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Methods for nonlinear system identification of structures generally require input-output measured data to estimate the nonlinear
model, as a consequence of the noninvariance of the FRFs in nonlinear systems. However, providing a continuous forcing input to
the structure may be difficult or impracticable in some situations, while it may be much easier to only measure the output. 'is
paper deals with the identification of nonlinear mechanical vibrations using output-only free-decay data.'e presented method is
based on the nonlinear subspace identification (NSI) technique combined with a mass-change scheme, in order to extract both the
nonlinear state-space model and the underlying linear system. 'e technique is tested first on a numerical nonlinear system and
subsequently on experimental measurements of a multi-degree-of-freedom system comprising a localized nonlinearity.

1. Introduction

Understanding the dynamical behavior of mechanical
structures exhibiting nonlinearities has become of great
interest in the last decades, due to the continual interest in
improving design and performances. In particular, when
experimental data are considered, a common way to gather a
reliable model is via system identification. 'is task can be
particularly challenging when the system is behaving non-
linearly due to the breaking of the basic principles of linear
modal analysis. A variety of methods have been developed to
perform nonlinear system identification, and an exhaustive
literature review can be found in [1, 2]. 'e different
methods are generally based on different assumptions, but
they all share the same need of providing and measuring a
persistent forcing input to the considered structure, for
instance with an electromagnetic shaker. 'is is a strict
requirement originating from an intrinsic property of
nonlinear systems: the breaking of the superposition prin-
ciple and thus of the invariance of the FRFs [3]. 'erefore, it
is not possible to quantify the nonlinear behavior if the
energy provided to the system is unknown (or unmeasured).
Conversely, linear system identification with output-only

data is a consolidated practice nowadays, and it is referred to
as stochastic identification if the unmeasured input is as-
sumed to be a realization of a stochastic process [4].

In this paper, a method for performing output-only
nonlinear system identification from free-decay measure-
ments is presented and validated.'emethod is based on the
nonlinear subspace identification (NSI) technique [5–9], and
it will be referred to as output-only NSI. In its original form,
NSI is an input-output identification algorithm relying on a
nonlinear state-space representation of the system, obtained
by considering the nonlinear terms as unmeasured internal
feedbacks to the so-called underlying linear system [10]. 'e
measured data are then processed using the subspace for-
mulation, derived from the linear system identification
theory [11, 12] and adapted to the nonlinear case. NSI has
proved to be very efficient in several occasions, with both
localized and distributed nonlinearities [13, 14].

When output-only free-decay measurements are con-
sidered, NSI in its original form cannot be used to fully
estimate the nonlinear model. Indeed, it is still possible to
estimate the modal parameters of the underlying linear
system, but a quantification of the nonlinear contribution is
not available [15]. For this reason, the classical NSI
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algorithm is combined in this paper with a mass-change
technique to fill the missing information needed to complete
the nonlinear model. 'e mass-change method is generally
used in linear operational modal analysis to estimate the so-
called scaling factor from the identified modal parameters by
adding a known mass to the structure [16–18]. In this work,
the same approach is brought to the nonlinear case into the
NSI algorithm to estimate the FRFs of the underlying linear
system and thus the full nonlinear state-space model.

'e output-only NSI method is intended to be used in
situations where no forcing input can be provided to the
system, either for practical reasons or because it may alter the
properties of the structure itself. Indeed, the need of having
free-decay data does not allow to consider, for instance,
structures excited with ambient excitation. 'erefore, the
method cannot be addressed to as “stochastic identification”.
Nevertheless, the identification of nonlinear structures with
unmeasured (stochastic) inputs still remains an unreached
goal for the research community [2], and the method pro-
posed in this study can be considered as a first step towards
this direction. 'e methodology is first tested on a numerical
dataset of a multi-degree-of-freedom system comprising a
polynomial nonlinearity and finally on an experimental test
bench of a scaled nonlinear multistory building.

2. Output-Only Nonlinear Subspace
Identification via Mass-Change Method

Let us consider the free response of a discrete nonlinear
vibrating system with N degrees of freedom (DOFs):

M€y(t) + Cv _y(t) + Ky(t) + fnl(t) � 0,

y(t � 0) � y0, _y(t � 0) � _y0.

