
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Framework for Verification-Oriented User-Friendly Network Function Modeling / Marchetto, Guido; Sisto, Riccardo;
Valenza, Fulvio; Yusupov, Jalolliddin. - In: IEEE ACCESS. - ISSN 2169-3536. - 7:(2019), pp. 99349-99359.
[10.1109/ACCESS.2019.2929325]

Original

A Framework for Verification-Oriented User-Friendly Network Function Modeling

Publisher:

Published
DOI:10.1109/ACCESS.2019.2929325

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2749814 since: 2019-09-05T08:02:26Z

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

Received June 19, 2019, accepted July 9, 2019, date of publication July 17, 2019, date of current version August 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2929325

A Framework for Verification-Oriented User-
Friendly Network Function Modeling
GUIDO MARCHETTO , RICCARDO SISTO, FULVIO VALENZA , AND JALOLLIDDIN YUSUPOV
Dipartimento di Automatica e Informatica (DAUIN), Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Fulvio Valenza (fulvio.valenza@polito.it)

This work was supported in part by the European Commission, under Grant Agreement no. 786922.

ABSTRACT Network virtualization and softwarization will serve as a new way to implement new services,
increases network functionality and flexibility. However, the increasing complexity of the services and the
management of very large scale environments drastically complicate detecting alerts and configuration errors
of the network components. Nowadays, misconfigurations can be identified using formal analysis of network
components for compliance with network requirements. Unfortunately, formal specification of network
services requires familiarity with discrete mathematical modeling languages of verification tools, which
requires extensive training for network engineers to have the essential knowledge. This paper addresses
the above-mentioned problem by presenting a framework designed for automatically extracting verification
models starting from an abstract representation of a given network function. Using guidelines provided in
this paper, vendors can describe the forwarding behavior of their network function in developer-friendly,
high-level languages, which can be then translated into formal verification models of different verification
tools.

INDEX TERMS Network function modeling, model extraction, NFV.

I. INTRODUCTION
The development and deployment of software-centric,
high-performance and automation networks, as well as
processes and services, supported by breakthrough digital
technologies, have become key to the future development
of telecom operators worldwide. The innovative trends of
Network Function Virtualization (NFV) [1] and Software
Defined Networking (SDN) have opened up new business
models, enabling telecom providers to lease or share their
physical resources, increase the flexibility and controllability
of the network infrastructure. SDN separates the network
data and control planes to introduce (logically centralized)
control plane programmability for novel networking virtu-
alization (abstraction), simplified network (re)configuration,
and policy enforcement. NFV, on the other hand, targets at
virtualizing servers and integrates network hardware devices
into a general-purpose x86-based server or other hardware
platform through virtualization technology.

The ETSI (European Telecommunications Standards Insti-
tute) Industry Specification Group (ISG) [2] is the stan-
dardization initiative regarding the NFV domain, aiming at

The associate editor coordinating the review of this manuscript and
approving it for publication was Shagufta Henna.

specifying a reference architecture. However, the way VNFs
(Virtual Network Functions) are written is not standardized.
As a result, the telecommunications world is filled with sev-
eral different VNF implementations by different vendors. It is
worth noting that there is an adopted standard specification
based on TOSCA (Topology and Orchestration Specifica-
tion for Cloud Applications), which is written in YAML
(YAML Ain’t Markup Language) language. However, it is
only intended to describe topology, orchestration tasks, and
services of Cloud Applications.

The problem is that there is no standard way to instanti-
ate, configure, and operationalize these VNFs from multiple
vendors, which increases the impact of possible network con-
figuration errors. This in turn requires a substantial amount
of effort to ensure networks’ correctness, safety, and secu-
rity. One solution for reducing errors and building robust
infrastructures, is to check network software for bugs and
verify its correctness prior to deployment. With this respect,
great progress has been made recently in verifying network
correctness both in data plane and control plane, with the help
of formal methods and verification tools ([3]–[7]).

Formal methods require the creation of an abstract model
of a system in a tool-specific modeling language, targeted

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 99349

https://orcid.org/0000-0003-3588-9367
https://orcid.org/0000-0002-8471-3029

G. Marchetto et al.: Framework for Verification-Oriented User-Friendly Network Function Modeling

at a specific type of problem, and captures the semantics
appropriate for the problem. It’s a well known fact that formal
methods don’t prevent errors or eliminate bugs that go below
the formal model of the system. In other words, incomplete
or wrong functional coverage of specifications leaves the
door open to errors resulting from not checking all properties
mandated by the specifications. However, it is out of scope
of our study to investigate these well known considerations.
Instead, we address the main challenge providers of NFV
software facing in order to enable formal verification of
virtualized networks is the model construction: there is a
large semantic gap between the artifacts produced by soft-
ware developers and those accepted by current verification
tools. For instance, the growing body of work on data-plane
verification, such as NOD [3], SymNet [8] and VeriGraph [9]
have evolved to a mature state in the last decade, but this gap
might be a significant hurdle for their wide adoption in real
production environments. Essentially, these tools are based
on a complex modeling technique, tend to lock the user into
a single kind of checking technology, require to accurately
model network functionality, which requires an expert input,
and usually oblige engineers to learn a whole new language
(e.g., Alloy in [10]).

We recognize this gap and plan to address it by means of
available languages that are easier to program with. In this
paper we present a framework for a user-friendly VNF mod-
eling that developers can use to provide a formal description
of their network devices to be used in a verification process.
Instead of modeling every detail of a NF, we focus only on the
forwarding behavior, in order to enable the formal verifica-
tion of typical reachability-oriented properties (e.g. isolation
or absence of forwarding loops). This is also due to the
fact that modeling every detail of a NF, by automatically
synthesizing the source code, is practically unfeasible and
does not scale for large networks. Our previous work in [11],
concentrated solely on a specific verification environment.
However, in this work, our goal is to define an abstraction
model that is compliant with wide variety of verification
tools.

