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ABSTRACT
In this paper we discuss the system-optimum dynamic traffic assignment (SO-DTA)
problem in the presence of time-dependent uncertainties on both traffic demands
and road link capacities. Building on an earlier formulation of the problem based
on the cell transmission model (CTM), the SO-DTA problem is robustly solved, in
a probabilistic sense, within the framework of random convex programs (RCPs).
Differently from traditional robust optimization schemes, which find a solution that
is valid for all the values of the uncertain parameters, in the RCP approach we use a
fixed number of random realizations of the uncertainty, and we are able to guaran-
tee a priori a desired upper bound on the probability that a new, unseen realization
of the uncertainty would make the computed solution unfeasible. The particular
problem structure and the introduction of an effective domination criterion for dis-
carding a large number of generated samples enables the computation of a robust
solution for medium- to large-scale networks, with low desired violation probability,
with a moderate computational effort. The proposed approach is quite general and
applicable to any problem that can be formulated through a linear programming
model, where the stochastic parameters appear in the constraint constant terms
only. Simulation results corroborate the effectiveness of our approach.

KEYWORDS
Traffic assignment; Cell transmission model; Robust optimization; Scenario
optimization; Robustness analysis

1. Introduction

Traffic assignment problems deal with the management of vehicle flows in road net-
works and aim at determining flows according to some suitable optimality criterion,
while satisfying practical constraints, such as capacity and sustainable traffic limita-
tions on the network links (Bell & Iida, 1997; Friesz, Kwon, & Bernstein, 2007; Peeta,
1994; Peeta & Ziliaskopoulos, 2001). Notably, dynamic traffic assignment (DTA) aims
at allocating traffic flows based on a time-varying origin-destination (OD) demand to
a set of paths established on a network of roads. This problem, originally formulated
in the 1950s, has been tackled under two different optimality perspectives. The user
equilibrium, or Wardrop equilibrium allocation (UE-DTA), where the objective is a
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selfish optimization of the individual travel time (Wardrop, 1952), and the system-
optimal allocation (SO-DTA), which pursues a global optimization of the travel times,
toward the satisfaction of a social optimality objective, possibly at the expenses of the
individual optimality (Como, Lovisari, & Savla, 2016; Merchant & Nemhauser, 1978a,
1978b; Samaranayake et al., 2015).

The cell transmission model (CTM) has been one of the most used models to for-
malize and solve the SO-DTA problem (Daganzo, 1994, 1995). In particular, the for-
mulation made by Ziliaskopoulos (Ziliaskopoulos, 2000), which uses some relaxations
of the original constraints to yield a linear program, is the one adopted in this paper to
tackle the SO-DTA problem in the presence of uncertainty both in the traffic demand
and in the road link capacities. Indeed, a critical issue in mathematical programming
formulations of traffic assignment problems relates to the fact that the problem input
data, such as OD demand levels or effective capacities of links, are seldom known in
advance with precision. If nominal or expected values of such parameters are used in
an optimization model, the resulting optimal solution is likely to critically depend on
these values and to potentially yield poor system performance when the actual sys-
tem parameters deviate significantly from the nominal ones (Rasouli & Timmermans,
2012; Zhao & Kockelman, 2002).

The most commonly studied sources of uncertainties in DTA are variations in travel
demand (Garrett & Wachs, 1996; Oppenheim et al., 1995; Yang, Chen, Xu, & Wong,
2013) and in road capacities (Chung, Yao, Xie, & Thorsen, 2011; Sun, Gao, & Zhao,
2014). Several researchers agree on the fact that characterizing those uncertainties is
a key point in modeling DTA (Knoop, Hoogendoorn, & van Zuylen, 2008; A. Yazici,
Kamga, & Ozbay, 2015; M. Yazici & Ozbay, 2007). For instance, in (Smith, Qin,
& Venkatanarayana, 2003), a data analysis campaign leads to the observation that a
good fit for capacity reduction due to the occurrence of incidents is a Beta distribution.
Statistical characterization of uncertainties is a research topic on its own, and is out
of the scope of this paper. However, as it will be shown later, one of the strengths of
our approach is the capability to treat any statistical distribution that is assumed on
the parameter variations.

Standard approaches for dealing with uncertainty include numerically-intensive
techniques that solve a large number of problem instances for randomly generated
parameter patterns, followed by adjustments of the obtained solution on the basis of
on-line data, when available, see, e.g., (Peeta & Zhou, 1999). In (Ukkusuri, Mathew, &
Waller, 2007), a static assignment problem with uncertain OD demands is formulated
and solved by means of genetic programming. The approach provides near-optimal
solutions to the network design problem. However, genetic algorithms are notoriously
computationally intensive, and in the mentioned application parallelization and ap-
proximation techniques are put forward to deal with large scale networks. In (Waller
& Ziliaskopoulos, 2006), the dynamic SO-DTA problem is tackled in the case of time-
dependent demands, modeled as random variables with known probability distribu-
tions. However, the problem is solved only on a nominal scenario. In (Kachroo &
Ozbay, 2006), H∞ feedback theory is leveraged to solve a real-time robust SO-DTA
problem. However, the method is applied to a relatively small network and its applica-
tion to realistic, large scale networks may entail a heavy computational burden. In (Flo-
rian, Mahut, & Tremblay, 2008), the problem is tackled through a micro-simulation
approach able to face large networks. A scenario-based robust optimization approach
is used in (Karoonsoontawong & Waller, 2007) on a model formulated as a two-stage
stochastic program. Their work is however limited to small, not realistically-sized net-
works, and considers demand uncertainty only. Other works (e.g., (Quian, Shen, &
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Zhang, 2012) or (Lim, Rungta, & Baharnemati, 2015)) consider a path-based formu-
lation instead of a cell-based one. In (Ben-Tal, Chung, Mandala, & Yao, 2011), the
AARC method proposed in (Ben-Tal, Goryashko, Guslitzer, & Nemirovski, 2004) is
applied to the SO-DTA problem where decisions are taken at each time interval. Alter-
native approaches, based on Petri networks (Julvez & Boel, 2010; Kim, Kato, Okuma,
& Narikiyo, 2008) or on dynamic network flow models (Ma, Cui, & Cheng, 2004) do
not explicitly account for uncertainties in the modeling phase (Ma et al., 2004), or try
to compensate their effect with techniques inspired to model predictive control (Julvez
& Boel, 2010; Kim et al., 2008), which is computationally intensive, requiring the com-
putation of the optimal control input at each time step. In (Tuerprasert & Aswakul,
2010) a CTM generalization for the multiclass vehicles case is presented. In (Islam,
Vu, Panda, & Ngoduy, 2018) a linear programming model for optimizing the SO-DTA
is proposed, where the control signal is designed for minimizing the vehicle-discharged
emissions.

In most of the mentioned works, the stochastic data accounted for are only the
traffic demands, and the related uncertainty is usually modeled through a uniform
distribution bounded in an uncertainty box. Moreover, these methods are usually com-
putationally intensive and, when robustness features with respect to the uncertainty
sources are considered, their solutions lean towards the satisfaction of the worst case,
limiting in fact the effectiveness in managing the road network in the vast majority
of cases. In fact, in the classic framework of robust optimization (Ben-Tal, Ghaoui, &
Nemirovski, 2000; Ben-Tal & Nemirovski, 1998), uncertain parameters in the math-
ematical program are assumed to be unknown-but-bounded quantities and solutions
are sought such that relevant constraints are satisfied for all possible values of the
parameters, including the worst-case scenarios. Thus, a cost objective that is optimal
in this robust sense (for instance, the total travel time), provides a performance level
that is guaranteed for all the considered scenarios.

In this work, we propose a strategy to robustly solve, in a probabilistic sense, the SO-
DTA problem, based on the CTM (Ziliaskopoulos, 2000), in presence of uncertainty
on both the traffic demand and the road link capacities. To this aim, we leverage
random convex programming (RCP) (Calafiore, 2010), a robust optimization technique
based on the solution of convex optimization problems subject to a finite number of
random constraints. The strength of the proposed approach relies in the possibility of
accounting for any given or even unknown distribution (as long as samples from such
distribution are available) of the stochastic parameter set included in the constraints of
the problem, and to find a solution that guarantees a small level of violation probability,
that is, the probability that the solution is no longer optimal if a further random
constraint is added to the problem. This implies that: i) the solution obtained through
our approach will be valid for most of the scenarios occurring in the road network; ii)
the solution will not be heavily conditioned by the inclusion of worst-case scenarios
that tend to occur with a very low probability; and iii) the probability with which
a situation not considered in the optimization problem and for which the obtained
solution is unfeasible is known and can be tuned at will through a suitable choice of
the number of random constraints to be generated when the optimization problem is
solved.