⎧⎨

⎩ (1)

'e adopted nomenclature is reported in Nomenclature.
'e system matricesM, Cv, and K have dimensions RN×N in
this case, while y(t) ∈ RN. 'e term fnl(t) ∈ RN represents
the nonlinear restoring force, i.e., the nonlinear part of the
equation, and it is generally a function of both displacements
y(t) and velocities _y(t). As in [19, 20], it is assumed that fnl
can be decomposed into J distinct nonlinear contributions
using a linear-in-the-parameters model, thus yielding

fnl(t) � 􏽘

J

j�1
μjLjξj(t), (2)

where μj is the coefficient of the jth nonlinearity and ξj the j
th

nonlinear basis function, which defines the shape of the
considered nonlinearity. 'e vector Lj ∈ BN is the Boolean
location vector of the jth nonlinearity, whose entries can be 1,
−1, or 0. 'e a priori knowledge of the nonlinear basis
functions is required; therefore, this identification method
can be classified as grey box. Adopting the nonlinear
feedback interpretation, the term fnl is shifted to the right-
hand side of equation (1), becoming a forcing term to the
underlying linear system:

M€y(t) + Cv _y(t) + Ky(t) � −fnl(t),

y(t � 0) � y0, _y(t � 0) � _y0.

⎧⎨

⎩ (3)

A forcing vector of nonlinear basis functions is defined
as

ξnl(t) � −ξ1(t), . . . ,−ξJ(t)􏽨 􏽩
T
, (4)

so as to rewrite the equations of motion in a state space
formulation. 'e state vector x � [yT, _yT]T can be in-
troduced, yielding

x(τ + 1) � Ax(τ) + Bnlξnl(τ),

y(τ) � Cx(τ) + Dnlξnl(τ).

⎧⎨

⎩ (5)

'e reader can refer to Nomenclature. Subspace iden-
tification can be performed to identify the state-space ma-
trices in equation (5), rearranging the measured output data
into Hankel-type block matrices. 'e idea is borrowed from
the linear subspace identification theory (SI) [11], and de-
tailed steps in the nonlinear case can be found in [5].

It is worth noticing that the state-space model retrieved
in equation (5) does not allow to compute the FRFs of the
underlying linear system, called G(ω) hereafter, in contrast
to the original formulation of NSI for input-output data.
Instead, the FRF matrix of the nonlinear feedbacks Gnl(ω)

can be defined as

Gnl
(ω) � Dnl

+ C(zI−A)
−1Bnl

, z � e
iωΔτ

, (6)

where I is the identity matrix and i is the imaginary unit.
Gnl(ω) has the same structure as the vector of nonlinear
basis functions ξnl:

Gnl
(ω) � G(ω)μ1L1, . . . ,G(ω)μJLJ􏽨 􏽩. (7)

'e matrix G(ω) is the abovementioned FRF matrix of
the underlying linear system, and since it is unknown, it is
not possible to compute the coefficients μj at the current
state.

Nevertheless, the modal parameters of the underlying
linear system can be estimated from the state matrix A by
classical eigenvalue decomposition [4], obtaining the natural
frequencies ωr, the damping ratios ζr, and the mode shapes
ψr, for each identified mode r � 1, . . . , N. 'e unit-scaled
normalization will be assumed hereafter for the mode shapes
ψr, while the mass-normalizedmode shapes will be called ϕr.
'e two set of mode shapes are related by the following
expression:

ϕr � αrψr, r � 1, . . . , N, (8)

where αr is the (unknown) modal scaling factor of the rth
mode, and it is related to the modal mass mr by the following
relation [21]:

αr �
1
���
mr

√ . (9)

In the case of underdamped modes, the FRF of the
underlying linear system can be assembled as a sum of single
modes’ contributions. In terms of receptance, it yields

Gpq(ω) � 􏽘
N

r�1

rApq

ω2
r −ω2 + 2iωωrζr

, (10)
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where rApq � α2rψprψqr is the residue of the r
th mode. 'us,

the FRF matrix G(ω) can be estimated if the scaling factors
αr are known.

A common way to estimate the scaling factors in linear
operational modal analysis consists of adding some known
lumped masses to the structure in order to exploit the
changes in natural frequencies and mode shapes. 'e same
technique can be applied in the nonlinear case when NSI is
used for nonlinear system identification. Let us assume that
one or more known lumped masses are attached to the
structure, modifying the mass matrix M by a quantity ΔM.
'erefore, a new equation of motion of the same form of
equation (1) can be written for the modified structure, in-
dicated with subscript ·I:

(M + ΔM)€yI(t) + Cv _yI(t) + KyI(t) + fnl(t) � 0,

yI(t � 0) � yI0, _yI(t � 0) � _yI0.