As the main strength of our approach we see its simplicity
and we realize it by addressing these goals:
i. To simplify the definition of a network function forward-

ing model by means of high-level languages.
ii. To offer a sufficient level of flexibility to developers in

such a way that they could define the desired behavior
for all their network functions.

iii. To provide an automatic translation from the function
model definition into an abstract formal model for veri-
fication tools.

To address these challenges, we propose a typical set of
high-level operations commonly used for describing the net-
work function’s forwarding behavior. With the introduction
of a base class definition of a simple VNF, a network function
developer can easily extend the provided artifacts to inherit
basic properties, data types and methods and customize func-
tion behavior. Our framework also provides a parser that

analyzes the source code and produces an abstract formal
model of the VNF in a platform-independent XML specifi-
cation. This intermediate XML-based model is fairly general
to be translated to a multitude of different verification tools.

In this paper, VeriGraph [9] and SymNet [8] are adopted
as a use case and Java as a programming language. However,
we also show that the forwarding behavior can be written
in most of the well-known programming languages and the
output of the parser is generic, which can be translated into
any verification tools of network forwarding behavior.

The remainder of this paper is organized as follows.
We introduce the problems and summarize limitations of
existing approaches in Section II. Section III presents an
overview of the framework describing each component in
detail. In Section IV we describe the implementation details
and validation results. Finally, we present the conclusions and
perspectives of future work in Section V.

II. MOTIVATION AND RELATED WORK
Currently there is no standard and widely known modeling
language that can be used to accurately represent the for-
warding behavior of network functions. Most of the research
efforts related to network function models are focused on
network verification and gained popularity in the verification
community. In this section we list the open problems that
we have encountered while looking at the proposed network
function models in the verification context.

A. EASE OF USE
Modeling of network functions is effective for various uses,
ranging from finding scalability issues in applications to
finding network configuration bugs, especially with the use
of formal verification tools. On the other hand, former mod-
eling of network functionalities is challenging and requires
detailed understanding of the specific verification tool inter-
nals, semantics, and modeling language.

With this problem in mind, introduction of an automated
approach to generate models eliminates the necessity of hav-
ing detailed knowledge in the formal verification domain
and helps engineers to quickly determine the behavior of
services comprising different types of network functions,
starting from a more user-friendly description of the involved
network functions. Notice that it is well known how formal
methods do not prevent possible errors in constructing the
formal model. In other words, incomplete or wrong models
may lead to errors in the verification process. However, the
investigation of these well known issues is out of scope
of our study. Instead, given the fact that formal methods
are a widely accepted methodology for property verifica-
tion, we address the challenge of giving to NFV software
providers the possibility to constuct formalmodels bymeas of
a programming paradigm they are familiar with. This would
significantly lower entry barriers to these powerful verifica-
tion approaches, somehow also reducing the probability of
introducing errors in the model with respect to the utilization
of complex formal languages.

99350 VOLUME 7, 2019

G. Marchetto et al.: Framework for Verification-Oriented User-Friendly Network Function Modeling

Imperative languages such as Java, Python, C++ focus
on describing how a program operates. A network function
developer can write a code that describes in exact detail
the forwarding decisions that the network function must
make when a packet is received from one of its interfaces
as a sequence of steps, without having the complexity of a
function implementation. On the contrary, declarative lan-
guages used in logic-based formal verification tools do not
specify a step or sequence of steps to execute, but rather
predicates that must hold. The conceptual gap between
these two paradigms is the vital challenge solved by our
approach.

B. SUPPORT OF STATELESS AND STATEFUL FUNCTIONS
The existing verification methods can be divided into two
groups according to their ability to model stateful func-
tions. The former group focuses on modeling the forwarding
behavior of stateless devices(e.g., switches and routers [12],
ACL (Access Control List) Firewall [13], simple load-
balancer [14]); by this we mean that the behavior is not
modified until the control plane explicitly changes the con-
figuration and there is no record of previous interactions.
The latter group also considers the devices that are dynamic,
in which every packet that the network device receives may
alter the internal state, and the output is dependent on the
sequence of previously encountered packets. Considering the
fact that a significant portion of network devices are stateful,
such as learning firewalls, load balancers, intrusion detec-
tion systems and the like, one cannot ignore these devices
when verifying network configurations. Thus, we propose
a general template to model, that covers a wide range
of network functions, including both stateless and stateful
ones.

C. RELATED WORK
There are two categories of related work to be considered.
The first category relies on program analysis of available
source code. In the past few years, there has been significant
amount of work was done to provide a proper support for
the translation of software system specifications to the input
models of verification tools. Some of these tools including
Bandera [15] and JavaPathFinder [16] have also developed
tools to extract models. The two approaches are based on
model checking, and the models they extract are models of
Java software. We note these works solve different problems
from our work, where they consider general-purpose Java
programs and their main target is the identification of pro-
gramming errors and bugs. In contrast to these works, we con-
sider only the forwarding behavior of network functions and
we are not interested in all the details of the network func-
tion’s code execution. We also want formal verification of
network configurations to be extremely fast, because it has to
be performed in real-time when a network change occurs. For
this reason, we need to extract customized, domain-specific
models.

A proposal more similar to our target is NFactor [17],
which provides a solution to automatically analyze the source
code of a given network function to generate an abstract
forwarding model, motivated by network verification appli-
cations. While relying on advanced tools([18]) and tech-
niques([19], [20]) from the program analysis community,
they do not require a specific structure of the source code
of the function to be analyzed. This feature is considered as
an advantage from a generality point of view. Unfortunately,
creating a model that captures all code paths of a network
function is challenging, because the state processing may
be hidden deep in the code. This may cause the analysis
to miss certain state changes. For example, implementations
might use pointer arithmetic to access state variables, which
is difficult to trace, and NFactor does not seem to deal with
these language features appropriately. Another limitation of
the approaches based on extraction of models from source
code is that the code ofmany network functions is proprietary.