We also show that the proposed approach is computationally affordable, and that
it can be used in applications where the computational time is a critical factor. Fur-
ther, we enhance the efficiency of the proposed optimization strategy by adopting an
effective constraint removal procedure. Such procedure is in general computationally
hard for a generic convex problem, but can be applied here in an affordable time, by
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exploiting the specific model structure. The technique used for deriving this model is
a novel result valid not only for this specific problem, but for all the models with the
same structure, namely linear programming models with uncertainties in the constant
terms of the constraints.

The rest of the paper is structured as follows. In Section 2, the SO-DTA cell model
is introduced, and a new equivalent formulation with a reduced number of decision
variables is derived. In Section 3, the probabilistic version of the problem is considered
and the corresponding RCP solution model is derived. All the computational results
on problems with increasing sizes are presented in Section 4. Finally, our conclusions
are drawn in Section 5.

2. Problem setup

We start by reviewing the linear programming formulation of the SO-DTA problem
introduced in (Ziliaskopoulos, 2000), based on the CTM defined in (Daganzo, 1994,
1995). In this context, a link represents a path connecting two distinct points on a
planar space, such as a street in a streets grid. A cell is a segment of a link having
length equal to the distance traveled by a vehicle during a fixed time interval τ if no
other vehicles are on the destination node (free-flowing vehicle). A network is described
as the set C of interconnected cells, indexed by i = 1, . . . , C, with C

.
= |C| and | · |

indicating the set cardinality operator. The system state x(t) ∈ NC0 is a vector whose
components xi(t) ∈ N0 represent the number of vehicles contained in each cell i ∈ C
at the discrete time t ∈ N0, with t = 0, 1, . . . , T , where T ∈ N is the time horizon
over which the system is analyzed. Besides its state, a cell is characterized by several
parameters and variables. In particular, we indicate with Γ(i) and Γ−1(i), the index
sets of cells following or preceding cell i ∈ C, respectively (see Table 1). The set
COR ⊆ C of ordinary cells comprises the cells that have exactly one predecessor and
one successor, i.e., COR = {i ∈ C : |Γ(i)| = |Γ−1(i)| = 1}. Diverging cells have
exactly one predecessor and more than one successor, i.e., their related set CDV ⊆ C
is defined as CDV = {i ∈ C : |Γ(i)| > 1, |Γ−1(i)| = 1}. Merging cells have more than
one predecessor and exactly one successor, i.e., their related set CMR ⊆ C is defined as
CMR = {i ∈ C : |Γ(i)| = 1, |Γ−1(i)| > 1}. Source cells do not have predecessors and have
exactly one successor, i.e., their related set CSR ⊆ C is defined as CSR = {i ∈ C : |Γ(i)| =
1, |Γ−1(i)| = 0}, and sink cells have exactly one predecessor and do not have successors,
i.e., their related set CSN ⊆ C is defined as CSN = {i ∈ C : |Γ(i)| = 0, |Γ−1(i)| = 1}.
The traffic demand is associated with source cells, through the variable di(t), which
represents the demand (inflow) at cell i in the t-th time interval. To simplify the
notation, we consider the existence of a variable di(t) for each cell, although this
variable is set to zero for all non-source cells. Initial cell occupation in the system is
set by the initial condition x(0) = ξ. Sink cells are assumed to have infinite holding
capacity and to allow infinite input flows (Ni(t) = ∞, Qi(t) = ∞, ∀t and ∀i ∈ CSN),
and source cells are also assumed to have infinite holding capacity (Ni(t) =∞, ∀t and
∀i ∈ CSR).

In the proposed formulation, the objective of the SO-DTA problem is to determine
network states xi(t) and flows yij(t) that minimize the total travel time in the network,
that is the sum of the travel times experienced by all vehicles in the network. Since
xi(t) vehicles stay in the i-th cell for τ units of time and sink cells do not contribute
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Symbol Description

Ni(t) maximum number of vehicles (holding capacity) in cell i at time t
Qi(t) maximum number of vehicles that can flow in or out cell i during

the t-th time interval
δi(t) free-flow to backward propagation speed ratio for cell i at time t
Γ(i) index set of successor cells to cell i
Γ−1(i) index set of predecessor cells to cell i
di(t) demand (inflow) of vehicles at cell i in the t-th time interval
xi(t) number of vehicles in cell i in the t-th time interval
yij(t) number of vehicles moving from cell i to cell j

in the t-th time interval
Table 1. Cell parameters and variables

to total system time, the cost objective function to be minimized is

J =

T∑
t=1

∑
i∈C\CSN

τxi(t). (1)

To tackle this problem, we start by considering the linear programming (LP) model
for the single-destination SO-DTA problem presented in (Ziliaskopoulos, 2000):

min J (2)

subject to, ∀i ∈ C, t = 1, . . . , T :

xi(t) = xi(t− 1) +
∑

j∈Γ−1(i) yji(t− 1)−
∑

j∈Γ(i) yij(t− 1) + di(t− 1) (3)∑
j∈Γ(i) yij(t) ≤ xi(t) (4)∑
j∈Γ(i) yij(t) ≤ Qi(t) (5)∑
j∈Γ−1(i) yji(t) ≤ Qi(t) (6)∑

j∈Γ−1(i) yji(t) ≤ (Ni(t)− xi(t))δi(t) (7)

xi(t) ≥ 0 (8)

yij(t) ≥ 0, (9)

with initial conditions xi(0) = ξi, yij(0) = 0, ∀i, j ∈ C, and where di(t) = 0 for all
non-source nodes. Equation (3) represents the flow balance at cells, equations (4–5)
constrain the output flow from cell i to be smaller than min(xi(t), Qi(t)), whereas
equations (6–7) impose that the input flow to cell i must not exceed the maximum
input flow capacity Qi(t) and a fraction of the remaining holding capacity at the
target node. The last two constraints impose that all the states and flows must be
non-negative.

Some remarks are in order. Constraint (7) formalizes a congestion model based on a
triangular dependency between the link capacity and the remaining holding capacity
at the destination node (Daganzo (1995)). Other studies model traffic congestion with
a different (usually concave) dependency, corresponding to a model in which δi(t) is
not constant, but depends on the destination holding capacity (Arbib, Muccini, and
Moghaddam (2018)). In this case, it is still possible to model the CTM as a LP through
a proper interval linearization. This would not affect the applicability of the methods
derived in this paper. We also observe that the CTM model is presented in the lit-
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erature for single destination networks. In fact, CTM does not allow to impose the
choice of a destination node to each vehicle, unless a FIFO mechanism is implemented,
resulting in a non-convex model (Carey, Bar-Gera, Watling, and Balijepalli (2014)).
A slight extension of the method can be put forward when multiple destination cells
are present, but the choice of the destination cell is not relevant, so that it can be
assumed that all the destination cells are connected to a unique virtual destination
cell. Consider for instance the use of the model for planning evacuation in case of
emergency (fires, floods, etc.). In this case, it is not important which of the multiple
destinations is reached by a vehicle, but only that a safe destination cell is reached.
Thus, we can consider that all the set of destination nodes are equivalent and con-
nected with a single virtual out of danger cell (Bayram (2016)). More recently, Long,
Wang, and Szeto (2018) propose a alternative intersection-movement formulation for
the simultaneous route and departure time choice (DSO-SRDTC), which is able to
consider both vehicle holding constraints and FIFO constraints. However, the latter
model leads to nonconvex nonlinear programming problems. Long and Szeto (2019)
introduce a Branch and Bound algorithm for the link-based SO-DTA, which is able
to capture FIFO constraints and optimally solve the problem for small dimension
networks, up to 43 nodes.

In the following subsections, we present a novel reformulation of the CTM model,
which allows us to reduce the number of model variables. This reduction will result
to be very useful later in reducing the number of samples to be generated in order to
ensure a certain probability of constraint violation.

