
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Analysis of SparseHash: An efficient embedding of set-similarity via sparse projections / Valsesia, Diego; Fosson,
Sophie M.; Ravazzi, Chiara; Bianchi, Tiziano; Magli, Enrico. - In: PATTERN RECOGNITION LETTERS. - ISSN 0167-
8655. - 128:(2019), pp. 93-99. [10.1016/j.patrec.2019.08.014]

Original

Analysis of SparseHash: An efficient embedding of set-similarity via sparse projections

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.patrec.2019.08.014

Terms of use:

Publisher copyright

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.patrec.2019.08.014

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2750152 since: 2019-09-06T12:04:00Z

Elsevier



Analysis of SparseHash: an efficient embedding of

set-similarity via sparse projections

D. Valsesia, S. M. Fosson, C. Ravazzi, T. Bianchi, E. Magli

September 5, 2019

Abstract

Embeddings provide compact representations of signals in order to per-
form efficient inference in a wide variety of tasks. In particular, random
projections are common tools to construct Euclidean distance-preserving
embeddings, while hashing techniques are extensively used to embed set-
similarity metrics, such as the Jaccard coefficient. In this letter, we theo-
retically prove that a class of random projections based on sparse matri-
ces, called SparseHash, can preserve the Jaccard coefficient between the
supports of sparse signals, which can be used to estimate set similarities.
Moreover, besides the analysis, we provide an efficient implementation
and we test the performance in several numerical experiments, both on
synthetic and real datasets.

1 Introduction

Retrieving meaningful information from large amounts of data is a complex
task, often impossible if those data have to be analyzed in their original do-
main. For this motivation, compact representations have been studied in dif-
ferent frameworks, ranging from information retrieval (see, e.g., [1, 2, 36]) to
signal processing (see, e.g., [16, 10]).

In information retrieval, hash functions are widely used to map data into
compact representations, see, e.g., [39] and references therein. Traditional hash
functions compress arbitrary data to fixed length representations, preserve ex-
act matches, and minimize collisions between different objects. An important
purpose of hashing techniques is the evaluation of the similarity between sets
of generic objects. This has many applications in information retrieval. An
example is the search of near-duplicate documents: this can be performed by
finding the number of bag-of-words shared by different documents, which are
said to be near-duplicate if this number overcomes a given threshold. A popu-
lar technique to measure set similarity is the min-wise hashing (also known as
MinHash) proposed by [7], and further analysed by [8, 20, 15, 13, 33]. MinHash
approximately preserves the Jaccard coefficient, which is a popular similarity
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metric for bag-of-words and similar representations, and is used in a wide range
of applications, see, e.g., [26].

In signal processing, compact signal representations are usually referred to
as embeddings, see [22, 5, 38]. Formally, an embedding is a transformation that
maps a set of signals in a high dimensional space to a set in a lower dimensional
space, in such a way that the geometry of the set is approximately preserved.
The most famous embedding is probably that proposed by [24], which preserves
Euclidean distances using random projections.

Hash functions and embeddings bear many similarities. For example, a class
of efficient indexing techniques known as locality sensitive hashing (LSH) can
be constructed using both traditional hash functions and embeddings, based on
random projections, as studied by [2]. Hence, it is not surprising that results in
one field can be exploited to obtain significant advancements in the other field,
and vice versa.

A novel embedding for the Jaccard coefficient, called SparseHash, was pro-
posed by [37]. SparseHash builds on the concept of sparsity. A signal u ∈ Rn is
said to be sparse if it has few non-zero components. The index set of its non-zero
components is called support. SparseHash can efficiently evaluate the similarity
between sparse signals, in terms of support overlap. Its rationale is based on
recent results by [3, 31, 32], which show that the sparsity level of a signal, that
is, the size of its support, can be efficiently estimated from compressed linear
projections obtained through sparse random matrices.

Sparsity is envisaged also in information retrieval, as several compact repre-
sentations, e.g., bag-of-words, produce sparse features, see, e.g. [19]. Consider-
ing the example of near-duplicate documents, typically each document contains
only few bag-of-words with respect to the general vocabulary. Given this ob-
servation, we can highlight a duality between sparse signals and sets of generic
objects: a set S ⊆ Ω = {1, . . . , n} can be represented as a signal u ∈ {0, 1}n,
whose entries are ui = 1, if i ∈ S, and ui = 0, otherwise, and generally we ex-
pect that the number k of ones is much smaller than n. Similarity between sets
can then be interpreted as the overlap between the supports of sparse signals.
In this perspective, SparseHash is a natural alternative to MinHash, which can
be considered as benchmark for this kind of problems.

This letter extends our preliminary work [37]. We propose two metrics to
measure similarity in the embedded domain that depend linearly and nonlin-
early, respectively, on the original Jaccard coefficient. Moreover, we present a
deeper theoretical analysis of performance in terms of estimation of set simi-
larities. We also introduce a new algorithm that implements SparseHash more
efficiently, i.e., with the same asymptotic complexity of the MinHash bottom
sketch by [14]. However, compared to the bottom sketch, SparseHash has bi-
nary measurements rather than real-valued ones, yielding improved compression
efficiency.

