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Free Floating Electric Car Sharing: A Data Driven
Approach for System Design

Michele Cocca, Student Member, IEEE, Danilo Giordano ,
Marco Mellia, Senior Member, IEEE, and Luca Vassio

Abstract— In this paper, we study the design of a free floating
car sharing system based on electric vehicles. We rely on data
about millions of rentals of a free floating car sharing operator
based on internal combustion engine cars that we recorded in
four cities. We characterize the nature of rentals, highlighting
the non-stationary, and highly dynamic nature of usage patterns.
Building on this data, we develop a discrete-event trace-driven
simulator to study the usage of a hypothetical electric car
sharing system. We use it to study the charging station placement
problem, modeling different return policies, car battery charge
and discharge due to trips, and the stochastic behavior of
customers for plugging a car to a pole. Our data-driven approach
helps car sharing providers to gauge the impact of different
design solutions. Our simulations show that it is preferred to
place charging stations within popular parking areas where cars
are parked for short time (e.g., downtown). By smartly placing
charging stations in just 8% of city zones, no trip ends with
a discharged battery, i.e., all trips are feasible. Customers shall
collaborate by bringing the car to a charging station when the
battery level goes below a minimum threshold. This may reroute
the customer to a different destination zone than the desired one;
however, this happens in less than 10% of all trips.

Index Terms— Car sharing, electric vehicle, data driven opti-
mization, charging station, free floating.

I. INTRODUCTION

MOBILITY is a very important challenge for our society,
with strong implications on pollution in large cities.

More eco-sustainable solutions are seen as a means to improve
the current situation. Along with the usage of public transport,
the sharing mobility such as bike sharing, carpooling and
car sharing, help to address this problem. In this work,
we focus on the design of an electric car sharing system where
customers rent a car for moving within the city limits for short
periods of time. We focus on the so called Free Floating Car
Sharing (FFCS) system where customers are free to pick and
return the car wherever they like inside a geo-fenced area

Electric car sharing systems need an infrastructure of charg-
ing stations, whose design requires ingenuity. Two are the
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main problems that need to be faced: i) the charging station
placement problem, i.e., how many and where to install
charging stations; and ii) the return policy the customer has to
follow at the end of the rental, i.e., in which cases the customer
shall return the car to a charging station.

Data is fundamental to answer these questions. In this work,
we base our study on millions of actual rentals we collected
from FFCS systems based on internal combustion engine cars.
We leverage real FFCS data related to the city of Vancouver
(Canada), Berlin (Germany), Milan, and Turin (Italy) that
we selected as good representative of different habits and
scenarios. Our data naturally factors the non-stationarity of
FFCS systems. We study and compare the performance of
a hypothetical car sharing system which is based on elec-
tric vehicles. We develop a discrete-event simulator which
replicates previously recorded traces of trips in each of the
4 cities. The simulator considers different design parameters:
the charging station placement, the return policy, the car
battery charge and discharge process, and stochastic behaviors
of the customers. Compared to previous works (see Section II),
we are among the firsts to take an approach based on actual
trips performed by FFCS users for the design and the val-
idation of electric FFCS systems. We rely on the data we
collected to compare different charging stations placements,
and analyze the system performance through trace-driven
simulations, without the need of an artificial transport demand
model.

We first consider an opportunistic free floating policy where
customers return the car in a charging station only if it is very
close to their actual destination. Results show that placing the
charging stations in those areas where cars stay parked for
long time performs badly. Instead, placing charging station in
those areas where cars are frequently parked and rented, e.g.,
near train stations and working areas, guarantees much better
performance. This is consistent in all cities.

Next, we study different return policies, where customers
are asked to return the car to a charging station in case the
battery level decreases below a minimum threshold. This col-
laborative policy reduces the size of the charging infrastructure
by a factor of 2 or more with respect to an opportunistic free
floating solution. Equipping just 8% of zones with 4 poles
of 2 kW would support almost all trips (>99.9% of trips ending
without discharged battery) in an electric car FFCS equivalent
to the combustion engine FFCS currently in use.

At last, we compare system design alternatives to check
whether it is better to place a lot of charging poles in very
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few areas, or rather to spread a lot charging stations with few
poles in many areas. Results demonstrate that both extreme
solutions perform badly, with best performance obtained when
installing charging stations with 5 to 20 poles in popular areas.

We believe that the results presented in this paper, are very
important for regulators and policy makers, as well as for
researchers working in this area. We make both dataset and
simulator publicly available.1

After discussing related work in Section II, we present and
characterize data in Section III, and the simulation and tool
in Section IV. Section V discusses the impact of charging
stations placement policies, while Section VI compares return
policies. Section VII discusses the model limits, providing a
lower bound estimation. Section VIII presents the impact of
concentrating or spreading charging stations in the city. Finally
Section IX concludes the paper.

II. RELATED WORK

The diffusion of the free floating approach to car sharing
led to an increasing attention by many researchers, with
the analysis of these systems and their extension to electric
vehicles. For instance, the ESPIRIT project [1] tries to reduce
traffic congestion in urban areas by developing light-weight
electric vehicles that can be stacked together to gain space.

The studies performed in 2011 by Finkorn and
Müller [2], [3] are the first attempts to analyze benefits of
FFCS for the population. Their measurements on customers’
behavior, are similar to ours [4]. Later works [5]–[7] collect
data and analyze the mobility patterns of customers in
different cities. More in details, authors of [5] characterize
Car2go service in 22 cities in Europe and North America;
authors in [6] perform the same analysis adding correlations
with socio-economic data. Finally authors of [7], after a brief
characterization, propose a linear regression able to predict
the demand in short and long-term in Berlin and Frankfurt.
Their study shows how the short-term demand prediction
is strongly influenced by time, while the long-term is more
correlated with the neighborhoods demography.

