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ABSTRACT 

New physically based  3-D, fixed d.o.f.,   theories which enable to analyze  cases with  general loading and 

boundary conditions efficiently are proposed.  Here the aim is to study  the effects of an arbitrary choice of  

through-thickness representation of kinematic/stress variables and  of zig-zag functions. The same trial functions 

and expansion order of analytical solutions are assumed to assess theories under the same conditions. 

Comparisons are carried out with  exact  and/or 3-D FEA  solutions. Their computational burden is still 

comparable to that of classical plate models. The results show  that whenever coefficients of representation are 

recalculated across the thickness by enforcing  the fulfillment of all constraints prescribed by the elasticity 

theory, the choice of the representation form and of zig-zag functions is immaterial. In this way, a high order of 

generalization is allowed  because the representation of one single displacement can be freely varied across the 

thickness and be completely different from that of other displacements. Moreover,  zig-zag functions can be 

arbitrarily chosen or even omitted without any accuracy loss. Instead, accuracy is shown to be strongly 

dependent upon the assumptions made  for  theories only partially satisfying constraints.    

Keywords - Composite and sandwich plates, zig-zag theories, interlaminar transverse shear/normal stress 

continuity, localized and distributed loadings, FEA 3-D elastostatic solutions 
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I. INTRODUCTION 
Owing to their excellent specific properties, 

nowadays laminated and sandwich composites are 

widely used to build primary structures in many 

engineering fields, such as aerospace, naval and 

terrestrial applications. 

Anyway, their entirely different and more 

complex behaviour than metals requires a more 

sophisticate modeling.  Characteristic feature, their 

displacement field must be C°-continuous (zig-zag 

effect) in order to fulfill out-of-plane stresses 

continuity across the thickness necessary for 

equilibrium.  

So far, many theories with very different 

characteristics, accuracy and computational cost  

have been created for analysis of laminated and 

sandwich composites. The papers by  Carrera and 

co-workers [1]-[5],   Demasi [6], Vasilive and Lur’e 

[7], Reddy and Robbins [8], Lur’e, and Shumova 

[9], Noor et al. [10], Altenbach [11], Khandan et al. 

[12] and Kapuria and Nath [13] and the book by 

Reddy [14]  are cited as examples wherein a broad 

discussion of this matter can be found.  But many 

others with the same characteristics are available in 

the literature, which is outside the purpose of this 

paper to quote. As universally accepted, sandwiches 

are described as multilayered structures made of one 

or more tick and compliant layers as the core/cores  

and stiff and relatively thinner layers as the faces, 

whenever cell-scale effects are disregarded.  

In a broad outline the analysis of laminated 

and sandwich structures can be carried out using 

equivalent single-layer (ESL), discrete-layer (DL) 

and zig-zag (ZZ) theories, which further subdivide 

into displacement-based and mixed theories, 

depending on if strains and stresses are obtained 

from constitutive relations or are chosen separately 

from each other, within the framework of  Hellinger-

Reissner (HR)  or Hu-Washizu (HW) variational 

theorems. As is well known, ESL completely 

disregard layerwise effects, therefore are only 

suitable for an overall response analysis, but cases 

exist for which they are not valid even for this 

purpose (see, e.g. e.g. [15] to [25]). Certainly these 

theories cannot be used successfully for sandwich 

analysis, as they cannot account for the strong 

layerwise effects due to the very different properties 

of core and faces  that also affect the global 

behaviour. Layerwise theories further subdivide into 

discrete-layer (DL) and zig-zag (ZZ) theories 

(acronyms used throughout the paper are defined in 

Table 1). As DL assume variables and description  
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apart for each layer, they could overwhelm the 

computational capacity when structures of industrial 

interest are analyzed, but  anyway they are still  the 

most accurate theories, irrespective for lay-up, layer 

properties, loading and boundary conditions.  

ZZ theories to date collect an increasing 

interest because they  strike the right balance 

between accuracy and cost saving, so  meeting 

designers’ demand of theories in a simple already 

accurate form. These theories can be further 

subdivided into physically-based (DZZ) and 

kinematic-based (MZZ) zig-zag theories. Layerwise 

contributions of ZZ are embodied as the product of 

linear [26] or nonlinear [27] zig-zag functions and 

unknown zig-zag amplitudes which are determined 

through the enforcement of interfacial stress 

compatibility conditions. In DZZ, generally but still 

not always stresses derive from kinematics  and 

stress-strain relations, but mixed formulations are 

also known for these theories. 

In MZZ, no amplitude is incorporated 

which must be pre-calculated, since zig-zag 

functions are a priori assumed to feature a periodic 

change of the slope of displacements at interfaces,  

which, strictly speaking, occurs only for periodic 

lay-ups. Stresses of MZZ are assumed apart from 

kinematics, so they constitute mixed theories. 

Because their  layerwise functions are insensitive to 

the physical characteristics of the lamination and 

their kinematics is usually assumed in a simplified 

form,  MZZ can accurately predict stress fields but 

not always  displacements [28] unless a high order 

of expansion of solutions (i.e., larger than for DZZ) 

is assumed. 

Carrera Unified Formulation (CUF) ) [3], to 

date extensively used since it allows displacements 

to take arbitrary forms that can be chosen by the user 

as an input and therefore allows to study general 

loading and boundary conditions, does not enforce 

physical constraints to define layerwise functions, so 

it gets existing ESL and MZZ as particularizations.  

However also refined DZZ [13-15,17,22,23,27] have 

shown a comparable degree of generality and 

flexibility of use compared to CUF, resulting even 

more efficient because DZZ with coefficients 

redefined across each physical or computational 

layer [15-17] (and for this reason they are referred as 

adaptive theories) allow the same accuracy of CUF 

with fewer variables and have characteristics of  

generality and flexibility similar to  CUF. Although 

they have just five fixed d.o.f. like classical plate 

theories, they are able to satisfy all physical and 

elasticity constraints, so they deserve  to be  tested 

more extensively than in  [15-17] considering further 

challenging  cases like ones already studied by the 

users of CUF. Moreover it must be investigated 

whether and which others further generalizations of 

DZZ can be achieved. At the present state of 

research, DZZ [15-17] have taken on similar 

characteristics to theories  with a hierarchical set of 

locally defined polynomials (see, Catapano et al. 