The letter is organized as follows. In Section 2, we introduce MinHash
and random projections. In Section3, we illustrate SparseHash and discuss its
implementation. In Section 4, we provide the theoretical analysis. Section 5 is
devoted to numerical experiments; conclusions are reported in Section 6.
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2 Related work

MinHash is a hashing method conceived to preserve the Jaccard coefficient.
Specifically, MinHash generates m ≥ 1 independent hash functions h1, . . . , hm
which return an integer value for each element of the original set S; then it
selects the m minimum values minu∈S h1(u), . . . ,minu∈S hm(u). Different vari-
ants of MinHash have been devised to obtain more compact storage or lower
computational complexity of the hashing operation. In particular, we mention
(a) b-bit minwise hashing by [26], which quantizes the hashes over b bits instead
of using integers, and (b) bottom-m sketch by [14], which selects the m smallest
values of a single hash function instead of the minima of m independent hash
functions; this conceptually substitutes the “sampling with replacement” oper-
ation performed by MinHash with a “sampling without replacement”. Clearly,
the bottom-m sketch has a lower complexity in computing the hashes.

We mention that techniques have been proposed that aim at extending Min-
Hash beyond Jaccard similarity, by assigning weights to the elements of the
set, see [40, 21]. This was motivated by bag-of-words representations where
the count associated to each element may carry additional information. In the
context of hashing functions, BitShred was also proposed by [23], however it
achieves substantially biased estimates of the Jaccard coefficient when com-
pared to MinHash. Besides, Bloom filters have been proposed by [4], which
are space-efficient representations for set membership queries. They essentially
hash each element of a set into positions of a bit array, and they could also be
used to estimate the size of the intersection and union between sets. Bloom
filters present some challenges like false positive errors, i.e., wrongly indicating
that a non-member element is a member of the set (see [28]); a comparison with
them is postponed to future work.

Concerning random projections, one of the most famous methods for di-
mensionality reduction has been introduced by [24], which preserves Euclidean
distances. Several extensions have been later proposed, that embed the angle
between signals (see [12, 22]) or control the maximum distance that is embed-
ded (see [6]). Finally, we notice that sparse random matrices have received some
attention for embedding `2 or `1 distances in [25].

3 SparseHash

In this section, we illustrate SparseHash. In particular, we describe how to effi-
ciently implement it, without generating the projection matrix, and we propose
a novel faster approximated implementation. In the following, we denote the
support of u ∈ Rn as supp(u) = {i ∈ {1, . . . , n} : ui 6= 0}; k is the sparsity level,
that is, the cardinality of supp(u), and Σk := {u ∈ Rn : |supp(u)| ≤ k}.

We call random projection an algorithm that projects a vector u ∈ Rn
onto a lower-dimensional subspace Rm by multiplying it by a random matrix
A ∈ Rm×n, m < n, see [16]. The obtained vector y = Au is referred to as
measurement, and Rm is known as reduced space. The intuitive idea is that
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a properly designed random mapping projects data points onto a randomly
selected subspace approximately preserving distances. Generally, dense random
matrices are considered in the literature.

SparseHash consists of computing binary-quantized sparse random projec-
tions y = |sign(Au)|, where A ∈ Rm×n is a γ-sparsified random matrix, defined
as follows: with probability 1 − γ, Aij = 0; with probability γ, Ai,j is gen-
erated according to an arbitrary continuous distribution with zero mean and
finite variance. γ-sparsified random matrices are efficient for sparsity estima-
tion, as proven by [31]; their use is the core of SparseHash, and is the basis to
provide a rigorous analysis of its efficiency. SparseHash can be used to evaluate
the similarity of sets of generic objects because, as already mentioned, a set
S ⊆ Ω = {1, . . . , n} that contains k � n objects can be represented by a sparse
signal u ∈ {0, 1}n, and set similarity can be interpreted as support overlap.

3.1 Computation via hashing

From a practical viewpoint, computing the measurements in SparseHash does
not require to explicitly generate A and perform the matrix-vector product. An
efficient implementation is possible by using hash functions, see [11], which map
an index in S to a uniformly distributed value over the output range of the hash
function (e.g., b = 64 bits integers). Let fi be a hash function that maps its
input to an integer in the range [0, 2b − 1] and define a threshold τ , where γ is
as defined in the previous section. A measurement yi is zero if and only if the
hash function returns a value below τ for all the indexes in the support. By
defining τ = γ(2b − 1), measurements have the same probability to be zero as
in the formulation y = |sign(Au)| illustrated in the previous paragraph.

Multiple hash functions are used to generatemmeasurements. This typically
involves randomizing a seed of the hash function. Algorithm 1 summarizes all
the steps required to generate the SparseHash measurements y.

Algorithm 1 Computing SparseHash

Inputs:
γ, S = supp(u) = {sj}kj=1

Initialize:
τ ← γ

(
2b − 1

)
; yi ← 0, i = 1, . . . ,m

for i = 1, . . . ,m do
for j = 1, . . . , k do

hij ← fi(sj)
if hij < τ then

yi ← 1
break

end if
end for

end for

Algorithm 1 is equivalent to computing y = |sign(Au)| in the sense that
it approximately yields the same probability to get a nonzero measurement yi
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as function of the size of the support. The equivalence would be exact if the
hash function could generate output values that are truly uniformly distributed
and whose range is large enough that that the quantization of probabilities is
negligible. However, popular functions, e.g., [29], are designed to be as uniform
as possible and work using 32 bits or more as output range, which is large
enough to be a good approximation. Finally, the procedure is repeatable, i.e.,
an hash function returns the same output to the same input.
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Figure 1: Example of Fast SparseHash: a binary tree is generated from m = 7
random windows, denoted as A to G. The membership of the k = 6 hashes in
the windows are determined by traversing the tree. The corresponding Sparse-
Hash measurements are 1101010. The tree structure must have a right and a
left pointers, and an integer measIndex in [0,m− 1] storing the index of the
measurement.

