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Abstract

This paper is devoted to the construction of structure preserving stochastic Galerkin
schemes for Fokker-Planck type equations with uncertainties and interacting with an ex-
ternal distribution, that we refer to as a background distribution. The proposed methods
are capable to preserve physical properties in the approximation of statistical moments of
the problem like nonnegativity, entropy dissipation and asymptotic behaviour of the expected
solution. The introduced methods are second order accurate in the transient regimes and
high order for large times. We present applications of the developed schemes to the case of
fixed and dynamic background distribution for models of collective behaviour.

Keywords: uncertainty quantification, stochastic Galerkin, Fokker-Planck equations, col-
lective behaviour.
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1 Introduction

Uncertainty quantification (UQ) for partial differential equations describing real world phenomena
gained an increased interest in recent years [7, 11, 13, 16, 17, 18, 34, 35]. One of the main
advantages of UQ methods relies in its capability to provide a sound mathematical framework to
replicate realistic experiments. The introduction of stochastic parameters reflects our incomplete
information on the initial configuration of a system, on its inner interactions forces and on the
modelling parameters as well. Methods and ideas of UQ had a deep impact on the applied
community in terms of effectivity for a robust conception, modelling and sensitivity analysis of
the problem of interest.

In the context of kinetic equations, this issue can be translated on a general uncertainty
affecting a distribution function of particles/agents, whose evolution is influenced by the presence
of a random variable θ, taking value in the set IΘ ⊆ R, and with known probability distribution
function Ψ(θ) : IΘ → R+. In particular, in the present manuscript we are interested in Fokker-
Planck type equations for the evolution of the distribution f = f(θ, v, t), v ∈ V ⊆ Rdv , θ ∈ IΘ
and t ≥ 0 is the time. The introduced distribution represents the proportion of particles/agents
in [v, v+ dv] at time t ≥ 0 and for given value of uncertainty θ ∈ IΘ. In more details, we consider
the partial differential equation

∂tf(θ, v, t) = ∇v · [B[g](v, t)f(θ, v, t) +∇v(D(v)f(θ, v, t))] , (1)

where v ∈ V ⊆ Rdv and B[·] is the operator

B[g](v, t) =

∫
V

P (v, v∗)(v − v∗)g(v∗, t)dv∗, (2)
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where g = g(v, t) is a background distribution, whose dynamics do not incorporate the presence
of the uncertain quantity θ ∈ IΘ. In applications, problems with background interactions are
very often considered to mimic the influence of environmental factors on the agents’ dynamics
especially in socio-economic and life sciences. For example, the process of knowledge formation
depends on social factors that determine the progress in competence acquisition of individuals, see
[24, 25] and the references therein. Similarly, in soft-matter physics biological particles like cells
undergo various heterogeneous stimuli forcing their observable motion [29]. Other examples have
been studied in opinion dynamics, economic processes for the formation of wealth distributions,
and urban growth theory, see [15] for a review.

We consider for (1) an uncertain initial distribution f(θ, v, 0), no-flux boundary conditions
are considered on the boundaries of the domain to enforce conservation of the total mass of the
system. A clear understanding on the global behavior of the system governed by (1)-(2) is obtained
in terms of expected statistical quantities whose accurate and physically admissible description is
therefore of paramount importance.

Due to the increased dimensionality of the problem induced by the presence of uncertainties,
the issue of developing fast converging numerical methods for the approximation of statistical
quantities is of the highest importance. Among the most popular numerical methods for the UQ,
stochastic Galerkin (SG) methods gained in recent years increasing interest since they provide
spectral convergence in the random space under suitable regularity assumptions [1, 20, 35, 36, 37].
Despite their accuracy, direct application of SG techniques to high dimensional random vectors
often suffers of the so-called curse of dimensionality and require ad-hoc solutions, see e.g. [31].
Similarly to classical spectral methods SG methods generally require a strong modification of the
original problem and can lead to the loss of structural properties like positivity of the solution,
entropy dissipation and hyperbolicity, when applied to hyperbolic and kinetic equations, see [11,
19]. The loss of structural properties of the solution induces an evident gap in its true physical
meaning. To overcome this problem, recently has been proposed a novel methods that combines
both Monte Carlo and SG generalized polynomial chaos methods (MCgPC) and which preserves
spectral accuracy in the random space. In particular, MCgPC methods can mitigate the curse of
dimensionality induced by SG-gPC. We refer to [6, 7] for a detailed discussion on these methods.

In the present manuscript we construct structure preserving methods for the SG formulation
of the problem in the case of background interactions. In order to do that we will take advantages
of structure preserving (SP) methods [26, 27], that have been designed to preserve the mentioned
structural properties of the solution of nonlinear Fokker-Planck equations without restriction on
the mesh size. We consider applications of the developed schemes both in case of fixed and dynamic
background.

The rest of the paper is organized as follows. In Section 2 we briefly introduce stochastic
Galerkin methods for the problem of interest where the interactions take place with respect to a
deterministic background, stability results are proved and discussed together with the analysis of
trends to asymptotic states. In Section 3 we derive structure preserving methods in the Galerkin
setting, positivity conditions for explicit and semi-implicit schemes are discussed and we prove
entropy inequality for a class of one dimensional Fokker-Planck models. Several applications of
the schemes are finally considered in Section 4 for several problems arising in the description of
collective phenomena in socio-economic and life-sciences. Some conclusions are reported at the
end of the manuscript.

2 Stochastic Galerkin methods for kinetic equations

For simplicity of presentation we consider the case dv = 1. We focus on real-valued distributions
depending on a one dimensional random input. Let (Ω, F, P ) be a probability space where as
usual Ω is the sample space, F is a σ−algebra and P a probability measure, and let us defined a
random variable

θ : (Ω, F )→ (IΘ,BR),
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with IΘ ⊂ R and BR is the Borel set. We focus on real-valued distributions of the form f(θ, v, t) :
Ω × V × [0, T ] → Rd. In the present section we derive a stochastic Galerkin approximation for
Fokker-Planck equation with uncertain initial distribution and background interactions (1).

Let us consider the linear space PM of polynomials of degree up to M generated by a family
of orthogonal polynomials {Φh(θ)}Mh=0 such that

E[Φh(θ)Φk(θ)] =

∫
IΘ

Φh(θ)Φk(θ)Ψ(θ)dθ = ‖Φ2
h(θ)‖L2(Ω)δhk,

being δhk the Kronecker delta function. Assuming that Ψ(θ) has finite second order moment we
can approximate the distribution f ∈ L2(Ω,F , P ) in terms of the following chaos expansion

f(θ, v, t) ≈ fM (θ, v, t) =

M∑
k=0

f̂k(v, t)Φk(θ), (3)

being f̂k(v, t) the projection of f into the polynomial space of degree k, i.e.

f̂k(v, t) = E[f(θ, v, t)Φk(θ)], k = 0, . . . ,M.