The introduction of electric vehicles for private and public
transportation raises the problem of placing the charging
stations. Authors of [8] present a simulation study similar to
ours, but using random models to generate trips rather than
actual traces. Their algorithms tend to place charging stations
along frequently used streets to let drivers recharge the car
with 10 minutes or more waiting time. Authors of [9] solve the
charging station optimization problem, again using synthetic
data and adopting a genetic programming approach.

Few data driven studies address the charging station place-
ment, either by minimizing installation cost, power loss and
maintenance of the power grid [10], [11], or by minimizing
the customers’ walked distances required to reach a charging
pole [12]. Here we focus on the minimization of charging
infrastructure cost and on the impact of different car return
policies.

Authors of [13] study the relocation of electric cars in
FFCS, since few charging stations may be blocked by already

1https://smartdata.polito.it/car-sharing-and-electric-charging-station-
placement-from-data/

charged vehicles. Lastly, after a survey among FFCS cus-
tomers in Ulm (Germany), authors of [14] investigate the
positive effect over pollution of an electric FFCS systems.

Previously in [15] and [16], we performed several analyses
for designing an electric FFCS in the city of Turin and Milan.
In [17] we optimized the charging stations placement for
Turin. In this work, we extend and complement these papers
by generalizing the study to 4 cities, and by studying new
return policies to observe the impact of the willingness of
customers to contribute to the system by returning the cars to
charging stations. We further extend our works by discussing
the benefits of using charging hubs.

Most of the previous works use either synthetic data or
analytic models to design the charging station placement or
generate the trips. Instead, we are among the first to use
directly the collected data both to study different design
solutions and to validate them using realistic trips.

III. DATA COLLECTION AND CHARACTERIZATION

We describe the methodology we follow to harvest data
from already operative FFCS systems. We first describe the
data collection mechanisms. Then we characterize system
usage, focusing on those metrics that are instrumental for the
design of FFCS systems based on electric vehicles.

A. Data collection and filtering

Modern FFCS providers like Car2go, DriveNow or GoGet
use information systems to expose the position of the available
cars through web services. Customers access these to check
which cars are available for a rental by using a smartphone
app. Car2go offers a public Application Programming Inter-
face (API) to access the information about the system status.2

We use this API to collect data about rentals occurred over
time. First, we get the service area for each city, i.e., the area
where cars can be rented and returned. Next, we collect a
snapshot reporting the positions of cars available for a rental.
We take the snapshots every minute. From each snapshot we
save the car plates, used as car identifiers, and their geographic
coordinates.

We developed UMAP [4], a software able to process these
snapshots and rebuild, for each car, the history in terms of
bookings and parkings.1 A booking is an event describing a
possible car rental, characterized by the start/final position, and
start/end time. A parking describes a period of time when the
car was parked and available for rentals; it is characterized by
the location, start and final time. In a nutshell, we process the
snapshots of the available cars and derive booking and parking
periods. When a car “disappears” from a snapshot, it means
that someone has booked it – so that the car is not available
for other customers. A new booking is started. When the same
car “reappears” back later on, it means someone has returned
it. The booking is then ended, and a new parking starts.

Not all bookings correspond to actual rentals: (i) a customer
can book a car, and cancel the booking later on; (ii) the data

2car2goAPI, https://www.car2go.com/api/tou.htm service subject to
approval by Car2go. Approval granted in September 2016 and discontinued
in January 2018.
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collection may suffer from outages, so that some snapshots
may miss some available cars; (iii) cars may go in mainte-
nance, so that they disappear and never come back (or return
after a long time); (iv) cars may be relocated by the provider
to zones with high demand. We develop data cleaning and
filtering procedures to extract actual rentals from bookings.
A booking is considered a valid rental if: (i) it lasts at least
3 minutes; (ii) the ending position is at least 700 m far from
the staring position, with both positions inside the city service
area3; (iii) its duration is smaller than 1 h. These thresholds
have been selected by domain knowledge – see [4] for more
details. Bookings that do not correspond to rentals are then
merged with parking events (since the car did not move).
We cannot distinguish between rentals done by the users, and
relocations done by the system. However, to the best of our
knowledge, relocation of vehicles in the city we considered
is not massively used by Car2go, and likely limited to a very
small fraction of all trips.

While we obtain precise information on where the users
begin and end the ride, we have no information about where
they accessed the system to enter the reservation and where
they want to go (we know where they parked). As such,
we cannot estimate how much the user has to walk to reach
the car nor to reach the real destination. Moreover, we do not
have any kind of users’ personal information, we do not know
how many people were in the car during the ride and which
path they drove.

We started to collect data in December 2016 in all the
22 cities in which Car2go was operating, and stopped our
collection in January 2018. Fig. 1 reports the number of rentals
recorded for each day from June 2017 to January 2018 in four
cities: Turin, Milan, Berlin and Vancouver. Notice that in some
intervals of time data is missing due to failures in the data
collection, (see central weeks of August and the second week
of November). Despite the fact that rentals are non-stationary,
especially during periods like Christmas, notice how the usage
tend to be similar over the year without any particular seasonal
pattern. For example, the usage level in July looks similar to
the one in October. Here we focus our analysis on a 2 months
long period from September to November 2017 in these four
cities. We select this period because it is the longest one
without data collection failures and it is representative of the
customers’ behavior. Overall, we collected more than 1 million
rental events. In the following we make the simplifying
assumption that the typical usage patterns of FFCS customers
are independent from the type of engine employed in the car
(internal combustion or electric).