2.1. Model reformulation in compact matrix form

The LP model previously defined can be recast in a compact matrix form. To this aim,
let Y (t) ∈ NC,C0 be a matrix with non-negative entries and such that Yi,j(t) = yij(t) = 0
whenever j 6∈ Γ(i), and denote by Y the set of non-negative matrices having this

sparsity pattern. Then, the total flow coming out of cell i at t is
∑C

j=1 Yi,j(t), while

the total flow entering cell i at t is
∑C

j=1 Yj,i(t). Let also form the following vectors by

stacking node-related quantities defined in Table 1: d(t) = [d1(t) · · · dC(t)]>, Q(t) =
[Q1(t) · · · QC(t)]>, N(t) = [N1(t) · · · NC(t)]>, ∆(t) = diag(δ1(t), . . . , δC(t). Finally,
let e ∈ NC0 be a vector such that ei = 1 if i 6∈ CSN and ei = 0 otherwise. Denoting with
1 a vector of ones of length C, the SO-DTA LP can be cast in the equivalent matrix
format

min
x(t)≥0,Y (t)∈Y

T∑
t=1

e>x(t) (10)

subject to, for t = 1, . . . , T :

x(t) = x(t− 1) + [Y >(t− 1)− Y (t− 1)]1 + d(t− 1) (11)

Y (t)1 ≤ x(t) (12)

Y (t)1 ≤ Q(t) (13)

Y >(t)1 ≤ Q(t) (14)

Y >(t)1 ≤ ∆(t)[N(t)− x(t)]. (15)
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2.2. Reduction of the number of variables

The problem formulated in the previous sections has T (C2 + C − |CSN|) variables. In
the following, we present a strategy to reformulate the problem reducing the number
of variables. Let fin(t)

.
= Y >(t)1, fout(t)

.
= Y (t)1 denote the vectors of total inflows

and total outflows at cells, respectively, and fin,i(t), fout,i(t) their i-th components.
Then, applying Eq. (11) recursively, for all t = 1, . . . , T, we obtain

x(t) = x(0) +

t−1∑
ν=0

(fin(ν)− fout(ν)) +

t−1∑
ν=0

d(ν), (16)

with x(0) = ξ, fin(0) = fout(0) = 0. We observe that, making the standard assumption
that diverging and merging cells cannot be directly connected (Ziliaskopoulos, 2000),
the knowledge of the total inflows and outflows at cells is sufficient for reconstructing
all the individual flows in Y (·). Notably, source, sink, and ordinary cells have only
one inflow or outflow link, which would obviously have a corresponding entry in fin(·),
fout(·). Diverging cells have multiple output flows, but each of them is uniquely deter-
mined by the corresponding inflow at the successor cells. Similarly, merging cells have
multiple inflows, each of them corresponding to the single outflow of a predecessor cell.

Therefore, substituting (16) into (10)–(15), we obtain a LP where the x(·) variables
have been eliminated and only the total flows fin(t), fout(t) appear. The individual
flows Y (t) can be reconstructed a posteriori on the basis of the network topology. If we

let the cumulative demand up to time t be ψ(t)
.
=
∑t

ν=0 d(ν), and the model objective

function be γ =
∑T

t=1 e
>x(t), then our LP takes the following form:

min
fin≥0,fout≥0,γ≥0

γ (17)

subject to:∑T
t=1 e

>ξ +
∑T
t=1

∑t−1
ν=0 e

> (fin(ν)− fout(ν))

+
∑T
t=1 e

>ψ(t− 1) ≤ γ (18)

fout(t) ≤ ξ +
∑t−1
ν=0 (fin(ν)− fout(ν)) + ψ(t− 1) ∀t ∈ 1, . . . , T (19)

fout(t) ≤ Q(t) ∀t ∈ 1, . . . , T (20)

fin(t) ≤ Q(t) ∀t ∈ 1, . . . , T (21)

fin(t) ≤

∆(t)
(
N(t)− ξ +

∑t−1
ν=0 (fin(ν)− fout(ν)) + ψ(t− 1)

)
∀t ∈ 1, . . . , T (22)∑

j∈Γ(i) fin,j(t) = fout,i(t) ∀t ∈ 1, . . . , T ;∀i ∈ CDV (23)∑
i∈Γ−1(j) fout,i(t) = fin,j(t) ∀t ∈ 1, . . . , T ;∀j ∈ CMR (24)

fout,i(t) = fin,j(t) ∀t ∈ 1, . . . , T ;∀(i, j) ∈ {(COR, COR), (CMR, CDV)}, i ∈ Γ−1(j) (25)

where constraints (19)-(22) are the result of the substitution of (16) in (11)-(15),
while constraints (23), (24) and (25) are necessary to keep information about the
flows between cells.

We observe that this new formulation uses 2 ·C · T + 1 variables only. Forming the
vector

X = [fin(1), . . . , fin(T ), fout(1), . . . , fout(T ), γ]> ,
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Figure 1. Transformation for directly connected diverging and merging cells.

the previous LP can be written in compact form as

min c>X subject to: (26)

AX ≤ B + EΘ, (27)

where the dependence on time has been dropped to enhance readability, c>
.
=

[0 0 · · · 0 1], and A,B,E are coefficient matrices that may be easily inferred from (17)–
(25). In particular, if we consider stochastic values for demands d and capacities N
and Q, the constant terms of constraints (27) are formed through the sum of two con-
tributions, where vector B contains all the deterministic terms and vector Θ contains
all the stochastic ones.

If the cumulative demand ψ(·) and the cell capacities N(·) and Q(·) are exactly
known in advance, the SO-DTA problem is then solved by the LP (26)-(27) in
the total flux variables. In the next section, we will instead consider the case of
uncertainty in those input data, and seek for solutions that are guaranteed to be
robust in a probabilistic sense, using the RCP approach.

As already stated, the presented variable reduction relies on the assumption that
diverging and merging cells cannot be directly connected. In case such condition does
not hold, the reduction strategy can be put forward by adding dummy ordinary cells
Dij in between the generic diverging node i and merging node j, as illustrated in
Figure 1. These additional cells do not contain vehicles in any finite time interval, and
are represented in the LP model by additional variables fDij

(t), which appear as both
the input and the output flow of such cells at the same time, thus not changing the
network behavior. Hence, the following procedure can be adopted:

• For each couple on nodes i, j : i ∈ CDV, j ∈ CMR, variables fDij
(t) ≥ 0, t ∈

1, . . . , T are added to the model.
• Constraints (23) and (24) are modified as follows:

∑
j∈Γ(i),j /∈CMR

fin,j(t) +
∑
j∈Γ(i),j∈CMR

fDij
(t) = fout,i(t) ∀t ∈ 1, . . . , T ;∀i ∈ CDV (28)∑

i∈Γ−1(j),i/∈CDV
fout,i(t) +

∑
i∈Γ−1(j),i∈CDV

fDij
(t) = fin,j(t) ∀t ∈ 1, . . . , T ;∀j ∈ CMR (29)

3. Traffic assignment under uncertainty

In the following, we will provide a formulation for the robust solution of problem (26)-
(27). At first (Sections 3.1 and 3.2) the problem is approached by considering as
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robustness criterion the classical worst-case robustness one. Then, the proposed ran-
domized scenario based method is presented in the subsequent sections.

3.1. Robust (worst-case) optimization

A generic formulation for the robust solution of problem (26)-(27) with uncertainties
can be given as follows. Consider the optimization problem

min c>X subject to: (30)

AX ≤ B + EΘ,with Θ ∈ U ⊂ Rm. (31)

Vector Θ represents the source of uncertainty of the problem, and the only available
information is that it belongs to a given uncertainty set U ⊂ Rm. In the framework
of robust optimization, constraint (31) must be always satisfied, irrespective of the
specific realization of the uncertainty Θ ∈ U . In this context, we say that X is a
robustly feasible solution to the uncertain optimization problem (30)-(31) if it satisfies
constraint (31) for all possible realizations of Θ, i.e.,

AX ≤ B + EΘ, ∀Θ ∈ U . (32)

A robustly optimal solution X∗ for (30)-(31) is a robustly feasible solution that mini-
mizes the objective, that is

X∗ = min
X

{
sup
Θ∈U

c>X : AX ≤ B + EΘ, ∀Θ ∈ U
}
. (33)

Generic robust optimization problems are not always computationally tractable, often
resulting in NP-hard formulations, see, e.g., (Ben-Tal & Nemirovski, 1998).