[29] and de Miguel et al. [30]),  but it remains to be 

further investigated whether the presence of the 

zigzag functions, which are computationally the 

most burdensome, can be eliminated through the 

simple redefinition of a certain coefficients of the 

representation, so to further improve efficiency. In 

this context, forms of representation within DZZ 

different for each displacement and with zig-zag 

functions completely different from those usually 

considered so far, or even omitting them must also 

be tested in order to ascertain whether the superior 

generality that would be achieved allows accuracy to 

be preserved. These evolved DZZ theories would 

come to assume characteristics in some ways similar 

to those of  global-local superposition theories, see 

Zhen and Wanji, e.g. [22,31], representing at the 

same time a development that also considers the 

piecewise through-thickness variation of the 

transverse displacement. All theories of the present 

study take into account the transverse normal 

deformability, because [15-17,32,33], along many 

others in literature, demonstrate that inaccurate 

results are otherwise obtained. 

A more in-depth study of this matter is 

presented in this paper, also through the 

development of new DZZ theories. The intended aim 

of this study is to show that: (i) a very accurate 

description of transverse normal deformability is 

required for different loading conditions; (ii) which 

is the minimum order of representation that is 

required to obtain accurate results for static cases; 

(iii) if theories with different functions used to 

represent variation across the thickness and without 

zig-zag functions can be as accurate as other higher-

order theories. (iv) Moreover, it will be investigated 

the effects of only partial assumptions of zig-zag 

functions on accuracy. (v) Finally, another goal of 

this paper is to investigate extensively whether the 

choice of zig-zag functions is immaterial and when 

these functions can even be omitted without any loss 

of accuracy. It will also be examined  whether is not 

necessary to assign a specific role a priori to the 

coefficients of displacement field if all physical 

constraints (compatibility of displacements and 

stresses, boundary conditions, imposition of 

equilibrium at some points across the thickness) are 

satisfied. Instead, it should be noticed that all these 

aspects and choices are very important for lower-

order theories that impose only a partial satisfaction 

of them. Geometry, loading and boundary conditions 

of the cases examined in the numerical applications 

are reported in Table 2a, normalizations and trial 

functions in Table 2b and mechanical properties in 

Table 3. 
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II. THEORETICAL FRAMEWORK 
 For clarity, first the notations and the basic 

assumptions used, as well as the solution 

methodology, which are common to all the theories, 

are defined. 

 

2.1 Notations, basic assumptions and solution 

methodology 

 A rectangular right-handed Cartesian 

coordinate reference system ( , ,x y z ), whose origin 

is on one edge and  which is on the middle reference 

plane   of the multilayered plate,  is assumed as 

reference frame. As customary, z is assumed as the 

thickness coordinate ( [ / 2; / 2]z h h   h being the 

overall thickness and Lx and Ly as the plate side-

lengths). The constituent layers are assumed to have 

a uniform thickness 
kh and to be made of materials 

with linear elastic properties and  to be  perfectly 

bonded to each other. The coordinates just  after or 

before an interface  k   are indicated as 
( )k z  

and 

( )k z
, respectively, while subscripts k and 

superscripts 
k
 indicate belonging of quantities to the 

layer k  and 
u
 and l are used for the upper and lower 

faces of the laminate. In-plane and transverse 

displacements components are indicated as u and 

u  and a comma is used to indicate spatial 

derivatives (e.g., ,(.) x   x  , ,(.) z z   ). To 

be concise, tensor notation is used throughout the 

paper, so in certain parts of it symbols , ,x y z  are 

replaced by Greek letters (e.g. 1,2 ,x y   ; 

3 z   ). 

Strains, which are assumed infinitesimal, and elastic 

stresses are symbolized by ij  and ij , 

respectively. Middle-plane displacements 
0u , 

0v , 
0w  and the rotations of the normal   

0 0

,( , ) ( , )x x xx y w x y    , 

0 ( , )y y x y   0

,( , ) yw x y    are assumed as the 

only functional d.o.f.  of all theories. In tensor 

notation is 
0 0u u   if 1  , 

0 0u v   if 2  . 

Their governing equations will not be reported in 

order  to be concise and because  they can be 

obtained in a straightforward way with standard 

techniques, which in this paper are automatically 

implemented using a symbolic calculus package. 

Only displacement, strain and stress fields will be 

discussed into details along with their distinctive 

features and how they reflect on accuracy. 

 Static governing equation of each theory 

are solved in analytical form  using Rayleigh-Ritz 

method, given the simple geometry of the cases 

examined and the conservative loadings.  According,  

each functional degree of freedom (d.o.f.) is 

expressed as a truncated series expansion of  

unknown amplitudes 
iA  and trial 

functions ( , )i x y , which individually satisfy 

prescribed boundary conditions:  

1

( , )
m

i i

i

A x y






                                             (1) 

while mechanical boundary conditions (if necessary 

but not for the present cases) are satisfied using 

Lagrange multipliers method. Herein the symbol Δ  

represent in turns 
0u , 

0v , 
0w , x , y . 

Amplitudes are determined solving the linear 

algebraic system that follows applying Rayleigh-

Ritz method, namely by deriving the total potential 

energy functional expression with respect to 

unknown ones and equating to zero. Table 2b 

defines trial functions, expansion order and 

normalizations used in the numerical applications. 

Regarding simply-supported edges, the following 

boundary conditions have to be imposed: 
0 (0, ) 0w y   ; 

0 ( , ) 0xw L y  ; 
0

,(0, ) 0xxw y  ; 

0

,( , ) 0x xxw L y                                              (2) 

0 ( ,0) 0w x   ; 
0 ( , ) 0yw x L  ; 

0

,( ,0) 0yyw x  ; 

0

,( , ) 0y yyw x L                                               (3) 

on the reference mid-plane. The boundary conditions 

for cylindrical bending follows in a straightforward 

way from (2) and (3) assuming no variations to 

occur in the y , ( x , z ) being the bending plane. 

The following boundary conditions are enforced on 

the reference mid-surface at the clamped edge of 

propped-cantilever beams, which is here assumed at 

0x  :   
0 (0,0) 0u  ;

0 (0,0) 0w  ;
0

,(0,0) 0xw  ;

0 (0,0) 0x                              (4)               

 The following further boundary conditions 

are enforced in order to simulate that  (4) holds  

identically across the thickness: 

,(0, ) 0zu z  ; ,(0, ) 0zu z  ; ,(0, ) 0xzu z   (5) 

The following further mechanical boundary 

condition                                                   
/2

/2
(0, )

h

xz
h

z dz T


                                         (6)     

is enforced to ensure that the transverse shear stress 

resultant force equals the constraint force at the 

clamped edge. 
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 The additional support condition 
0 ( , 2) 0w L h   holds at x=L on the lower face 

/ 2z h  , while condition (4) is reformulated as: 
/2

/2
( , )

h

xz
h

L z
 Ldz T , for propped-cantilever 

beams. As mentioned above,  the latter mechanical 

boundary conditions are enforced using Lagrange 

multipliers method.   