Another category of approaches and methods for
static network analysis is based on hand-written function
models ([3], [8], [9], [21]). For instance, Network Optimized
Datalog [3] requires a Datalog both for network and function
models and policy specifications. BUZZ [21] relies on manu-
ally written models of network functions defined in a domain
specific language. As stated above, modeling network func-
tionality for using these tools is challenging and requires
detailed understanding of the verification tool semantics.
Hence, our automated approach to generate models elimi-
nates the necessity of having detailed domain knowledge and
helps network engineers to quickly determine the behavior
of a network function. On the contrary, SymNet [8] describes
models using an imperative, modeling language, known as
Symbolic Execution Friendly Language (SEFL). While the
way this language has been designed has similarities with
the modeling technique we propose, this approach lacks the
idea of ease of modeling, by introducing a new language.
Even though the authors provide parsers to automatically
generate SEFL models from real network functions, this
generation only covers routers and switches. Our approach,
instead, relies on the well-known user-friendly programming
languages and can be used to describe any kind of virtual
network function.

III. MODELING TECHNIQUE
The proposed framework provides a library, a parser, and
a translator. In the library we show the main design prin-
ciples needed for modeling network functions by means of
an imperative language. The parser then automatically gen-
erates abstract models from these descriptions. Basically,
the parser takes as an input the definition written using our
library and produces an abstract formal model describing the
forwarding behavior of the network function. The translator
finally translates this abstract model into a more high-level,
domain specific constraint language, whichwould be difficult
to deal withmanually. The idea is that different translators can
produce the input language of different verification tools.

VOLUME 7, 2019 99351

G. Marchetto et al.: Framework for Verification-Oriented User-Friendly Network Function Modeling

FIGURE 1. Class diagram of the library.

FIGURE 2. Pseudo code of the behavior of the ACL firewall in response to a received packet.

A. LIBRARY
The library provides the basic building blocks depicted in
FIGURE 1 to write a network function. Following these
design principles, a developer is able to easily characterize the
forwarding decisions of the network function by instantiating
objects of the library classes and by calling certain meth-
ods that correspond to typical operations performed inside
network functions, and using the basic syntax of high-level
programming languages.

The definition of a network function takes the form of
a class that extends the library class NetworkFunction,
which is the main class of the library. It is an abstract
class whose abstract methods have to be implemented in the
concrete extension provided by the user. The code snippet
given in FIGURE 2 is an example for an ACL (Access
Control List) enabled stateless firewall. The main method of
the class (onReceivedPacket()) gets two parameters.
The first one represents the incoming packet while the sec-
ond one specifies the interface on which the function has
received the packet. The actions that can be inserted inside
onReceivedPacket() are divided into the following cat-
egories: instructions to get, set or check the contents of a
packet field, instructions to store and retrieve a value into a
lookup table defined by the user, instructions to define the

forwarding action to be performed on a packet (through a
RoutingResult). RoutingResult is the return value
type of the onReceivedPacket() method. It represents
the routing decision of the network function, after processing
of the incoming packet. Its constructor receives following
input parameters:
• A packet object that the network function produces.
• The action to perform on this packet (forward or drop).
• The forwarding direction (i.e. the interface the packet is
forwarded to in case of forward action).

Taking into account that we are focusing on forwarding
behavior of the network functions, we make an assumption
that the forwarding action involves a single packet in response
to a received packet. While this limitation could be removed
by extending the RoutingResult definition, it does not
prevent us from verifying reachability or isolation properties
in any case. In fact, in the end, our model has to enable the
evaluation of the possibility or impossibility for a function
to send a certain type of packets on an interface, rather than
representing exactly howmany packets of a certain type it can
send.

The Interface class models a logical interface on
which a network function will receive or send packets.
A typical need when writing network function models is to

99352 VOLUME 7, 2019

G. Marchetto et al.: Framework for Verification-Oriented User-Friendly Network Function Modeling

distinguish different sets of interfaces. For example, a NAT
(Network Address Translator) network function divides the
network into two areas (an internal area and an external one)
and applies different rules on the incoming packets if they are
received from the internal or the external interface. Incoming
packets from the external interface are forwarded to their des-
tination only if a connection already exists while packets from
the internal interface are always forwarded unless the NAT
runs out of ports. Similarly, most of the network functions
such as firewall, NAT and others differentiate the interface
to which packets can be transferred, from the interface from
which packets arrive. We will refer them as external and
internal interface respectively in this paper.

The Packet class models an IP packet and gives access
to the fields of the IP header that are relevant for the for-
warding behavior of the network function. As can be seen
from FIGURE 1 the enum type PCKField contains the
constants representing the packet header fields that can be
modeled. The string representation of these fields is chosen
for convenience and arbitrary (raw) IP packets can always be
represented as a string. Moreover our framework can support
TCP and application protocols. For the moment, only HTTP
and POP3 are supported, for demonstrative purposes. This list
can be extended indefinitely to include more protocols when
necessary. It is worth noting that the clone() method of
the class is convenient in case of packet modifications. This
in turn allows to modify the ‘‘clone’’ in the meantime keeping
the old packet unchanged.

