
05 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Efficient FPGA Implementation of PCA Algorithm for Large Data using High Level Synthesis / Mansoori,
Mohammadamir; Casu, Mario R.. - ELETTRONICO. - (2019), pp. 65-68. (Intervento presentato al convegno 2019 15th
Conference on Ph.D Research in Microelectronics and Electronics (PRIME) tenutosi a Lausanne (CH) nel 15-18 July
2019) [10.1109/PRIME.2019.8787782].

Original

Efficient FPGA Implementation of PCA Algorithm for Large Data using High Level Synthesis

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/PRIME.2019.8787782

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2748941 since: 2019-08-28T20:05:16Z

IEEE

Efficient FPGA Implementation of PCA Algorithm
for Large Data using High Level Synthesis

Mohammad Amir Mansoori, Mario R. Casu
Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.

e-mail: {mohammadamir.mansoori, mario.casu}@polito.it

Abstract—Principal Component Analysis (PCA) is a widely
used method for dimensionality reduction in different application
areas, including microwave imaging where the size of input data
is large. Despite its popularity, one of the difficulties in using
PCA is its high computational complexity, especially for large
dimensional data. In recent years several FPGA implementations
have been proposed to accelerate PCA computation. However,
most of them use manual RTL design, which requires more time
for design and development. In this paper, we propose an FPGA
implementation of PCA using High Level Synthesis (HLS), which
allows us to explore the design space more efficiently than with
hand-coded RTL design. Starting from a PCA algorithm written
in C++, we apply various hardware optimization techniques to
the same code using Vivado HLS in order to quickly explore
the design space. Our experiments show that the performance
of the design obtained with the proposed method is superior to
the state-of-the-art RTL design in terms of resource utilization,
latency and frequency.

Index Terms—PCA, Hardware optimization, FPGA, Vivado
HLS, Large data.

Principal Component Analysis (PCA) is a mathematical
method used to transform a set of variables into a lower di-
mensional data preserving the most representative information.
It is often used in machine learning and image processing as
the first step for feature extraction and representation. We are
particularly interested in the application of PCA to biomedical
images obtained with Microwave Imaging (MI), where we deal
with large dimensional images. For example, it can be used
for breast tumor classification [1] or feature extraction [2] to
reduce data dimensions.

The complexity of PCA calls for efficient hardware im-
plementations capable of handling large data sets. Field Pro-
grammable Gate Arrays (FPGAs) are suitable for this purpose,
due to their inherent parallelism. Several FPGA-based methods
have been proposed to accelerate PCA computations. One of
the most time-consuming parts of PCA is the computation
of the eigenvalues of the covariance matrix of the input data,
which has been the subject of considerable efforts for hardware
acceleration. Bravo et al. presented a hardware architecture for
eigenvector decomposition of a covariance matrix based on the
Jacobi method [3]. Using two CORDIC modules and a Finite
State Machine (FSM), they could improve the accuracy of
eigenvector computation. Ledesma et al. presented an FPGA
implementation of Singular Value Decomposition (SVD) for
relatively large matrices up to the size of 32×127 [4]. A new
Register-Transfer Level (RTL) method for the design of PCA
algorithm was proposed in [5] for object detection.

Recently, there has been an increasing tendency towards

using High Level Synthesis (HLS) rather than RTL in the
design of FPGA hardware. HLS reduces significantly the de-
velopment time and allows designers to quickly explore a large
design space in the quest for the best solutions. For example,
in [6], a hardware accelerator obtained with HLS was proposed
for the application of fall detection systems using PCA as an
internal stage. However, the PCA components were computed
in software and used in the final hardware computation inside
the FPGA. In [7], a comparative study between various RTL
and HLS designs of the Jacobi algorithm enabled the designers
to determine the best hardware implementation.

In this paper, we propose a new FPGA architecture for
the implementation of the PCA algorithm using HLS, which
we show being an efficient solution when dealing with large
input data. Previous methods either do not use HLS, or do
not implement the whole algorithm, or consider an off-line
stage for the computation of PCA coefficients. In addition,
the size of input matrices in previous works is relatively small
compared to the large dimensional data used in our target MI
applications. Thanks to HLS, we could validate in a short time
span various hardware optimization techniques applied to the
same high-level code and converge rather quickly to the final
solution with the best performance in terms of execution time.