Discontinuous loading distributions  are studied as a 

a general function ( , )x y  acting on upper and/or 

lower faces, or just on a part of them, without being 

necessary using a series expansion with a very large 

number of components, as customary, because 

symbolic calculus computes exactly energy 

contributions, whatever form  ( , )x y  takes. As a 

result, the  structural model is made simpler to use 

and at the same made more accurate.    

 

2.2 ZZA displacement-based theory 

 The first adaptive DZZ discussed here is 

ZZA zig-zag theory developed in  [15], as it 

constitutes the basis from which all recently 

published theories by the authors have been obtained 

as its particularizations or generalizations. ZZA 

postulates the following displacement field across 

the thickness: 

 

Contributions are subdivided into linear- 0[...] , 

higher- [...] i  and layerwise [...] c  ones. The first 

contains only five functional degrees of freedom, 

while [...] i  can contain any combination of 

independent functions   ( )u

i
F z  and 

 ( )
i

F z
, which  are chosen as:  

   

   

2 3 4

4

3

( ) ( , ) ( , ) ( ...)

(.) ( ...)

u i i

i i

i i

F z C x y z D x y z Oz

Oz

  



  

 

                                                                     

  



   

2 3

4 5

5

4

( ) ( , ) ( , ) ( , )

( , ) ( ...)

(.) ( ...)

i i i

i

i

i

i i

F z b x y z c x y z d x y z

e x y z Oz

Oz





   

  

 

 

(8)  

 

to admit [27] as a particularization, since  

contributions  
3
(.)

i ,  
4

(.)
i are the same 

as in this former theory, while higher-order 

contributions  4( ...)
i

Oz ,  5( ...)
i

Oz  are 

characteristic of ZZA. Expressions of 
iC , 

iD , 

ib to 
ie  are  obtained once and for all using 

symbolic calculus by enforcing the fulfilment of 

stress boundary conditions 

, 0     ;
0 ( )p                       (9) 

0p  being the distributed loading acting on upper  

(+) and lower (-) faces (but also non-homogeneous 

conditions  ; 0    could be enforced 

without difficulty).  Contributions [...] i  by (8) can 

be rearranged as: 

Terms under square brackets are calculated by 

imposing the fulfilment of local equilibrium 

equations at different points across the thickness:  

, , , ,;b b                           (11) 

It should be noticed that the in-plane position of 

equilibrium points must be chosen appropriately 

depending on boundary conditions, so to avoid null 

contributions.  It is also important to note that 

coefficients are redefined across the thickness 

because of the imposition of (11) in different points 

of the thickness. Although any order of 

representation could be assumed, maximum 

accuracy is already achieved in all cases tested to 

date choosing a piecewise cubic representation for 

in-plane displacements 
(3)u  and a fourth-order one 

(4)u  for the transverse displacement, as shown in 

[16,17,27]. This paper will demonstrate that in-plane 

and out-of-plane orders can also be exchanged into 
(4)u , 

(3)u without any accuracy loss. Any single 

constituent  layer could be divided into one or more 

mathematical ones, with the intended aim to rising 

accuracy without increasing the number of d.o.f., but 
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this has not proved necessary in applications. The 

symbols  in  and n   in (7) represent the number of 

physical and mathematical layer interfaces, 

respectively. 

Finally, layerwise contributions are included into 

[...] c , whose amplitudes 
k

 , 
k  and  

k     are 

calculated once and for all by imposing the 

continuity of out-of-plane stresses and of the 

transverse normal stress gradient ,  at layer 

interfaces:  

The expressions of  
k

uC and 
kC  are obtained by 

imposing the continuity of displacements  

( ) ( )( ) ( )k ku z u z 

  ;
( ) ( )( ) ( )k ku z u z 

   (13) 

which become necessary whenever  order and form 

of the representation are changed  across the 

thickness, as will be done in this paper. Conditions 

(9, 11-13) are imposed using a symbolic calculus 

tool which determines once and for all  the 

expressions of amplitudes.  So assuming arbitrarily  

the form of representation, namely otherwise than in 

(7), is not a difficulty for the user, the necessary 

calculations being carried out automatically. In this 

way, DZZ can be generalized up to the level of best 

kinematic-based theories currently available. The 

choices then  come to be determined only by 

performance considerations and not by operational 

opportunity. 

 Note that, only a small fraction of the 

overall processing time is required for calculating 

layerwise contributions because symbolic calculus 

provide  once and for all their expressions in a 

closed form.  

 In this way, the overall processing time 

remains still comparable with that of ESL (see, 

Table 4). If just the material properties and/or the 

orientation of layers change, but not their number, 

symbolic expressions representing the solution 

remain the same. SEUPT technique described in [15] 

can be used to obtain a C° formulation of the ZZA 

and the other theories of this paper. 

 

2.3 ZZA* displacement-based theory 

 This adaptive theory, which is a modified 

version of ZZA,  is retaken from [16] where it was 

developed by replacing zig-zag layerwise functions 

[...] c  with a power series with amplitudes to be re-

determined across the thickness. ZZA* and 

HWZZM developed in [17] assuming arbitrary zig-

zag functions are re-proposed here  in order to 

demonstrate that layerwise contributions can be 

arbitrarily assumed or even omitted,  whenever the 

full set of physical constraints (9, 11-13)  is 

imposed. Note that the present new theories 

constitute evolutions of ZZA* and HWZZM based 

on different forms of representation. Their aim is to 

generalize ZZA and to obtain a reduction of the 

computational burden while preserving  unchanged 

the accuracy. The following displacement field is 

postulated in ZZA*: 

 





0 0 0

, 0

2

1

3 3

1

( , , ) ( , ) ( ( , ) ( , ) )

( , ) [ ( , ) ]

[ ( , ) ( , ) ] ( , )
i

n
i i

k

k

n
i i i

j k i c
k

u x y z u x y z x y w x y

B x y z C x y z

D x y z D x y z C x y

  

 

  








   

  

  





                 

  



0

0
1

2 2 3

1

4

1

( , , ) ( , ) [ ( , ) ( , ) ]

[ ( , ) ( , ) ] [ ( , ) ]

( , ) ( , )

i

i

n
i i

k

k

n
i i i

k

k

n
i i

k i c
k

u x y z w x y b x y z b x y z

c x y z c x y z d x y z

e x y z d x y












   

   

 







             

(14) 

 

 The linear contribution is the same of ZZA, 

while terms 
i

k B , ,i i

kC C  , 
i

k b  and 
i

k c  are 

obtained by imposing (12), (13) at interfaces 

between layers. Contributions 
iC , 

iD , 
ib , 

ic , 
id  

and 
ie  still allow the fulfillment of stress boundary 

conditions (9) and of local equilibrium equations 

(11). Note that 
ib  and 

ic  exist only at the first 

layer, while then they are assumed to vanish in the 

subsequent layers.  