⎧⎨

⎩ (11)

'e passages from equations (2) to (5) can be repeated
for the modified structure, leading to a new state-space
formulation represented by the matrices AI,Bnl

I ,CI,Dnl
I . 'e

set of modal parameters of the modified underlying linear
system can be obtained by performing the eigenvalue de-
composition ofAI, obtaining the natural frequencies ωIr, the
damping ratios ζIr, and the unit-scaled mode shapes ψIr for
r � 1, . . . , N. Following [17], the modal scaling factors of the
unmodified structure can be computed by

α2r �
ω2

r −ω2
Ir( 􏼁

ω2
r

Γrr

ψT
rΔMψIr

, r � 1, . . . , N, (12)

where Γrr is the r
th diagonal entry of the matrix Γ, estimated

from

Γ � Ψ†ΨI, (13)

where Ψ† is the pseudoinverse of the modal matrix Ψ
containing the eigenvectors ψr of the unmodified structure
and ΨI is the modal matrix of the corresponding eigen-
vectors of the modified structure. It should be noted that if
only a truncated set of mode shapes is retained, equation (13)
gives just an approximation of the true matrix Γ [18].

Once the scaling factors are computed, the FRF matrixG
can be estimated from equation (10), and thus the co-
efficients of the nonlinearities μj can be estimated from
equation (7). It is worth highlighting that the full FRF matrix
can be retrieved, which is supposed to be symmetric since it
is linear, thus yielding

μjGLj � μj

G11 G12 · · · G1N

G21 G22

⋮ ⋱ ⋮

GN1 · · · GNN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Lj �

Gnl
1j

Gnl
2j

⋮

Gnl
Nj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

'e coefficient μj can be computed from equation (14)
starting from any row of G. 'is leads to an intrinsic re-
dundancy of the methodology, as there are in principle N
estimations of each coefficient. Conversely, when standard
input-output NSI is used, the number of known rows of G is
equal to the number of physical forcing inputs, that is,

generally one. Practically, it is possible to solve equation (14)
in a least-square (LS) sense with respect to μj, also con-
sidering an appropriate weighting function. A convenient
choice is obtained considering that the result of equation
(14) gives a complex-valued and frequency-dependent
quantity μid

j � μid
j (ω), as it is the ratio between complex

frequency response functions. Recalling that the true co-
efficient μj is a real number, it follows that μid

j (ω) is expected
to have a flat dependence on the frequency and a null
imaginary part. 'is is true only if both noise and nonlinear
modelling errors are absent, which is not the case of real
measurements. 'erefore, the ratio between real and
imaginary parts of μid

j (ω) can be taken as an indicator of the
goodness of the identification, and it can be used as a weight
in the LS solution. CallingWj(ω) the weighting vector of the
jth nonlinearity, it is possible to write the following mini-
mization problem:

arg min
μid

j
(ω)

rHj diag Wj􏼐 􏼑 rj􏽮 􏽯, rj(ω) �

Gnl
1j

⋮

Gnl
Nj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− μid

j GLj,

(15)

with rj(ω) being the residue at the frequency ω and su-
perscript H indicating the Hermitian transpose. 'e LS
solution of equation (15) gives the complex-valued quantity
μid

j (ω).

Moreover, it is possible to split the single modes’ con-
tributions to the jth nonlinearity. Indeed,G is already built as
a sum of modes (equation (10)), and the same can be done
for Gnl in the discrete state-space formulation as in [13]. In
particular, if displacements are measured, the corresponding
receptance would be

Gnl
(ω) � 􏽘

N

r�1

cmr bmr
z− λr( 􏼁

� 􏽘

N

r�1
rG

nl
(ω), z � e

iωΔτ
. (16)

where cmr is the rth column of Cm � CΨ, bmr is the rth column
of Bm � Ψ−1Bnl, and λr is the rth discrete eigenvalue of A.
'e contribution of the rth mode to Gnl is called rGnl. If
accelerations are measured, the corresponding inertance can
be written as

Gnl
(ω) � 􏽘

N

r�1

(z− 1)cmr b
m
r

λr − 1( 􏼁 z− λr( 􏼁
� 􏽘

N

r�1
rG

nl
(ω), z � e

iωΔτ
.