Plugging fM into (1) we obtain

∂tf
M (θ, v, t) = ∂v

[
B[g](v, t)fM (θ, v, t) + ∂v(D(v)fM (θ, v, t))

]
. (4)

Hence, by multiplying (4) by Φh(θ) for all h = 0, . . . ,M and after projection in each polynomial
space we obtain the following system of M + 1 deterministic kinetic-type PDEs

∂tf̂h(v, t) = ∂v

[
B[g](v, t)f̂h(v, t) + ∂v(D(v)f̂h(v, t))

]
, (5)

with the initial conditions
f̂h(v, 0) = E[f(θ, v, 0)Φh(θ)].

The related deterministic subproblems can be tackled through suitable numerical methods and
the approximation of statistical quantities of interest are defined in terms of the projections. In
particular we have

E[f(θ, v, t)] ≈ f̂0(v, t), (6)

whose evolution is given by (5) in the case h = 0. Thanks to the orthogonality in L2(Ω) of the
polynomials {Φh}Mh=0 we have

E[f(θ, v, t)2]− E[f(θ, v, t)]2 ≈ E[(fM (θ, v, t))2]− E[fM (θ, v, t)]2,

and from (3) we have

E

[
M∑
k=0

f̂2
k (v, t)Φ2

k(θ) + 2

M∑
k=0

k−1∑
h=0

f̂k(v, t)f̂h(v, t)Φk(θ)Φh(θ)

]
− f̂2

0 (v, t).

Therefore the variance of the solution is approximated in terms of the projections as follows

Var[f(θ, v, t)] ≈
M∑
k=0

f̂2
h(v, t)E[Φ2

k]− f̂2
0 (v, t). (7)

We observe that the initial mass defined by
∫
V
f̂h(v, 0)dv is conserved in time assuming no-flux

boundary conditions, i.e.
B[g](v, t) + ∂vD(v) = 0, v ∈ ∂V.
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Let us introduce the vector f̂(v, t) =
(
f̂0(v, t), . . . , f̂M (v, t)

)
. If we define as ‖f̂(v, t)‖L2 the

standard L2 norm of the vector f̂(v, t)

‖f̂(v, t)‖L2 =

[∫
V

(
M∑
h=0

f̂2
h(v, t)

)
dv

]1/2

,

then from the orthonormality of the introduced basis {Φh}Mh=0 in L2(Ω) we have that

‖fM (θ, v, t)‖L2(Ω) = ‖f̂(v, t)‖L2 ,

where

‖fM (θ, v, t)‖L2(Ω) =

∫
IΘ

∫
V

(
M∑
h=0

f̂h(v, t)Φh(θ)

)2

dvΨ(θ)dθ

1/2

.

We can reformulate the problem (5) in a more compact form as follows

∂tf̂ = ∂v

[
Bf̂ + D∂v f̂

]
,

where B = {Bij}M+1
i,j=1 and D = {Di,j}Ni,j=1 are diagonal matrices with components

Bi,i = B[g](v, t) + ∂vD(v), Bi,j = 0

Di,i = D(v), Di,j = 0.

The following stability result can be established

Theorem 1. If ‖∂vB[g](v, t)‖L∞ ≤ CB, with CB > 0, and if D ≤ CD we have for all times t > 0

‖f̂(v, t)‖2L2 ≤ et(CB+2CD)‖f̂(v, 0)‖2L2 ,

provided that the boundary terms vanish for all h = 0, . . . ,M

f̂2
h(v, t)B[g](v, t)

∣∣∣
v∈∂V

= 0, f̂h(v, t)∂v(D(v)f̂h(v, t))
∣∣∣
v∈∂V

= 0, f̂h(v, t)D(v)∂v f̂h(v, t)
∣∣∣
v∈∂V

= 0

Proof. We multiply (5) by f̂h(v, t) and integrate over V ⊆ R∫
V

∂t

(
1

2
f̂2
h(v, t)

)
dv =

∫
V

f̂h(v, t)∂v

[
B[g](v, t)f̂h(v, t) + ∂v(D(v)f̂h(v, t))

]
dv

=

∫
V

f̂h(v, t)∂v

(
B[g](v, t)f̂h(v, t)

)
dv︸ ︷︷ ︸

A

+

∫
V

f̂h(v, t)∂2
v

(
D(v)f̂h(v, t)

)
dv︸ ︷︷ ︸

B

(8)

The integral A may be rewritten as follows by direct computation∫
V

f̂h(v, t)∂v

(
B[g](v, t)f̂h(v, t)

)
dv =

∫
V

f̂h(v, t)B[g](v, t)∂v f̂h(v, t)dv +

∫
V

f̂2
h(v, t)∂vB[g](v, t)dv

and, integrating by parts, it is equivalent to∫
V

f̂h(v, t)∂v

(
B[g](v, t)f̂h(v, t)

)
dv =

−
∫
V

f̂h(v, t)∂v

(
B[g](v, t)f̂h(v, t)

)
dv +

∫
V

f̂2
h(v, t)∂vB[g](v, t)dv
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being f̂2
h(v, t)B[g](v, t)

∣∣∣
v∈∂V

= 0. Therefore, the integral A may be written as∫
V

f̂h(v, t)∂v

(
B[g](v, t)f̂h(v, t)

)
dv =

1

2

∫
V

f̂2
h(v, t)∂vB[g](v, t)dv.

Hence, the following estimate holds

M∑
h=0

∫
V

f̂h(v, t)∂v

(
B[g](v, t)f̂h(v, t)

)
dv =

1

2

M∑
h=0

∫
V

f̂2
h(v, t)∂vB[g](v, t)dv ≤ CB

2
‖f̂(v, t)‖2L2 .

Furthermore, for the integral B in (8) we have∫
V

f̂h(v, t)∂2
v

(
D(v)f̂h(v, t)

)
dv =

∫
V

(
∂2
v f̂h(v, t)

)
D(v)f̂h(v, t)dv

≤ −CD
∫
V

(
∂v f̂h(v, t)

)2

,

provided f̂h(v, t)∂v(D(v)f̂h(v, t))
∣∣∣
v∈∂V

= 0, and f̂h(v, t)D(v)∂v f̂h(v, t)
∣∣∣
v∈∂V

= 0.

Finally, after summation on h = 0, . . . ,M of the obtained bounds, we get

1

2
‖f̂(v, t)‖2L2 ≤

CB
2
‖f̂(v, t)‖2L2 − ‖∂v f̂(v, t)‖2L2

≤
(
CB
2

+ CD

)
‖f̂‖L2 ,

and thanks to the Gronwall’s theorem we can conclude.

Remark 1. The background distribution g(v, t) is in general ruled by an additional PDE that
does not depend on the stochastic density function f(θ, v, t) and does not incorporate additional
uncertainties. In the case of evolving background we need to couple to (1) its dynamics.