3.2 Fast SparseHash

The technique to implement SparseHash just described requires to compute
O(km) hashes (by hash, we mean the output of the hash function applied to a
single entry of the support), and perform O(km) comparisons with the threshold
τ . The complexity is thus equivalent to that of MinHash, which computes
O(km) hashes and performs O(km) operations to find the m minima. However,
there are variants of MinHash, in particular the bottom-m variant by [14], which
reduce the complexity. SparseHash can be modified so as to require only O(k)
hashes and O(k logm) comparisons. We now illustrate this variant, that we
call Fast SparseHash. The main idea behind Algorithm 2 is to compute only
one hash per support entry and to check if it falls inside one of m randomly
drawn windows of width τ instead of falling below a fixed threshold. A single
hash is computed for each of the k elements in the support and m random
windows of width τ = γ(2b − 1) are drawn over the output range of the hash
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Algorithm 2 Computing Fast SparseHash

Inputs:
γ, S = supp(u) = {sj}kj=1

Initialize:
τ ← γ

(
2b − 1

)
; yi ← 0, i = 1, . . . ,m

for j = 1, . . . , |S| do
hj ← f(sj) . Compute hashes

end for
for i = 1, . . . ,m do

Generate random bot[i] . Generate bottom values
end for
Sort bot
head ← buildTree(bot)
for j = 1, . . . , k do

ptr←head
while ptr 6= NULL do

if hj < ptr.bottomValue then
ptr ← ptr.left

else
if hj < ptr.topValue then

i←ptr.measIndex; yi ← 1
if ptr.measIndex 6= m− 1 then . Check right

p← ptr.measIndex +1
while p < m and hj ≥bot[p] do

yp ← 1; p← p+ 1
end while

end if
if ptr.measIndex 6= 0 then . Check left

p← ptr.measIndex −1
while p ≥ 0 and hj <bot[p]+τ do

yp ← 1; p← p− 1
end while

end if
break . No more measurements can collide

else
ptr ← ptr.right

end if
end if

end while

end for
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Table 1: Fast SparseHash v. SparseHash - Runtime (sec.)
m

104 105 106

104 0.007 / 1.337 0.040 / 12.36 0.194 / 118.8
k 105 0.023 / 11.26 0.061 / 115.5 0.280 / 1119

106 0.136 / 126.8 0.205 / 1163 0.476 / 11129

function. Notice that the width τ of the window is exactly the same as in
Algorithm 1. A naive solution to compute the measurements would consist in
setting a measurement to 1 if at least one of the hashes falls inside the window
drawn for that measurement. However, this solution would still require O(km)
comparisons. A better solution is to use a binary search tree to store the windows
by means of their sorted bottom values so that the value of the measurement
can be determined by traversing the tree, yielding a logarithmic complexity in
the number of measurements. More precisely, the tree stores the measurement
number i ∈ [0,m− 1], the value of the bottom of the corresponding window
as well as pointers to the two children. The tree is created in the following
way. The bottom values are sorted in increasing order and their median value
is inserted as root of the tree. Then the tree is recursively created following the
rule that the left (respectively, right) subtree includes the windows with bottom
values smaller (respectively, larger) than the parent. To determine whether the
measurements are zero or nonzero, each hash of the set traverses the tree. The
hash is first compared to the value of the window bottom stored in the root
node to determine if it falls inside that window. If it does, the measurement
corresponding to the index stored in that node is set to 1 and the next hash
is examined. Otherwise, the right or left children is examined depending if the
hash is below or above the bottom of the current window. This is repeated
until a leaf is reached, or a measurement is set to 1. Partially overlapping
windows are handled with a local search: if a hash is determined to fall inside
a window, the windows whose bottoms are immediately smaller or larger are
checked to determine if the hash also falls inside them. This is repeated until
no neighboring windows report the hash falling inside. Algorithm 2 shows the
whole procedure to compute measurements with Fast SparseHash, while Figure
1 shows the process in a pictorial fashion. Table 1 reports an experimental
comparison of the runtime for SparseHash and Fast SparseHash for various
values of k and m: Fast SparseHash is significantly faster and has a sublinear
increase in runtime for increasing m while SparseHash has a linear increase.

4 Analytical results

In the following, we present two metrics to compute set similarities from mea-
surements in the reduced domain. Given u, v ∈ Rn and their measurements
y, z ∈ {0, 1}m obtained via SparseHash, we are interested in defining a similar-
ity metric between y and z that approximately embeds the Jaccard coefficient
J(Su, Sv) = |Su ∩Sv|/|Su ∪Sv| of Su = supp(u) and Sv = supp(v). To simplify
the notation, let Ju,v := J(Su, Sv).
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4.1 Jaccard coefficient

Let y, z ∈ {0, 1}m. We define

sim∪(y, z) :=
1

m

m∑
i=1

1({yi = 0, zi = 0}),

sim∩(y, z) :=

∑m
i=1 1({yi = 0})

∑m
j=1 1({zj = 0})

m
∑m
i=1 1({yi = 0, zi = 0})

where 1({A}) is the indicator function which returns 1 when A is true, while
1({A,B}) returns 1 when both A and B are true. Then, comparison in the
reduced space can be done with the following similarity index:

simsh(y, z) :=
log(sim∩(y, z))

log(sim∪(y, z))
. (1)

We notice that γ must be designed so that this formula has small probability
to be undefined. In the following theorem, we state that simsh is a random
variable that concentrates around the Jaccard coefficient between the supports
of the original signals. We emphasize that Theorem 1 is a more refined version
of Proposition 1 in [37]. More precisely, a deeper theoretical analysis leads to
a new estimation of the performance that is more explicit in terms of the main
parameters m, γ, kmin, kmax and N .