(17)

Note that the FRF matrices G and Gnl should be con-
sistent, so if G is a matrix of receptances as in equation (10),
then Gnl should be written in a receptance formulation as
well. It is therefore possible to rewrite equation (14) for each
mode r as

μid
j rG(ω)Lj � rG

nl
(ω), r � 1, . . . , N, (18)

where rG(ω) is the contribution of the rth mode to G(ω).
'e redundancy of the FRFmatrix exploited in equation (14)
still holds in equation (18); thus, the latter can be solved in a
least square sense as well by rewriting the minimization
problem of equation (15) in terms of single modes’
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contributions. 'is operation can hypothetically be repeated
for all the N participating modes. In practice, a convenient
choice might be to consider the subset of modes most
influenced by the nonlinearity and discard the others. 'is
idea is deepened in the following sections considering both
numerical and experimental data.

A flow diagram of the whole identification process is
depicted in Figure 1.

3. Numerical Application

A four-degree-of-freedom nonlinear system is considered
hereafter, comprising a single cubic nonlinear stiffness be-
tween DOFs 1 and 3. A representation of the system is
depicted in Figure 2, where the nonlinear link is also shown,
while the system parameters are summarized in Table 1. 'e
nonlinear basis function ξ1(t) and the location vector L1 are,
in this case, respectively,

ξ1(t) � y3(t)−y1(t)( 􏼁
3
,

L1 � [−1 0 1 0]
T
.

(19)

'e free-decay response of the system is simulated by
applying an impulsive force on DOF 2 at the time t � 0 s.'e
sampling frequency is fs � 500Hz, and the total time of the
simulation is 60 seconds. Time histories are obtained with
the Newmark time integration scheme, and 1% of zero-mean
Gaussian noise is added to each simulated output. 'e
displacements of the four DOFs are reported in Figure 3.

'e spectrograms of the outputs are also computed to
check whether the nonlinearity has been properly acti-
vated. 'e nonlinear behavior is expected to be enhanced
during the first instants of the response, as a consequence
of the impulsive force. Afterwards, the linear behavior
should be predominant. 'is is reflected to the in-
stantaneous frequencies of the system, which will generally
tend to the linear natural frequencies starting from a
shifted value. 'e spectrogram of the output no. 2 is shown
in Figure 4(a), while the percentage frequency shifts of the
four modes are reported in Figure 4(b) taking as starting
values the instantaneous frequencies at t � 0 s. 'ese
curves are directly extracted by the spectrogram and in-
terpolated with a polynomial function. A decent frequency
shift is detected, especially for the last mode of the
structure.

It is also clear from the figure that the nonlinear part of
the response expires after almost 10 seconds, as the rest of
the time series shows a linear behavior, i.e., constant in-
stantaneous frequencies. 'is may be a drawback of the
method, since there are only a few samples contributing to
the identification of the nonlinearity. On the other hand, the
decoupling strategy seen in the previous section might help
the identification, considering, for instance, just the modes
more influenced by the nonlinearities. For the case con-
sidered here, it seems that the fourth mode is the “most
nonlinear”; thus, it may be a convenient choice for the
identification of the nonlinearity, according to equation (18).

'e stabilization diagram of the underlying linear system
obtained by increasing the model order from 2 to 20 is
depicted in Figure 5. Stabilization is checked for frequencies,
damping ratios, and MACs, and a model order equal to 8 is
eventually chosen. 'e set of identified modal parameters of
the underlying linear system ω, ζ,ψ􏼈 􏼉r�1,...,4 is extracted and
reported in Table 2 in terms of natural frequencies and
damping ratios.

'e whole process is then repeated with the modified
structure, where a change in the mass distribution is ac-
complished by increasing each lumpedmass by 10%.'e new
set of identified modal parameters of the underlying linear
system for themodified structure ωI, ζI,ψI􏼈 􏼉r�1,...,4 is extracted
and reported in Table 2 in terms of natural frequencies. 'e
damping ratios ζI are not reported as they are not needed.

'e modal scaling factors and the modal masses are
eventually computed from equations (12) and (9), re-
spectively. 'e identified modal masses are then compared
with the theoretical ones in Table 3, where an excellent
agreement can be noted.

'e FRF matrix of the underlying linear system is then
built according to equation (10). 'e driving point FRF
G22(ω) is depicted in Figure 6 and compared with the
theoretical one. A great correspondence is also retrieved in
this case between identified and theoretical results.