 

2.4 HWZZ mixed theory 

 HWZZ adaptive theory [17] is a mixed HW 

version of ZZA which is obtained preserving only 

essential contributions of displacement, strain and 

stress fields by ZZA. It is based on the following 

assumptions:  no decomposition into mathematical 

layer is allowed, so 
k

uC , 
k

vC , 
k

wC  are omitted and 

also 
k  are neglected, being essential only for 

stress fields: 
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In-plane strains are obtained from the previous 

displacement field, while out-of-plain ones zz , 

xz , yz  are obtained from: 

 
(16) 

 

In-plane stresses are calculated using stress-strain 

relations, while out-of-plane ones are obtained by 

integration of equilibrium equations.  

 

2.5 HWZZM mixed theory 

 This adaptive theory [16] is a modified 

version of HWZZ obtained assuming different zig-

zag functions, which allows to demonstrate that 

indistinguishable results are obtained whenever (9, 

11-13)  are imposed.  It  is developed assuming  

Murakami’s zig-zag function  ( ) ( 1)k k kM z   , 

where  ,k k ka z b    

1

2
,k

k k

a
z z




 

1

1

k k k

k k

z z
b

z z









 as the layerwise functions. The 

displacement field is postulated as: 

 
 (17) 

 

 Note that here  zig-zag amplitudes 
u

kA   and  

u

kB   are calculated by imposing the fulfillment of 

(12), while 
kC  and 

kC  are obtained by imposing 

(13). Similarly to HWZZ, no decomposition into 

mathematical layer is allowed for displacement field 

from which in-plane strains are obtained, while out-

of-plane ones are calculated restoring their 

subdivision. Again xx , yy , xy  are obtained 

from stress-strain relations, while xz , yz , zz  

are calculated by integration of (11). 

 

2.6 HWZZM* mixed theory 

 Another HW adaptive mixed theory was 

developed in [16] starting from ZZA* and assuming 

all the same steps needed to obtain HWZZ from 

ZZA. HWZZM* is retaken in this paper so to have a 

theory to use for comparisons in the numerical 

applications which is in mixed form and does not 

consider explicitly zig-zag contributions. The 

displacement field is postulated as: 

 
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 
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, 0
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k c
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1
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i i
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i

n
i
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k
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d x y z e x y z

b x y z







   

  

 

                                        

(18) 

 Again, no decomposition into mathematical 

layers is allowed for displacements, so similarly to 

HWZZ terms 
i

k c , 
i

k C , 
i

k d by ZZA are omitted. 

In-plane strains are obtained from (18), while 

similarly to HWZZ, their out-of-plane counterparts 

are obtained admitting decomposition into 
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computational layers. In-plane stresses xx , yy , 

xy  are obtained from stress-strain relations, while 

out-of-plane counterparts xz , yz , zz  are 

calculated integrating local equilibrium equations 

(11). 

 

III. NEW ADAPTIVE THEORIES OF 

THIS PAPER 
 New physically-based zig-zag theories of 

this paper are characterized by having an arbitrary 

displacement field freely chosen by the user, whose 

coefficients are redefined across the thickness so to 

satisfy constraints (9, 11-13). Such theories are 

generated without increasing the order of expansion 

with respect to the thickness coordinate and without 

to explicitly include zig-zag terms. 

 The possible choices of representation 

across the thickness of variables could be conjugated 

in infinite ways always different, the fantasy being 

the only limit. But whenever (9, 11-13) are 

simultaneously satisfied, accuracy and calculation 

times remain the same. Indeed, the  analytical 

solution obtained via  symbolic calculus  always 

converges to the same result, which so assumes an 

asymptotic meaning with respect to the choice of 

representation.  

 The new adaptive theories are derived from 

the following generalized displacement field  

expressed as an infinite series of products of initially 

unknown amplitudes and exponential functions or 

any other basis of functions, comprising 

trigonometric and polynomial functions of the 

thickness coordinate [33]: 

 

 

 

 

 

  (19) 

 Coefficients are recalculated for each 

computational layer   via symbolic calculus by 

enforcing the fulfillment of constraints (9,11-13). In 

particular the number of equilibria in different points 

of the thickness can be chosen in such a way as to 

determine the expressions of all the available 

coefficients remaining after the satisfaction of the 

boundary conditions.  Theory (19) is here referred as 

ZZA-XX, but a  further variant, called ZZA-XX’ is 

also considered in the numerical applications for 

demonstration purposes, which is obtained assuming 

power series instead of exponential functions [33]: 

( )

_ _

1 1

( , , ) ( , ) ( , )i k i

k j

k j

u x y z C x y z D x y  
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 
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 
 

 

( )

_ _

1 1

( , , ) ( , ) ( , )i k i

k j

k j

u x y z C x y z D x y  

 

 

 
  
 
 

 

(20) 

 The following theories are considered in the 

numerical illustrations, which are obtained as 

particular cases from (19) and (20). Different form 

of representation are chosen randomly to 

demonstrate what claimed about the possibility of 

arbitrarily choosing the representation without 

accuracy and cost change, if (9, 11-13) are 

simultaneously satisfied. They are developed starting 

from the general displacement field: 

 

 

0 0 0

, 0
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_

1

( , , ) ( , ) ( ( , ) ( , ) )
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0
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k i c
k

u x y z w x y D x y G z C  
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(21) 

Then particularizing the involved functions as 

follows 
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3.1 ZZA_RDFX and HWZZ_RDFX 

 The following additional theories are 

considered in numerical applications, in order to 

verify if theories with a lower order of expansion 

can be adequate  and if the redefinition of the 

coefficients is the crucial aspect that improves 

considerably their accuracy with respect to 

counterparties with fixed coefficients.  

 ZZA_RDFX is a modified version of ZZA 

aimed at demonstrating that  a different role can be 

attributed to coefficients than for ZZA, without any 

loss of accuracy:  

 

     (26) 

Differently to ZZA, terms 
k , 

k , 
k

 , 

are calculated by imposing the fulfillment of (12) 

(for layers i>1), while 
iC , 

id  and 
ie  by enforcing 

(11)  (for intermediate layers 1<i<nl). For the above 

layer (i=nl) 
k , 

k , 
k

  allow the fulfillment of 

stress boundary conditions, while the remaining 

coefficients enable the fulfillment of stress 

continuity and enforcing local equilibrium equations. 