To validate our HLS approach, we looked for existing RTL
implementations to be used as reference designs. To the best of
our knowledge, however, there are no RTL designs for PCA
specifically aimed at MI applications. Therefore, we had to
select from the literature a state-of-the-art RTL implementation
for a different application with similar characteristics. We
then used as reference design an RTL implementation of
PCA for hyperspectral imaging [8]. In hyperspectral imaging,
images are obtained in many different bands in the microwave
spectrum. Usually, there is redundant information in different
spectral bands, which can be removed using PCA.

In the following, a brief overview of PCA is presented and
the proposed hardware is described. Finally the results in terms
of performance and utilization of FPGA resources are reported.

I. PROPOSED METHOD

A. Overview of PCA algorithm

The inputs to the PCA algorithm are a matrix XN×B and
its covariance CB×B = Xt × X , in which N are the pixels
in each image and B are the bands. Then, the algorithm goes
through the following steps to obtain the output matrix YN×L

represented on a smaller number of dimensions (L < B):

Fig. 1. Block diagram of the proposed PCA implementation. HLS blocks are in blue and the other color is for Vivado IPs.

1) SVD of the covariance matrix: C = UΣUT ;
2) Sorting singular values and vectors in descending order:

Σs, Us = Sort(Σ, U);
3) Selection of principal components based on the cumula-

tive energy of singular values: EB×L = Select(Σs, Us);
4) Projection of input data into the new base: Y = X×E.

In order to select the number of principle components, the
following procedure is used. At first, the total energy TE of
the sorted singular values is computed1:

TE =

N∑
i=1

σi, (1)

where σi ∈ Σs is the ith component of the sorted vector of
eigenvalues. Since most of the information is stored in the first
few components of Σs, only L < B principal components can
be selected. This number is determined by setting a proper
threshold Θ (%) as a percentage of the total energy and then
by choosing the first L components for which the following
criteria is met:

100×
∑L

i=1 σi
TE

≥ Θ (2)

We used two different data sets to validate our design, which
were also used in the reference [8]. The number of spectral
bands is B = 224 for both data sets, but the image dimension
for the first one is N=350×350 and for the second one is
N=614×512. This clearly shows the large data dimensions
used in this application, especially in the second data set.

For these data sets, the number of principal components is
L ≤ Lmax = 24.

B. Hardware architecture

Our architecture implements steps 1-4 of the PCA algorithm
outlined above. It does not include the computation of the
covariance matrix for a fair comparison with the reference.

The hardware architecture is shown in Fig. 1. We designed
the two main blocks “Data Dispatcher” and “PCA block”
in HLS, whereas the other parts are used for data storage
and communication and are existing Intellectual Property (IP)

1Note that the dimension of the eigenvalues of a covariance matrix is energy,
hence their sum is also an energy.

blocks provided by Vivado, the Xilinx FPGA tool that we use
in our design.

A DDR memory is used to store the input image pixels
and the covariance matrix as well as the output of the PCA
block. The Memory Controller is in charge of reading and
writing data from and to the memory. It uses the AXI smart
connect block to share one AXI port for both writing to the
Data Dispatcher and reading from the PCA block.

The Data Dispatcher receives first the covariance matrix and
sends it to the BRAM; then it receives the input pixels from
diffrent spectral bands and sends them to the FIFOs.

While the pixels are transferred to the FIFOs, the PCA block
reads the covariance matrix from the BRAM, performs SVD
calculation, and sorts and selects the principal components.
Such concurrency of SVD computation and pixel transfer
allows us to significantly reduce the overall latency. Finally,
the input data are projected into the new base, resulting in
lower dimensional output data.

C. Design of the PCA block

To compute the singular values of the covariance matrix, we
started from an existing SVD code available in Vivado HLS,
the Xilinx tool that automatically generates logic-synthesizable
RTL from a high-level description. To this code, we applied
different optimization directives, which are described in the
next subsection. The computed singular values are sorted
in descending order and then the principal components are
selected based on (1) and (2). Note that in HLS we had to
set a maximum limit on the number of principal components
in addition to the energy threshold. As a result, we selected
Lmax = 24 based on the analysis in [8]. In addition, the
threshold is selected as Θ = 98%.

In the Projection Unit (PU), the input data matrix of image
pixels is multiplied by the matrix of principal components to
remove the redundant information from the input images. This
is one of the critical parts of the design due to the large number
of input pixels. Incorporation of FIFOs into the design is to
address the problem of large data communication, to let the
transfer of input data matrix occur at the same time with SVD
computation, and to improve the execution time of the PU as
shown below. Since these are dual-clock FIFOs, we could have

the Data Dispatcher run at a higher clock frequency than the
PCA block, which allowed us to speed up the data transfer.
The same is true for the Dual-Port BRAM used to store the
covariance matrix, in which the two ports are associated to
two different clock domains.