2.1 Asymptotic behaviour

Under suitable smoothness assumptions the introduced Fokker-Planck equation has a unique
smooth solution, see e.g. [28, 30]. In the present section we concentrate on the large time solution
of the introduced class of problems, known in the literature as equilibrium solutions or steady
states. Assuming that the dynamics of the background g(v, t) admit a unique stationary state the
asymptotic distribution of (1) is solution of the differential equation

B[g∞](v)f∞(θ, v) + ∂v(D(v)f∞(θ, v)) = 0, (9)

which gives
∂vf

∞(θ, v)

f∞(θ, v)
= −B[g∞](v) +D′(v)

D(v)
,

and therefore the analytical stationary distribution of the original problem reads

f∞(θ, v) = C(θ) exp

{
−
∫
B[g∞](v) +D′(v)

D(v)
dv

}
, (10)

being C(θ) > 0 a normalization constant depending only on the initial uncertainties of the problem.
On the other hand, the asymptotic solutions f∞h (v) of (5) in each polynomial space of degree
h = 0, . . . ,M are defined by solving the following set of differential equations

B[g∞](v)f̂∞h (v) + ∂v(D(v)f̂∞h (v)) = 0, h = 0, . . . ,M, (11)
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whose stationary states are

f̂∞h (v) = Ch exp

{
−
∫
B[g∞](v) +D′(v)

D(v)
dv

}
(12)

being Ch such that ∫
IΘ

f∞(θ, v)Φh(θ)Ψ(θ)dθ = f̂∞h (v).

We can observe how, if the initial state has deterministic mass
∫
V
f(θ, v, 0)dv = ρ̄ > 0, the

asymptotic state of the problem given by (10) does not incorporate any uncertainty. In particular,
this is induced by the fact that the normalization constant does not depend anymore on the
uncertainty of the problem, i.e. C(θ) = C̄ for all θ ∈ IΘ. This fact reflects on the asymptotic state

of each projection f̂∞h (v), h = 0, . . . ,M , since E[C̄Φh(θ)] = 0 for h > 0. Therefore, in the case of
deterministic initial mass we obtain

f̂∞h (v) =

C̄ exp

{
−
∫
B[g∞](v) +D′(v)

D(v)
dv

}
if h = 0

0 if h > 0,

and the variance of f(θ, v, t) vanishes asymptotically. In the general case of uncertain initial mass
the asymptotic state still depends on θ ∈ IΘ.

In the following we explicit the trend to equilibrium defined by stochastic background interac-
tion models following the ideas in [14].

2.1.1 Constant background

Let us assume that the background is fixed, i.e. B[g](v, t) = B[g](v). In particular, the stationary
distribution of (1) is solution of the following differential equation

B[g](v)f∞(θ, v) + ∂v (D(v)f∞(θ, v)) = 0, v ∈ V ⊆ R. (13)

Taking advantage of the condition (13) we can observe that (1) admits several equivalent formu-
lations. Indeed we have for all t ≥ 0

B[g](v)f(θ, v, t) + ∂v(D(v)f(θ, v, t)) = D(v)f(θ, v, t)

(
B[g](v)

D(v)
+ ∂v log(D(v)f(θ, v, t))

)
= D(v)f(θ, v, t) (∂v log(D(v)f(θ, v, t))− ∂v log(D(v)f∞(θ, v)))

In particular from (13) it follows that the Fokker-Planck equation (1) with constant background
can be rewritten in Landau form

∂tf(θ, v, t) = ∂v

[
D(v)f(θ, v, t)∂v log

f(θ, v, t)

f∞(θ, v)

]
,

or equivalently in the non-logarithmic Landau form

∂tf(θ, v, t) = ∂v

[
D(v)f∞(θ, v)∂v

f(θ, v, t)

f∞(θ, v)

]
.

From these reformulations we can obtain the evolution for F (θ, v, t) = f(θ,v,t)
f∞(θ,v) since

∂tf(θ, v, t) = f∞(θ, v)∂tF (θ, v, t)

= D(v)f∞(θ, v)∂2
vF (θ, v, t) + ∂v(D(v)f∞(θ, v))∂vF (θ, v, t).

Therefore, from (13) we get

∂tF (θ, v, t) = D(v)∂2
vF (θ, v, t)− B[g](v)∂vF (θ, v, t), (14)
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with no-flux boundary conditions

D(v)f∞(θ, v)∂vF (θ, v, t)
∣∣∣
v∈∂V

= 0.

In the following we summarise several findings on the entropy production of Fokker-Planck
problems. Their importance to detected the correct trends to equilibrium is essential in kinetic
theory, we point the interested reader to [32] for more details in the classic Fokker-Planck setting
and to [22] for results in the nonconstant diffusions setting.

In the case of interaction with a constant background distribution the following result holds

Theorem 2. Let the smooth function Φ(x), x ∈ R+ be convex. Then, if F (θ, v, t) is the solution
to (14) in V ⊆ R and F (θ, v, t) is bounded for all θ ∈ IΘ the functional

H(f, f∞)(θ, t) =

∫
V

f∞(θ, v)Φ(F (θ, v, t))dv

is monotonically decreasing in time and its evolution is given by

d

dt
H(f, f∞)(θ, t) = −I(f, f∞)(θ, t),

where with I we denote the nonnegative quantity

I(f, f∞)(θ, t) =

∫
V

D(v)f∞(θ, v)Φ′′(F (θ, v, t)) |∂vF (θ, v, t)|2 dv.

Proof. The proof of this result follows the strategy adopted in [14] for all θ ∈ IΘ.

Now in the case Φ(x) = x log(x) we obtain the relative Shannon entropy H(f, f∞)(θ, t) which
is a functional depending on the uncertainties of the model. From the above result it follows that
this quantity is dissipated with the rate given for all θ ∈ IΘ by

IH(f, f∞)(θ, t) =

∫
V

D(v)f∞(θ, v)
1

F (θ, v, t)
|∂vF (θ, v, t)|2 dv

and we have

d

dt

∫
V

f(θ, v, t) log
f(θ, v, t)

f∞(θ, v)
= −

∫
V

D(v)f(θ, v, t)

(
∂vf(θ, v, t)

f(θ, v, t)
− ∂vf

∞(θ, v)

f∞(θ, v)

)2

dv

In the stochastic Galerkin approximation the relative Shannon entropy for fM (θ, v, t, ) in (3)
reads

d

dt

∫
V

M∑
k=0

f̂k(v, t)Φk(θ) log

∑M
k=0 f̂k(v, t)Φk(θ)∑M
k=0 f̂

∞
k (v)Φk(θ)

dv

= −
∫
V

D(v)

M∑
k=0

f̂k(v, t)Φk(θ)

(
∂v log

∑M
k=0 f̂k(v, t)Φk∑M
k=0 f̂

∞
k (v)Φk(θ)

)2

dv,

from which approximated statistical moments can be obtained by projection in the space defined
by the polynomial basis

d

dt

∫
V

M∑
k=0

Hhk(v, t)f̂k(v, t)dv = −
∫
V

D(v)

M∑
k=0

Ihk(v, t)f̂k(v, t)dv,

being

Hhk =

∫
IΘ

(
log fM (θ, v, t)− log fM,∞(θ, v)

)
Φh(θ)dθ,

Ihk =

∫
IΘ

(
∂v log fM (θ, v, t)− ∂v log fM,∞(θ, v)

)2
Φh(θ)dθ.