The Table class models a typical lookup table as a collec-
tion of TableEntry objects stored by the network function.
For example, in the case of NAT-enabled network function,
an object of this class stores the pairs of source/destination IP
address/port of open connections. Alternatively, a table object
can be used in an ACL firewall to store port numbers or IP
addresses to be blocked. ThematchEntry()method of the
class on the other hand, serves to retrieve an entry from the
table matching the value of the object. The TableEntry
class itself contains a list of objects whose size is set accord-
ing to the integer that the constructor receives. Moreover it is
necessary to define the expected field type the table stores.
This helps the parser to observe the type of the entry being
retrieved from the table and extract the model accordingly.
For instance, the element for IP source address and destina-
tion addresses is stored as an IP data type in the XML notation
of the model. The list of currently supported types is given in
enum type TableTypes (see FIGURE 1).
To grant the second objective of our work, to offer a

greater flexibility, developers are provided with sufficient
level of freedom to follow the guidelines and ‘‘skeleton’’ of
the model mentioned above as building blocks of complex
network functions. In particular there is no restriction on
the number of tables, conditions and on the actions that
follow these conditions, on the order of packet operations
and the programming language used to describe these mod-
els. However, our framework supports only a subset of the
object-oriented programming language features, which are

TABLE 1. List of supported features of programming languages.

supported by C++, Java, Objective-C and others. The list of
supported features is shown in TABLE 1. While we believe
this subset is enough for our purposes, it can be extended in
order to further improve the user experience when specifying
network functions.

B. PARSER
The parser analyzes the class describing the virtual network
function and generates a final formal model. The analysis part
consists of the following activities:
• the identification of the instructions in the code that lead
to a packet being sent through an interface;

• the identification of the instructions related to state inser-
tion (write) and retrieval (read);

• the identification of the conditions (IF statements) that
are traversed to reach the above mentioned instructions.

Finally, the analysis lets us identify (i) the possible sequences
of instructions that can modify and finally send a packet,
with all the conditions under which each one of them can be
executed and (ii) the sequences of instructions that can lead
to a modification of the state of the network function, and all
the conditions under which each alteration can occur.

The implementation of the parser takes advantage of
abstract syntax tree (AST) , which is a tree representation
of the abstract syntactic structure of source code. AST is the
syntactic analysis tool included almost in all well-known pro-
gramming languages like C++, Java, JavaScript and Python.
The formal model generated by the parser takes a form
that is motivated by the vision of OpenFlow [22] forward-
ing abstraction of the form <match, action>. This abstrac-
tion model has been borrowed from the existing modeling
techniques [17], [23] and most of the verification tools of
forwarding behavior ([8], [9], [24]) rely on the models of
this abstraction.

The parser generates the model in an XML format that
expresses this abstraction, by building the <match, action>
pairs from the parsedAST.We classify the boolean conditions
in the code that lead to a return statement or to a state
change statement as ‘‘match’’ and the forwarding and state
changes as ‘‘action’’ respectively. The ‘‘match’’ conditions
are further classified into two categories: those that refer to
state variables and those that are state independent. Similarly,
the ‘‘action’’ rules are categorized as: those that trigger a
state transition and those that trigger a forwarding action.
They are referred to as ‘‘state’’ and ‘‘flow’’ respectively,
as shown in TABLE 2. This categorization is needed in the
translation phase of the model, because the verification tool

VOLUME 7, 2019 99353

G. Marchetto et al.: Framework for Verification-Oriented User-Friendly Network Function Modeling

specific model representation is formed depending on the
type of <match, action> tuples. In the following subsections
we walk through the steps the parser takes in building the
abstraction model for stateless and stateful network functions
and cover the classification of rules in detail.

1) STATELESS NETWORK FUNCTION
As an example, we use the NF definition for ACL firewall by
means of our library, which is listed in Figure 2. ACL contains
a Table object named aclTable. The method invocation
in line 6 specifies that the table has two columns, both of
type IP address (Table.TableTypes.Ip). The parser
will store this information in the XML notation of the inter-
mediate model. This table acts as a ‘‘blacklist’’: if the source
and destination IP addresses of the received packet match
an entry in the table, a drop action is performed. The illus-
tration of such abstraction for the stateless ACL firewall
network function, obtained automatically from the simple
source code definition, is presented in TABLE 2, where only
the first rule extracted from the code is presented. In fact,
for each forwarding action in the onReceivedPacket()
method, the parser constructs a separate rule. The forward-
ing actions are recognized by the parser by looking for the
presence of RoutingResult class instance creation in
the return statement, where the action argument is equal to
Action.FORWARD. For instance the method in FIGURE 2
leads to the generation of two distinct rules due to the pres-
ence of two forwarding actions (lines 13 and 17, FIGURE 2).
Due to the stateless nature of the NF, the final model does
not contain any information regarding the state (i.e. lines
10 and 12 in TABLE 2 are empty).

TABLE 2. Rule abstraction for ACL firewall network function.

The parser proceeds backwards in the control graph of
the code, starting from the selected forwarding action, till it
reaches the entry point of the method. In this way, it obtains
the sequence of statements that have to be executed in order
to reach the selected forwarding action. From this sequence,
the parser extracts the conditions that must be satisfied in
order for the sequence to be executed. They are essentially
the conditions of the if statements found in the sequence,
plus an additional predicate taking the form recv(p,i),
where p and i are the packet and interface passed to
onReceivedPacket(). This last predicate expresses the
condition that packet p is received on interface i. In all these

conditions, variables are substituted with the values assigned
to them in the sequence of statements, explicitly or implicitly.