Note that all of the parts inside the PCA block are described
as a single HLS code and partitioning it into sub-blocks is just
for clarification.

D. Hardware optimization techniques

The initial unoptimized RTL generated by HLS was in-
efficient in terms of latency and resource utilization. To
enhance the performance of the design, we applied different
optimization methods to the same code.

The most critical parts of the design in terms of latency
were the PU and the SVD block. The PU code consists of the
three nested loops shown in Algorithm 1. These loops iterate
on the image pixels (N), the maximum number of selected
eigenvalues (Lmax), and the spectral bands (B), respectively,
resulting in a large number of iterations.

Algorithm 1
P r o j e c t i o n L o o p :
f o r (i n t p =0; p<N; p ++){

COLB: f o r (i n t c =0; c<L max ; c ++){
pragma HLS PIPELINE I I =4
tmp =0;
. . .

COLA: f o r (i n t n =0; n<B ; n ++){
tmp+= D i n p i x e l [n]*PC [n] [c] ; }

Data Trans fo rmed [p] [c]= tmp ;}}

In the above code, Din_pixel is a vector to store all the
bands for each pixel of the input data and PC is the matrix of
principal components.

The first optimization method was to pipeline the middle
loop so that the resulting hardware can overlap the computa-
tion of the projection over different components.

To further reduce the loop Initiation Interval (II), and so to
increase the pipeline throughput, the inner loop has to be at
least partially unrolled, so that different multiplications and
additions can be computed in parallel. This in turn leads to
the need to access multiple bands in parallel. Therefore, as a
second optimization, we partitioned Din_pixel and replaced
the default dual-port BRAM that Vivado HLS instantiates with
multiple FIFOs as shown in Fig. 1. With 56 partitions and
therefore 56 FIFOs we obtained II=4 for the middle loop2.

The final limitation was inside the SVD function (code not
reported for space limitations). This function computes the
singular values in an iterative manner in which the diagonal
and off-diagonal elements of the matrix are updated in each
iteration. The computation of off-diagonal elements accounts
for most of the latency. Therefore, the next optimization was
to pipeline the loop on the off-diagonal pixels with a minimum
initiation interval. For further enhancement, loop unrolling was
also applied to this loop.

2Since B = 224, with 56 partitions we need 224/56=4 clock cycles to
compute one pixel for all the principal components.

Fig. 2. Results of the HLS procedure for latency optimization.

Fig. 3. Effect of HLS optimizations on resource utilization.

As a final note on the hardware design, HLS facilitated the
design of all the I/O interfaces including AXI ports, FIFOs and
BRAM interfaces, which were obtained without any changes
in the code except for adding specific interface directives.

II. RESULTS

We evaluate the quality of our results by comparing resource
usage and execution time of our solution with those of the
reference RTL implementation targeting the same FPGA,
i.e. the Virtex7 of the VC709 evaluation board.

Details about the hardware architecture are as follows. The
maximum frequency of the PCA block is 87 MHz whereas for
the Data Dispatcher, it is 400 MHz. These two frequencies are
generated by a PLL inside the Memory Controller. The width
of AXI bus of the memory controller is 512 bits enabling it to
provide 16 pixels at every clock cycle for the Data Dispatcher.
With this clock rate and bit-level parallelism we can feed the
56 FIFOs without exceeding the DDR access bandwidth.

An important feature of the proposed method is the use
of floating point arithmetic, in contrast with the reference
RTL design that uses integer arithmetic. This leads to a better
accuracy in the final PCA computations.

Fig. 2 shows the results of the optimization steps outlined
above. The initial design with no optimization directives
has the largest latency. Applying the loop pipelining to the
projection unit significantly reduces the latency and array
partitioning on the input data further improves it. Finally,
reducing SVD initiation interval and using an unroll factor
equal to 8 result in the minimum achievable latency.

Fig. 3 shows the effect of different incremental optimiza-
tions on the resource utilization. Each additional step led to an

Fig. 4. Effects of unrolling factor on SVD latency in terms of clock cycles.

Fig. 5. Comparison of execution time for PCA algorithm between RTL [8]
and HLS (this work).

increased hardware usage. The number of BRAMs is almost
constant (44% or 45%), therefore it is not reported.