7



We observe that, due to the nonlinearities in the definition of the convex functional H(f, f∞), a
coupled system of differential equations must be solved to estimate the expected trends to equi-
librium provided by the relative entropy functional. Nevertheless, at the Galerkin level we have
no guarantee that the weighted Fisher information defines a positive quantity for the obtained
truncated distribution and, hence, that the entropy monotonically decreases.

On the other hand, following the same computations presented in the beginning of this section,
the system of M + 1 projections defined in (5) can be rewritten for all h = 0, . . . ,M in the case of
fixed background as follows

∂tf̂h(v, t) = ∂v

[
D(v)f̂h(v, t)∂v log

f̂h(v, t)

f̂∞h (v)

]
. (15)

Therefore, by introducing the ratio Fh = f̂h(v,t)

f̂∞
h (v)

> 0 we have

∂tFh = −B[g](v)∂vFh(v, t) +D(v)∂2
vFh(v, t). (16)

complemented with no-flux boundary conditions. Hence, in analogy with what we discussed above,
the following result holds.

Theorem 3. Let the smooth function Φ(x), x ∈ R+ be convex. Then, if Fh(v, t) is the solution
to (16) in V ⊆ R and Fh(v, t) is bounded the functional

H(Fh)(t) =

∫
V

f̂∞h (v)Φ(Fh(v, t))dv

is monotonically decreasing in time and its evolution is given by

d

dt
H(Fh)(t) = −I(Fh)(t),

where with I we denote the nonnegative quantity

I(Fh)(t) =

∫
V

D(v)f̂∞h (v)Φ′′(Fh(v, t)) |∂vFh(v, t)|2 dv.

Now, in the case of relative Shannon entropy Φ(x) = x log x we obtain in each polynomial
space

d

dt

∫
V

f̂h(v, t) log
f̂h(v, t)

f̂∞h (v)
dv = −

∫
V

D(v)f̂h(v, t)

(
∂v log

f̂h(v, t)

f̂∞h (v)

)2

dv.

Therefore, each projection of f(θ, v, t) in the linear space of arbitrary degree h = 0, . . . ,M con-

verges monotonically in time to its equilibrium f̂∞h (v). In particular this is true for the expected
quantities of the problem.

3 Structure preserving methods

In this section we introduce the class of so-called structure preserving (SP) numerical methods
for the solution of Fokker-Planck equations with nonlocal terms. These methods preserve the
fundamental structural properties of the problem like nonnegativity of the solution, entropy dis-
sipation and capture the steady state of each problem with arbitrarily accuracy, see [8, 13, 26, 27].
The applications of the SP methods is here particularly appropriate since, thanks to background
interactions, the system of M + 1 equations (5) is decoupled.

In the following we summarise the construction ideas at the basis of SP methods in dimension
d = 1, extension to general dimension can be found in [26]. The case of nonlocal Fokker-Planck
equations with anisotropic diffusion has been studied in [21].
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3.1 Derivation of the SP method

For all h = 0, . . . ,M we may rewrite (5) in flux form as follows

∂tf̂h(v, t) = ∂vF [f̂h](v, t),

where
F [f̂h](v, t) = C[g](v, t)f̂h(v, t) +D(v)∂v f̂h(v, t),

and C[g](v, t) = B[g](v, t) + ∂vD(v). Let us introduce a uniform grid vi ∈ V , such that vi+1− vi =
∆v > 0 and let vi±/2 = vi ±∆v/2. We consider the conservative discretization

d

dt
f̂h,i(t) =

Fh,i+1/2(t)−Fh,i−1/2(t)

∆v
, t ≥ 0 (17)

where f̂h,i(t) is an approximation of f̂h(vi, t) and where Fh,i±1/2 a numerical flux having the form

Fh,i+1/2(t) = C̃[g]i+1/2(t)f̃h,i+1/2(t) +Di+1/2
f̂h,i+1(t)− f̂h,i(t)

∆v
, (18)

where
f̃h,i+1/2(t) = (1− δi+1/2(t))f̂h,i+1(t) + δi+1/2(t)f̂h,i(t).

Hence, we aim at finding the weight functions δi+1/2 and C̃[g]i+1/2 such that the scheme pro-
duces nonnegative solutions without restrictions on the mesh size ∆v, and is able to capture with
arbitrary accuracy the steady state of the (5) for all h = 0 . . . ,M .

We observe that for a vanishing numerical flux from (18) we obtain

f̂h,i+1(t)

f̂h,i(t)
=

−δi+1/2(t)C̃i+1/2(t) +
Di+1/2

∆v

(1− δi+1/2(t))C̃i+1/2(t) +
Di+1/2

∆v

. (19)

At the analytical level we obtained from (11) in Section 2.1 that

D(v)∂v f̂h(v, t) = −(B[g](v, t) + ∂vD(v))f̂h(v, t),

which admits the quasi-steady state approximation in the cell [vi, vi+1] for all h = 0, . . . ,M∫ vi+1

vi

1

f̂h(v, t)
∂v f̂h(v, t)dv = −

∫ vi+1

vi

1

D(v)
(B[g](v, t) + ∂vD(v))dv,

that is
f̂h(vi+1, t)

f̂h(vi, t)
= exp

{
−
∫ vi+1

vi

1

D(v)
(B[g](v, t) + ∂vD(v))dv

}
. (20)

Now equating f̂h(vi+1, t)/f̂h(vi, t) in (20) and f̂h,i+1(t)/f̂h,i(t) in (19) and setting

C̃i+1/2(t) =
Di+1/2

∆v

∫ vi+1

vi

1

D(v)
(B[g](v, t) + ∂vD(v))dv,

we can determine weight functions

δi+1/2(t) =
1

λi+1/2(t)
+

1

1− exp(λi+1/2(t))
∈ (0, 1), (21)

where

λi+1/2(t) =

∫ vi+1

vi

1

D(v)
(B[g](v, t) + ∂vD(v))dv =

∆vC̃i+1/2(t)

Di+1/2
.
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It is worth pointing out that, by construction, the numerical flux of the SP scheme vanishes
when the analytical flux is equal to zero. Furthermore, the long time behavior of (11) is described
with the accuracy with which we evaluate the weights (21). At the numerical level this fact reflects
on the considered quadrature methods as we will observe in Section 4. In the following, we will
show that suitable restrictions on the time discretization can be defined to guarantee positivity
preservation of the SP scheme, without any restriction on the mesh for v ∈ V . Moreover, we will
show that the scheme dissipates the numerical entropy with a rate which is coherent with what
we observed in Section 2.1.