3.2. A simple sub-case

Although problem (33) is computationally hard in general, there are special cases in
which it can be solved efficiently. This occurs, for instance, if the uncertainty vector is
bounded to lie entry-wise within independent intervals. Indeed, if we assume that the
cumulative demand ψ(·) and capacities contained in Θ are bounded within intervals,
i.e., Θlow ≤ Θ ≤ Θup, where Θlow, Θup are vectors containing the lower and upper
bounds on the entries of Θ, respectively, then we can determine a robust solution of
the SO-DTA problem that is guaranteed to perform for all the values comprised in
the uncertainty box, including the worst-case scenario. We seek in this case a solution
to the following interval robust LP problem:

min c>X subject to: (34)

AX ≤ B + EΘ, ∀Θ : Θlow ≤ Θ ≤ Θup. (35)

The interval LP above can be readily cast and solved as a standard LP, with no addi-
tional computational effort with respect to a deterministic one with no uncertainties,
as detailed in the next proposition.
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Proposition 3.1. A solution for the robust SO-DTA in (34)-(35) can be obtained by
solving the standard LP

min c>X subject to: (36)

AX ≤ B + E+Θlow − E−Θup, (37)

where

[E+]ij =

{
[E]ij if [E]ij > 0
0 otherwise

,

[E−]ij =

{
−[E]ij if [E]ij < 0
0 otherwise

.

Proof. The proof is straightforward: considering the i-th row of constraints (35) and
denoting the i-th row of matrix A with Ai,:, we have

Ai,:X −Bi ≤
∑
j

EijΘj , ∀ Θlow,j ≤ Θj ≤ Θup,j

m
Ai,:X −Bi ≤ min

Θlow≤Θ≤Θup

∑
j

EijΘj

=
∑
j

min
Θlow,j≤Θj≤Θup,j

EijΘj

=
∑
j

{
EijΘlow,j if Eij > 0
EijΘup,j if Eij ≤ 0

from which the statement easily follows. �

3.3. Randomized scenario-based optimization

As discussed in Section 3.1, the robust worst-case approach to the SO-DTA is in gen-
eral computationally unaffordable (except in some very special cases, such as the one
discussed in Section 3.2). Besides, such a worst-case approach can be very conserva-
tive, since constraints are enforced for all possible realizations of the uncertainty, even
the rarest or very unlikely ones. Further, since such a solution is basically grounded
on the worst set of constraints, it will most likely yield to an underuse of the potential
of the road network. Contrary, the probabilistic approach based on RCP (Calafiore,
2010) aims at obtaining an optimal solution that is valid for most, yet not all the
cases. Moreover, the RCP approach provides a bound on the probability of failure of
the optimal solution, in terms of a violation probability, as it is detailed in the following
paragraphs. The RCP approach also allows to manage a wider category of constraints.
In fact, here we do not limit the uncertainty vector Θ to be limited within two bounds,
but assume Θ to be a realization of a stochastic variable with some probability distri-
bution, which may be even unknown to the problem solver, as long as samples from
this distribution are available.
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The main concept underlying RCP is to seek for solutions of a given program that
result feasible with a given probability on new, unseen scenarios. More formally, re-
ferring to problem (30)-(31), the first step is to impose the constraint (31) to hold at
least with an assigned probability 1 − ε, where ε ∈ (0, 1) is a given small level. The
problem formulation resulting from such an approach is a so-called chance-constrained
optimization problem of the form (see, e.g., (Prekopa, 1970))

min c>X subject to: (38)

Prob{AX ≤ B + EΘ} ≥ 1− ε, (39)

with the understanding that the probability constraint is here imposed jointly on all
rows of the constraints AX ≤ B + EΘ. This joint chance-constrained LP problem,
however, is very hard to solve exactly, see, e.g., (Luedtke, Ahmed, & Nemhauser, 2010).

A solution strategy that permits to alleviate the conservativeness of the deter-
ministic worst-case approach, while also avoiding the complexity of the joint chance-
constrained LP formulation is the so called Random Convex Programming with Vi-
olated constraints (RCPV) methodology, described in Section 4 of (Calafiore, 2010).
According to the RCPV method, one considers S samples Θ(s), s = 1, . . . , S, of Θ,
generated according to its probability distribution, and then solves a standard LP of
the form

min c>X subject to: (40)

AX ≤ B + EΘ(s), s ∈ S, (41)

where S = {1, . . . , S}\R, beingR a suitably selected subset of {1, . . . , S} of cardinality
R. The idea is to impose the constraints AX ≤ B+EΘ(s) for all but R of the sampled
Θs. The R constraints that are neglected should be suitably selected among the ones
in {1, . . . , S} in order to reduce the objective function value.

Consider a generic vector Θ̄, which may be used to form a constraint for the opti-
mization problem. Once the solution X∗S,R of problem (40)-(41) is computed, Θ̄ may
keep the problem feasible, or make it unfeasible. Hence, we define the constraint vio-
lation probability for the optimal solution as

V ∗ = Prob{Θ̄ : AX∗S,R 6≤ B + EΘ̄}.

A fundamental theoretical result establishes a relationship between the number of
randomly generated samples S and the violation probability V ∗, as detailed in the
following proposition.

Proposition 3.2. Consider problem (40)-(41), and two scalars β ∈ (0, 1) and ε ∈
(0, 1). If the number S of random constraints considered in the problem is such that

S ≥ 2

ε
lnβ−1 +

4

ε
(R+ ζ − 1), (42)

where ζ is equal to the number of decision variables in X, then it is guaranteed that

Prob{V ∗ ≤ ε} > 1− β. (43)

Proof. The proposition is proved in Corollary 5.1 of (Calafiore, 2010). �
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Remark 1. Since β−1 appears under a logarithm in (42), it is customary in RCPV
applications to choose a very small level, say β = 10−9, so that the event {V ∗ ≤ ε} is
almost certain to all practical purposes. RCPV theory then guarantees that by solving
problem (40) one finds an optimal solution X∗S,R that almost certainly satisfies the

chance constraint Prob{AX ≤ B+EΘ} ≥ 1− ε, and provides a bound on the number
S of constraints to be generated in order to guarantee such probability.

3.4. Constraint filtering and optimal removal

In this section we describe the specific approach used for dealing with the constraints
in (41), and for solving problem (40). Two issues are discussed next. The first issue is
the application of the RCVP method, where we show that a high number of constraints
in (41) is redundant, and can be eliminated before starting the actual optimization
phase, thus greatly reducing the computational burden. The second issue is related to
the way in which the set of R samples to be a posteriori discarded is selected. Here,
this is done optimally, by suitably recasting the problem with the addition of a vector
of boolean decision variables and a filtering procedure in order to reduce the number
of candidate samples.

3.4.1. RCPV application

Let S be the number of generated samples, according to Eq. (42). Let Θ(s) be the
vector representing the s-th sample of Θ. The robust problem is

min c>X subject to: (44)

AX ≤ B + EΘ(s), ∀s = {1, . . . , S} \ R. (45)

Consider first R = 0. Problem (44) is easily solvable, being a standard LP. However,
if S is large (e.g., in the order of the millions), the number of constraints in the LP is
S ·M , where M is the number of rows in (27), hence it may be hard even to store in
memory the problem description. However, the following result holds.

Proposition 3.3. A solution for the probabilistically robust SO-DTA in (44), with
R = 0, can be obtained by solving the following LP

min c>X subject to: (46)

AX ≤ B + γmin (47)

where γmin is the vector whose components m = 1, . . . ,M are

γmin,m = min
s=1,...,S

EΘm
(s). (48)

Proof. In (44) each constraint is repeated S times with a different constant term only.
Hence, only the constraint having the minimal constant term has to be considered,
while all the others are redundant. From this observation, the statement easily follows.
�
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3.4.2. Optimal selection of the removed samples

Let now R > 0 be the number of samples to be a posteriori removed from the prob-
lem formulation in order to improve the solution quality. We derive here a filtering
procedure to reduce the number of removal candidates, and a mixed-integer linear pro-
gramming (MILP) model in order to optimally choose, among the remaining samples,
the best R to be removed.

At first, note that not all the M constraints are stochastic. In fact, some of them,
depending on the problem structure, may be deterministic and hence not modified by
the generated samples values. Let us denote byMDT andMST the sets of constraints
with a deterministic or stochastic constant term, respectively, and define the size of
those sets by MDT and MST respectively (M = MDT+MST). Let us define the constant
term of a constraint m resulting from a sample s as

γm,s =
∑
k

EmkΘ
(s)
k . (49)

While a constraint belonging toMST has different γm,s for each sample s, a constraint
m ∈MDT is independent on the sample, and can be defined as:

γm = γm,s ∀s ∈ 1, . . . , S. (50)

Consider now the m-th constraint m ∈MST (repeated S times, one for each sample)

Am,:X −Bm ≤ γm,s ∀s = 1, . . . , S. (51)

Due to the specific constraint structure, not all the S samples are suitable candidates
for removal. In fact, only removing one of the R samples with the minimal values
of γm,s among the S removal candidates can result in a constraint relaxation and,
consequently, in a possible improvement in the objective function. Hence, it is possible
to derive a samples filtering procedure, only keeping the only possible candidates for
elimination.