2) STATEFUL NETWORK FUNCTION
Models of stateful NFs are more complex, because the match
field may regard not only packet flows but also states, and
the action to be performed not only forwards the packets
but also triggers an update on state components. In order to
indicate the difference between the two cases, we analyze
the outcome of the parser for a NAT network function. From
FIGURE 3 it is easy to realize that the model for the NAT
network function consists of three rules due to the three
forwarding actions. To extract these rules, the parser proceeds
in an analogous manner to that shown in section III-B.1.
At the beginning the parser classifies this as a stateful net-
work function due to the explicit state change that occurs
in the natTable.storeEntry(e) method invocation,
in line 26, and identifies natTable as part of the function
state. In contrast to the matchEntry() method, used to
model a table lookup for the stateless network function, here
the parser classifies the matchEntry()method invocation
listed in line 7 as a state specific conditional statement,
which corresponds to lines 8-10 in TABLE 3. Additionally,
the packet modifications done by the NAT result in a form
of constraints, where the source IP and port addresses of the

FIGURE 3. Behavior (only the part) of the NAT network function model in
response to received packet.

99354 VOLUME 7, 2019

G. Marchetto et al.: Framework for Verification-Oriented User-Friendly Network Function Modeling

TABLE 3. Rule abstraction for NAT network function (part 1).

TABLE 4. Rule abstraction for NAT network function (part 2).

new packet, that is being sent, must correspond to the values
retrieved from the entry, as shown in lines 6,7 of TABLE 3.
Whereas the flow-related, state-independent conditions in
lines 1-5 of TABLE 3 state that the new packet that is being
forwarded, must keep the rest of the fields of the received
packet unchanged. This is the first rule the parser builds
following the if branches in lines 6 and 9 (FIGURE 3). When
the parser visits the else branch of the code that starts at
line 14, it extracts the set of conditions that lead to another
forwarding action and builds the rule shown in TABLE 4.
In contrast to the first rule, the second rule contains an action
that triggers a state transition, by storing the new entry in the
internal state of the network function (line 12 in TABLE 4).
This implies that the NAT translation table does not contain
an entry matching the IP and port source addresses as given
in lines 9,10 (of TABLE 4) and the new entry is inserted in
the translation table of the NAT network function.

The final rule to be extracted covers the behavior of the
NAT network function when receiving a packet from the
external interface, which is extracted in a similar manner.

C. TRANSLATOR
One of the strengths of our approach is the ability to seri-
alize the final model abstraction across different languages,
thus being able to target different verification programs.
For instance, VeriGraph exploits network function models
expressed as formulas in First Order Logic (FOL) [25],
taking the form

send(NF, destination, packet) ->
CONDITIONS

send and recv are two predicates defined in the VeriGraph
framework that receive as arguments two nodes representing
the source and the destination of a packet that can be sent
or received, and the packet itself. The right hand side of
the formula expresses the conditions under which the packet
is forwarded. These formulas are difficult to write. Hence,
VeriGraph can greatly benefit from the automatic generation
of models.

The conditions that are included in each rule are combined
in conjunctive normal form (CNF) in order to obtain a sin-
gle ‘‘match’’ and ‘‘action’’ rule respectively. For example,
the rule in TABLE 4 results in the following FOL formula
for VeriGraph:

((send(n_Nat,n_0,p_0) && !(isInternal
(p_0.IP_DST))) ->
E(n_1, p_1 |(recv(n_1,n_Nat,p_1) &&
isInternal(p_1.IP_SRC) &&
!(E(n_2, p_2 |(recv(n_2,n_Nat,p_2) &&

isInternal(p_2.IP_SRC) &&
(p_1.IP_SRC == p_2.IP_SRC) &&
(p_1.PORT_SRC == p_2.PORT_SRC))))&&
(p_0.IP_SRC == natIp) &&(p_0.PORT_SRC
== new_port) &&
(p_0.IP_DST == p_1.IP_DST) && (p_0.PORT_DST
== p_1.PORT_DST) &&
(p_0.TRANSPORT_P == p_1.TRANSPORT_P) &&
(p_0.APPLICATION_PROTOCOL == p_1.APPLICATION_
PROTOCOL) &&
(p_0.L7DATA == p_1.L7DATA))))

This FOL formula is interpreted as that a new packet
p0 is sent to a node n0 through the external interface of
the network function, which is translated as a negation of
isInternal(p_0.IP_DST) VeriGraph specific predi-
cate. This send action is valid, only if there isn’t a packet p2,
received before the current packet p1, having the same port
and source IP addresses as packet p1. The rest of the model
is translated as is. However the state transition primitive in
line 12 does not take place in the final translation, because
VeriGraph does not support data structures to keep track of the
internal state of the network function. Despite this, VeriGraph
can model any stateful function that depends not just on
static forwarding rules, but also on the sequence of previously
encountered packets, introducing multiple implications in the
function model.

On the other hand, SFC-Checker [23] supports predicates
explicitly altering the state of the network function in the
form of temporal forwarding behavior using Finite State
Machines (FSM). TABLE 5 shows the output of the trans-
lator for the NAT network function model rule given in
TABLE 4, by means of SFC-Checker supported primitives.
As evident from the table, the state independent condition
in line 1 of TABLE 4 is translated using the pre-condition
primitive IF introduced in SFC-Checker. Whereas the
state-relative conditions in lines 8-10 of TABLE 4 take the
form of state operations primitive - get(). By means of
the set(f.p,“new_port”) operation, the information
related to the state change in the NAT table is delivered.

VOLUME 7, 2019 99355

G. Marchetto et al.: Framework for Verification-Oriented User-Friendly Network Function Modeling

TABLE 5. Translation of NAT network function model for SFC-Checker.