Remark 2. The obtained weights do not depend on the degree of the linear space since they are
equal for all h = 0, . . . ,M . Furthermore, in the case of interaction with a constant background,
i.e. B[g](v, t) = B[g](v), a stationary state f̂∞h (v) is defined for all h = 0 . . . ,M , see equation (11)
together with boundary conditions. Hence, thanks to the knowledge of the stationary state in each
polynomial space we have

f̂∞h,i+1

f̂∞h,i
= exp

{
−
∫ vi+1

vi

1

D(v)
(B[g](v) + ∂vD(v))dv

}
= exp

(
−λ∞i+1/2

)
.

Which leads to

λ∞i+1/2 = log

(
f̂∞h,i

f̂∞h,i+1

)
,

and

δ∞i+1/2 =
1

log(f̂∞h,i)− log(f̂∞h,i+1)
+

f̂∞h,i+1

f̂∞h,i+1 − f̂∞h,i
.

We highlight how in this case the dependence on h = 0, . . . ,M is only apparent since for each times
t ≥ 0 the ratio f̂h,i+1/f̂h,i in (20) does not depend on the specific projection thanks to background
interactions. In addition, note that if the steady state is analytically known, for some special form
of the operator B[·] and of the diffusion function, the SP scheme does not introduce any additional
source of errors on the steady state distribution, see [8, 26].

3.2 Positivity of statistical moments

In general positivity of the solution, or of its statistical moments, is not achievable once we apply
stochastic Galerkin methods and the solution of the system fM (θ, v, t) looses a genuine physical
meaning. In this section we provide explicit conditions to preserve nonnegativity of projections
f̂h(v, t) and, therefore, of the statistical moments of fM (θ, v, t), that have been obtained in Section
2 from direct inspection of the Galerkin projections (6)-(7). In particular, we will show how in
the background interactions case we are able to provide reliable conditions, without restriction on
∆v, for positivity preservation.

In recent works [6, 7] a particle scheme has been proposed to enforce positivity of statistical
quantities for uncertainty quantification of kinetic models. The core idea of the approach presented
in the cited works is to approximate the expected solution of a mean-field type model by its Monte
Carlo (MC) formulation in the phase space, which is then expanded through a SG generalized
polynomial chaos (SG-gPC) method. The expected solution is then reconstructed from expected
positions and velocities of the microscopic system, which is considered in the gPC setting. The
authors of these works refer to this method as MCgPC. The solution of the MCgPC approach is
still spectrally accurate in the random space whereas in the phase space it assumes to accuracy of
the Monte Carlo method. The approach presented in the present manuscript for the linear case
provide instead global high accuracy.

Let us introduce the time discretization tn = n∆t, ∆t > 0 and n = 0, . . . , T and consider the
following forward Euler method for all h = 0, . . . ,M

f̂n+1
h,i = f̂nh,i + ∆t

Fnh,i+1/2 −F
n
h,i−1/2

∆v
, (22)
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where now f̂nh,i is an approximation of f̂h(vi, t
n) and the flux has the form introduced in (18). We

can prove the following result

Theorem 4. Under the time step restriction

∆t ≤ ∆v2

2 (M∆v +D)
, M = max

i
|C̃ni+1/2|, D = max

i
Di+1/2

the explicit scheme (22) preserves nonnegativity, i.e. f̂n+1
h,i ≥ 0 provided f̂nh,i ≥ 0.

Proof. The proof of this result is analogous for all h = 0, . . . ,M to the result for explicit scheme
obtained in [26].

We observe that no explicit dependence on the expansion degree h = 0, . . . ,M appears in
the derived restriction thanks to the background-type interactions. Furthermore, the restriction
on ∆t in Theorem 4 ensures nonnegativity without additional bounds on the spatial grid as for
example happen for central type schemes. The derived condition automatically holds for higher
order strong stability preserving (SSP) methods like Runge-Kutta and multistep methods since
these are convex combinations of the forward Euler integration. The proved nonnegativity of the
scheme is extended straightforwardly to each SSP-type time integration.

We highlight how the derived parabolic restriction to enforce nonnegativity of explicit schemes
can be quite heavy for practical applications. A convenient strategy to lighten this burden resorts
to the technology of semi-implicit methods, see [3] for an introduction. Indeed, we can prove

nonnegativity of the numerical approximations of solutions {f̂h}Mh=0 by considering the set of
modified fluxes

F̃n+1
h,i+1/2 = C̃ni+1/2

[
(1− δni+1/2)f̂n+1

h,i+1 + δni+1/2f̂
n+1
h,i

]
+Di+1/2

f̂n+1
h,i+1 − f̂

n+1
h,i

∆v
. (23)

The scheme is semi-implicit since we compute the background dependent C̃i+1/2(t) and weight
functions δi+1/2(t) at time tn. As a consequence, it is easily seen how in the case of a fixed
background the scheme is coherent with a fully implicit method.

The following result holds

Proposition 1. Let us consider a semi-implicit method for all h = 0, . . . ,M

f̂n+1
h,i = f̂h,i + ∆t

F̃n+1
i+1/2 − F̃

n+1
i−1/2

∆v
,

with fluxes defined in (23). Under the time step restriction

∆t <
∆v

2M
, M = max

i
|C̃ni+1/2|,

the semi-implicit scheme preserves nonneagivity, i.e. f̂n+1
h,i ≥ 0 if f̂nh,i ≥ 0 for all i = 1, . . . , N and

h = 0, . . . ,M .

Proof. The proof of this result is analogous for all h = 0, . . . ,M to the result for semi-implicit
scheme obtained in [26].

Extensions to higher order semi-implicit schemes have been obtained in [3].

3.3 Entropy dissipation

In Section 2.1 we have observe how an entropy can be defined for the introduced class of problems.
In details, a Shannon entropy operator has been defined and we proved that it is dissipated in time,
leading to interpret the steady state as the zero entropy state of the system. At the numerical
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level, a remarkable property of a scheme relies on the correct description of the trends toward
equilibrium. In the following we will show how the introduced methods are entropic.