In our previous works [15], [17], we considered only the
city of Turin. Here, we extend our analysis to other three cities
that we selected because they are the cities with the largest
Car2go fleet in Europe and North America.

B. Temporal characterization

Firstly we provide a characterization of usage patterns by
current FFCS customers in each city. We focus on temporal
characteristics.

3This to account for possible errors in the GPS fixing, and to remove rentals
started and ended in different cities.

Fig. 1. Number of rentals per day, from June 2017 to January 2018. Some
data is missing.

Fig. 2. Average number of rentals per hour.

TABLE I

MAIN CHARACTERISTICS OF OUR DATASET, RECORDED

FROM SEPTEMBER TO NOVEMBER 2017

Fig. 1 shows the number of recorded rentals for each day.
Usage similarity is striking, with Milan, Berlin and Vancouver
that have a larger number of rentals per day than Turin. This
intense usage justifies the difference in fleet size among the
cities, with the former three cities having twice as much
cars with respect to Turin (see Table I). This highlights the
importance of extending our previous work to other cities
than Turin. A second interesting aspect is the presence of
a weekly pattern: in correspondence of the weekends the
number of rentals drops of about 30%. This is justified by
the fact that during the working days cars are used for
commuting. Moreover, non-stationary events due to holidays
or strikes are visible, e.g., October 6th in Milan due to a public
transport strike, and Christmas holiday during which the usage
decreased.4

To deeply analyze customers’ habits, we detail the aver-
age number of rentals per hour in Fig. 2, separately per
working-days (WD, solid line) and per weekends (WE, dashed

4The sudden fall around the October 2th is due to a system outage that
caused a lack of data.
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Fig. 3. Car sharing usage characterization.

line). Each curve reports the average number of rentals con-
sidering the same hour in the dataset. Firstly, notice the usage
peaks during commuting times. These happen at different
times for different cities, e.g., 8 am for Turin, Milan and Berlin
vs 7 am for Vancouver, following local commuting habits.
Secondly, notice how the evening and night usage tend to
be larger during weekends than working days. This reflects
the different usage at night, when cars are used to reach areas
dense of pubs and nightlife. At last, observe again the different
patterns in different cities. For instance, the average number
of rentals in Vancouver and Berlin during weekend mornings
is higher than during working days. This does not happen in
Italian cities. Thus the charging station placement design must
weight these different needs and non-stationary patterns.

Given our goals of deriving guidelines for charging station
placement policies, we focus now on the characterization
of three important metrics: (i) rental duration, (ii) driving
distance, and (iii) parking duration. The former two metrics
guide the battery discharging properties, while the latter metric
is fundamental to understand battery charging opportunities.
Given that we have no information on car path during a rental,
we compute the driving distance by assuming the customer
went directly from the origin to the destination. This is indeed
compatible with the typical short rental duration. We use
Google Map service to compute a correcting factor to be
applied on the euclidean distance [4].

Fig. 3 reports the empirical Cumulative Distribution Func-
tion (CDF) of the rentals duration (top), driving distance (mid-
dle) and parking duration (bottom). The size of the city has
a clear impact, with Turin that has the shortest trips, and

Berlin the longest. Rental duration is in general very short,
leading to the intuition that drivers tend to minimize the rental
time (and cost). Driving distance is fundamental to understand
the battery consumption: Assuming energy consumption is
proportional to the traveled distance (more on this later),
the trip with the maximum driving distance sets the minimum
battery charge to sustain such trip, i.e., the minimum battery
residual capacity that allows to perform the trip. Looking at
the middle plot in Fig. 3, we observe that in Berlin the longest
trips are twice as long as the longest trips in other cities.
Therefore, the same battery constraints would not fit for all
cities. Overall, the limited driving distance and rental duration
suggest that people use the car just for the time strictly needed
to reach their destinations.

At last, the bottom plot of Fig. 3 details the duration of
the parking events. Interestingly, 50% of parking events lasts
less than 22 minutes in Berlin, testifying a very high system
utilization. In Turin, the median grows to 42 minutes, still
showing that most of the cars are parked for short time. Yet,
the long tail of the CDF (note the log scale on x-axis) suggests
that there is a sizable fraction of parkings that last for 5 or
more hours. These are cars usually parked in the periphery or
at night, where the demand is lower.

Takeaway: car sharing usage is time heterogeneous and non
stationary. However, many patterns can be identified. FFCS
customers tend to use the system mostly during commuting
time and for short trips.

C. Spatial characterization

The charging station placement depends on the opportunity
of charging cars. Intuitively there are two possibilities: place
the charging stations (i) where cars stay parked for long time –
so to maximize the charging time for a charging event; or (ii)
where cars are frequently parked and rented – so to maximize
the number of charging events. For this, knowing the zones
within the city where cars are left parked is fundamental.

We divide the service area of each city into squared zones
by a grid of 500 m of side. For each zone, we compute the
average parking time and the total number of parking events.
Fig. 4 shows the above metrics for Berlin and Vancouver
using a heat map – with blue and red colors corresponding
to the minimum and maximum values, respectively. Focus on
Berlin first - Fig. 4a. Left plots show the average parking
time. Results show that cars stay parked for very short time in
busy downtown areas with an average of 74 minutes. On the
contrary, cars stay parked for long time in the periphery i.e., up
to an average of 2 days. Conversely, right plot depicts the
total number of recorded parking events in each zone. In the
downtown areas the majority of rentals/parkings occurs, and
we observe up to 45 rentals per day. In the periphery we
observe the least number of rentals/parkings, with some zones
where we observed only a single parking event in two months.