Similarly, the Symbolic Execution Friendly Language
(SELF) proposed by SymNet [8] requires models in the
<match, action> formalism and replaces unknown values in
the conditions with symbolic values. This helps SymNet to
explore different paths of the model. Eventually the output of
the translation for the NATmodels in TABLE 3 and TABLE 4
is identical to the model demonstrated in SymNet [8]:

InputPort(0):
Constrain(IPProto,==6) //only do TCP

Allocate(‘‘orig-ip’’,32,local)
Allocate(‘‘orig-port’’,16,local)
Allocate(‘‘new-ip’’,32,local)
Allocate(‘‘new-port’’,16,local)
Assign(‘‘orig-ip’’,IpSrc) //save
initial addr
Assign(‘‘orig-port’’,TCPSrc) //
save initial port
Assign(IpSrc,‘‘...’’) //perform
mapping
Assign(TcpSrc, SymbolicValue())
Assign(‘‘new-ip’’,IpSrc) //save
assigned addr
Assign(‘‘new-port’’,TcpSrc) //save
assigned port
Forward(OutputPort(0))

It is important to note that SymNet injects only one packet
per execution when it performs verification [26]. Hence,
we cannot translate the conditional statements on multiple
packets of our data driven network functions such as NAT
and Web Cache into SEFL language. As a result, models
generated for SymNet cannot take state into account. In addi-
tion, in those network functions the idea of private or public
network is described in terms of specific ports, as there is
no such network division in SymNet. However, by defining
a new abstraction, we can generate a model of a stateful
function specifically designed for SymNet only. As our goal
is to provide a generic modeling language that supports most
of the verification tools, this approach is out of scope for this
work.

IV. VERIFICATION
The resulting models, describing the forwarding behavior,
are well suited for verification of the basic network invari-
ants such as reachability and isolation. Among the existing

logic-based verification tools we selected VeriGraph [9] and
SymNet [8] as use cases to show how the model generated
by the parser can be exploited, after proper translation, by a
real verification tool. VeriGraph and SymNet are the for-
mal verification tools that can automatically verify networks
by checking certain policies before the service deployment.
In this context, the term network is used to indicate a chain of
network functions such as (load balancer, antispam, packet
filter, DPI and so on) that starts from a source node and
ends into a different destination node. In response to a ver-
ification request, a model of the network and the involved
network functions, is checked against the provided policies,
for instance isolation properties between multiple devices in
the network.

To automatically validate network connectivity policies
at scale, the verification engine of VeriGraph and SymNet
exploits an off-the-shelf SAT solver (Z3), which verifies
whether the considered policies are satisfied or not, thanks
to the translation of these problems into SAT problems.

A. NETWORK FUNCTION CATALOGUE
We tested our framework with VeriGraph and SymNet using
a set of network function models, written by means of our
library during the development phase and used to evaluate the
effectiveness of our method. The available network functions
are listed in TABLE 6, together with the parsing time to gener-
ate each verification tool input model. The benchmarks were
run on a machine with an Intel i5-4210M CPU and a memory
limit of 8 GBs. It is worth noticing how these times are a
satisfactory result, also considering that the parsing process
is not a real-time task and is executed only once. In this
subsection we discuss which types of network functions can
be modeled by using our framework.

TABLE 6. Time spent to parse network function models.

Models of filtering functions, which includes DPI (Deep
Packet Inspection), Antispam and ACL firewall are included
in our catalog of network functions. However, any type
of network functions can be modeled using the addi-
tional data structures and design rules. For instance,
in our DPI network function, we introduce a table of
type Table.TableTypes.ApplicationData with a
single column. This type represents the packet data of
Layers 5,6,7 in the OSI network model, which, in our
model, corresponds to a special field of the packet

99356 VOLUME 7, 2019

G. Marchetto et al.: Framework for Verification-Oriented User-Friendly Network Function Modeling

FIGURE 4. Set of network topologies created for the verification process.

named L7DATA. If the protocol of the received packet is
equal to HTTP_REQUEST or HTTP_RESPONSE, the DPI
performs a table lookup based on the L7DATA field of the
packet. The presence of an entry corresponding to that data
in the table results in a drop action of the packet. In addition,
this is the structure of the code of DPI network function
share in common with the model ofAntispam network func-
tion, which includes a table with a single column and if the
L7DATA field of the packet matches an entry in the table,
the packet is dropped.

Instead, WebCache is a stateful network function,
modeled by means of a table of two columns. The
onReceivedPacket() method of the class includes
four forwarding actions. The first two of them correspond
to a packet arriving from an internal interface. If the
APPLICATION_PROTOCOL of the packet is equal to
HTTP_REQUEST and the table contains an entry matching
the requested string in L7DATA, it can send back a packet,
which is the (cached) response, containing the requested web
page. If the requested web page is not available in the table
of the network function, the original packet is forwarded
through the external interface.

On the other hand, the next two forwarding actions do
not alter the packet and acts as a packet forwarder. Only
if the web content of the received packet is not found in
the internal database, it is stored in the table of the network
function. Additionally, we include in our catalog, models of
VPN gateways, packet filters and traffic classifiers.

B. EXPERIMENTAL RESULTS
In order to check the correctness of the generated final mod-
els, we constructed a set of experiments with different net-
work topologies containing the available network functions,
and we performed a number of custom tests on the selected
verification tools. VeriGraph and SymNet can perform dif-
ferent kinds of verification tests: reachability, which consists
of checking if at least one packet can arrive at the destination
from the source node, and isolation, namely, that packets sent
from one host (or class of hosts) can never reach another host
(or class of hosts).

FIGURE 4 illustrates the set of topologies adopted for our
tests. Bymeans of these tests, we show that generated abstract
models are close to the actual behavior of network functions
and can be used in various scenarios. For instance, topology
(1) involves two firewalls and three end hosts. Firewalls are
configured according to the following:

1A. Firewall A denies all traffic between host A and C and
the default action of the firewall is allow.

1B. Firewall B denies all traffic between host B and C and
the default action of the firewall is allow.