We concentrate on the case of fixed background. In Section 2.1 we have seen how the Fokker-
Planck problems of interest can be rewritten in Landau form (15). In particular, it can be proven
how the numerical flux for this reformulation is given by the following equivalent form

Fh,i+1/2(t) =
Di+1/2

∆v
f̄∞h,i+1/2

(
f̂h,i+1(t)

f̂∞h,i+1

− f̂h,i(t)

f̂∞h,i

)
, (24)

with

f̄∞h,i+1/2 =
f̂∞h,i+1f̂

∞
h,i

f̂∞h,i+1 − f̂∞h,i
log

(
f̂∞h,i+1

f̂∞h,i

)
,

since for all h = 0, . . . ,M we are looking at the constant background case we have λ∞i+1/2 =

log f̂∞h,i − log f∞h,i+1 and the weight functions are rewritten as

δ∞i+1/2 =
1

log f̂∞h,i − log f∞h,i+1

+
f̂∞h,i+1

f̂∞h,i+1 − f∞h,i
,

see Remark 2. We can prove the following result

Theorem 5. Let us consider the conservative discretization (17) for all t ≥ 0 and h = 0 . . . ,M .
The numerical flux (18) satisfies the discrete entropy dissipation

d

dt
H∆v(f̂h, f̂

∞
h )(t) = −I∆(f̂h, f̂

∞
h )(t),

where

H∆v(f̂h, f̂
∞
h )(t) = ∆v

N∑
i=0

f̂h,i(t) log

(
f̂h,i(t)

f̂∞h,i

)
,

and

I∆v(f̂h, f̂
∞
h )(t) =

N∑
i=0

[
log

(
f̂h,i+1(t)

f̂∞h,i+1

)
−

(
f̂h,i(t)

f̂∞h,i

)]
·

(
f̂h,i+1(t)

f̂∞h,i+1

− f̂h,i(t)

f̂∞h,i

)
f̄∞h,i+1/2Di+1/2 ≥ 0.

Proof. From the definition of relative entropy for all h = 0, . . . ,M we have

d

dt
H(f̂h, f̂

∞
h )(t) = ∆v

N∑
i=0

df̂h(t)

dt

(
log

(
f̂h,i(t)

f̂∞h,i

)
+ 1

)

=

N∑
i=0

(
log

(
f̂h,i(t)

f̂∞h,i

)
+ 1

)(
Fh,i+1/2(t)−Fh,i−1/2(t)

)
After summation by parts we have

d

dt
H(f̂h, f̂

∞
h )(t) = −

N∑
i=0

[
log

(
f̂h,i+1(t)

f̂∞h,i+1

)
− log

(
f̂h,i(t)

f̂∞h,i

)]
Fh,i+1/2(t),

and from the reformulation of the flux in (24) we may conclude since (x− y) log(x/y) ≥ 0 for all
x, y ≥ 0.
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4 Numerical tests

In the present section, we present several tests for Fokker-Planck equations with background
interactions and uncertain initial distribution. In particular, we numerically show the performance
of the discussedstructure preserving stochastic Galerkin (SP-SG) method. Both the scenarios with
fixed and evolving backgrounds will be considered. As discussed in Section 3 the essential aspect
for the accurate computation of the large time distribution of the problem (1) lies in the numerical
approximation of the integral

λi+1/2 =

∫ vi+1

vi

1

D(v)
(B[g](v, t) +D′(v))dv,

which defines the quasi-stationary states of each projection. In general a high order quadrature
method is needed. In the following numerical examples we will consider open Newton-Cotes quad-
rature methods up to the 6th order and the Gauss-Legendre quadrature, see e.g. [10]. Through
the text we will refer to these methods as SPk, k = 2, 4, 6, G, where the index k indicates the order
of the adopted quadrature method with G referring to the Gauss-Legendre case. To highlight the
advantages of this approach, a nonconstant diffusion function is considered for bounded domains.
In all the tests we considered suitable restrictions on the time discretization to guarantee posit-
ivity of the expected solution of the problems both in the explicit and semi-implicit integration.
Extension to the multidimensional case is considered at the end of this section.

4.1 Test 1: Stationary background distribution

Let us consider the evolution of a distribution function f(θ, v, t) in the presence of uncertainty that
follows (1), with v ∈ [−1, 1], and interacting with a given background distribution g(v, t) = g(v)
for all t ≥ 0 of the form

g(v) = β exp

{
− (w − ug)2

2σ2
g

}
, ug ∈ (−1, 1), σ2

g = 0.01, (25)

with β > 0 a constant such that
∫ 1

−1
g(v)dv = 1. We consider in this test a nonconstant diffusion

D(v) = σ2

2 (1 − v2)2 with given σ2 that will be specified later on. Furthermore, the nonlocal
operator in (2) is defined in terms of the interaction function

P (v, v∗) = χ(|v − v∗| ≤ ∆), (26)

where ∆ > 0 is a constant measuring the maximal distance under which interactions may occur.
The introduced function P (·, ·) is usually defined as bounded confidence function. This model
has been proposed in the literature to describe the evolution of the distribution of agents having
opinion v at time t ≥ 0, see [23, 33]. In particular, the presence of background interactions is
generally considered to take into account the influence of external actors in opinion dynamics like
the case of media [4] or the action of possible control strategies [2]. Extensions to the case of
uncertain interactions have been proposed in [34].

In this first test we consider as initial distribution

f(θ, v, 0) = C(θ)

[
exp

(
− (v − u1(θ))2

2σ2
0

)
+ exp

(
− (v − u2(θ))2

2σ2
0

)]
, (27)

with C(θ) such that
∫
V
f(θ, v, 0) = ρ(θ) > 0 for all θ ∈ IΘ and ui(θ), i = 1, 2 given by

u1(θ) = ū+ κ θ, u2(θ) = −ū+ κ θ,

being θ ∼ U([−1, 1]). In the case ∆ = 2 it follows that P ≡ 1 and we can compute the explicit
stationary distribution

f∞(θ, v) =
C(θ)

(1− v2)2

(
1 + v

1− v

)ug/(2σ
2)

exp

{
− 1− ugv
σ2(1− v2)

}
.
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Figure 1: Example 1. Top row: evolution of the L1 relative error with respect to the stationary
solution (28) for the SPk scheme with different quadrature methods. We considered the initial
uncertain distribution f(θ, v, 0) in (27) with ū = 0.25, ρ(θ) = 1 + 0.5θ, θ ∼ U([−1, 1]), and
σ2 = 2 · 10−1. For all h the solution has been computed for N = 41 gridpoints over the time
interval [0, 25], ∆t = ∆v2/(2σ2). Bottom row: dissipation of the numerical entropies H(f̂0, f̂

∞
0 ),

H(f̂1, f̂
∞
1 ) for the SPk scheme with Gaussian quadrature for two coarse grids with N = 11 and

N = 21 gridpoints.
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Figure 2: Example 1. Large time behavior of expectation (left) and variance (right) of f(θ, v, t)
obtained with SPk schemes and k = 2, G and an uncertain initial distribution of the form (27).
We can observe how the high accuracy of the proposed scheme reflects in an arbitrary accurate
numerical description of the large time statistical moments of the solution of the problem. t ∈ [0, T ]
with T = 15 and N = 41, ∆t = ∆v2/(2σ2).

