axis represents one SP-core configuration and parallelism level in TPB. 
Discriminated results of faults detected, expressed in percentage, are presented 
on each axis. 

In simulations, the A configuration models required longer 
execution time. However, the individual block execution time is 
lower than the time required by B configurations. Moreover, 
FFT in A configuration uses half of the registers of those 
employed in B configuration and employs them to process 
threads data, in different interval times, belonging to different 
blocks. In this case, the increment in TPB increases the SDC 
error rate, as it happens in the 32 and 16-SP cores 
configurations. 

Another factor affecting the error rate is the instruction type. 
The FFT includes control-flow instructions depending on 
predicate conditions, which are generated evaluating register 
operands. In this way, some registers are included in control-

a) b) 

c) 



flow operations. Those registers can be considered as control-
flow critical registers (CFRs). If an SEU fault affects one of 
these CFRs, the effect is DUE. 

According to results, a higher number of CFRs is generated 
by decreasing the TPB. This can be explained considering the 
registers employed in the A configuration and the CFRs mapped 
among threads with the same address locations. During kernel 
execution, one register location will store, in different time 
intervals, data belonging to two CFRs, increasing the 
probability to generate a DUE. 

A different behavior is shown by the Vector_Add 
benchmark. An increment in the TPB corresponds to an 
increase in the SDC error rate. This trend is visible for all SP-
cores configurations and depends on the increased SEU 
sensibility due to the additional time required by the SM to 
dispatch other warps belonging to the same block. Moreover, 
the execution time to process an instruction under a large 
number of threads (B configuration) is the double of a block 
with fewer threads (A configuration). Additionally, SEU effects 
slightly increase by reducing the SP-core configuration. This 
behavior can be explained by the additional time employed by 
the scheduler to process one instruction of each thread with the 
limited number of SP cores. The number of SEU faults 
generating DUE and Time-Out effects is zero as this application 
does not use any control-flow instruction. 

In the Edge Detection application, we can observe an 
inverse relationship between the SDC error rate and the TPB. 
This behavior is visible in each SP-Core configuration. It can be 
explained noting that this kernel includes a large number of 
control-flow, divergence generation, and arithmetic-intense 
instructions. Regarding the DUE error rate, results also show an 
inverse relation between TPB and the error rate. This can be 
explained due to the SEU sensibility of CFRs. Results (Edge 
Detection and FFT) are similar to those shown in [18] for 
control-flow applications. 

B. Control-Path results 

1) Warp Scheduler results 

36 fault campaigns were performed targeting this module. 
The model flexibility allows us to divide the module into two 
parts for analysis purposes: the internal memories (Warp, State 
and Predicate) and the sequential logic components in the 
module. Results are presented in Fig 3. At first glance, results 
contradict the criticality of this module in the GPGPU 
operation. Nevertheless, a deep analysis of its architectural 
organization and the role employed by the scheduler helps to 
clarify. 

The error rate in the sequential logic is caused by the SEU 
sensibility and criticality of the internal registers employed in 
processing and storing the warp information. Although the 
sequential logic corresponds to 14.3% of the elements in the 
scheduler controller, the percentage of DUE effects lies in a 
range between 85% and 92% in all kernels. It means that errors 
in those registers directly compromise kernel termination. 

The unexpectedly low error rate for faults in the warp 
memory is caused by a loop existing between the scheduler and 
the SM pipelines stages, which contributes to masking and 
reducing the SEU effects in the memory. In this way, the 
information is presented in the pipeline registers and in 
memory. After each instruction execution, this memory is 
written refreshing the information and correcting any SEU. 
Moreover, this special memory allows performing the write and 
read process in a few clock cycles, during a new instruction 
load, reducing the error propagation. The SEU effect on the 

state and predicate memories is zero for the selected 
benchmarks. 

Results show that increasing the TPB raises the SDC and 
DUE error rate. The program, under B Configuration, uses more 
memory locations and requires the execution of two warps to 
process one instruction including warp line exchange. This 
exchange generates a temporary short in the loop and the 
memory location cannot correct any SEU. 