This test includes two isolation properties to be checked.
In particular, we consider two packets, one flowing from host
A to host C, and another one flowing from host A to host
B. Taking into account the above firewall policies, we expect
the isolation property is satisfied in case of A-to-C, indicating
that no packet can reach the host C from A, while we expect
it is not satisfied in the case of A-to-B. The other test cases
are set up as follows (the numbers refer to the corresponding
topology in FIGURE 4):

2. Rule: firewall denies traffic between NAT and host B.
B is located in private network where NAT table con-
tains an entry related to the previous connection B-to-A.
Property: isolation between hosts A and B. Action: send
a packet from host A to B.

3. Rule: antispam performs an application layer content
filtering. A packet containing a string ‘‘discount’’ in its
body is blocked. Property: isolation between mail server
and client. Action: send a packet containing a string
‘‘discount’’ in its body from client to mail server.

4. Rule: DPI drops a packet containing specific string in the
body of the packet. Property: isolation between host and
web server. Action: send a packet containing the specific
string in the body from host to web server.

5. Rule: local storage of web cache contains ‘‘www.google.
it’’ URL address. Property: isolation between
host A and B. Action: send a web page request contain-
ing ‘‘www.google.com’’ URL from host A to B.

6. Rule: firewall denies traffic between host and web
server. Local storage of web cache is empty.

VOLUME 7, 2019 99357

G. Marchetto et al.: Framework for Verification-Oriented User-Friendly Network Function Modeling

TABLE 7. Comparison of the verification results. Column N represents the
number of the corresponding topology illustrated in FIGURE 4.

Property: isolation between host and cloud web
server. Action: send a packet from host to web server.

TABLE 7 delivers the results we obtained implementing
these categories of tests in VeriGraph and SymNet. In the
table, ’SAT’ means the isolation property is satisfied, while
’UNSAT’ means that the isolation property is not satis-
fied. Comparing the test results obtained by using a set of
hand-written models and the ones obtained by means of the
automatically generated ones (starting from the high-level
description and then generated using the parser), we found
that results are identical, as expected. This confirms the
correctness of our modeling approach and also shows the
efficiency of the developed framework.

V. CONCLUSION
This paper presents a ‘‘user-friendly’’ approach to network
function modeling for formal verification of forwarding
behavior. We focus on breaking the barrier between the two
ways of representing a network function:
the imperative-centric function definition (proper of net-
work function developers) and the more higher-level declar-
ative representation (used by formal verification experts in
order to instruct logic-based verification tools). The proposed
approach provides a method to translate from the former to
the latter automatically. The method relies on the model-
ing technique we presented in this paper which includes a
modeling library, a parser and a translator. We validated the
correctness of the models obtained using our framework by
means of different verification tools.

Consideringwhat are the current requests of themarket and
looking at the possible future developments, this framework
presents a further step towards the real implementation of
these new concepts inside the networks. In fact, the frame-
work and the available verification tools may be a basic
structure to define Virtual Network Functions and test the
overall network functionality before deployment.

As future work, the catalogue of network function models
will be enriched with a wide variety of network devices.
Additionally, we plan to add the possibility to automatically
generate efficient implementations of the network functions
from their high-level description. This will help developers

to get implementations that are consistent with the models
used for the analysis of the forwarding behavior of network
configurations.

REFERENCES
[1] ETSI GS NFV, ‘‘Network Functions Virtualisation (NFV); Terminology,’’

IEEE Netw., vol. 1, no. 5, pp. 1–50, 2013.
[2] ETSI. (2017). European Telecommunications Standards Institute.

[Online]. Available: http://www.etsi.org
[3] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,

‘‘Checking beliefs in dynamic networks,’’ in Proc. 12th USENIX Symp.
Networked Syst. Design Implement., 2015, pp. 499–512.

[4] F. Valenza, S. Spinoso, C. Basile, R. Sisto, and A. Lioy, ‘‘A formal model
of network policy analysis,’’ in Proc. IEEE 1st Int. Forum Res. Technol.
Soc., Sep. 2015, pp. 516–522.

[5] S. Owre, J. M. Rushby, and N. Shankar, ‘‘PVS: A prototype verifi-
cation system,’’ in Proc. 11th Int. Conf. Automated Deduction, 1992,
pp. 748–752.

[6] H.Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King,
‘‘Debugging the data planewith anteater,’’ inProc. ACMSIGCOMMConf.,
Aug. 2011, pp. 290–301.

[7] C. Basile, F. Valenza, A. Lioy, D. R. Lopez, and A. P. Pastor,
‘‘Adding support for automatic enforcement of security policies in
NFV networks,’’ IEEE-ACM Trans. Netw., vol. 27, no. 2, pp. 707–720,
Apr. 2019.

[8] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, ‘‘SymNet: Scal-
able symbolic execution for modern networks,’’ in Proc. ACM SIGCOMM
Conf., Aug. 2016, pp. 314–327.

[9] S. Spinoso, M. Virgilio,W. John, A.Manzalini, G.Marchetto, and R. Sisto,
‘‘Formal verification of virtual network function graphs in an SP-DevOps
context,’’ in Proc. Eur. Conf. Service-Oriented Cloud Comput., Sep. 2015,
pp. 253–262.

[10] S. Narain, ‘‘Network configuration management via model finding,’’ in
Proc. 19th Conf. Large Installation Syst. Admin. Conf., vol. 19, 2005, p. 15.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1251150.1251165

[11] G. Marchetto, R. Sisto, M. Virgilio, and J. Yusupov, ‘‘A framework
for user-friendly verification-oriented VNF modeling,’’ in Proc. IEEE
41st Annu. Comput. Softw. Appl. Conf. (COMPSAC), vol. 1, Jul. 2017,
pp. 517–522.