The stochastic Galerkin decomposition of the resulting problem can be performed by consid-
ering a Legendre polynomial basis {Φh}Mh=0 being Ψ(θ) = 1

2χ(θ ∈ [−1, 1]). The resulting system
of equations have the form (5) whose asymptotic solution for all h = 0, . . . ,M reads

f̂∞h (v) =
Ch

(1− v2)2

(
1 + v

1− v

)ug/(2σ
2)

exp

{
− 1− ugv
σ2
f (1− v2)

}
. (28)

being Ch = 1
2

∫
IΘ
C(θ)Φh(θ)dθ. In Figure 1 we present the evolution of the L1 relative error

computed with respect to the exact stationary state for the SPk, k = 2, 4, 6, G, schemes for
various quadrature methods. To exemplify the advantages, we consider two projections h = 0
(left) and h = 1 (right). For each SPk we considered N = 41 gridpoints for the discretization of
the state variable.

We can observe how we achieve different accuracy in terms of the steady states of the problem
in relation to the considered quadrature rules for both h = 0, 1. Further, with low order quadrature
we approach to the numerical steady state of the method faster than with high order rules. We
observe that with a Gauss-Legendre method we essentially reach machine precision in finite time
for each projection. In the same figure, we show the dissipation of the relative entropy functional
H(f̂h, f̂

∞
h ) discussed in Section 2.1 with h = 0, 1 obtained with the structure preserving method.

We present the case of two coarse grids obtained with N = 11, N = 21 gridpoints compare with
the exact dissipation of the relative entropy.

The high accuracy of the scheme in the description of the large time behavior, in each polyno-
mial space, reflects in a high accuracy in the approximation of statistical moments of the solution
of the problem, see Figure 2. Here, we considered the schemes SP2 and SPG, that is the structure
preserving schemes with approximation of λi+1/2 with a 2nd order and Gauss-Legendre method re-

spectively. We highlight how the approximated expectation f̂0 is positive thanks to the properties
of the scheme.

In Table 1 we estimate the order of convergence of the SP-SG method in terms of accuracy of
the expected quantities E[f ], and Var(f) in their stochastic Galerkin approximation (6)-(7). It is
easily observed how for the approximation of the variance it is required the solutions of the whole
set of projections h = 0, . . . ,M . In the present test we considered M = 10. Furthermore, we used
N = 21, 41, 81 and the order of convergence of the explicit structure preserving schemes is meas-

ured as log2
e1(t)
e2(t) , where e1(t) is the relative error at time t ≥ 0 of the expected solution and its

variance computed with N = 21 gridpoints with respect to that computed with N = 41 gridpoints
and, likewise, e2(t) is the relative error at time t ≥ 0 computed with N = 41 with respect to that
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E[f ] SPk
Time 2 4 6 G

1 2.0785 1.9989 2.0025 2.0026
5 1.9949 4.2572 2.2868 2.3361
10 1.9953 3.9141 6.4698 7.3367

Var(f) SPk
Time 2 4 6 G

1 2.0870 2.0001 2.0030 2.0031
5 1.9978 4.4192 2.2398 2.2789
10 1.9982 3.9309 6.6929 7.3405

Table 1: Example 1. Estimation of the order of convergence toward the reference stationary
state for SP–CC scheme with RK4 method. Rates have been computed using N = 21, 41, 81,
σ2/2 = 0.1, ∆t = ∆w2/σ2.

computed with N = 81 gridpoints. The time integration has been performed with RK4 at each
time step chosen in such a way that the restriction for positivity of the scheme in Theorem 4 is
satisfied, i.e. ∆t = O(∆v2). We can observe how the SPk schemes are second order accurate in
the transient regimes and assume the order of the quadrature method near the expected steady
state and its related variance.

More generally, ∆ < 2 and therefore P (v, v∗) 6= 1, so that we have no analytical insight on the

large time solution f̂∞h (v) in each polynomial space. In Figure 3 we consider the case of bounded
confidence type interactions (26) with ∆ = 1.0 and a fixed background distribution g(v) of the
form

g(v) = β

(
exp

{
− (v − ug)2

2σ2
g

}
+ exp

{
− (v + ug)

2

2σ2
g

})
,

with ug = 1
2 and σ2

g = 10−2. We considered the uncertain initial density (27) with deterministic
initial mass ρ(θ) = 1 and uncertainty in u1(θ), u2(θ) so that

u1 =
1

2
+

1

4
θ, u2 = −1

2
+

1

4
θ,

with θ ∼ U([−1, 1]). The integral B[g](v) has been evaluated through a trapezoidal rule. As
observed in Section 2.1 the large time solution for all h = 0, . . . ,M does not depend on the
uncertainties of the initial distribution. Indeed, the variance annihilates as we can observe in 3(d)
and the asymptotic state coincides with E[f ].

4.2 Example 2: Evolving background distribution

In this section we test the performance of the introduced structure preserving stochastic Galerkin
scheme in the case of an evolving background distribution. To exemplify a dynamic background
distribution we consider the solution of a linear advection equation

∂tg(v, t) + α∂vg(v, t) = 0, α > 0, (29)

which is coupled to the original stochastic Fokker-Planck equation in (1) through the operator
B[g](v, t). The initial background is considered of the form (25), with ug = − 1

2 , we consider
periodic boundary conditions for (29) and α = 0.05. The advection equation is solved numerically
with a Lax-Wendroff scheme for each time t ≥ 0. In the following we consider as uncertain initial
distribution (27) with ū = 0.5, κ = 0.25, and the mass is ρ(θ) = 1 + 1

2θ with uniform perturbation
θ ∼ U([−1, 1]).

16



-1 -0.5 0 0.5 1
0

0.5

1

1.5

(a) t = 0

-1 -0.5 0 0.5 1
0

0.5

1

(b) t = 10

(c) E(f) (d) Var(f)

Figure 3: Example 1. Top row: initial distribution and solution at time T = 10 in the case of
bounded confidence interactions and ∆ = 1 obtained with SPG, N = 41 gridpoints and M = 5
projections. Bottom row: evolution of the expected solution (left) and its variance (right) in the
interval [0, 10].
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Figure 4: Example 2. Top row: (left): evolution of the background distribution according to the
linear advection equation (29) with α = 0.05, (right) expected solution of the (1) and bounded
confidence interactions with ∆ = 1.0 obtained with the stochastic Galerkin SPG scheme and semi-
implicit time integration for h = 0, . . . , 5, in red we represent the estimated confidence bands.
Bottom row: evolution over the time interval [0, 20] of the expected solution and of its variance.
We considered N = 41 and ∆t = CFL∆v, CFL = 0.5 so that the solution of the scheme advection
equation is stable.
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E[f ] SPk
Time 2 4 6 G

1 1.8976 2.0834 2.0972 2.0975
5 2.4162 4.7225 4.7940 4.7955
10 2.6446 4.5139 4.5082 4.5082
20 2.0685 2.5829 2.6271 2.6273

Var(f) SPk
Time 2 4 6 G

1 1.8834 2.1088 1.8565 1.8568
5 2.4162 4.3191 4.3937 4.3953
10 2.5793 4.5869 4.5809 4.5809
20 2.2616 2.4154 2.4678 2.4679

Table 2: Example 2. Estimation of the order of convergence of the scheme in the case of dy-
namic background g(v, t) for second order semi-implicit method. The evolution of the background
distribution follows an advection equation with α = 0.05. The rates have been computed using
N = 21, 41, 81, σ2/2 = 0.1, ∆t = CFL∆v with CFL = 0.5.