Theorem 1. Let XN = {xi ∈ Rn : |supp(xi)| ∈ [kmin, kmax]}Ni=1 be a set of
N sparse vectors. For any ε > 0, β > 2 and any integer n, let m be a positive
integer such that m > 32 log 4+β logN

γ2k2mine
−γkmax ε2

. Then,

P

 ⋃
(u,v)∈XN

{|simsh(Au,Av)− Ju,v| > ε}

 ≤ N−β+2. (2)

Sketch of the proof For brevity, we report only the key steps of the proof;
details are provided in the supplementary material. Let u ∈ Σk1 and v ∈ Σk2 .

Let us define: ζ := (1 − γ)
k1+k2
1+Ju,v . Exploiting the Hoeffding’s inequality (see

[18]), we can prove the following inequalities:

P (|sim∪(Au,Av)− ζ]| > ε) ≤ 2e−2ε
2m

P
(∣∣sim∩(Au,Av)− ζJu,v ]

∣∣ > ε
)
≤ 6e

−mmin

{
(1−γ)8kmax ε

2

8 ,
(1−γ)4k

2

}
.

(3)

By using the fact that for any positive random variableX such that P (|X − µX | > ε) ≤
pX(ε) with µX > 0, it holds that P (|log(X)− log(µX)| > ε) ≤ pX (εµX), we can
deduce the following inequalities from (3):

P (|log(sim∩(Au,Av))− Ju,v log ζ| > ε) ≤ 6e−m(1−γ)12kmax ε
2

8 ;

P (|log(sim∪(Au,Av))− log ζ| > ε) ≤ 2e−2mε
2(1−γ)4kmax

.
(4)
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Moreover, we can prove that, given Xu =
∑m
i=1 1({(Au)i=0})

m ,

P
(∣∣XuXz − (1− γ)k1+k2

∣∣ > ε
)
≤ 4e

−2mmin

{
ε2

9 ,
(1−γ)2kmax

4

}
. (5)

Finally, by merging (4) and (5), under the given assumption on m, the thesis is
easily derived.

For large n, k, and m, γk represents the average number of nonzeros in each
row of A that align with the support of cardinality k. This observation reveals
three regimes, corresponding to the scaling of γ and k: if γkmin = Θ(1), then
m = O(logN) is sufficient to get the bound in Theorem 1. In sharp contrast, if
γkmax →∞ or γkmin → 0, then m must increase to guarantee the concentration
with high probability.

4.2 Hamming distance and LSH

As for MinHash, signals can be compared in the reduced space using the Ham-
ming distance dH between two hash codes. From the law of large numbers we
have the following properties. Given u ∈ Σk1 and v ∈ Σk2

Esh :=
E[dH(Au,Av)]

m
= (1− γ)k1 + (1− γ)k2 − 2(1− γ)

k1+k2
1+Ju,v (6)

and V̂ := Var[dH(Au,Av)/m] = (1 − Esh)Esh/m. For signals with similar
sparsity degree k1 ≈ k2 = k, by setting (1 − γ)k = 1/2 in order to maximize

the entropy of the binary measurements, we obtain: Esh ≈ 1 − 2
J−1
1+J . The

characterization of the relationship between the Hamming distance of the hashes
and the original Jaccard coefficient derived in (6) is important in the context
of LSH. In a nutshell, LSH allows us to approximate nearest neighbor database
searches with sublinear complexity (see [2]), without scanning all the entries in
the database. Let X ⊂ Rn be a set of points with distance measure dX , and
consider the (R, c)-NN problem where one is concerned with retrieving all the
neighbors of the query point within a distance R, while discarding the points at
distances greater than cR. An LSH family is defined as follows.

Definition 1. Let p1 > p2 and r1 < r2. A family H : {h : X → U} is called
(r1, r2, p1, p2)-sensitive for dX if for any x, ξ ∈ X the following fact hold: if
dX (x, ξ) ≤ r1 then P (h(ξ) = h(x)) ≥ p1; if dX (x, ξ) ≥ r2 then P (h(ξ) = h(x)) ≤
p2.

In the (c,R)-NN problem, we set r1 = R and r2 = cR and we define a new
family of functions F = {f : X → Um} such that f(x) = (h1(x), . . . , hm(x))>,
where hi ∈ H are chosen independently uniformly at random from H. We notice
that f ∈ F is (r1, r2, p

m
1 , p

m
2 )-sensitive for dX . Fixed L > 0, we define a new

family G of hash functions g constructed from L random functions f1, . . . , fL
from F . We say that g(ξ) = g(x) if fi(ξ) = fi(x) for at least one i ∈ {1, . . . , L}.
Since the members of F are independently chosen for any g ∈ G, G is a (r1, r2, 1−
(1− pm1 )L, 1− (1− pm2 )L)-sensitive family.
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During preprocessing, L hash tables, each corresponding to a different hash
function gi, are constructed, by storing each x ∈ X in the bucket gi(x). Given a
query item ξ, we retrieve first 3L data points that are hashed to the same bucket
gi(ξ) with i = 1, . . . , L and if there is a point x? within distance cR from ξ we
return ’yes’ and x?, else we return ’no’. If m = logN/log(1/p2), L = Nρ, ρ =
log(1/p1)
log(1/p2)

then the algorithm is successful with constant probability and the al-

gorithm has the following properties: (a) preprocessing time is O(N1+ρmT ),
where T is the time to evaluate a function h ∈ H on an item; (b) storage is of
order O(NL+Nm) = O(N1+ρ +Nm); (c) query time is O(L(mT +nNpm2 )) =
O(Nρ(mT + n)). Notice that savings in terms of storage can be achieved when
1-bit measurements are used in place of real-valued measurements.