Let γval
mp be the value of the p-th (in non decreasing order) right-side constant term

of constraint m among all the samples s = 1, . . . , S, and γind
mp the sample index that

generated that term. For both matrices we consider all the constraints (m = 1, . . . ,M)
and the first R+1 positions only (p = 1, . . . , R+1). Note that the constraints referring
to position R + 1 is not a candidate for removal, but we need to store its value, as
it will be clarified in the following proposition. Hence, the possible candidates for
elimination are S∗ = ∪m:1,...,M,p:1,...R(γind

mp), which are at most M · R, in the general
case where M = MST. The following proposition introduces a MILP model able to
optimally choose the samples to be removed in order to improve as much as possible
the objective function.

Proposition 3.4. Let Z be a vector of additional binary decision variables of size
|S∗| (Zs ∈ {0, 1}, ∀s ∈ S∗) with the following meaning:

Zs =

{
1 if sample s is removed from the sample set,

0 otherwise.
(52)

The optimal solution for the robust SO-DTA with R > 0 in (44)-(45) can be obtained
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by solving the following LP:

min c>X subject to: (53)

Am,:X −Bm ≤ γval
mp + (γval

m,R+1 − γval
mp)Zγind

mp
, ∀p ∈ 1, . . . , R,∀m ∈MST (54)

Am,:X −Bm ≤ γm ∀m ∈MDT (55)∑
s∈S∗ Zs = R. (56)

Proof. The objective function (53) is the same of the original problem. Each stochastic
constraint (54) is repeated R times, one for each candidate sample: if a sample s is
not selected for removal (Zs = 0), the constraint results in

Am,:X −Bm ≤ γval
mp ∀p ∈ 1, . . . , R (57)

enforcing the sample constraints, whereas if sample s is selected for removal (Zs = 1)
the constant term of the constraint becomes γval

s,R+1 and the effect of the constraint

is nullified (in case all of the candidates at positions 1, . . . , R are removed from a
single constraint m, the constraint constant term γm,s will be the (R + 1)-th one).
Deterministic constraints (55) are repeated only once (the constant term is the same
for all samples). Constraint (56) sets R as the number of constraints to be removed.
This formulation is then able to optimally select the R samples to be removed from
the samples set in order to achieve the best improvement in the objective function. �

The overall model (53) results in MDT+MST·R constraints, and a maximum of MST·
R binary variables, while the original number of continuous variables is not changed.
Note that while generating the samples, in order to avoid using a huge quantity of
memory to store dominated and consequently useless samples, it is not necessary
to store all of them, yet we can filter them keeping track of the real candidates S∗
only. This way, we obtain a greatly improved possibility of increasing the number of
generated samples. The overall generation procedure is described in Algorithm 1.

Algorithm 1 Samples generation and filtering.

for count = 1, . . . , S do
generate sample s
for m = 1, . . . ,M do

if m /∈MST then
continue

end if
compute γm,s
if γm,s > γval

m,R+1 then
continue

end if
order insert γm,s in γval

m

update γind
m accordingly

end for
end for

Proposition 3.5. The computational complexity of Algorithm 1 is S ·o(C ·T · log(R)).

Proof. The insert operation in an already ordered vector is realized with a o(log(R+1))
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complexity algorithm, which is repeated at maximum MST · S times. Finally, MST ≤
M = 4 · C · T + 1, from which the proposition follows. �

Hence, the worst case expected CPU time needed for the samples generation is
proportional to the number of generated samples, the number of cells and the number
of considered time periods, while R can be increased with a lesser impact (logarithmic)
on the additional time.

3.4.3. Heuristic selection of the removed samples

On large instances, or with a large R setting, solving the integer programming model
of proposition 3.4 to optimality could require a long computational time. It is always
possible to set a time limit for the MILP solver: when the optimal solution is not
yet found when the limit is met, the solver will return the best solution found up to
that moment, and its optimality gap (ratio between the objective function value and
the worst-case lower bound for all the open nodes of the search tree). Note that the
Branch and Bound algorithm embedded in MILP solvers often spends a large amount
of time verifying the optimality of an already found solution, see (Ozaltin, Hunsaker,
& Schaefer, 2011). Hence, a good solution, if not the optimal one, may already be
available when the time limit is met. In case not enough time is available for obtaining
a good solution, we introduce a simple heuristic algorithm able to find a good solution
in a limited amount of time. The main steps are:

• Relax the integrality of Z variables, substituting the definition Zs ∈ {0, 1} ∀s ∈
S with 0 <= Zs <= 1 ∀s ∈ S. The resulting model is a continuous variables
LP model (computationally easily solvable).
• The optimal solution of the relaxed problem is unlikely integer, but the infor-

mation about the values of the continuous variables Zs can be used to derive an
integer solution: if a variable has a value nearer to one, it is more likely to be
one in a good solution than a variable with a lower value.
• We then select the Kfix variables Zs with the highest value, and we add a con-

straint on those variables setting them to 1.
• The model is then solved again, and the fixing procedure is repeated, until we

have exactly Z variables with value 1.
• The number Kfix of variables to be fixed at each iteration can derived by com-

putational testings.

The detailed pseudocode of the overall procedure is provided in Algorithm 2.

Algorithm 2 Heuristic Algorithm

- consider model (53).
- substitute the integrality definition Zs ∈ {0, 1} with 0 ≤ Zs ≤ 1, ∀s ∈ S.
- solve the obtained (continuous variables) model to optimality.
while R1 =

∑
s∈S:Zs=1.0 Zs 6= R do

- order Zs in non-decreasing order. Let Sz be the set of indexes s referring to the
first min(Kfix, R−R1) values such that Zs 6= 1.0.
- add the constraints Zs = 1.0, ∀s ∈ Sz.
- solve the updated (continuous variables) model to optimality.

end while
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4. Computational results

The presented approach has been tested on different networks. The first is an ad-hoc
synthetic network, which can be dynamically generated in different sizes. The second
is a network taken from the literature ((Sun et al., 2014), (Waller & Ziliaskopoulos,
2006)), derived from a real geographical area. Then, in order to test the approach ap-
plicability on larger, realistically sizes, a scalability test has been performed using both
synthetic networks and a larger 620 cells one. In all the experiments, we obtain a set of
solutions using different values for ε and R, and we compare them with the solutions
obtained using the deterministic model (expected values of the uncertain data), and
the one obtained through the worst-case optimization approach presented in Section
3.1. Note that the worst-case approach can be applied only if all the uncertainties are
assumed to be bounded in intervals; the introduced probabilistic approach is instead
applicable for general uncertainty distributions. All the generated solutions are then
tested a posteriori for feasibility on a new set of 5000 samples, hence measuring the
capacity of the solution to remain feasible on new scenarios (i.e., the solution robust-
ness). Clearly, the results of the deterministic method in terms of objective function
only will never be worse than the ones obtained with any robust method (if things
goes exactly as predicted, the solution is then optimal), but solutions will have a very
high violation probability for new samples. In terms of traffic, any violated constraint
would result in traffic left behind in the previous nodes, generating congestions. The
set of obtained solutions has been evaluated in a bi-objective setting, considering the
original objective function, and the associated percentage of unfeasible new scenarios.
Recall that a solution is Pareto efficient if none of the objective functions can be im-
proved in value without degrading the other one (Ehrgott, 2005). Any solution worse
than an efficient one for all the considered objective functions is a dominated solution.
Then, it is possible to check all the obtained solutions with the aim of identifying the
Pareto efficient ones. Note that, without additional subjective preference information,
all Pareto optimal solutions are considered equally good.

4.1. A synthetic network

The synthetic network in this example is composed by a graph of cells organized in
layers. A parameter Kgen controls the network dimension and the network is generated
through the following layers:

• Layer 1: Kgen source cells. Each source cell is connected to a single cell in the
second level.
• Layer 2: Kgen diverging cells. Each cell is indirectly connected to a single cell in

level 4, through one and only one cell of layer 3.
• Layer 3: K2

gen ordinary cells.
• Layer 4: Kgen merging cells. Each cell is connected to a single sink node at layer

5.
• Layer 5: Kgen sink cells.