As for the nonlinear identification, the coefficient of the
nonlinearity μ1 � knl is identified solving equation (18) in a LS
sense. Since the full FRF matrix is available, N� 4 estimations
of μ1 are retrieved considering the 4 DOFs as inputs for each
mode r � 1, . . . , 4. 'us, a total of 16 possible estimations can
be obtained. As pointed out in the previous section, not all the
modes equally contribute to the nonlinear part of the response,
and for the case considered here, the last one seems to be the
most affected by the nonlinearity. Indeed, the LS solution
should take into account this information, and this can be
done automatically by choosing as weighting function the ratio
between real and imaginary parts of the single estimations.
With this choice, the final value for the nonlinear coefficient
can be obtained by considering the spectral mean μid

1 of the
real part of the LS solution μid

1 (ω). 'e result is μid
1 � 4.98 ·

1010 N/m3 with a standard deviation of 1.5 · 105 N/m3,
providing a percentage error of 0.40% from the true value.

'e single estimations are reported in Figure 7 in terms
of spectral mean of their real parts. 'e darkness of the dots
is proportional to their weight in the LS solution. Also, the
true value μ1 and the final identified value μid

1 are depicted.
As expected, the contributions associated to the last mode,
i.e., the ones labeled as 4G

nl
∗∗, are generally weighted more. In

particular, the contribution 4G
nl
31 has the highest weight, and

this can be explained by considering that the fourth mode
shape ψ4 has its maximum in correspondence of the third
DOF.'us, the FRF 4G

nl
31 is the most reliable in this case, as it

corresponds to the best excitation point of the “most
nonlinear” mode.

Eventually, real and imaginary parts of the LS solution μid
1

are depicted in Figure 8. It should be noted that the imaginary
part is always several orders of magnitude lower than the real
part, assessing the goodness of the identification.
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Figure 1: Flow diagram of the identification strategy.
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Figure 2: 4-DOF nonlinear system with a cubic stiffness located between DOFs 1 and 3.

Table 1: Numerical example parameters.

Mass (kg) Linear stiffness (N/m) Damping (Ns/m) Nonlinear stiffness (N/m3)

m1 � 25; m2 � 18;

m3 � 15; m4 � 25

k1 � 3 · 104;
k2 � k3 � k4 � 5 · 104;
k5 � k6 � k7 � 5 · 104

c1 � c2 � c3 � 10;

c4 � c5 � c6 � c7 � 10 knl � 5 · 1010

Shock and Vibration 5



4. Experimental Application

'e experimental application consists of five aluminum
decks linked by thin steel beams (Figure 9) [13]. 'e rig may
be reasonably considered as a 5-DOF system, as it can be

assumed that the vertical beams provide just a flexural
stiffness contribution. 'ree photos of the experimental
setup are reported in Figure 10, and the characteristics of the
structure are reported in Table 4.

A thin pretensioned metallic wire is connected to the
fifth floor (Figure 10(c)), and it acts like a nonlinear stiffness
when the wire undergoes large amplitude oscillations. 'e
restoring force produced by the wire can be written as a
series expansion comprising a linear stiffness term klin plus a
cubic one [22], thus having a nonlinear restoring force
fnl � μ1y3

5.
'e free-decay response is recorded with 5 accelerom-

eters positioned at each floor plus one on the ground, with

0

4
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Figure 5: Stabilization diagram for the 4-DOF system. Grey dot:
new pole; blue plus: pole stable in frequency; red square: extra
stable MAC; green circle: extra stable damping. Stabilization
thresholds: 0.5%, 10%, and 99.5% for frequencies, damping ratios,
and MACs, respectively.

Table 2: Identified modal parameters of the 4-DOF system.

Mode
Frequency (Hz) Damping (%)

Unmodified Set I Unmodified
1 2.88 2.75 0.29
2 14.69 14.00 0.97
3 16.03 15.28 1.01
4 17.76 16.93 1.09
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Figure 3: Displacements of the 4-DOF system with zoom on the first 2 seconds. Blue line: DOF 1; orange line: DOF 2; green line: DOF 3;
purple line: DOF 4.
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Figure 4: Time-frequency analysis of the 4-DOF system. (a) Spectrogram of the output no. 2. (b) Frequency variations of the four modes.
Blue line: mode 1; orange line: mode 2; green line: mode 3; purple line: mode 4.
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sampling frequency fs � 409.6Hz and duration of 40 s. 'e
displacement of the fifth floor y5(t) is obtained by double
integrating its measured acceleration €y5(t).

'e spectrogram of the output €y2(t) is shown in
Figure 11(a), while the percentage frequency shifts of the five
modes are reported in Figure 11(b) taking as starting values
the instantaneous frequencies at t � 0 s. 'ese curves are
directly extracted by the spectrogram and interpolated with a
polynomial function. A relatively high frequency shift is
detected for the first mode of the structure, and it pro-
gressively vanishes as the mode number increases. 'e
frequency associated to the fifth mode seems not to be af-
fected by the nonlinearity.