We now study the performance of LSH in terms of storage and time require-
ments to respond to a query, using MinHash and SparseHash as embeddings.
Such performance metrics are entirely governed by embedding, more precisely,
by the function that maps the Jaccard coefficient to the probability of having
two equal bits. This function is linear in MinHash and nonlinear in Sparse-
Hash. In order to make a fair comparison, we use 1-bit MinHash, so that the
storage complexity is equalized between the two approaches. Notice that m is
chosen so as to minimize L. If a pair of signals in X has Jaccard coefficient
J , then the probability that their hashes computed with SparseHash become a

candidate pair is given by: Psh = 1 − (1 − pmsh

sh )Lsh with psh = 2
J−1
1+J , while for

1-bit MinHash, Pmh = 1− (1− pmmh

mh )Lmh with pmh = (J + 1)/2. The following
proposition states that, with equal m, SparseHash requires less tables, which
enables shorter query times and lower storage requirements.

Proposition 1. If Pmh = Psh, mmh = msh = m, then Lsh ≤ Lmh.

Proof. We have
Lsh

Lmh
=

log (1− ((J + 1)/2)
m

)

log
(

1− 2m
J−1
1+J

) .

We then obtain Lsh ≤ Lmh if 2
J−1
1+J ≥ (J + 1)/2, which holds for any J ∈ [0, 1].

More details are provided in the supplementary material.

5 Numerical experiments

In this section, we propose numerical experiments that validate the theoretical
results and show the effective performance of SparseHash, both on synthetic
and real datasets. The code for these experiments is available in [34].

5.1 Numerical validation

In [37], a numerical validation on the concentration of SparseHash around the
true Jaccard coefficient was proposed. We retrieve the same experiment to val-
idate the concentration on the Hamming distance. We randomly generate a
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Figure 2: Numerical validation: Hamming distance (mean and variance).

large number of signals with different amount of support overlap and compute
their random projections via γ-sparsified matrices A ∈ Rm,n. We set n = 1000,
m = 50, and sparsity level k = 230. Mean and variance are evaluated over
500 runs. γ is set as the value that maximizes the entropy of the binary mea-
surements, i.e. generates zero or nonzero measurements with equal probability.
Since P(fi(u) = 0) = (1 − γ)k, we set: γ = 1 − 2−

1
k ≈ 3 · 10−3. In Figure 2,

we depict the Hamming distance. The dashed cyan line is the theoretical mean
Psh computed from the true Jaccard coefficient defined in (6). As expected, the
experimental mean overlies the theoretical mean.

5.2 Similar text documents

As discussed in [37], the problem of finding near-duplicate or similar documents
in an archive of text data is outstanding (see [7, 9, 17]). Documents can be
represented with bag-of-words models. Given a vocabulary of n words, we can
associate a document with a u ∈ Rn, where ui counts the occurrences of the ith
word of the vocabulary in the document. Bag-of-words models typically yield
sparse signals, as the number of different words appearing in a single document
is usually much smaller than the size of the vocabulary. We now retrieve the
experiment proposed in [26], where the effects of quantization are evaluated
on MinHash. We use the UCI dataset of New York Times articles (see [27]),
composed of about 300000 news articles, with a bag-of-words representation
given for each article. The vocabulary contains n = 102660 words. The mean
he number of different words used in each article is k = 232; we use this value
to assess γ as set in Section 5.1.
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Figure 3: Experiment on similar text documents: precision and recall, threshold
0.5.

12



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 50  100  150  200  250  300  350  400  450  500

P
re

ci
si

on

Number of measurements

Hamming SparseHash
Jaccard SparseHash

Jaccard 1-bit MinHash

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 50  100  150  200  250  300  350  400  450  500

R
ec

al
l

Number of measurements

Hamming SparseHash
Jaccard SparseHash

Jaccard 1-bit MinHash

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.82  0.84  0.86  0.88  0.9  0.92  0.94  0.96  0.98  1

P
re

ci
si

on

Recall

Ham. SparseHash, m = 48
Ham. SparseHash, m = 96

Jac. SparseHash, m = 48
Jac. SparseHash, m = 96

Jac. 1-bit MinHash, m = 48
Jac. 1-bit MinHash, m = 96

Figure 4: Experiment on similar text documents: precision and recall, threshold
0.6.

13



We compare the performance of SparseHash (with both Jaccard and Ham-
ming metrics) and 1-bit MinHash, in terms of precision and recall. Specifically,
we define as similar the documents with Jaccard coefficient larger than a certain
threshold, and we try to detect them. In figures 3 and 4, we set the threshold
to 0.5 and 0.6, respectively, and we show precision and recall as functions of the
number of measurements m, and precision as a function of recall. We see that
the precision of SparseHash with Jaccard metric outperforms 1-bit MinHash, in
particular when m < 100. For larger m, both methods are efficient, with pre-
cision close to 1. The recall is close to 1 for both methods. The gain obtained
by SparseHash is well visualized also in the precision-recall curves, depicted for
m = 48 and m = 96.