[12] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. G. Greenberg, G. Hjalmtys-
son, and J. Rexford, ‘‘On static reachability analysis of IP networks,’’ in
Proc. INFOCOM, Mar. 2005, pp. 2170–2183.

[13] C. Basile, D. Canavese, C. Pitscheider, A. Lioy, and F. Valenza, ‘‘Assessing
network authorization policies via reachability analysis,’’ Comput. Electr.
Eng., vol. 64, pp. 110–131, Nov. 2017.

[14] P. Kazemian, G. Varghese, and N. McKeown, ‘‘Header space analysis:
Static checking for networks,’’ in Proc. 9th USENIX Conf. Networked Syst.
Design Implement., Dec. 2012, p. 9.

[15] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu,
A. Robby, and H. Zheng, ‘‘Bandera: Extracting finite-state models from
Java source code,’’ in Proc. 22Nd Int. Conf. Softw. Eng., Jun. 2000,
pp. 439–448.

[16] K. Havelund and T. Pressburger, ‘‘Model checking JAVA programs using
JAVA PathFinder,’’ Int. J. Softw. Tools Technol. Transf., vol. 2, no. 4,
pp. 366–381, Mar. 2000.

[17] W. Wu, Y. Zhang, and S. Banerjee, ‘‘Automatic synthesis of NF models
by program analysis,’’ in Proc. 15th ACM Workshop Hot Topics Netw.,
Nov. 2016, pp. 29–35.

[18] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella, ‘‘Paving the way for NFV: Simplifying middlebox modifica-
tions Using statealyzr,’’ in Proc. 13th Usenix Conf. Networked Syst. Design
Implement., 2016, pp. 239–253.

[19] M.Weiser, ‘‘Program slicing,’’ inProc. 5th Int. Conf. Softw. Eng., Jul. 1981,
pp. 439–449.

[20] H. Agrawal and J. R. Horgan, ‘‘Dynamic program slicing,’’ in Proc.
ACM SIGPLAN Conf. Program. Lang. Design Implement., Jun. 1990,
pp. 246–256.

[21] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar, ‘‘BUZZ:
Testing context-dependent policies in stateful networks,’’ in Proc.
13th USENIX Symp. Networked Syst. Design Implement., Jul. 2016,
pp. 275–289.

99358 VOLUME 7, 2019

G. Marchetto et al.: Framework for Verification-Oriented User-Friendly Network Function Modeling

[22] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[23] B. Tschaen, T. B. Ying Zhang, J. L. Sujata Banerjee, and J.-M. Kang,
‘‘SFC-checker: Checking the correct forwarding behavior of service func-
tion chaining,’’ in Proc. IEEE Conf. Netw. Function Virtualization Softw.
Defined Netw. (NFV-SDN), Nov. 2016, pp. 134–140.

[24] A. Panda, O. Lahav, K. J. Argyraki, M. Sagiv, and S. Shenker, ‘‘Ver-
ifying isolation properties in the presence of middleboxes,’’ 2014,
arXiv:1409.7687. [Online]. Available: https://arxiv.org/abs/1409.7687

[25] W. Hodges, ‘‘Elementary predicate logic,’’ in Handbook of Philosophical
Logic, D. M. Gabbay and F. Guenthner, Eds. Dordrecht, The Nether-
lands: Springer, 2001, pp. 1–129. doi: 10.1007/978-94-015-9833-0_1.

[26] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker, ‘‘Verifying
reachability in networks with mutable datapaths,’’ in Proc. 14th USENIX
Symp. Networked Syst. Design Implement., 2017, pp. 699–718.

GUIDO MARCHETTO received the Ph.D. degree
in computer engineering from the Politecnico di
Torino, in 2008, where he is currently an Asso-
ciate Professor with the Department of Control
and Computer Engineering. His research topics
cover distributed systems and formal verification
of systems and protocols. His interests also include
network protocols and network architectures.

RICCARDO SISTO received the Ph.D. degree
in computer engineering from the Politecnico di
Torino, Italy, in 1992. Since 2004, he has been a
Full Professor of computer engineering with the
Politecnico di Torino. He has authored and coau-
thored more than 100 scientific papers. His main
research interests include formal methods, applied
to distributed software and communication proto-
col engineering, distributed systems, and computer
security. He is a Senior Member of the ACM.

FULVIO VALENZA received the M.Sc. degree
(summa cum laude) and the Ph.D. degree
(summa cum laude) in computer engineering
from the Politecnico di Torino, Torino, Italy,
in 2013 and 2017, respectively, where he is cur-
rently a Researcher. His research activity focuses
on network security policies, orchestration and
management of network security functions in
SDN/NFV-based networks, and threat modeling.

JALOLLIDDIN YUSUPOV received the M.S.
degree in computer engineering from the Politec-
nico di Torino, Italy, in 2016, where he is cur-
rently pursuing the Ph.D. degree in control and
computer engineering. His primary research inter-
ests include formal verification of security poli-
cies in automated network orchestration. His other
research interests include modeling, cyber physi-
cal systems, and cloud computing systems.

VOLUME 7, 2019 99359

http://dx.doi.org/10.1007/978-94-015-9833-0_1

	INTRODUCTION
	MOTIVATION AND RELATED WORK
	EASE OF USE
	SUPPORT OF STATELESS AND STATEFUL FUNCTIONS
	RELATED WORK

	MODELING TECHNIQUE
	LIBRARY
	PARSER
	STATELESS NETWORK FUNCTION
	STATEFUL NETWORK FUNCTION

	TRANSLATOR

	VERIFICATION
	NETWORK FUNCTION CATALOGUE
	EXPERIMENTAL RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	GUIDO MARCHETTO
	RICCARDO SISTO
	FULVIO VALENZA
	JALOLLIDDIN YUSUPOV