Nonlinear system identification is performed with
output-only NSI considering the following nonlinear basis
functions and location vectors:

ξ1(t) � y5(t)
3
,

L1 � [0 0 0 0 1]
T
,

ξ2(t) � y5(t)
2
,

L2 � [0 0 0 0 1]
T
.

(20)

A quadratic nonlinearity is also added to DOF 5 to
account for possible asymmetries in the nonlinear restoring
force, generally present in real structures.

'e stabilization diagram of the underlying linear system
obtained by increasing the model order from 2 to 20 is
depicted in Figure 12. Stabilization is checked for fre-
quencies, damping ratios, and MACs, and the set of iden-
tified modal parameters of the underlying linear system
ω, ζ,ψ􏼈 􏼉r�1,...,N is eventually extracted and reported in Ta-
ble 5 in terms of natural frequencies and damping ratios.'e
model order for each mode is selected according to the
median-damping criterion [23].

Table 3: Identified modal masses of the 4-DOF system.

Mode Identified modal mass (kg) 'eoretical modal mass (kg) Difference (%)
1 31.634 31.648 0.046
2 3.977 3.982 0.137
3 1.061 1.066 0.488
4 7.746 7.778 0.412
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Figure 6: Driving point linear FRF G22 for the 4-DOF system.
Continuous black line: identified FRF; dashed-dotted red line:
theoretical FRF.
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'e whole process is then repeated with the modified
structure, where a change in the mass distribution is con-
sidered. In this case, this is accomplished by adding a mass

equal to 1.99 kg first on the fifth floor and then on the third
floor.'e reason of this choice can be found when looking at
the identified mode shapes of the unmodified structure,

(b)

(c)(a)

Figure 10: Photos of the experimental setup. (a) Overall view with nonlinear link highlighted in red. (b) Overall view with motion directions
in green. (c) Particular of the nonlinear link (thin wire).

Table 4: Characteristics of the experimental setup.

Element, i
Plate Vertical beam

Mass (kg) Width (mm) Length (mm) 'ickness (mm) Length (mm) Section (mm2)
1 4.30 270 250 24 50 60× 0.3
2 2.15 270 250 12 30 60× 0.3
3 1.97 270 250 10 60 60× 0.3
4 1.79 270 250 10 60 60× 0.3
5 1.99 270 250 10 60 60× 0.3

10 155 20 25 300

10 155 20 25 300
Time (s)

–15
–10

–5
0

Fr
eq

ue
nc

y
sh

i�
 (%

)

10

20

30

Fr
eq

ue
nc

y 
(H

z)

–20

0

20

40

Po
w

er
 (d

B)

b)

Figure 11: Time-frequency analysis of the multistory building. (a) Spectrogram of the output no. 2. (b) Frequency variations of the five
modes. Blue line: mode 1; orange line: mode 2; green line: mode 3; purple line: mode 4; yellow line: mode 5.
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reported in Figure 13. It can be seen that the fifth identified
mode has a node on the fifth floor.'us, adding a mass there
does not affect the corresponding mode, making the esti-
mation of the fifth modal mass unreliable. For this reason,
the latter is estimated by adding the mass on the third floor.

Output-only NSI is applied with both the modifications,
leading to two sets of underlying linear modal parameters:
ωI, ζI,ψI􏼈 􏼉r�1,...,N when the mass is on the fifth floor and
ωII, ζII,ψII􏼈 􏼉r�1,...,N when the mass is on the third floor.

As for the variations in the mode shapes, the MACs
between the unmodified and the modified mode shapes are
shown in Figure 14. It can be seen that the MAC between ψ5
and ψI5 is equal to 1, as expected. Equation (12) is then
applied to the two configurations, and the final modal
scaling factors are computed by averaging the two set of
estimations, except for the cases of unitary MAC for either
one of the two sets. 'e identified values for the modal
masses are listed in Table 6. Also, a comparison with the
results obtained performing the (linear) stochastic subspace
identification on the last part of the response (linear be-
havior) is presented in the following subsection.

4.1. Comparison with the Linear Identification. Since the
mass-change method has been originally developed for
linear systems, it is useful to check what happens with linear
measurements, also to validate the results obtained with the
output-only NSI method. 'us, the same free-decay dataset
used so far is considered here, but the first part is cut off to let
just the linear response to be present. Referring to Figure 11,

the instantaneous frequencies stabilize after almost 15 sec-
onds, so this value is chosen as cutting time. Stochastic
subspace identification (SSI) is then performed considering
the unmodified structure and the two sets of modifications,
to retrieve the linear modal parameters and to estimate the
modal masses of the unmodified configuration.