5.3 Metagenome clustering

Metagenome clustering is concerned with detecting communities of microorgan-
isms starting from genomic sequences. A genomic sequence can be seen as a long
string of A, C, T or G characters representing the four types of nucleotides. In
the following, we deal with assembled sequences, which are reconstructed from
overlapping partial reads produced by the sequencing instruments. Metagenome
clustering is formulated in terms of pairwise distances between sequences. The
distance metric of interest is 1-ANI: ANI is the average nucleotide identity, i.e.,
the percentage of unchanged nucleotides in the two sequences. Since the genomic
sequences can be extremely long, dimensionality reduction methods are essen-
tial to efficiently compute distances. In [30], the so-called MASH algorithm uses
MinHash to this purpose. The authors split a sequence into substrings, called
κ-mers, using a sliding window approach. In their experiments, κ = 21. Each
genomic sequence is then represented by the set of its κ-mers and the Jaccard co-
efficient between such sets correlates with the expected ANI. By using MinHash
to compress the set of κ-mers, the authors achieve a significant dimensionality
reduction.

In this section, we test SparseHash for the same purpose, and compare it
to MinHash. The performance is evaluated on the capacity of preservation of
the Jaccard coefficient. The dataset from [35] is used, which contains N = 747
sequences of various length. A sliding sequence of stride equal to 1 is used to
generate the set of κ-mers and, by keeping only the unique κ-mers, the sets
present different cardinalities, ranging from kmin = 4002 to kmax = 219972647.
These sets are then embedded with MinHash or SparseHash and the full matrix
of all pairwise similarities is generated by computing distances on the measure-
ment vectors. Due to the computational infeasibility of computing exact Jaccard
values to estimate the quality of the approximation produced by MinHash and
SparseHash, we approximate them using a large number of SparseHash measure-
ments (m = 5 · 106) and MinHash measurements (m = 106) and then average
the two estimates. This is done to avoid any bias for a specific algorithm. We re-
mark that we use the MASH code provided by [30] to implement MinHash. Due
to the large values of k and m, that code uses the bottom-m MinHash sketch to
accelerate the computation of the sketches. However, it is not amenable to bi-
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Figure 5: Metagenome clustering: MSE on pairwise Jaccard matrix with com-
putation time.

narization: each MinHash measurement requires 64 bits against 1 bit required
by SparseHash. Figure 5 shows the mean square error (MSE) on the matrix
with all Jaccard pairwise similarities with respect to the true Jaccard values as
function of the computation time required to compute all pairwise distances in
the embedded space. It can be noticed that SparseHash outperforms MASH
thanks to the 1-bit measurements and the faster simsh and Hamming distance
metrics that can be implemented with bitwise operations.

6 Conclusion

In this letter, we have analyzed SparseHash, a novel embedding technique for
dimensionality reduction of sets. Exploiting the concept of sparsity and con-
centration results, SparseHash is proven to preserve Jaccard metric. Efficient
implementations and numerical experiments show that SparseHash outperforms
MinHash in different applications. Future work will envisage the comparison
with other strategies, e.g., Bloom filters.
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A Appendix

In this Appendix, we provide the details of the proofs of Theorem 1 and Propo-
sition 1. Here, we report all the steps.

A.1 Notation

To facilitate the reading, we recall the notation used in the manuscript.

• u, v ∈ Rn;

• A ∈ Rm,n is a γ-sparsified random matrix, γ ∈ (0, 1), that is: each Ai,j
is zero with probability 1 − γ, while Ai,j is generated according to given
distribution with zero mean and finite variance with probability γ;

• 1({A}) is the indicator function, which returns 1 when A is true;

• 1({A,B}) is the indicator function which returns 1 when both A and B
are true;
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• Su = {i ∈ {1, . . . , n} s.t. ui 6= 0}

• y, z ∈ {0, 1}m

• sim∪(y, z) := 1
m

∑m
i=1 1({yi = 0, zi = 0});

• sim∩(y, v) :=
∑m
i=1 1({yi=0})

∑m
j=1 1({zj=0})

m
∑m
i=1 1({yi=0,zi=0}) ;

• Ju,v (or J) = Jaccard coefficient of the pair (u, v).

A.2 Proof of Theorem 1

We start with some preliminary properties.

Lemma 1. Let u ∈ Σk1 , v ∈ Σk2 ,

P
(∣∣∣∣sim∪(Au,Av)− (1− γ)

k1+k2
1+Ju,v ]

∣∣∣∣ > ε

)
≤ 2e−2ε

2m. (7)

Proof. Su = supp(u) and Sv = supp(Sv) It should be noticed that 1({yi = 0, zi = 0})
is a Bernoulli random variable with

E[sim∪(Au,Av)] = (1− γ)|Su∪Sv|

= (1− γ)(k1+k2)/(1+Ju,v),

where the last equality is obtained using the relation

Ju,v =
|Su|+ |Sv|
|Su ∪ Sv|

− 1.

By Hoeffding’s inequality (see [18]) we have

P (|sim∪(Au,Av)− E[sim∪(Au,Av)]| > ε) ≤ 2e−2ε
2m.