In a nutshell, in busy areas, the average parking time is
short, and the number of rentals and parkings is high. This
reflects the specific usage of FFCS according to which cars
go to downtown areas in the morning, then are rented to move
within central areas, and finally go back to the periphery at the
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Fig. 4. Heat map of average parking time and total number of parking. The warmer the color, the higher the value.

end of the day. Similar results apply to all cities – see Fig. 4b
which details Vancouver.

Takeaway: Periphery zones are characterized by a long
parking time, while central areas are characterized by many
parkings which last for short time.

IV. ELECTRIC CAR SHARING SIMULATOR

Our goal is to study different design choices for electric car
sharing systems. For this, we develop a flexible event-based
simulator to compare different algorithms and tune their
parameters while collecting metrics of interest. Simulations
are based on the traces of actual rentals previously explained,
simply called trace from now on. This allows us to factor all
spatial and temporal characteristics of actual FFCS systems.

A. Simulation model

We simulate a fleet of electric cars that move in the city.
Each car is characterized by its location, and the current level
of battery charge. The simulator takes as input the pre-recorded
trace of rentals.

In more details, each trip i ∈ I in the trace is characterized
by its start and end time, ts(i) and te(i), and origin and desti-
nation coordinates, o(i) and d(i). For simplicity, we divide
the city area into squared zones, of side 500 m as before.
We associate each position to the zone O(i) = zone(o(i))
and D(i) = zone(d(i)). We assume a charging station cs,
composed of k poles, can be placed at the center of a given
zone z ∈ Z , so either cs(z) = 1 if the station is present,
or cs(z) = 0 otherwise. N = ∑

z∈Z cs(z) is the total number
of zones equipped with charging stations, with K = N · k the
total number of poles.

We have a set A of cars, with its cardinality |A| obtained
by the trace. Each car a ∈ A at time t is characterized by
its position p(a, t), its zone P(a, t) = zone(p(a, t)), and the
residual battery capacity c(a, t) ∈ [0, C], with C being the
maximum nominal battery capacity.

The simulator processes each rental event i in temporal
order. When a rental-start event i is processed at time t =
ts(i), we choose the most charged available car in the closest
zones to the initial position zone O(i). In formulas, we get a
car ā ∈ A such that:

c(ā, t) ≥ c(â, t) ∀â ∈ argmin
a∈A

dist (O(i), P(a, t)).

Intuitively, we mimic the normal behavior of FFCS cus-
tomers that use their smartphone to rent the closest car from
their position and are worried about vehicle range [18]. Notice
that this behavior is independent from whether the car is
at a pole being charged or not. The simulator schedules a
rental-end event using the trace final time te(i) and desired
destination location d(i).

When car a rental-end event is processed at time te(i),
we return the car in P(a, te(i)), chosen according to the
behavior described in Section IV-B. The simulator updates
the battery charge status by consuming an amount of energy
proportional to the trip distance:
c(a, te(i)) = max(c(a, ts(i))

− Energy(p(a, ts(i)), p(a, te(i))))

with Energy(·) that models the energy necessary to go from
the car origin p(a, ts(i)) to the car destination p(a, te(i)).
We make the simplifying assumption that the consumption
is linearly proportional to the estimated trip distance. This
rough linear correlation between the energy consumed and the
driving distance, regardless the orography of the city, can be
accepted since we are not interested on a fine estimation the
energy consumed of a single trip. In some trips the consump-
tion will be overestimated (e.g., applying the corrective factor
on a straight road), while in other cases underestimated (e.g.,
driving in a circular road). Therefore the consumption error
on average will be balanced.

Whenever c(a, te(i)) = 0, the trip i is declared infeasible.
The discharged car a still performs further trips, all marked
as infeasible, until it reaches a charging station.5

B. Car charging policies

When returning the car, the customer may connect it to
a pole in a station, hence charging the battery and possibly
deviating from the desired destination.

We define different policies that the electric FFCS may
enforce, and different probabilistic behaviors of customers. We
investigate the following policies:

• Free Floating: the customer must connect the car to a
charging pole if and only if it is available in the desired
final zone D(i);

5This is instrumental to give an exhausted car the chance to recover energy.
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• Needed: cars must be connected to a pole when the
fraction of battery charge at the end of the rental i
would go below a certain threshold α, i.e., (c(a, ts(i)) −
Energy(p(a, ts(i)), d(i)))/C ≤ α. This implies the cus-
tomer can be rerouted to the closest zone equipped with
a charging station, if no free pole exists in the desired
final destination zone;

• Hybrid: the customers follow the needed policy; they may
also voluntarily connect to a charging pole - if available
- in the desired ending zone D(i) with probability w,
whatever car charge status is.

The Free Floating policy never obliges the customer to bring
the car far from the desired ending location, even in case
battery is close to exhaustion. Needed mandates to connect
cars to a charging station only when battery runs low, thus
trying to protect from battery exhaustion. Hybrid mixes the
two policies, with w that measures the level of customers
willingness to collaborate. w = 0 is equivalent to the Needed
policy, while w = 1 adds to the Needed policy the Free
Floating policy, thus always connecting the car to a charging
pole if available in their final position zone.