   
 

   
 

   
Fig. 3.  Warp Scheduler results in memory (a, c and e) and sequential logic (b, 
d and f) for the FFT (a, c), VectorAdd (b, d) and Edge (e, f) kernels. 

A reduction in SP-Cores produces a direct increment in the 
error rate. It can be explained by the additional work performed 
by the scheduler (twice and four times) for thread execution in 
the 16 and 8 SP-Cores configurations. 

2) Divergence Stack memory 

Vector_Add program was not considered in the fault 
campaigns because this kernel does not use the Divergence 
Stack memory. Multi-thread fault campaigns with 50,688 faults 
were performed for the FFT and Edge benchmarks. Results are 
presented in Fig. 4. These show that the divergence stack 
memory does not generate a relevant contribution to error rate 
by SEU effects. This low error rate is explained by the partial 
usage during kernel execution. Each memory location (line) is 
employed for the time fraction of a divergence generation. This 
means that each line has a different SEU sensibility. A detailed 
inspection to this unit, for both kernels, revealed that its usage is 
limited to less than two-thirds of the total simulation time. 
Moreover, each additional pushed line presents fewer activities 
generating a low SEU sensibility in this unit. 

The  difference  in  terms  of  error  rate  between  the  two 

a) 

c) 

e) 

b) 

d) 

f) 



benchmarks is explained analyzing the instructions, its 
description, and the divergence paths length. Moreover, the 
number of synchronization point instructions (SSY) determines 
the usage of each memory location. The Edge kernel uses seven 
independent SSY instructions with a short path length and 
seems to be reliable to SEU effects. In contrast, FFT includes 
two SSY instructions and long divergence paths. The long 
interval time between writing and reading seems to increase the 
SEU sensitivity for this program. 

  
Fig.  4. Divergence stack result for FFT (left) and Edge (right) benchmarks.  

Regarding the DUE and SDC error rates, they depend on the 
affected location. The difference, for both applications, is 
mainly caused by the ability of the program counter and mask 
fields to generate hang conditions. An SEU in the program 
counter may generate Timeout or DUE errors. Similarly, an 
SEU affecting the aTM may generate SDC, by inactive threads, 
or DUE effects, by threads missing the taken path. Finally, an 
SEU in the warp ID field generates Timeout effects. 

The model with A Configuration uses the same lines in the 
divergence stack, but these lines are employed in different time 
slots and the execution time per block is lower than that 
required in B Configuration. The additional time in B 
Configuration seems to be responsible for the increasing SEU 
sensitivity. A decrement in TPB could help to reduce, in more 
than twice, the SDC error rate. 

V. CONCLUSIONS 

We introduced an improved version of the open source 
GPGPU model FlexGrip. This detailed model description was 
crucial to explain the behavior observable in the control unit 
modules when affected by transient faults. Although the 
FlexGrip model does not completely match the architecture of 
the most recent GPGPU devices, we still claim that the 
performed analysis may be valid for some of them as well. The 
new model version is technology independent. Moreover, each 
instruction was checked and listed. Additionally, further tools 
have been implemented to provide assistance in the 
development of new applications employing the CUDA 
environment. 

SP-cores customization in the model could be useful for area 
and energy optimization. However, according to Table 2, a 
lower number of SP-cores increases the SEU sensibility and 
reduces system reliability. We performed several fault injection 
campaigns to analyze the effects of SEUs in different modules 
within the GPGPU with different applications. The results 
showed that the behavior of the error rate (measured via the 
MEBF metric) when changing the configuration parameters 
depends on the application. Thanks to the availability of the 
FlexGrip model, we provided explanations about the observed 
phenomena. 

VI. FUTURE WORKS 

We are currently working to extend the analysis of the SEU 
effects to other modules within the GPGPU architecture 

employing different program kernel characteristics. We also 
plan to extend the instruction and hardware support of the 
GPGPU model following the SM 1.0 microarchitecture 
compatibility. Moreover, new execution units, such as floating 
point units or other hardware accelerators are also potential 
extensions for the model. The inclusions of different warp 
scheduler controller algorithms are also planned as future work. 
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