'e stabilization diagram of the unmodified structure is
depicted in Figure 15, and the model order for each mode is
selected according to the median-damping criterion. 'e
identified modal parameters for the three situations are
listed in Table 7.

A decent correspondence is retrieved between the results
listed in Table 5 (underlying linear systems with output-only
NSI) and the results of Table 7 (linear identification with
SSI). In particular, the deviation on the identified natural
frequencies is generally below 1%, while a higher dispersion
is retrieved for the damping ratios. 'is is very common, as
uncertainties in the damping estimation are always quite
high. Furthermore, the activation of the stiffness non-
linearity in the complete decay response is likely to trigger
some nonlinear dissipation phenomenon as well, possibly
related to the contact between the aluminum decks and the
vertical slender beams or also to the thin metallic wire
undergoing large amplitude oscillations.

As for the computation of the modal masses, equations
(9) and (12) are applied again, with the considerations
previously made about the position of the added mass still
holding. 'e identified modal masses using the output-only
NSI method (on the full nonlinear decay) and the SSI
method (on the truncated linear decay) are listed in Table 6.

Generally, there is a good agreement between the esti-
mation of the modal masses. 'e only exception is the fifth
mode, showing a high percentage deviation. 'is can be
explained by considering that the identification with SSI is
performed by cutting away the nonlinear part of the re-
sponse from the decay. Since the fifth mode decays faster, it
is possible that this mode is badly identified from the
truncated linear decay. 'is is also confirmed by the spec-
trogram of the output no. 2 in Figure 11: the power asso-
ciated to the fifth mode is highly reduced after 15 seconds, in
contrast to the other modes. Eventually, the FRFs of the
underlying linear system are estimated for both output-only
NSI and SSI from equation (10). A comparison is depicted in
Figure 16 for the driving point FRFs G11 and G33.

As expected, the agreement is very good except around
the fifth mode, for the aforementioned reasons.

4.2. Identification of the Nonlinear Restoring Force. After
validating the identification of the underlying linear system,
the nonlinear part of the model of equation (1) can be es-
timated as well. According to equation (20), two nonlinear
feedbacks are considered in this case, respectively, cubic and
quadratic. 'us, two coefficients should be identified solving
twice equation (18) in a LS sense. 'e weighting function is
defined again as the ratio between real and imaginary parts
of the single estimations, with N� 5 inputs. As for the single
modes’ contributions, the first and second identified modes
are considered in this case, as they show a higher frequency
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Figure 12: Stabilization diagram for the multistory building. Grey
dot: new pole; blue plus: pole stable in frequency; red square: extra
stable MAC; green circle: extra stable damping. Stabilization
thresholds: 0.5%, 10%, and 99.5% for frequencies, damping ratios,
and MACs, respectively.

Table 5: Identified modal parameters of the multistory building.

Mode
Frequency (Hz) Damping (%)

Unmodified Set I Set II Unmodified
1 3.49 3.02 3.06 0.49
2 6.11 5.46 6.08 0.48
3 10.20 8.93 8.61 0.25
4 14.38 13.34 14.31 0.18
5 27.00 26.61 26.85 0.53
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shift in Figure 11. With this choice, the final values for the
two coefficients can be obtained as the spectral mean of the
real parts of the LS solutions, leading to μid

1 � 5.2 · 107 N/m3

(with a standard deviation of 2.4 · 106 N/m3 ) and μid
2 � 6.7 ·

104N/m2 (with a standard deviation of 5.2 · 103 N/m2 ).
'e single estimations are reported in Figure 17 in terms

of spectral mean of their real parts. 'e darkness of the dots
is proportional to their weight in the LS solution. Also, the
final identified values μid

1,2 are depicted.

'e contributions associated to the second mode are
generally weighted more, except for the third DOF, i.e. the
dots labeled as 2G

nl
31 and 2G

nl
32. Interestingly, the third DOF

of the mode shape ψ2 is almost a node (Figure 13), thus
making the estimation of the coefficients unreliable for the
combination u � 3 (DOF), r � 2 (mode). 'is is correctly
caught by the weighting function, which puts almost to zero
the corresponding weight. Eventually, the real and imag-
inary parts of the LS solutions are depicted in Figure 18. It
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Figure 13: Linear mode shapes of the multistory building.
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Figure 14: MAC between the mode shapes of the building in the unmodified and modified configurations. (a) Set I, mass added on the fifth
floor. (b) Set II, mass added on the third floor.