C. Charging stations placement

Given a number of charging station N , our first objective
is to place them to make all rentals feasible, i.e., to find a
charging stations placement so that

c(a, te(i)) > 0 ∀a ∈ A, ∀i ∈ I
Since we do not make any assumption on the set of trips I,
we cannot know a-priori if a solution exists. The number of
candidate solutions increases as the binomial coefficient

(|Z|
N

)
,

making ineffective to numerically compute all possibilities.
Here we provide a class of greedy algorithms and analyze
the performance. In details, each zone z ∈ Z is assigned
a likelihood lz ≥ 0. We then solve the problem of finding
the subset of N zones that maximizes the total likelihood.
In formulas,

max
∑

z∈Z
cs(z)lz

subject to:
∑

z∈Z
cs(z) = N; cs(z) ∈ {0, 1},∀z ∈ Z

The above optimization problem can be solved by choosing
the top N zones, ordered in decreasing likelihood. We compare
the performance of different placement algorithms based on
different definition of the likelihood.

• Random placement (Random): lz is an independent and
identically distributed uniform random variable, so that
charging stations result placed at random;

• Average parking time (Avg time): lz is the average parking
duration in z as recorded in the trace;

• Total number of parkings (Num parking): lz is the total
number of parking events recorded in z in the trace;

• Total parking time (Tot time): lz is the sum of all the
parking duration events recorded in z.

As discussed in Section III-C, the last three heuristics are
driven by the intuition that placing charging stations in those
zones where cars are parked for long time (average parking
time) or frequently parked (total number of parkings) could
improve system performance. The total parking time combines
these two metrics: it measures the average parking time
multiplied by the total number of parkings. Indeed, considering
this parameter, the value of lz increases both when the car stays
parked a lot of time or when a lot of cars stay parked in the
same zone. From our analysis, the Total number of parkings
and the Total parking time tend to place charging stations in
the same areas since the variance in number of parking events
is larger than the variance in parking time.

D. Performance metrics and parameters

The simulator measures the following key performance
indicators to assess the quality of experience of customers:

• Infeasible trips: measures if a trip i performed by a car
a ends with a completely discharged battery, i.e., when
c(a, te(i)) ≤ 0;

• Charge event: indicates if a trip ends with putting in
charge the car, implying the burden to drive to the pole
position, and plug the car;

• Reroute event: a trip where the customer is rerouted to
a zone different from the desired destination in order to
charge the car, i.e., P(a, te(i)) �= D(i);

• Walk distance: distance between the desired final location
d(i) and the actual final position p(a, te(i)).

The number of infeasible trips is critical and the system
must be engineered so that they never happen. In this way, all
trips can be performed and end with a still charged battery.
For this reason, in our analysis we focus on the feasible region
where all trips are possible. Other performance metrics shall
be minimized. In addition to the above metrics, the simulator
collects statistics about car battery charge level c(a, t), and
amount of time a battery stays under charge.

E. Simulation scenario

We focus on key design parameters, i.e., the charging station
placement and return policies. We study the impact on the
number of zones that are equipped with charging stations N ,
and the number of poles k of each charging station.

Table I summarizes the dataset main characteristics. For
our study, we consider all rentals observed in September and
October 2017. We consider in each city a fleet that has
a number of cars equal to the one observed in the trace.
Electric cars have the same nominal characteristics as the
Smart ForTwo Electric Drive, i.e., 17.6 kWh battery, for
135 km of range, with a discharge curve Energy() that is
proportional to the traveled distance (12.9 kWh/100 km). 6

Different works [19]–[21] show that many parameters may
affect the battery consumption, with road inclination which is
one of the key parameter that affect the energy consumption.
Unfortunately our data granularity does not allow us to know
the users’ route. We study the impact of variation in the energy

6https://www.smart.com/uk/en/index/smart-electric-drive.html
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consumption in Section VII to observe the impact of extra
energy consumption due to car auxiliaries and orography. Our
simplifying assumption could be considered a valid approxi-
mation for our goals since:

• The cities under study do not present big road gradients.
The difference between the maximum and minimum
elevation within the city limits are: 45 m for Milan, 86 m
for Berlin, 152 m for Vancouver, and 511 m for Turin
(due to Superga hill, which is outside the Car2go service
area).7

• On average, the battery capacity supports many
car-sharing trips. Therefore the underestimation intro-
duced due to the missing gradient on a single trip is
compensated by the overestimation on an other trip.

• Authors in [21] shows that the error introduced by do
not consider different parameters (altitude gradient, wind,
etc.) is only about 16% of the trip consumption. This
number is less than the possible errors we analyze in
Section VII.

Considering charging stations, we assume each is equipped
with k = 4 low power (2 kW ) poles. These are cheap to install
and a good compromise between costs, power requested, and
occupied road section. Li-ion batteries are normally designed
for being charged first with constant current (and slightly
increasing voltage) up to a fraction of their capacity (see [22]
and [23]). In this region the SOC increase almost linearly,
absorbing the maximum power of the pole. We approximate
that the whole charge is performed at this power (complete
charge in 8 hours and 50 minutes for our electric car). Finally,
the initial car position, only affecting the simulation transient,
is chosen randomly.

Our simulator, written in Python, takes less then 5 seconds
to complete a single simulation for a given city and parameter
set. Due to the large number of simulations, we run them in
batches of 128 processes in parallel. Each simulation produces
100 MB of detailed logs, that we process on a Big Data cluster
using Apache PySpark to extract the desired performance
metrics.8

F. Lower bound on charging station number

To understand whether our methodology produces good
results we compute a lower bound to the number of charging
stations required to complete all the trips. This lower bound
evaluates the minimum number of charging stations required
to supply the energy consumed by all the cars in the considered
period. We compute the energy needed for trips in the whole
trace and then, independently of the actual trips, we assume all
the poles are used in the best way to provide energy. Hence,
the poles are delivering energy all the time to an ideal not-fully
charged cars, so no charge opportunity is wasted.