In Table 2 we estimate the order of convergence of the stochastic Galerkin structure preserving
scheme in terms of the two statistical quantities E(f), Var(f) in the case of a background distribu-
tion evolving as (29). The numerical integration is a second-order semi-implicit method, see [3, 26].
The approximation of the variance we considered M = 5 projections. We can observe that the
dynamic background distribution prevents the formation of steady state solution in the original
Fokker-Planck problem. Indeed, for each SPk, k = 2, 4, 6, G the scheme initially increases its order
according to the quadrature method and for large times it is reduced to the initial second-order.

In Figure 4 we can observe the behavior of (1) in the bounded domain v ∈ [−1, 1] and inter-
acting through a bounded confidence type P (v, v∗) with ∆ = 1, where the evolving background
follows the advection (29).

4.3 Example 3: 2D model of swarming

We consider a kinetic swarming model with self-propulsion and diffusion with uncertain initial
distribution. In a deterministic framework we refer to [5] where a similar model has been studied
in the nonlocal setting. Here the authors proved a sharp phase transition between self-propulsion
forces and diffusion, that discriminate the minimal amount of noise needed to obtain symmetric
distribution with zero mean. The study of possible uncertain quantities in the dynamics is here of
paramount importance, since coefficients like the noise intensity and the self-propulsion strength,
are commonly based on field observations and empirical evidence. We refer to [6] for a more
detailed analysis of the influence of uncertain quantities in problems with phase transition. In the
following, we concentrate on the case of uncertain initial distribution.

We consider a model for the evolution of the density of individuals f = f(θ, v, t) having velocity
v ∈ R2 at time t ≥ 0 and uncertain initial condition f(θ, v, 0) having mass ρ(θ). In details the
model reads

∂tf(θ, v, t) = ∇v ·
[
αv(|v|2 − 1)f(θ, v, t) + (v − ug)f(θ, v, t) +D∇vf(θ, v, t)

]
, (30)

being α > 0 the self-propulsion strength and D > 0 a constant noise intensity. At a difference with
the original nonlinear case here the agents interact with a background distribution g(v) through
its mean velocity ug =

∫
V
vg(v)dv. It may be shown that a free energy functional is defined which

dissipates along solutions. Further, stationary solutions have the form

f∞(θ, v) = C(θ) exp

{
− 1

D

[
α
|v|4

4
+ (1− α)

|v|2

2
− ug · v

]}
,
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with C(θ) > 0 a normalization constant. In particular, we focus on the 2D case and we consider
the fixed background distribution

g(v) =
1

2πσxσy
exp

{
−1

2

[
(vx − µx)2

σ2
x

+
(vy − µy)2

σ2
y

]}
, v = (vx, vy). (31)

The extension of the presented structure preserving methods to the multidimensional case has
been established in [26, 27]. The idea is to apply a structure preserving scheme to each dimension
of the stochastic Galerkin projections

∂tf̂h(v, t) = ∇v ·
[
αv(|v|2 − 1)f̂h(v, t) + (v − ug)f̂h(v, t) +D∇v f̂h(v, t)

]
, h = 0, . . . ,M (32)

with initial distribution f̂h(v, 0) = E[f(θ, v, 0)Φh(θ)]. In Figure 5 we present the large time
distributions for the choices of diffusion D = 0.2, D = 0.8 and three configuration of the back-
ground distribution. We applied the SPG scheme to (32) for h = 0, . . . , 5 to obtain the approx-
imation of expected distribution and of the variance. The initial distribution is here such that∫
V
f(θ, v, 0)dv = 1 + 1

2θ, θ ∼ U([−1, 1]).
A uniform grid over [−4, 4] × [−4, 4] with N = 51 gridpoints in each direction has been con-

sidered. The integration over the time interval [0, 100] has been performed taking advantage of
the second order semi-implicit method with ∆t = O(∆v). The surfaces represent the expected
solution whereas the red grids represent the upper confidence band that may be computed as
E[f ]+

√
Var(f). The provided confidence bands gives an indication on the regions where f(θ, v, t)

is more affected by the action of the uncertainty θ ∈ IΘ.
We can clearly observe the influence of the background in shaping the large time distribution

of the problem, which is steered towards the background mean. The computed confidence bands,
furthermore, make clear how the behavior is stable under the action of initial uncertainties.

Conclusion

We studied the application of structure preserving type schemes to the stochastic Galerkin ap-
proximation of Fokker-Planck equations with uncertain initial distribution and background inter-
actions. The developed methods are capable to preserve the stationary state of the problem with
arbitrary accuracy and define nonnegative expected solutions under suitable time step restrictions.
Both explicit and semi-implicit type time integrations have been taken into account. Furthermore,
we have proven discrete relative entropy dissipation property for the derived scheme for each pro-
jection of the original model. Several applications to prototype problems in socio-economic and
life sciences have been proposed both in case of fixed and evolving background distribution to-
gether with the extension of the method to the multidimensional case. Extensions of the scheme
to the uncertain background case and to the case of vanishing diffusion are under study both in
the deterministic and uncertain setting.
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(a) D = 0.8, µx = µy = 0 (b) D = 0.2, µx = µy = 0

(c) D = 0.8, µx = µy = 1 (d) D = 0.2, µx = µy = 1

(e) D = 0.8, µx = 0, µy = 1 (f) D = 0.2, µx = 0, µy = 1

Figure 5: Example 3. Expected solutions at time T = 100 of the 2D swarming model (30) with
initial uncertain distribution of mass ρ(θ) = 1 + 0.5θ, θ ∼ U([−1, 1]) and several background
distributions (31) obtained through the structure preserving stochastic Galerkin method h =
0, . . . , 10. Uniform grid for the velocity domain [−4, 4] × [−4, 4] with N = 51 gridpoints in both
directions, time integration with second order semi-implicit method ∆t = O(∆v). We visualize
the upper confidence band through the red mesh.
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