To select the optimal value of the loop unrolling factor for
SVD, we evaluated its effect on both latency and resource
usage. Fig. 4 shows that the latency decreases by increasing the
unroll factor. However, the Place-and-Route implementation
step in Vivado failed for unroll factor 56 and for full unrolling,
due to wire congestion errors. Factors 16 and 28 also created
timing issues at the target clock frequency, due to high
resource usage for these factors. Unrolling by factor 8 gives
the best results in terms of both timing and hardware usage.

The final latency for each part of the PCA block is shown
in Table I for both datasets. As seen in the table, most of the
latency is due to the SVD function.

TABLE I
MAJOR LATENCIES IN THE DESIGN (CLOCK CYCLES).

Total Latency SVD latency Projection latency
Data1 84,432,350 72,414,576 11,760,906
Data2 102,851,653 72,401,196 30,180,233

After place and route in Vivado, the final working frequency,
resource utilization, and execution time were obtained for each
dataset. Table II and Fig. 5 report these results and compare
them with those of the RTL implementation described in [8].
In addition, the maximum power consumption in the design
is 9 Watts.

The comparison clearly show that our results are superior in
terms of performance as well as resource utilization, except for
a slight increase in the use of flip-flop (FF) resources (+4.9%).

TABLE II
COMPARISON OF RESOURCE USAGE BETWEEN RTL [8] AND HLS (THIS

WORK).

BRAM DSP48 FF LUT freq(MHz)
HLS data1 40% 10.2% 11.5% 29.4% 87.67
HLS data2 40% 10.2% 10.6% 29.7% 84.21

RTL 61% 71.6% 6.6% 68% 76

III. CONCLUSIONS

In this paper, a new FPGA hardware architecture is pre-
sented for the implementation of PCA algorithm using HLS.
Compared to a conventional RTL design, the proposed hard-
ware improves both latency and hardware usage. A maximum
of 3.4x speedup is achieved and the hardware utilization is
significantly reduced, especially DSP and BRAM resources.
The computations in the HLS design use floating point arith-
metic rather than integer numbers in RTL, resulting in a better
accuracy. In addition, the maximum achievable frequency of
the PCA block is about 15% more than the RTL design.
These features make the suggested hardware suitable for large
dimensional data inputs.

ACKNOWLEDGMENT

This work was supported by the EMERALD project funded
by the European Unions Horizon 2020 research and innovation
programme under the Marie Skodowska-Curie grant agree-
ment No. 764479.

REFERENCES

[1] S. K. Davis, B. V. Veen, S. C. Hagness, and F. Kelcz, “Breast tumor
characterization based on ultrawideband microwave backscatter,” IEEE
TRANS. Biomedical Engineering, vol. 55, no. 1, pp. 237–246, 2008.

[2] B. Oliveira et al., “Avoiding unnecessary breast biopsies: clinically
informed 3D breast tumour models for microwave imaging applica-
tions,”IEEE Antennas and Propagation Society International Symposium
(APSURSI), pp. 1143–1144, 2014.

[3] I. Bravo et al., “Novel HW architecture based on FPGAs oriented to
solve the eigen problems,” IEEE Trans. VLSI Systems, vol. 16, no. 12,
pp. 1722–1725, 2008.

[4] Luis M. Ledesma-Carrillo et al., “Reconfigurable FPGA-based unit for
singular value decomposition of large m × n matrices,” Int. Conf.
Reconf. Comp. & FPGAs, pp. 345-350, 2011.

[5] I. Bravo et al., “An intelligent architecture based on field programmable
gate arrays designed to detect moving objects by using principal com-
ponent analysis,” Sensors, vol. 10, no. 10, pp. 9232–9251, 2010.

[6] A. Ali, M. Siupik, A. Amira, F. Bensaali, and P. Higuera, “HLS based
hardware acceleration on the Zynq SoC: a case study for fall detection
system,”, 11th Int. Conf. Comp. Sys. and Appl. (AICCSA), pp. 685–690,
2014.

[7] I. Bravo, C. Vazquez, A. Gardel, J. L. Lazaro, and E. Palomar, “High
level synthesis FPGA implementation of the jacobi algorithm to solve
the eigen problem,” Mathematical Problems in Engineering, vol. 2015,
Article ID 870569, 11 pages, 2015.

[8] D. Fernandez, C. Gonzalez, D. Mozos, and S. Lopez, “FPGA implemen-
tation of the principal component analysis algorithm for dimensionality
reduction of hyperspectral images,” J. Real-Time Image Proc., pp. 1–12,
2016