To compute the lower bound, we evaluate the total dis-
tance covered by all cars. Knowing the consumption per km
(12.9 kWh/100 km), we compute the total energy consump-
tion. Then, given the power of each pole (2.0 kW ), we compute

7Data obtained from http://www.comuni-italiani.it and https://en.wikipedia.
org/

8https://smartdata.polito.it/computing-facilities/

TABLE II

LOWER BOUND OF NUMBER OF POLES AND CHARGING STATIONS

the amount of hours required to provide all the consumed
energy. Finally, knowing the number of days in the trace
(58 days), we compute the minimum number of poles and the
percentage of charging zones. Table II reports the lower bound
for each city. The minimum value ranges from 22 poles in
Turin to 94 in Vancouver. Assuming k = 4 poles per charging
station the minimum percentage of equipped zones goes from
1.9% to 4.4%.

V. IMPACT OF CHARGING STATION PLACEMENT

We consider first the Free Floating return policy and study
the impact of different charging station placement policies.
Our aim is to check what would be the minimum number of
charging stations to install to sustain a FFCS system based on
electric vehicles that is equivalent to the one currently in use.

Fig. 5 shows the performance of the different placement
algorithms in terms of percentage of infeasible trips with
respect to the percentage of zones equipped with charging
stations for each city. Bottom x-axis reports the percentage
of equipped zones with respect to the total, while top x-axis
reports the actual number, different for each city.

We observe dramatically different performance for different
placement algorithms. First, the average parking time place-
ment policy (Avg time - purple line) has very poor performance
in all the cities. Even a simple random choice sometimes
performs better (Mean Random - green line, obtained as the
average of 10 random instances). In Milan – Fig. 5b – and
Berlin – Fig. 5c, the random placement results the worst. This
is due to the larger number of zones, which makes the space
of available solutions much larger.

Second, the total parking time (Tot time - black line) and
total number of parkings (Num parking - red line) perform
similarly and consistently better than other policies. In all the
cities except for Berlin we can reach a negligible percentage
of infeasible trips with just 15-18% of charging zones (still
5-10 times higher than the lower bound). In Berlin we still
observe some infeasible trips with 30% of charging zones.
Recall that the nominal car battery guarantees to travel 135 km.
The presence of infeasible trips is explained by looking the
rental distance presented in Fig. 3. Trips in Berlin can be as
long as 39 km. Therefore, with few long-trips which do not
end in a charging station area, the battery could run out the
energy.

The overall trends confirm the intuition of why the charging
stations placement algorithm is of primary importance. Avg
time placement favors peripheral zones where few trips end,
and where cars stay parked for long time, sometime longer
than the time required for a complete charge, (see left heat
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Fig. 5. Percentage of infeasible trips as function of charging station number for the Free Floating return policy. Placing charging stations where cars are
frequently parked (Tot time and Num parking) is much better than where cars stay parked for long time (Avg time).

maps Fig. 4a and Fig. 4b). On the contrary, Num parking
and Tot time favor city center areas, where cars are frequently
parked for short time (see right heat maps in Fig. 4a and
Fig. 4b).

Takeaway: Placing charging stations in areas where cars
stay parked for long time is not convenient. Placing charging
stations in areas where cars are frequently parked allow many
cars to recover the (little) energy consumed in the (short) trips.
This results in a much better policy.

Given this, we will use the total number of parking place-
ment algorithm for the rest of the paper.

VI. IMPACT OF RETURN POLICY

We now investigate the impact of the different return
policies. In particular, we quantify the implications of asking
customers to return the car to a different zone than the desired
one when the battery goes below a critical level.

A. Impact on infeasible trips

In Fig. 3 we already noticed that trips are typically short.
This is instrumental to choose a proper minimum charging
threshold α. Given the maximum trip distance, we obtain
the corresponding maximum energy being consumed. For
instance, a maximum distance of 20 km correspond to about
15% of battery capacity for the considered car model. In the
following, we take a conservative approach and set the min-
imum battery charge threshold α = 0.25, i.e., 25% of the
battery capacity. To make results comparable, we keep the
same threshold also for Berlin, where the maximum traveled
distance grows to 39 km, i.e., suggesting α > 0.3. Here our
choice is not conservative.

Fig. 6. Infeasible trips when comparing the Free Floating vs Needed
return policies. Forcing customer to charge when c < α drastically improves
performance.

As before, we focus on the infeasible trip percentage with
respect to N . We compare results for the Free Floating and the
Needed policies. Fig. 6 shows the results. The Needed policy
(solid lines) performs much better with respect to the original
Free Floating policy (dashed lines). In a nutshell, adopting
a policy which mandates customers to charge the car when
battery level goes below a threshold drastically reduces the
number of infeasible trips, even with a handful of charging
stations. Indeed, in all cities we have a negligible percentage
of infeasible trips (< 0.1%) with 6-8% of zones equipped
with charging stations. This is just twice as much the (very
optimistic) lower bound.

We now focus on the impact of the willingness w in the
Hybrid policy. We want to understand if the more altruistic
are the customers, the higher are the benefits for the system.
Fig. 7 details the percentage of infeasible trips with a different
willingness probability for Vancouver and Berlin. Turin and
Milan are similar and not reported for the sake of brevity.
Results show that increasing w has very little impact on the
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Fig. 7. Impact of customer willingness to cooperate w. Albeit the small
impact, the higher w is, the better it is.

percentage of infeasible trips. Only by looking at the insets
that offer a zoom in log-scale, we observe that an increasing
willingness reduces the infeasible trips, which are however
already a marginal percentage of trips. This is due to the
higher average battery level, obtained by imposing the Free
Floating policy on the top of the Needed one. In Berlin,
we can still observe some infeasible trips even when 30% of
zones are equipped with charging stations. This is due to the
maximum length of the trips, confirming the need to increase
the threshold α.