Table 6: Identified modal masses of the multistory building.

Mode Identified modal mass (kg), output-only NSI Identified modal mass (kg), SSI Difference (%)
1 5.47 5.69 4.05
2 6.82 6.26 8.20
3 3.94 3.83 2.67
4 1.34 1.37 2.44
5 0.79 0.47 39.48

10 Shock and Vibration



Table 7: Identified modal parameters of the multistory building, linear system identification.

Mode
Frequency (Hz) Damping (%)

Unmodified Set I Set II Unmodified
1 3.51 3.05 3.08 0.40
2 6.12 5.42 6.10 0.21
3 10.25 8.94 8.62 0.16
4 14.35 13.34 14.29 0.25
5 27.05 26.47 26.80 0.42
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Figure 16: Underlying linear FRFs of the multistory building. Continuous black line: output-only NSI estimation; dashed-dotted red line:
SSI estimation. (a) G11. (b) G33.
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Figure 15: Stabilization diagram for the multistory building, linear system identification. Grey dot: new pole; blue plus: pole stable in
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Figure 18: Coefficients of the nonlinearities of the multistory building in logarithmic scales. Continuous black line: real part of the LS
solution; dashed-dotted black line: imaginary part of the LS solution. (a) Cubic coefficient. (b) Quadratic coefficient.
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Figure 17: Coefficients of the nonlinearities of the multistory building. Red line: real part of the LS solution. Dots: single estimations. 'e
intensity of the color of the dots is proportional to their weight in the LS solution. (a) Cubic coefficient. (b) Quadratic coefficient.
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Figure 19: Nonlinear restoring force of the multistory building. Dashed black line: cubic term; dashed-dotted black line: quadratic term; red
line: total force fnl. (a) Overall view. (b) Zoom around the origin.

12 Shock and Vibration



should be noted that the imaginary parts are always several
times lower than the real parts.

'e identified nonlinear restoring force fnl � μid
1 y3

5 + μid
2

y2
5 is depicted in Figure 19 as a function of y5(t). A zoom

around the origin of its shape is also reported in Figure 19(b),
where the asymmetry introduced by the quadratic term is
visible.

'e RMS value of cubic component of fnl is approxi-
mately 5 times higher then the quadratic one, thus the re-
sponse in mostly symmetric.

5. Conclusions

'e purpose of the proposed study is to perform nonlinear
system identification of vibrating structures starting from
output-only free-decay measurements. 'e method is based
on the nonlinear subspace identification (NSI) technique
combined with a mass-change scheme. 'e final objectives of
the identification are the fully nonlinear state-space model,
including the nonlinear restoring force and the FRFs of the
underlying linear system. Although generally free-decay
measurements are not convenient for nonlinear system
identification, as the nonlinearity is poorly excited, the
decoupling capability of the presented method allows to
maximize the confidence in the identification. 'is is carried
out by weighting the single modes according to their par-
ticipation to the nonlinear behavior. 'e technique has been
tested first on a numerical system involving stiffness non-
linearity and subsequently on an experimental test bench of a
scaled multistory building. 'e latter comprises a localized
nonlinearity on the top floor, consisting of a thin wire un-
dergoing large amplitude oscillations. Results have confirmed
the capability of themethodology of identifying the underlying
linear and nonlinear parameters of the considered systems
with satisfying confidence. 'erefore, the presented method is
suitable if no forcing input can be provided to a nonlinear
structure, relying on a much easier free-decay test.

Nomenclature

General Nomenclature
M: Mass matrix
K: Stiffness matrix
Cv: Viscous damping matrix
t: Time variable
ω: Frequency variable
y: Displacement vector
fnl: Nonlinear restoring force
μj: Coefficient of the jth nonlinearity
ξj: Nonlinear basis function of the jth nonlinearity
Lj: Location vector of the jth nonlinearity
G: Frequency response function (FRF) matrix
·I: Subscript for the modified structure
·nl: Superscript for “nonlinear”.

State-Space Nomenclature
x(τ): State vector at sampled time τ
A: Dynamical matrix
Bnl: Input matrix (nonlinear feedbacks)

C: Output matrix
Dnl: Direct feedthrough matrix (nonlinear feedbacks).
Modal Parameters Nomenclature
ωr: Natural frequency of the rth mode
ζr: Damping ratio of the rth mode
ψr: Unit-scaled mode shape of the rth mode
ϕr: Mass-normalized mode shape of the rth mode
mr: Modal mass of the rth mode
αr: Scaling factor of the rth mode.
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