 It could  be noticed that for some 

laminations in which one interface matches the 

middle reference plane, some  stresses could be 

erroneously predicted to vanish for z=0; in order to 

ensure that each term could impose compatibility 

stress conditions (12) a different reference plane is 

assumed for this theory, whose origin has a distance 

that is / 2dh h , while d.o.f. are still referred to 

middle reference plane: 

      (27) 

HWZZ_RDFX  assumes the same master 

displacement, strain and stress fields as HWZZ, but 
id  terms (for i>1) enable the fulfillment of 

continuity of ,   at each interface (the same 

reference plane of (26) is assumed). For this reason, 

HWZZ_RDFX has a lower computational burden 

than ZZA and HWZZ. 

 

3.2 ZZA*_43X 

 A modified version of ZZA* whose in-

plane displacements is a fourth-order piecewise 

polynomial, while the transverse one is piecewise 

cubic is assumed as:  
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(28) 

 

 Similarly to ZZA*, terms are calculated by 

enforcing (9, 11-13), but similarly to ZZA_RDFX 

their role is exchanged, so, 
iC , 

ic  and 
ib  impose 

the continuity of out-of-plane stresses for layers with 

i>1, while 
iB , 

i

k b , 
i

k c  enable the fulfillment of 

local equilibrium equations across the thickness for 

layers with i>1. For this theory the position of 

equilibrium points is more important than the parent 

theory and they should be chosen near layer 

interfaces, instead of within them. Anyway, results 

obtained demonstrate that also the expansion order 

of displacements can be reversed without any loss of 
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accuracy, if all physical constraints are enforced and 

coefficients redefined across the thickness. 

 

3.3 HSDT_34X theory 

 This theory is a modified versions of HSDT 

whose coefficients are redefined across the thickness 

for each layer. In-plane displacements are piecewise 

cubic polynomial, while transverse one contain a 

sum of exponential, sinusoidal and power series 

functions. Its displacement field is:  

 

 
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, 0

2 3

0

0
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i

i i

i i
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u x y z u x y z x y w x y B x y z
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u x y z w x y b x y z c x y z h

d x y z h e x y z h
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 



 

     

 

   

 

      (29) 

 

 Results will show that HSDT_34X, whose 

coefficients are obtained by imposing the full set of 

physical constraints (9, 11-13) provide 

indistinguishable results from other higher-order 

theories. This demonstrate that all theories that are 

capable to at least describe piecewise cubic in-plane 

and piecewise fourth order polynomial transverse 

displacements, are able to get precise results with 

quite affordable time calculations. 

 

IV. NUMERICAL ILLUSTRATIONS 
 A number of elasto-static challenging  

benchmarks having pronounced layerwise effects  is 

considered in order to assess the accuracy of 

theories. Such benchmarks are chosen being of 

practical interest and because in addition to an 

adequate description of transverse shear effects, as 

many others in literature, they also require a very 

accurate modeling of  the transverse normal 

deformation. This latter effect is important as it 

manifests for  lay-ups, loading and boundary 

conditions that find industrial applications, like ones 

here examined, consequently it cannot be neglected 

and thus represents a challenge for researchers 

because they are called to develop theories 

efficiently capturing it. 

 The numerical assessments presented aim 

to confirm, extend and generalize previous findings 

by the authors [16], [17]. Besides showing the 

capability of the theories considered to accurately 

describe transverse shear and normal deformations 

effects with a small number of d.o.f. they aim to 

highlight that whenever the full set of physical 

constraints (9, 11-13)  is enforced. This gives the 

present theories the appellation of physically-based. 

The representation of variables across the thickness 

and zigzag functions can be completely arbitrarily 

chosen without the results changing. In detail, results 

aim to show that once (9, 11-13)  are enforced 

simultaneously, as for the refined physically-based 

zig-zag theories of this paper, (i) zig-zag functions 

and the functions used to represent variables across 

the thickness can be arbitrarily chosen without any 

change in the degree of accuracy, while getting a 

cost benefit. Moreover,  (ii) zig-zag functions can 

even be omitted, so getting further benefits, provided 

that a sufficient number of coefficients is still 

incorporated in the displacement field, whose 

expressions are redefined across the thickness 

through the enforcement of (9, 11-13). In 

consequence of all this,  (iii) a different 

representation can be chosen for each displacement, 

which also can vary from point-to-point across the 

thickness. Likewise, different zig-zag functions can 

be chosen for each single displacement (variable-

kinematics form) without any accuracy loss. 

Furthermore,  (iv) a specific role need not be 

assigned to individual coefficients of displacements, 

as they can be freely re-defined  once their 

expressions are re-defined across the thickness. 

Because lower-order theories which reduce 

calculation costs being already accurate are of great 

interests to designers examples of these theories are 

considered. It is shown that, confirming results in the 

literature, they can be accurate for certain cases but 

not in general. Moreover, (v) a partial fulfilment of 

(9, 11-13) implies the loss of validity of (i) to (iv), as 

shown by other theories in the literature. 

 

Case a 

 Firstly. a simply supported laminated beam 

[0/-90/0/-90] under sinusoidal load, retaken from 

[17], is analysed, that is used as a reference test for 

theories. Nevertheless all layers are made of same 

material, because its antisymmetric lay-up, there are 

quite strong 3-D effects. This case is interesting, 

because it shows that a periodical stack-up does not 

necessarily involve a slope sign reversal at interfaces 

of displacements, so, Murakami’s rule is not 

satisfied. Indeed, MHR and MHR4 theories, two HR 

mixed theories that include Murakami’s zig-zag 

functions and whose coefficients are not redefined 

layer-by-layer across the thickness (see  [17]) cannot 

provide the right trend of in-plane displacement at 

first interface from above (see Figure 1 and Table 5) 

and also the transverse displacement is not 

adequately described. Better results of displacements 

are obtained by MHWZZA and MHWZZA4, two 

HW mixed theories whose displacements are the 

same of MHR, while strains and stresses are 

assumed apart and coincident with those of HWZZ 

(MHWZZA4 include also transverse displacement 

of ZZA) and also by MHR± and MHR4±. These 

theories are retaken from [17] and assume the same 

displacements of MHR and MHR4 respectively, but 

unlike them the sign of Murakami’s zig-zag function 

is calculated on a physical basis, instead of being 

forced to reverse at each interface, comparing the 

lowest norm of the residual force coming from the 
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three local equilibrium equations. Moreover, HRZZ 

and HRZZ4, two physically-based HR theory with a 

uniform and a polynomial transverse displacement, 

respectively, cannot obtain the right trend of u . 

Despite this, all theories of Figure 1 are able to 

obtain the accurate stresses across the thickness, 

making this case not particularly probative. All 

theories discussed in this paper provide always 

results that are in very good agreement with exact 

and 3-D FEA ones. So, it is demonstrated that only 

higher-order adaptive physically-based theories, 

namely whose coefficients are redefined across the 

thickness imposing all the physical constraints (9, 

11-13), can assume different zig-zag functions, omit 

them or change the representation without any loss 

of accuracy. All theories of this paper from section 

2.2 to section 3.3 are very accurate and have a 

computational burden similar to each other and to 

FSDT. Those without zig-zag functions, namely 

ZZA* and theories of section 3, are the most 

efficient as shown in Table 4. The other theories 

previously developed by authors and not discussed 

here but reported in numerical results, can have 

lower processing times lower but are inaccurate. 