Takeaway: Asking customers to return the car to a charging
station when the battery level goes below a minimum level
drastically improves system efficiency. Just 6%-8% of zones
covered by charging stations guarantees to always have the
needed battery capacity to complete all trips. Recalling that
up to 4.4% of zone are required as lower bound, this confirms
the goodness of this solution.

B. Impact on customer experience

As there is no strong impact of w on the infeasible trips
percentage, here we check benefits on the customer’s experi-
ence. Forcing customers to park in a charging station can be
annoying, because they have to reach the charging station, and
spend time to plug and unplug the car to and from the pole.
Even worse, rerouting customers for charging increases the
distances they have to walk to reach their desired destination.

Fig. 8 reports, the percentage of charge events (left plots),
the percentage of reroute events (middle plots), and the aver-
age walk distance when rerouted (right plots). In all graphs
the shaded area highlights the infeasible region, i.e., when
infeasible trips are higher than 0.1% in at least a case. The
lack of charging zones creates artifacts here.

Focus first on the percentage of charge events - leftmost
plots. When the number of charging stations is close to the

minimum, most poles are occupied by cars that must be
charged. This leaves little room for opportunistic charges, and
there is little impact of w. For increasing number of charging
stations, the opportunity to find a free pole increases. Thus,
the higher is w, the higher are the charging events. Corre-
spondingly, the average battery charge increases – detailed
in Fig. 9 for Vancouver. Interestingly, the percentage of charge
events decreases for selfish customers (w = 0), reaching about
5-8% for sufficiently large number of charging stations. This
corresponds to the average number of charges per car that
guarantees minimum battery charge of 25%. Indeed, given the
average rental distance of 5 km (Table I), the car considered in
our scenario could perform on average 20 trips before needing
to charge.

Move now to the percentage of rerouting events - middle
plots in Fig. 8. Two important effects are visible. First,
rerouting probability decreases as expected: the more the
stations are, the more likely customers find a charging station
at their desired final zone. With selfish behavior (w = 0),
the fraction of rerouting events remains large even for large
N . Second, the more collaborative are customers, the better it
is for the entire system. With 50% of chance that customers
return voluntarily the car to charging station, the reroutings
are less than 1% with 18% of charging zones for Milan,
Turin and Vancouver. These can be handled by a relocation
policy, i.e., the system could take care to charge those 1%
of cars whose battery level is smaller than α. Note that this
corresponds to about 50 relocation events per day. For Berlin
the number of rerouting remains larger than 3%, mainly due
to the larger size of the city.

At last focus on the average walk distance when the car is
rerouted – rightmost plots in Fig. 8. When forced to charge to a
different zone than the desired one, customers would be asked
to drive farther than 1-2 km, a likely unacceptable penalty
unless mitigated by offering incentives to customers, e.g.,
offering a free rental when rerouted.9 Notice that by increasing
the number of charging stations, the walked distance slowly
reduces. This is due to the fact that charging stations are not
placed uniformly in space, following the number of parking
heuristic, which places most of them in the downtown area.

In summary, we would like to have w = 1 to reduce
reroutings and infeasible trips, and w = 0 to reduce charging
events. Moreover, we would like to have as few charging
stations as possible to minimize installation costs, but as
many charging stations as possible to minimize reroutings and
walking distance when rerouted. Given this multi-objective
optimization problem, there is not a single optimal solution,
but we could extract all the optimal Pareto solutions useful for
the decision process of a car sharing operator.

In an attempt to weight the different effects of changing
w, we compute the (global) walk distance averaged over
all trips. This considers the penalty due to (i) the rerouting
events, and (ii) the walk distance when charging in a pole of
the desired final destination (pole distance would be 150 m,
on average). Fig. 10 reports results for Vancouver. For more
than 10% of zones with charging stations, customers have

9The noise for large N is due to the very small number of rerouting events.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 8. Charge events percentage (left), reroute events percentage (middle) and walk distance averaged over rerouted trips (right), per city. Increasing w
benefits the customers’ experience by reducing the rerouting events significantly, but increasing the charging events.

to walk on average less than 300 m. When the number of
charging stations is low, increasing w reduces the average
walking distance, since opportunistic charges reduce rerouting
events. However, further increasing the number of charging
zones slightly increases the average walk distance since the
customer has higher probability of finding a pole in the desired
zone. After about 20% of zones, the best policy switches from
w = 1 to w = 0. Therefore, the policy to use may be different
according to the number of charging stations. Overall, for all
the cities and 10% of zones, customers on average walk less
than 200 m to reach their desired destination with w = 1.

Takeaway: Hybrid policy significantly reduces the number
of times the customer has to drive to a charging station in a
different zone than the desired one. However, it increases the
number of times the customer parks at a charging station and
has to plug the car to the pole. Therefore, one must be cautious
when weighting these results and designing the return policies
which impact customers’ experience.

VII. SENSITIVITY TO BATTERY DISCHARGE RATE

In this section we explore the scenario in which the con-
sumption for a trip Energy is higher than the nominal one

Fig. 9. Details of the average battery charge status for Vancouver - the higher
the better. Other cities have similar results.

we studied so far. As pointed out by different studies [21],
the linear consumption rate proportional to the travel distance
is an approximation. In this section we rely on the findings of
authors in [24] to evaluate the impact of an higher consump-
tion per km due to: (i) different driving style, (ii) the utilization
of auxiliaries e.g., Air Conditioning system, (iii) traffic conges-
tion, and (iv) different morphology of the city. It is important
to recall that these factors have a limited impact on electric
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Fig. 10. Details of the global average walk distance for Vancouver. Other
cities have similar results.