As previously stated, the model can be applied on multiple sink cells networks, as far
as it is immaterial which destination node the incoming traffic is routed to. This is also
equivalent to the model obtained adding a single final node, connected from all the sink
nodes, with infinite capacity incoming links, as in the synthetic network with Kgen = 2
exemplified in Figure 2 where the number of generated cells is C = K2

gen +4Kgen = 12.
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Figure 2. Cell representation of a synthetic network with Kgen = 2.

Other network input data are:

• The capacities Qi(t) are set to ∞ for source and sink cells, and to 10 vehicles
per time interval for all other cells.
• The free-flow to backward propagation speed ratio δi(t) is set to 1, without loss

of generality.
• The considered time horizon T is 30 time units.
• The demand di(t) at the source cells is initially described by a uniform distri-

bution U(50, 200) applied to each of the first 5 time intervals. Then, it is set to
0.
• The cell holding capacities Ni(t) are set to ∞ for source and sink cells, whereas

a uniform distribution U(15, 25) is used for the cells at layer 3 of the network,
and to 20 for all other cells.

The software for generating the samples has been implemented in C++ language
and the tool FICO XPress-MP version 7.9 has been used on a 8GB memory Intel
i5-6200U 2.80GHz PC system in order to solve the MILP model described in
Proposition 3.4.

Two networks have been generated, using Kgen = 3 (21 cells) and Kgen = 4 (32
cells), respectively. The results are summarized in Tables 2 and 3. The result tables
present the required violation probability ε (while β is set to 10−6 in all experiments),
the number of samples that have to be generated in order to respect that probability
(in accordance to eq. (42)), the number R of samples to be removed in the improvement
procedure, the number of samples remaining from the filtering phase (also, the number
of binary variables of the samples removal model), the CPU time Tgen required for
samples generation, the optimal objective function O.F. obtained by the solver, its
improvement with respect to the worst case solution approach, the CPU time Tsol

required by the solver to reach the optimal solution, and the number of samples,
among the new 5000 test samples, for which the solution resulted to be unfeasible.
The bold cells identify the Pareto efficient solutions. Both the efficient and dominated
solutions are also represented in Figures 3 and 4, where the axes represent the optimal
objective function (horizontal axis) and the number of unfeasible new samples (vertical
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axis). Notice that the only solution that is listed in the tables but not represented in
the figures is the nominal one, since it would appear as out of scale compared to all
the others.

In the first network the constraints are 2521. Among them, due to the stochasticity
in demands and capacities, 451 constraints are stochastic. In the second network the
constraints are 3841, and 721 of them are stochastic.

The sample generation to obtain the requested robustness level is fast and effectively
filters the samples, reducing the number of binary variables of the sample removal
model.

As expected, while the generation is always fast (below 10 seconds), the sample
removal model becomes harder as R increases, due to a larger number of binary vari-
ables associated to the reduced samples. Anyway, the solver is always able to find the
optimal solution in a few seconds.

Moreover, note that the removal procedure is particularly effective on the solution
objective function. For instance, the objective function of the solution obtained with
the maximum tested robustness (ε = 0.05) when R = 200 is always better than
the solution with a lower one (up to ε = 0.25) without using the removal procedure
(R = 0).

The results of the a posteriori testing of the solutions on new samples show that
most of the solutions are much more robust than predicted by the theory. In particu-
lar, the theoretically guaranteed feasibility on new samples is around 1 − ε, while all
the solutions show experimentally a feasibility greater than 0.98. Particular cases are
represented by the nominal solution (based on the expected values of the stochastic
distributions), which shows, as expected, a high level of unfeasibility, and the worst-
case robust solution which is guaranteed to be always feasible on any new problem
sample. This higher-than-expected robustness can be explained by the fact that the
theory is conservative, providing only a guaranteed bound on the violation probability.

The objective function improvement with respect to the worst case robust solution
is ranging from 17% to 28%, depending on the algorithm setup.

Finally, note that a large number among the Pareto efficient solutions have been
obtained by the models with R > 0, and often with the largest tested values of R.
This means that the a posteriori constraint removal method is particularly efficient in
order to achieve better solutions than the one that are obtainable simply increasing
or decreasing the number of generated samples.

4.2. 62 Cells Network

As a second example, we tested the performance of our approach on a network intro-
duced in (Waller & Ziliaskopoulos, 2006) and (Sun et al., 2014), which is derived from
a real geographical area. The network is composed by 62 cells, and is represented in
Figure 5, where the node-arc representation on the left, with 22 nodes, is translated
into the cell representation on the right. Note that the arcs (57, 9) and (57, 58) di-
rectly connect a diverging and a merging cell. As described in Section 2.2, in order to
apply the variable reduction, two dummy cells D57,9 and D57,58 have been added to
the network.

Similarly to the papers where this network has been already used for testing, only
the demand is supposed to be stochastic in this case study. The demand distributions
at the source cells are U(400, 800) for node 1 (cell 54), and U(200, 250) for nodes 8
and 13 (cells 55 and 56). This demand is generated at time t = 0, . . . , 5 only. The
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Figure 3. Efficient and dominated solutions for the 21 cells network of Section 4.1.

0

5

10

15

20

25

30

35

40

45

60000 70000 80000 90000 100000

U
nf

ea
si

bl
e 

Sa
m

pl
es

 

Objective Function 

Dominated Solutions
Efficient Solutions

Figure 4. Efficient and dominated solutions for the 32 cells network of Section 4.1.
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Figure 5. Link and cell representation for the realistic network described in Section 4.2.

time horizon is set as T = 105. The network parameters configuration is summarized
in table 4. Results are presented in Table 5, while Figure 6 shows the selection of
Pareto efficient solutions.

Note that, compared to the previous synthetic examples, the requested samples to be
generated for achieving the same robustness is highly increased. This mainly happens
because of equation (42) due to the increase in variables of the original problem (more
cells, and a larger time horizon). Hence, the computational time needed for generating
the samples increased as well. Anyway, the filtering procedure is very effective in terms
of samples reduction, and the time requested by the solver to reach the optimal solution
is of the order of a few seconds. The reason for this very good filtering algorithm result
is that the demand here is generated at time t = 0, . . . , 5, and on three cells only, with
a less connected network graph than in the previous examples. Hence, most of the
problem constraints do not have a stochastic term. Moreover in most of the stochastic
constraints the demand appears with a similar constraint structure, which means that
a few samples (basically, the ones with lower demand) dominate all the other ones.
The quality of the solutions, again, is improved using higher R values. For the same
reason, the improvement from the worst case solution is still substantial but smaller
than in the synthetic problem case, ranging from 5% to 10%.

The lower stochasticity of the problem can be seen in the a posteriori solutions
feasibility. Again, the real robustness of the solution is greatly higher than the the-
oretically guaranteed one. And again, most of the efficient solutions are found using
higher R values showing the great potential of the constraint elimination method.
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Figure 6. Efficient and dominated solutions for the 62 cells realistic network described in Section 4.2.

4.3. Scalability Test on Synthetic Networks

In order to test the scalability of the proposed approach, additional testings have been
performed for networks defined as in Section 4.1, for Kgen ranging from 5 (45 nodes)
to 16 (320 nodes), using four different algorithm configurations, with ε = 0.1 or 0.2,
and R = 50 or 100. Results are presented in Figure 7, where the time requested by the
samples generation algorithm Tgen, by the optimal constraints removal algorithm Tsol

and the total one Ttot = Tgen + Tsol on all the generated instances are presented, as a
function of Kgen. As expected, the generation algorithm is more influenced by ε than by
R, because of the increasing number of samples to be generated. On the contrary, the
optimal constraints removal is larger when R is larger, because of the cardinality of the
variables array Z generated in the LP model. Tsol seems less predictable than the time
needed by the generation algorithm but remains computationally tractable. For the
presented experiments, a maximum time of 3000 seconds has been set, but it has never
been reached. Also, the graph representing the test network is more connected (ratio
between the cardinality of arcs set and node set in the graph) than the networks used
for transportation problems in literature (see for instance (Transportation Networks
for Research Core Team, 2019)), creating models with more random constraints than
in a real network. Hence, the computational time presented here can be considered as
a sort of upper bound on the time needed on a real network with the same size.