Lemma 2. Let X and Z be two random variables such that

P(|X − µX | > ε) ≤ pX(ε)

P(|Z − µZ | > ε) ≤ pZ(ε)

with µX > 0, µZ > 0, then

P(|XZ − µXµZ | > ε) ≤ pX
(

ε

3µZ

)
+ pZ

(
min

{
ε

2µX
,
µZ
2

})
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Proof. Let us define the following events

EX =

{
|X − µX | ≤

ε

3µZ

}
EZ =

{
|Z − µZ | ≤ min

{
ε

2µX
,
µZ
2

}}
.

From the law of total probability the following series of inequalities follows:

P(|XZ − µXµZ | > ε) = P(|XZ − µXµZ | > ε|EX)P(EX)

+ P(|XZ − µXµZ | > ε|Ec
X)P(Ec

X)

≤ P(|XZ − µXµZ | > ε|EX) + P(Ec
X)

Repeating the same argument, we get

P(|XZ − µXµZ | > ε) ≤
≤ P(|XZ − µXµZ | > ε|EX ∩ EZ) + P(Ec

X) + P(Ec
Z)

It should be noticed that

|XZ − µXµZ | = |XZ − µXZ + µXZ − µXµZ |
≤ |Z| |X − µX |+ µX |Z − µZ |.

If EZ , EX hold then µZ/2 ≤ Z ≤ 3µZ/2 and

|XZ − µXµZ | ≤ ε

from which
P(|XZ − µXµZ | > ε|EX ∩ EZ) = 0.

We conclude that

P(|XZ − µXµZ | > ε)

≤ P(Ec
X) + P(Ec

Z)

= pX

(
ε

3µZ

)
+ pZ

(
min

{
ε

2µX
,
µZ
2

})
.

From Lemma 2, we can derive the following result.

Corollary 1. Let u ∈ Σk1 , v ∈ Σk2 , and denote

X =

∑m
i=1 1({(Au)i = 0})

m

Z =

∑m
i=1 1({(Av)i = 0})

m

then

P
(∣∣XZ − (1− γ)k1+k2

∣∣ > ε
)
≤ 4e

−2mmin

{
ε2

9 ,
(1−γ)2kmax

4

}
(8)
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Proof. It should be noticed that 1({(Au)i = 0}) is a Bernoulli random variable
with P({(Au)i = 0}) = (1 − γ)k1 := µX . Then from the Hoeffding’s inequality
[18] we get

P (|X − µX | > ε) ≤ 2e−2ε
2m.

and, analogously denoting µZ = (1− γ)k2 ,

P (|Z − µZ | > ε) ≤ 2e−2ε
2m.

Applying Lemma 2 and computing

P
(
|X − µX | >

ε

3µZ

)
≤ 2e

− 2ε2m

9(1−γ)2k2 ≤ 2e−
2ε2m

9 (9)

and, similarly,

P
(
|Z − µZ | > min

{
ε

2µX
,
µZ
2

})
≤ 2e

−2mmin

{
ε2

4(1−γ)k1
,
(1−γ)2k2

4

}

≤ 2e
−2mmin

{
ε2

4 ,
(1−γ)2kmax

4

}
.

(10)

we obtain (8).

Lemma 3. Let X,Z be random variables such that

P (|X − µX | > ε) ≤ pX(ε), P (|Z − µZ | > ε) ≤ pZ(ε)

with µX > 0, µZ > 0, then

P
(∣∣∣∣XZ − µX

µZ

∣∣∣∣ > ε

)
≤ pX

(εµZ
4

)
+ pZ

(
min

{
ε

4

µ2
Z

µX
,
µZ
2

})
,

(11)

Proof. Let us define the following events

EX =
{
|X − µX | ≤

εµZ
4

}
EZ =

{
|Z − µZ | ≤ min

{
ε

4

µ2
Z

µX
,
µZ
2

}}
.
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From the law of total probability the following series of inequalities follows

P
(∣∣∣∣XZ − µX

µZ

∣∣∣∣ > ε

)
= P

(
|XµZ − ZµX |
|Z||µZ |

> ε

)
= P

(
|XµZ − µXµZ + µXµZ − ZµX |

|Z|µZ
> ε

)
≤ P

(
µZ |X − µX |+ µX |Z − µZ |

|Z|µZ
> ε

)
≤ P

(
µZ |X − µX |+ µX |Z − µZ |

|Z|µZ
> ε

∣∣∣∣EX ∩ EZ)
+ P (Ec

X) + P (Ec
Z)

If EZ holds then Z ≥ µZ/2 and

P
(
µZ |X − µX |+ µX |Z − µZ |

|Z||µZ |
> ε

∣∣∣∣EX , EZ) = 0,

we have

P
(∣∣∣∣XZ − µX

µZ

∣∣∣∣ > ε

)
≤ pX

(εµZ
4

)
+ pZ

(
min

{
ε

4

µ2
Z

µX
,
µZ
2

})
.

From Lemma 3 and Corollary 1, we obtain the following result.