 

Case b 

 This case pertains a simply-supported,  

rectangular sandwich  plate with a length-to 

thickness ratio / 4xl h   and a side ratio  

/ 3y xl l  , having a stiffer core and a damaged, 

weaker lower face [17] (see Table 2b). Results are 

reported in Figure 2 and Table 6. Currently the slope 

of u  and u  is reversing at the interfaces, as 

prescribed by Murakami’s zig-zag function, 

nevertheless the through-thickness variation of in-

plane components is  incorrectly predicted  by 

theories MHR, MHR4, MHWZZA and MHWZZA4  

using it, specially across the core. As the others 

lower-order theories are also inaccurate, it turns out 

that also in this case layerwise effects assume a 

paramount importance because geometric and 

material asymmetries act jointly in strengthening 

them, so that the  non-compliance with stress-

compatibility conditions (12), or a only a partial 

respect of the remaining constraints (9), (11), (13) 

leads to a considerable loss of accuracy. 

From the examination of results it may be concluded 

that theories using Di Sciuva’s like zig-zag functions 

provides a much better representation of slope 

changes at interfaces than theories using Murakami’s 

zig-zag functions. In general, it can be stated that  all 

theories allowing a redefinition of coefficients 

through the redefinition of zig-zag amplitudes at 

layer interfaces as well as those which do not 

explicitly contain zig-zag functions but implement 

this definition through the satisfaction of (9, 11-13) 

are much accurate. It can be observed that transverse 

shear stresses are quite accurately reproduced by all 

theories except by MHR at the lower face, so in the 

present case an incorrect representation of u  

doesn’t have effects, as it is reputed that the lower 

elastic moduli of the damaged face prevent the 

spreading of errors across the thickness. Adaptive 

theories of this paper are very efficient (see Table 4) 

but the best ones, from this standpoint are ZZA* and 

theories of section 3 without zig-zag functions. 

 

Case c 

 This case pertains a three-layer, simply-

supported sandwich plate under sinusoidal loading. 

Currently, a damaged and thinner lower face and a 

thicker core (that is partially damaged up to 0.15h 

from below, see Table 2b) are considered in order to 

extol the layerwise effects played by the transverse 

displacement within a range of material and 

geometric properties of practical interest. 

Figure 3 and Table 7 report through-thickness 

displacement and stress fields for this case. Of 

particular interests are  across the thickness at 

0x  , / 2y Ly  and   at / 2x Lx , 

0y  . Results of 3-D FEA for this case show that 

none of the three elastic displacement components 

exhibits a slope change at the interfaces of core, so 

Murakami’s zig-zag function requirement isn’t 

satisfied. Because of this, MHR and MHR4 

incorrectly predict the through-thickness variation of 

in-plane displacements u  and u  as well as the 

transverse displacement u  (the largest 

discrepancies are shown as regards this 

displacement),  while HRZZ4, MHR and MHR4 

underestimate it.  

 Now capturing stress field becomes 

challenging because transverse shear stresses are 

strongly asymmetric across the thickness and the 

sign of  is reversing near the lower face. 

Moreover, also the transverse normal stress exhibits 

a through-thickness sign change. Currently, the 

deficiency of lower-order theories (that accurately 

predict in-plane stresses) stands out as an incorrect 

prediction of  across the core. It represents a 

crucial matter because it implies defects of lower-

order mixed  theories that couldn’t be recovered in 

the post-process phase. As a consequence of errors 

made in the representation of u , these  theories 

predict an incorrect   across the lower face and 

core. Lower errors are made for  , with the 

exception of MHR and MHR4 that provide an 
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incorrect prediction anywhere across the thickness. 

Once again the processing time of Table 4 shows 

that the most efficient theories are adaptive theories 

without zig-zag functions.  

 

Case d 

 Figure 4 and Table 8 report u ,   at 

0x  and u ,   and   at / 4xx L  where 

the strongest variations of the reference solutions 

occur for this case assuming a step loading,  

The results highlight that step loading enhances 

layerwise effects so much that lower order theories 

cannot achieve the same accuracy of adaptive 

theories of this paper, that however don’t require 

higher computational burden.  

Irrespective the two positions considered, MHR and 

MHR4 inaccurately predict the in-plane 

displacement u  everywhere across the thickness, 

while HRZZ, HRZZ4, MHWZZA and MHWZZA4 

that benefit of displacement and/or stress fields of 

ZZA and HWZZ provide predictions in a well 

agreement each other and with FEA 3-D. Currently 

HRZZ, MHWZZA and MHWZZA4 incorrectly 

predict the transverse displacement u across the 

thickness, while lower errors are shown for the 

bending stress  , except MHR, MHR4 that are a 

little inaccurate across the lower face. Instead, all 

lower order theories incorrectly predict the 

transverse shear stress   and  the transverse 

normal stress  . Nevertheless all adaptive 

theories are very efficient, also in this case those 

without zig-zag coefficients are the most performing 

(see Table 4). Moreover, their results are 

indistinguishable, irrespective of the choice of zig-

zag or representation functions.  

 

Case e 

 This case pertains the same eleven-layers 

sandwich beam of [27] but currently a step loading 

is assumed. Figure 9 and Table 9 report the through-

thickness distribution of  at 0x  , u  at 

/ 2xx L , u ,   and  , i.e. at positions 

where discrepancies among theories are most 

striking. It can be observed that the through-

thickness distribution of transverse shear stress is 

quite different from that of [16], as well as that 

larger discrepancies of results are observed, with the 

exception of   that is well described by all 

theories considered in this paper. 

Regardless the two position considered, the slope of 

in-plane and transverse displacements doesn’t 

reverse at each interface, so, Murakami’s zig-zag 

function isn’t suitable. As a consequence, once again 

MHR and MHR4 are inaccurate and, in particular, 

they incorrectly predict u  nearby the core upper 

interface. The assumption of stress, strain and 

transverse displacement apart improves the accuracy 

of mixed theories MHWZZA and MHWZZA4, but 

again the variation of the in-plane displacement is 

misestimated, so these theories can obtain only a 

partial recovery of errors, so it can be concluded that 

post-processing techniques improves accuracy of 

stresses but have only a marginal effect on 

displacements, as was to be expected.  