4.4. A large 620 cells network

In order to stress the algorithm performances on a large, realistically sized network,
the previously introduced 62 cells network have been used in order to generate a larger
network. The original network has been duplicated 10 times and the different copies
have been connected as illustrated in Figure 8: on the left, the connections from/to a
single subnetwork are presented, while on the right the overall network is illustrated.
The result is a network composed by 620 cells (7 sources) and 692 links. The network
configuration (summarized in Table 6) has stochasticity in both the demand and the
cell holding capacity. In particular, note that Ni(t) has been defined through a discrete
distribution on the cells belonging to the central freeway for all the sub-networks: its
value is set to 20 with probability 0.5, or 30 otherwise, modeling, for instance, the
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Figure 7. Scalability testing results on synthetic networks.

opening/closing of an additional lane. One of the strength of our approach is that it
can be used independently of the distribution of the uncertain parameters. Note that
the resulting linear programming model is quite large, already for R = 0, counting
74421 continuous variables and 297601 constraints. The constraints with a stochastic
constant term are 14881. For this reason, and considering that, for all previous test-
ings, the method seems to be more conservative than theoretically expected, higher
values of the parameter ε have been considered, compared to the previous tests: 0.25
and 0.5, with R ranging from 0 to 20. A time limit of Tlim = 3000 s has been set for
the solver. Results are presented in table 7 and figure 9. Note that the time required to
generate the samples increased proportionally with the number of samples, while the
good behavior of the filtering procedure, in terms of samples reduction, is confirmed.
The solver time limit has been reached in only one instance, and the solution that the
solver attained in that case is actually the optimal one (it would have required about
600 additional seconds to prove it). The quality of the solutions, again, is improved
using higher R values. The improvement from the worst case solution is ranging from
4% to 9%. It is also confirmed that the real robustness of the solution is consistently
higher than the theoretically guaranteed one. In order to further compare the solu-
tions’ quality, and relate it to transportation-related performance indices, we carry
out an analysis on the average number of uncongested cells (i.e., cells that are in the
free-flowing speed condition). Figure 10 summarizes the results of such an analysis.
On the horizontal axis, the solutions of Table 7 have been sorted according to their
improvement, in terms of objective function, with respect to the robust (worst-case)
solution. On the vertical axis, for each solution, we plot the average percentage of
time slots in which cells are in the uncongested state. This quantity is averaged on
all cells, on freeway cells only, and on non-freeway cells only, respectively. We observe
that solutions with an improved value in the objective function generally correspond
to solutions that favor the inception of uncongested states. Some remarkable exception
is constituted by freeway cells, which are sometimes more congested in correspondence
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Figure 8. The 620 cells network

of solutions with a better value of the objective function. However, in these cases, the
congestion is much more mitigated over secondary, non-freeway roads.

4.5. Heuristic algorithm computational test

The heuristic algorithm presented in section 3.4.3 has been tested on the samples re-
moval problems of the 620 cells network. Results are summarized in table 8 where
objective functions and required CPU time of the exact (Tsol) and heuristic (Theur)
approaches are compared. Preliminary testings indicated that the best algorithm con-
figuration was with Kfix = 20. Hence, the algorithm performs only one iteration. The
obtained solutions are already tight enough to the optimal values, and using more iter-
ations would results in a very small improvement. It is also interesting that about half
of the time Theur is actually used by the solver only to load the problem structure in
memory, and would be probably reduced using a solver with a more efficient memory
management.
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Figure 9. Efficient and dominated solutions for the 620 cells network

Figure 10. Congestion analysis for the 620 cells network
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Table 2. Results with Kgen = 3 (21 cells) for the synthetic network of Section 4.1

ε R Samples Reduced Samples Tgen (sec) O.F. Impr. Tsol (sec) Unf. New Samples

Deterministic - - - - 43956.11 - 0 4830

Worst Case - - - - 74331.11 - 0 0

0.05 0 101433 299 4 61608.17 17% 0 1

0.05 20 103033 6091 5 58870.88 21% 2 2

0.05 40 104633 11455 6 58674.10 21% 4 3

0.05 60 106233 16720 6 58482.19 21% 7 5

0.05 80 107833 21568 6 57758.88 22% 9 8

0.05 100 109433 26338 6 57765.85 22% 10 8

0.05 200 117433 46488 7 56921.70 23% 20 12

0.1 0 50717 298 2 61731.29 17% 0 4

0.1 20 51517 5879 2 58403.28 21% 2 9

0.1 40 52317 10893 3 57843.91 22% 5 7

0.1 60 53117 15357 3 57455.71 23% 5 13

0.1 80 53917 19352 3 57394.31 23% 7 10

0.1 100 54717 23053 3 56803.06 24% 9 13

0.1 200 58717 37438 3 55992.04 25% 18 21

0.15 0 33811 297 1 62384.17 16% 0 2

0.15 20 34345 5679 2 58556.11 21% 2 3

0.15 40 34878 10295 2 57597.44 23% 4 11

0.15 60 35411 14132 2 57119.14 23% 5 11

0.15 80 35945 17563 2 56587.95 24% 7 16

0.15 100 36478 20396 2 56518.38 24% 9 14

0.15 200 39145 30594 2 55418.25 25% 17 33

0.2 0 25359 295 1 61197.34 18% 0 4

0.2 20 25759 5499 1 58131.67 22% 2 11

0.2 40 26159 9718 1 57404.21 23% 5 10

0.2 60 26559 13051 1 56432.46 24% 6 19

0.2 80 26959 15782 1 56350.58 24% 7 25

0.2 100 27359 18146 1 55982.73 25% 9 27

0.2 200 29359 25376 2 55040.46 26% 16 41

0.25 0 20287 291 0 61250.03 17% 0 7

0.25 20 20607 5395 1 57856.59 22% 1 19

0.25 40 20927 9217 1 56768.13 24% 5 16

0.25 60 21247 12195 1 56482.08 24% 6 23

0.25 80 21567 14446 1 56025.20 25% 6 27

0.25 100 21887 16295 1 55659.21 25% 9 31

0.25 200 23487 21596 1 54725.90 26% 18 58

0.3 0 16906 296 0 60291.18 19% 0 9

0.4 0 12680 291 0 61485.82 17% 0 8

0.5 0 10144 291 0 61485.82 17% 0 19

0.6 0 8453 293 0 59823.58 20% 0 22

0.7 0 7246 294 0 59823.58 20% 0 30

0.8 0 6340 294 0 59823.58 20% 0 30

0.9 0 5636 293 0 59133.01 20% 0 32
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Table 3. Results with Kgen = 4 (32 cells) for the synthetic network of Section 4.1

ε R Samples Reduced Samples Tgen (sec) O.F. Impr. Tsol (sec) Unf. New Samples

Deterministic - - - 0 58608.15 - 0 4783

Worst Case - - - 0 99108.15 - 0 0

0.05 0 154233 517 11 82458.80 17% 0 0

0.05 20 155833 10455 12 77371.53 22% 2 0

0.05 40 157433 19804 13 76121.99 23% 8 1

0.05 60 159033 28609 14 75598.89 24% 12 1

0.05 80 160633 36832 14 75511.85 24% 15 1

0.05 100 162233 44579 15 75077.95 24% 20 5

0.05 200 170233 77507 17 74248.03 25% 41 3

0.1 0 77117 518 6 80416.49 19% 0 2

0.1 20 77917 10137 6 76771.43 23% 3 0

0.1 40 78717 18562 6 75815.37 24% 7 2

0.1 60 79517 25908 7 75021.20 24% 10 4

0.1 80 80317 32560 7 74683.69 25% 15 4

0.1 100 81117 38398 7 74212.57 25% 20 3

0.1 200 85117 59879 9 73285.28 26% 46 12

0.15 0 51411 520 3 80122.73 19% 0 3

0.15 20 51945 9780 4 75831.46 23% 4 4

0.15 40 52478 17305 4 74879.50 24% 7 4

0.15 60 53011 23701 5 73981.08 25% 10 5

0.15 80 53545 29116 4 73808.19 26% 14 10

0.15 100 54078 33360 5 73763.64 26% 18 11

0.15 200 56745 47576 6 72651.43 27% 40 22

0.2 0 38559 516 2 78048.53 21% 0 7

0.2 20 38959 9472 3 75477.78 24% 3 3

0.2 40 39359 16352 3 74492.61 25% 8 10

0.2 60 39759 21603 3 73761.44 26% 12 11

0.2 80 40159 25888 3 73650.75 26% 15 13

0.2 100 40559 29313 3 73029.91 26% 21 14

0.2 200 42559 38728 4 71971.30 27% 41 24

0.25 0 30847 514 2 79993.84 19% 0 3

0.25 20 31167 9193 2 74652.74 25% 3 4

0.25 40 31487 15432 2 74241.88 25% 8 10

0.25 60 31807 19989 3 73833.30 26% 11 13

0.25 80 32127 23429 3 73065.35 26% 13 16

0.25 100 32447 25940 3 72266.53 27% 19 26

0.25 200 34047 32424 3 71590.93 28% 42 40

0.3 0 25706 511 1 77813.32 21% 0 8

0.4 0 19280 512 1 79221.24 20% 0 7

0.5 0 15424 511 1 78230.44 21% 0 10

0.6 0 12853 511 1 78653.80 21% 0 10

0.7 0 11017 506 0 79413.89 20% 0 12

0.8 0 9640 502 0 78568.00 21% 0 20

0.9 0 8569 501 0 77754.12 21% 0 28

Table 4. Data for 62 cells network. Freeway cells are all the cells on the direct path between source cell 54