Corollary 2. Let u ∈ Σk1 , v ∈ Σk2 , then

P
(∣∣∣∣sim∩(Au,Av)− (1− γ)

(k1+k2)Ju,v
1+Ju,v ]

∣∣∣∣ > ε

)
≤ 6 exp

(
−mmin

{
(1− γ)8kmax

ε2

8
,

(1− γ)4k

2

}) (12)

Proof. The inequality in (12) follows directly from Lemma 3 by setting

X =

∑m
i=1 1({(Au)i = 0})

∑m
i=1 1({(Av)i = 0})

m2
,

Z = sim∪(Au,Av),

µX = (1− γ)k1+k2 , µZ = (1 + γ)(k1+k2)/(1+Ju,v)

and estimating the probabilities using Lemma 3, Corollary 1, k1 + k2 ≤ 2kmax

and J ≥ 0

pX

(εµZ
4

)
≤ 4e

−mmin

{
ε2

9·8 (1−γ)
4kmax ,

(1−γ)2kmax

2

}
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and

pZ

(
min

{
ε

4

µ2
Z

µX
,
µZ
2

})
=

= 2 exp

(
−2m

(
min

{
ε(1− γ)2(k1+k2)/(1+J)

4(1− γ)k1+k2
,

(1− γ)(k1+k2)/(1+J)

2

})2
)

≤ 2 exp

(
−2m

(
min

{
(1− γ)4kmax

ε

4
,

(1− γ)2kmax

2

})2
)

= 2 exp

(
−mmin

{
(1− γ)8kmax

ε2

8
,

(1− γ)4kmax

2

})
.

We conclude that

P
(∣∣∣∣sim∩(Au,Av)− (1− γ)

(k1+k2)Ju,v
1+Ju,v

∣∣∣∣ > ε

)
≤ pX

(εµZ
4

)
+ pZ

(
min

{
ε

4

µ2
Z

µX
,
µZ
2

})
≤ 6 exp

(
−mmin

{
(1− γ)8kmax

ε2

8
,

(1− γ)4kmax

2

})
.

Lemma 4. Let X be a positive random variable such that

P (|X − µX | > ε) ≤ pX(ε),

with µX > 0, then

P (|log(X)− log(µX)| > ε) ≤ pX (εµX) .

Proof. Noticing that | log(1+ |t|)| ≤ |t| for any t, the following series of relations
holds

P (|log(X)− log(µX)| > ε) ≤ P
(∣∣∣∣log

(
1 +

∣∣∣∣X − µXµX

∣∣∣∣)∣∣∣∣ > ε

)
≤ P

(
|X − µX |

µX
> ε

)
= pX(εµX).
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Conclusion of the proof of Theorem 1

Applying Lemma 4 to the results obtained in Lemma 1 and 2 we obtain:

P
(∣∣∣∣log(sim∩(Au,Av))− Ju,v(k1 + k2) log(1− γ)

1 + Ju,v

∣∣∣∣ > ε

)
≤ 6 exp

(
−mmin

{
(1− γ)8kmax

ε2µ2
Z

8
,

(1− γ)4kmax

2

})
= 6 exp

(
−mmin

{
(1− γ)8kmax

ε2(1− γ)2(k1+k2)J/(1+J)

8
,

(1− γ)4kmax

2

})
≤ 6 exp

(
−mmin

{
(1− γ)12kmax

ε2

8
,

(1− γ)4kmax

2

})
= 6 exp

(
−m(1− γ)12kmax

ε2

8

)
;

P
(∣∣∣∣log(sim∪(Au,Av))− (k1 + k2) log(1− γ)

1 + Ju,v

∣∣∣∣ > ε

)
≤ 2 exp

(
−2mε2(1− γ)2(k1+k2)

)
≤ 2 exp

(
−2mε2(1− γ)4kmax

)
.

Finally, using Lemma 3 and the assumption m > 32 log 4+β logN
γ2k2mine

−γkmax ε2
, we get

P
(∣∣∣∣ log(sim∩(Au,Av))

log(sim∪(Au,Av))
− Ju,v

∣∣∣∣ > ε

)
≤

≤ 8 exp

(
−m ε2

128
(1− γ)12kmax4k2min log2(1− γ)

)
≤ N−β+2.

The thesis follows by applying the union bound on the last expression.

A.3 Proof of Proposition 1

If a pair of signals in X has Jaccard coefficient J ∈ [0, 1], then the probability
that their hashes computed with SparseHash become a candidate pair is given
by:

Psh = 1− (1− pmsh

sh )Lsh

with psh = 2
J−1
1+J , while for 1-bit MinHash,

Pmh = 1− (1− pmmh

mh )Lmh

with pmh = (J + 1)/2.
Let msh = mmh = m. From the previous equations, it is straightforward to

prove that:
Lsh

Lmh
=

log (1− ((J + 1)/2)
m

)

log
(

1− 2m
J−1
1+J

) .
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We then obtain Lsh ≤ Lmh if

log (1− ((J + 1)/2)
m

)

log
(

1− 2m
J−1
1+J

) ≤ 1.

Since log
(

1− 2m
J−1
1+J

)
< 0,

log (1− ((J + 1)/2)
m

) ≥ log
(

1− 2m
J−1
1+J

)
(1− ((J + 1)/2)

m
) ≥

(
1− 2m

J−1
1+J

)
1− (J + 1)/2 ≥ 1− 2

J−1
1+J

(J + 1)/2 ≤ 2
J−1
1+J .

(13)

We can then numerically verify that the last inequality is always true (see Figure
6), in particular the strict inequality holds for any J ∈ (0, 1).

0 0.2 0.4 0.6 0.8 1
J

0.5

0.6

0.7

0.8

0.9

1

(J+1)/2

2 (J-1 ) / (J+ 1)

Figure 6: Proof of Proposition 1
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