 HRZZ and HRZZ4 calculate quite 

accurately the in-plane displacement at each 

position, therefore it results again the superior 

accuracy of Di Sciuva’s like zig-zag function over 

Murakami’s one. A grater dispersion of results is 

shown for the transverse displacement since only the 

piecewise representation of u by adaptive theories 

of this paper are adequate. 

 Errors to a lesser extent are made as regards 

stresses   and  by all lower-order theories 

with the exception of  MHR and MHR4, as these 

latter theories give incorrect predictions everywhere 

across the core. Anyway, only adaptive theories of 

this paper appear always and everywhere very 

accurate and low cost (see Table 4). 

 

Case f 

 This case is a propped-cantilever sandwich 

beam under a uniform loading. At x=Lx only lower 

edge is supported. A length-to-thickness ratio of 20 

is assumed. Nevertheless this case is not extremely 

thick, there are discrepancies among the predictions 

of theories (see Figure 6 and Table 10), because 

layerwise effects are strong and only adaptive 

theories of this paper provide results in a well 

agreement with those obtained by 3-D FEA, while 

not costing more than the other ones. Transverse 

shear stress is wrongly predicted by HRZZ, HRZZ4, 

MHR, MHR4, MHR±, MHR4±, MHWZZA and 

MHWZZA4 and also transverse normal one is 

incorrectly obtained by these latter theories.  

It should be noticed that the slope of in-plane 

displacement reverses at each interface, as 

postulated by Murakami’s rule, but results provided 

by MHR, MHR4, MHR± and MHR4± are wrong, 

also for transverse displacement, because their 

kinematics is too poor. Displacements are also 

incorrectly predicted by MHWZZA, MHWZZA4, 

HRZZ4 and HRZZ (the latter theory gives the worst 

trend of transverse displacement).  

 

V. CONCLUSION 
A number of new  zig-zag theories with a 

different representation of variables across the 
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thickness and differently assuming zig-zag 

functions, so ultimately differently accounting for 

layerwise effects, have been developed an compared 

with previously developed zig-zag theories by the 

authors in displacement-based and mixed form, 

some having features similar to those of theories 

already proposed in the literature. All the theories 

considered have the same five functional degrees of 

freedom like FSDT and HSDT so their number of  

unknowns is independent from the number of 

constituent layers and the memory storage 

occupation is minimal. 

Challenging elastostatic  benchmarks have 

been considered to show on a rather broad way with 

respect to previous papers by the authors [16], [17] 

that whenever the expressions of coefficients of 

displacements are determined a priori by enforcing 

the fulfillment of the full set of interfacial stress 

compatibility conditions,  of stress boundary 

conditions and of  local equilibrium equations at a 

number of selected point sufficient to determine the 

expressions of  all coefficients, the choice of the 

representation form and of zig-zag functions can be 

arbitrary without the results changing. To compare 

theories under the same conditions, the same trial 

functions and expansion order are used to obtain 

closed form solutions. Distributed or  localized 

loading and simply-supported and clamped edges 

have been considered along with with distinctly 

different material properties and thickness of layers. 

Higher-order zig-zag theories, whose coefficients are 

redefined layer-by-layer by imposing the fulfillment 

of  interfacial displacement and stress compatibility 

conditions, stresses boundary conditions at upper 

and lower bounding faces and  local equilibrium 

equations at different points across the thickness 

proved to be always those most accurate and 

efficient, their computational burden being still 

comparable to that of equivalent single-layer 

theories with th same number of d.o.f. Under these 

conditions it is proven by numerical results that zig-

zag functions can even be omitted,  with a 

considerable advantage from the standpoint of 

computational costs. Zig-zag functions can be 

arbitrarily chosen and variables can be assumed in 

an arbitrary form, i.e. different form one to another 

and from region to region across the thickness, 

without the results changing. Moreover, it is shown 

that  assigning a specific role to individual 

coefficients of displacements is immaterial, as the 

role can be freely varied provided that the same total 

number of coefficients is maintained and expressions 

are determined by enforcing all physical constraints 

above mentioned. The expansion order of 

displacements can be freely chosen but a great 

accuracy is already obtained with a cubic/quartic 

assumption of in-plane and transverse 

displacements, or vice versa. 

Theories ZZA, ZZA*, HWZZ, HWZZM, 

HWZZM*, ZZA-XX, ZZA-XX’, ZZA_X_1 to 

ZZA_X_4, ZZA_RDFX, HWZZ_RDFX, 

ZZA*_43X, HSDT_34X with totally different forms 

of representation prove to be equally accurate and 

efficient. However the most efficient theories are 

shown to be ZZA*, HWZZM*, ZZA-XX, ZZA-

XX’, ZZA_X_1 to ZZA_X_4, ZZA_RDFX, 

HWZZ_RDFX, ZZA*_43X, HSDT_34X wherein 

the explicit presence of zig-zag functions is omitted. 

So all this mentioned theories can be used to carry 

out 3-D analyses more conveniently3-D finite 

element methods and discrete-layer models in the 

cases where domain is quite simple. 

Lower-order theories HRZZ, HRZZ4, MHWZZA, 

MHWZZA4, in particular ones that incorporate 

Murakami’s zig-zag function MHR and MHR4 

cannot be employed for the same purpose being 

inaccurate, even if not always. The general rule that 

can be drawn is that the higher-order zigzag theories 

of this paper with a redefinition of the coefficients 

are always accurate and efficient and therefore 

usable for any case. 
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Table 1: Acronyms; in bold the new teories; 
(n)

 degree of displacements 

 
 

 

 

 

Table 2a: Casuistry 
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Table 2b: Trial Functions, expansion order, normalization and damage properties 

 
 

Table 3. Mechanical properties. 

Material name 1 2 3 4 c2 [iso] hh mc p pf pvc n [iso] 

E1[GPa] 1 33 25 0.05 - 250x10-3 0.1 172.4 25x103 25x101 - 

E2[GPa] 1 1 1 0.05 - 250x10-3 0.1 6.89 1x103 25x101 - 

E3 [GPa] 1 1 1 0.05 M1 2500x10-3 0.1 6.89 1x103 25x101 M2 

G12 [GPa] 0.2 0.8 0.5 0.0217 - 1x10-3 0.04 3.45 5x102 9.62x101 - 

G13 [GPa] 0.2 0.8 0.5 0.0217 - 875x10-3 0.04 3.45 5x102 9.62x101 - 

G23 [GPa] 0.2 0.8 0.5 0.0217 - 1750x10-3 0.04 1.378 2x102 9.62x101 - 

υ12 0.25 0.25 0.25 0.15 0.34 0.9 0.25 0.25 0.25 0.3 0.33 

υ13 0.25 0.25 0.25 0.15 0.34 3x10-5 0.25 0.25 0.25 0.3 0.33 

υ23 0.25 0.25 0.25 0.15 0.34 3x10-5 0.25 0.25 0.25 0.3 0.33 

M1  El/Eu=5/4, El/Ec=104; M2  Eu/El=1.6, Eu/Ec=166.6·105;  [iso]=isotropic     E1=E2=E3     G1=G2=G3 
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Table 4: Processing time [s] on a computer with quad-core CPU@2.60GHz, 64-bit OS and 8.00 GB RAM; 

errors:  
♥
 > 3%;  

♣
 > 10%. 