and sink cell 59
Data Source Cells Sink Cells Freeway Cells Other Cells

Ni(t) ∞ ∞ 20 10

Qi(t) ∞ ∞ 12 3

δi(t) 1 1 1 1

di(t)
U(400,800) for freeway source (t=1,. . . ,5)
U(200,250) for other sources (t=1,. . . ,5)

0 0 0
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Table 5. Results for the 62 cells realistic network described in Section 4.2.
ε R Samples Reduced Samples Tgen (sec) O.F. Impr. Tsol (sec) Unf. New Samples

Deterministic - - - 0 568489.00 - 8 2822

Worst Case - - - 0 720739.00 - 8 0

0.05 0 1042233 37 1293 683274.52 5% 8 0

0.05 25 1044233 862 1656 672292.93 7% 8 0

0.05 50 1046233 1693 1745 669436.57 7% 10 0

0.05 100 1050233 3271 1805 666408.17 8% 10 0

0.05 200 1058233 6316 1832 663996.57 8% 14 1

0.05 300 1066233 9292 1771 660637.19 8% 20 1

0.05 400 1074233 12316 1801 659155.04 9% 27 1

0.05 500 1082233 15173 1816 658578.57 9% 34 2

0.1 0 521117 35 640 687476.91 5% 8 0

0.1 25 522117 861 816 669508.77 7% 8 0

0.1 50 523117 1662 883 667330.48 7% 10 0

0.1 100 525117 3159 906 662952.36 8% 10 1

0.1 200 529117 6134 920 659232.22 9% 14 1

0.1 300 533117 8965 894 657455.67 9% 20 3

0.1 400 537117 11849 906 655485.65 9% 27 4

0.1 500 541117 14544 914 654169.43 9% 34 5

0.2 0 260559 35 319 686815.14 5% 8 0

0.2 25 261059 835 407 667119.54 7% 8 0

0.2 50 261559 1606 442 662040.13 8% 9 1

0.2 100 262559 3095 445 659554.46 8% 10 1

0.2 200 264559 5950 460 654988.31 9% 14 5

0.2 300 266559 8658 454 652614.34 9% 20 5

0.2 400 268559 11131 451 651315.32 10% 27 7

0.2 500 270559 13904 454 649173.26 10% 34 8

0.3 0 173706 35 215 686183.78 5% 8 0

0.3 25 174039 836 274 663900.23 8% 8 1

0.3 50 174373 1559 295 662045.29 8% 9 1

0.3 100 175039 3019 299 657580.70 9% 13 3

0.3 200 176373 5732 308 652572.36 9% 14 5

0.3 300 177706 8293 377 649438.29 10% 20 7

0.3 400 179039 10894 304 648511.64 10% 27 8

0.3 500 180373 13318 310 646251.28 10% 34 9

0.4 0 130280 34 158 672384.75 7% 8 0

0.5 0 104224 35 127 680220.42 6% 8 0

0.6 0 86853 35 106 677912.11 6% 8 0

0.7 0 74446 32 90 679979.64 6% 8 0

0.8 0 65140 31 79 672541.71 7% 8 0

0.9 0 57902 38 70 678237.81 6% 8 0

Table 6. Data for the 620 cells network. Freeway cells are all the cells on the direct path between source cell

54 and sink cell 59, for all sub-networks
Data Source Cells Sink Cells Freeway Cells Other Cells

Ni(t) ∞ ∞ 20 or 30 (p=0.5) 15

Qi(t) ∞ ∞ 20 6

δi(t) 1 1 1 0,5

di(t)
U(400,800) for freeway sources (t=1,. . . ,5)
U(200,250) for other sources (t=1,. . . ,5)

0 0 0
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Table 7. Results for the large 620 cells network (* = unfinished)

ε R Samples Reduced Samples Tgen (sec) O.F. Impr. Tsol (sec) Unf. New Samples

Deterministic - - - 0 1101016 - 170 4812

Worst Case - - - 0 1533800 - 167 0

0.5 0 1190464 940 6304 1470479 4.3% 168 9

0.5 5 1190504 4850 6676 1417355 7.59% 271 8

0.5 10 1190544 8400 7048 1409241 8.21% 1678 12

0.5 15 1190584 11990 7312 1404681 8.42% 1381 10

0.5 20 1190624 15460 7436 1397442 8.89% 1985 15

0.25 0 2380927 930 12328 1460958 4.75% 189 4

0.25 5 2381007 4910 13472 1432622 6.60% 461 8

0.25 10 2381087 8590 14080 1420702 7.37% 802 13

0.25 15 2381167 12240 14440 1414512 7.78% 2294 12

0.25 20 2381247 16100 14928 1411436 7.98% 3000* 12

Table 8. Heuristic Algorithm Results on the 620 cells network (* = unfinished)

ε R Optimal O.F. Tsol (sec) Heuristic O.F. Gap Theur (sec)

0.5 5 1417355 271 1417355 0.00‰ 175

0.5 10 1409241 1678 1409241 0.00‰ 247

0.5 15 1404681 1381 1404914 0.16‰ 286

0.5 20 1397442 1985 1397542 0.07‰ 289

0.25 5 1432622 461 1432622 0.00‰ 168

0.25 10 1420702 802 1420702 0.00‰ 203

0.25 15 1414512 2294 1415497 0.69‰ 237

0.25 20 1411436 3000* 1412888 1.02‰ 273
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5. Conclusions

In this paper, the system-optimum dynamic traffic assignment (SO-DTA) problem
in the presence of time-dependent uncertainties on both traffic demands and road
link capacities has been considered. Building on an earlier formulation of the problem
based on the cell transmission model, the SO-DTA problem is robustly solved in the
probabilistic sense in the framework of random convex programs. A specific model
able to obtain a robust solution for medium to large scale networks with a low desired
violation probability in a tractable computation time has been introduced. Moreover,
exploiting the specific model structure, a samples filtering method and a mixed in-
teger linear programming model have been derived in order to improve the expected
objective function, while maintaining the requested violation probability. The same
methodology is applicable to any problem formulated through a linear programming
model having stochasticity in the constant terms of the constraints only. The obtained
solutions have been tested in order to evaluate a posteriori the probability that the
addition of further samples make the computed solution unfeasible. The results show
that the requested violation probability is always met, and that the samples removal
method is particularly effective in finding efficient solutions for both total cost and
robustness objectives, as shown by the selection of the Pareto efficient solutions. We
observe that in a realistic or simulated setting a non feasible solution could be actu-
ated anyway, using a proper control algorithm, able to adjust it in real time to feasible
values (see for instance (Ziliaskopoulos, 2000)) or a vehicle behavior model, in case
traffic is not controllable.

On the other hand, from a practical point of view, our solutions may yield some
undesired feature, such as the traffic holding back behavior. Such solutions may require
vehicles to mandatorily stop at nodes even if the surrounding traffic conditions would
practically allow to proceed their journey toward neighboring nodes. However, it has
been proved that it is always possible to convert such solutions to a holding-free
assignment pattern, without increasing the total system cost (Shen and Zhang (2014)).
Development of such algorithms constitute a line research line of its own, which is
outside the scope of the present work. Further research directions involve testing the
method effectiveness in the case of non-triangular traffic congestion relationships, or
on different problem settings, as the UE-DTA model developed in Ukkusuri and Waller
(2008).
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