  Theory 
 

a 

 

b 

Case 

c 

 

d 

 

e 

 

f 

 
Reference 

theory 
FSDT 2.7860 4.1470 5.0712 6.2168 6.5481 4,0522 

G
en

er
al

 t
h

eo
ri

es
 

        

 ZZA_X_1 10.2237 7.9699 7.7923 14.8450 13.2839 12.0660 

(arbitrary 

representation) 
ZZA_X_2 10.4743 8.1551 8.0180 15.2373 13.6303 12.4211 

 ZZA_X_3 10.6675 8.3169 8.1517 15.4161 13.8690 12.5162 

 ZZA_X_4 10.6481 8.2816 8.1362 15.4323 13.8039 12.6003 

        

M
ix

ed
 H

R
 

(uniform w) HRZZ ♥14.9182 ♥11.5234♣ ♥11.6618♣ ♥20.2183♣ ♥20.9194♣ ♥18.2261♣ 

(polynomial 

w4) 
HRZZ4 ♥14.7821 ♥11.8083♣ ♥11.4963♣ ♥20.6428♣ ♥21.1942♣ ♥18.4891♣ 

        

(Murakami’s 

zig zag 
MHR ♥8.1514♣ ♥6.7454♣ ♥6.8583♣ ♥11.4933♣ ♥12.0285♣ ♥6.6258♣ 

u3,v3) MHR± ♥8.6016♣ ♥6.7688♣ ♥6.9558♣ ♥12.5430♣ ♥12.3437♣ ♥6.7160♣ 

        

(Murakami’s 

zig zag 
MHR4 ♥8.6564♣ ♥6.5908♣ ♥6.2430♣ ♥11.4761♣ ♥12.5987♣ ♥6.9702♣ 

u3,v3,w4) MHR4± ♥9.2370♣ ♥6.7213♣ ♥6.3437♣ ♥12.5583♣ ♥12.8111♣ ♥7.0373♣ 

M
ix

ed
 H

W
 

 HWZZ 12.0193 6.4675 6.5745 18.4597 15.1594 12.8490 

 HWZZ_RDFX 11.8948 9.2171 9.0704 17.2278 15.5294 14.0459 

        

(no zig-zag 

functions) 
HWZZM* 10.0139 7.7776 7.6312 14.5394 12.9410 11.7302 

        

(Murakami’s 

zig zag 
HWZZM 10.9757 8.5366 8.3743 15.9133 14.2983 12.8841 

u3,v3,w4) MHWZZA ♥10.7396♣ ♥8.2660♣ ♥8.3921♣ ♥16.9729♣ ♥14.1698♣ ♥7.6952♣ 

 MHWZZA4 ♥10.2451♣ ♥8.5094♣ ♥8.0087♣ ♥16.7753♣ ♥14.2118♣ ♥7.5861♣ 

 (adaptive ZZA 13.5620 10.5392 10.3465 19.6433 17.5977 15.9719 

 u3,v3,w4) ZZA_RDFX 12.9947 10.0199 9.9030 18.7144 16.7491 15.2775 

         

 
(no zig-zag 

functions 
ZZA* 10.2076 7.8824 7.7516 14.7835 13.1858 12.0055 

 u3,v3,w4) HSDT_34X 10.1359 7.9003 7.7450 14.7167 13.1257 12.0035 

         

 
(no zig-zag 

functions 
ZZA*_43X 10.2219 7.9368 7.7749 14.6905 13.1698 11.9624 

 u4,v4,w3)        

         

 (general) ZZA-XX 25.7514 20.0141 19.5885 37.1933 33.3160 30.2455 

  ZZA-XX’ 25.0131 19.4123 19.2121 36.2402 32.5449 29.5543 
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Table 5: Results of case a 

 
 

 

 

 

 

 

Table 6: Results of case b 
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Table 7: Results of case c 
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Table 8: Results of case d 

 
 
 

 

Table 9: Results of case e 
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Table 10: Results for case f 
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Figure 1: Results of case a; Symbol ♠ indicates that theories ZZA, ZZA*, HWZZ, HWZZM, HWZZM*, ZZA-

XX, ZZA-XX’, ZZA_X_1 to ZZA_X_4, ZZA_RDFX, HWZZ_RDFX, ZZA*_43X, HSDT_34X obtain results 

which differ for less than 1% 
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Figure 2: Results of case b; Symbol ♠ indicates that theories ZZA, ZZA*, HWZZ, HWZZM, HWZZM*, ZZA-

XX, ZZA-XX’, ZZA_X_1 to ZZA_X_4, ZZA_RDFX, HWZZ_RDFX, ZZA*_43X, HSDT_34X obtain results 

which differ for less than 1% 
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Figure 3: Results of case c; Symbol ♠ indicates that theories ZZA, ZZA*, HWZZ, HWZZM, HWZZM*, ZZA-

XX, ZZA-XX’, ZZA_X_1 to ZZA_X_4, ZZA_RDFX, HWZZ_RDFX, ZZA*_43X, HSDT_34X obtain results 

which differ for less than 1% 
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Figure 4: Results of case d; Symbol ♠ indicates that theories ZZA, ZZA*, HWZZ, HWZZM, HWZZM*, ZZA-

XX, ZZA-XX’, ZZA_X_1 to ZZA_X_4, ZZA_RDFX, HWZZ_RDFX, ZZA*_43X, HSDT_34X obtain results 

which differ for less than 1% 
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Figure 5: Results of case e; Symbol ♠ indicates that theories ZZA, ZZA*, HWZZ, HWZZM, HWZZM*, ZZA-

XX, ZZA-XX’, ZZA_X_1 to ZZA_X_4, ZZA_RDFX, HWZZ_RDFX, ZZA*_43X, HSDT_34X obtain results 

which differ for less than 1% 
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Figure 6: Results of case f; Symbol ♠ indicates that theories ZZA, ZZA*, HWZZ, HWZZM, HWZZM*, ZZA-

XX, ZZA-XX’, ZZA_X_1 to ZZA_X_4, ZZA_RDFX, HWZZ_RDFX, ZZA*_43X, HSDT_34X obtain results 

which differ for less than 1% 

 

 

 

 

 