Fig. 11. Impact of higher consumption. Increasing consumption by up to
50% has limited impact on the ability of completing the trips.

cars due to high efficiency of electric engines, including the
energy recovery while breaking, and very limited consumption
while idle.

Based on [24], we multiply the consumption rate by a
factor (1 + γ ). The factor γ models the relative increase of
consumed energy. We perform different simulations for Berlin
and Vancouver, with γ in [0, 0.5]. We use 10% of zones
equipped with charging stations (53 zones for Vancouver and
83 for Berlin), k = 4 poles per charging station, and user’s
willingness w = 0.5.

We also adopt different values of the battery threshold α:

• α fixed: α = 0.25
• α adjusted: α = 0.25 ·(1 + γ )

Fig. 11a depicts the infeasible trips percentage with respect
to different γ (notice the log scale on y-axis). The results are
quite intuitive: the higher γ is, the more the infeasible trips
are. When the energy consumption increases by 50% the per-
centage of infeasible trips increases by 1 order of magnitude in
the case of Berlin, and by 2 orders of magnitude in the case of
Vancouver. However, in both cases the percentage of infeasible

trips stays below 2%. Adjusting the charging threshold level α
helps limiting the impact of unforeseen energy consumption.

Fig. 11b details the frequency of charge events for different
values of γ . As expected, the higher consumption requires for
more charge events. The user’s discomfort increases since the
percentage of charge events raises. However, the difference
between α fixed and α adjusted is little with similar curves in
both cities.

Takeaway: A consumption 50% higher than the nominal
one, that could account for the approximation introduced by
our assumptions, still allows the percentage of infeasible trips
to stay below 2%. These could be handled with a handful of
extra charging stations.

VIII. HOW TO DISTRIBUTE POLES IN STATIONS

In the previous sections, we have assumed charging stations
with k = 4 poles each. Here, we study the impact of
installing charging stations with a different number of poles
each. We keep the total number of charging poles K = k N
constant, and equally distribute them in a varying number of
charging stations N . In other words, we check if it is better
to have (i) few charging hubs with many poles (one single
hub corresponds to N = 1, with K poles), or (ii) a very large
number of charging stations each with few poles. We call pole
spread percentage the percentage of zones in which poles are
distributed among, i.e., 100 · N/K = 100 · 1

k . For example,
pole spread percentage 5 corresponds to 20 poles per zone
(k = 20), spread percentage 10 corresponds to 10 poles per
zones, etc. up to spread 100 that corresponds to a single pole
per each charging zone (N = K and k = 1).

For our study we pick a constant number of charging
poles K corresponding to a 7% of charging zones when
k = 4.10 Then, we distribute poles evenly among different
zones, chosen according to the number of parkings policy (as
in the previous Sections). We consider the Hybrid policy with
w = 0.5 and simulate the resulting system.

From top to bottom, Fig. 12 reports percentage of infeasible
trips, the average time cars are plugged to a charging pole
(even if they are completely charged), the percentage of
rerouted trips, and the average walk distance for rerouted trips.
Colors refer to different cities and the x-axis reports the spread.
Note that with k = 4, as in the previous experiments, we have
a spread percentage of 25% for all the cities.

Focus first on Fig. 12a. With spread percentage going below
5%, hence concentrating poles in very few hubs, the number of
infeasible trips quickly grows to non negligible values. Even
Turin and Milan suddenly suffer of a sizable percentage of
infeasible trips. The lowest values are obtained with spread
between 5 and 20, meaning that increasing the number of poles
per charging station in the [5 − 20] range helps the system to
sustain. Conversely, spreading a lot of charging stations, each
equipped with few poles is not optimal. In this case poles are
spread also in areas where (few) cars stay parked for long
time, keeping poles busy (see rightmost part of Fig. 12b).

10Each city has a different K , producing a different number of infeasible
trips.
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Fig. 12. Impact of pole distribution among zones. Concentrating all poles
in few hubs (low pole spread) performs poorly, as well as placing single pole
charging stations (pole spread 100%).

Fig. 12c shows the percentage of reroutings. Here we also
observe that it is better to have a low spread percentage. For
the region where we have negligible infeasible trips (spread
between 5 and 20), the percentage of reroutings increases
because poles start to be located in less popular destination,
and because cars are charged for less time (see Fig. 12b).

Lastly, we show walk distance for rerouted trips in Fig. 12d.
As expected, the walk distance decreases with spread percent-
age. Indeed, when customers are rerouted, they can return the
cars in more areas, likely closer to their desired destination.
Only when single pole stations are used, the walk distance
increases again. This is justified again by cars that stay
connected to poles for too long time, reducing the availability
of free poles and forcing customers to drive further away.

Since there is not a single value of pole spread that optimize
all the metrics, a trade-off among them should be chosen, and

this can change from city to city. In general, it looks better to
concentrate poles only in those zones where cars are frequently
rented and returned, so to increase the chance to find a free
pole, and let the battery quickly charge before the next rental
makes the pole free again. In a real scenario of a design
of a charging infrastructure, it is appropriate to optimize the
number of charging poles for each different charging station.

Note that both extreme solutions of pole spread percentage
would cause the highest installation and operating expendi-
tures. The single hub solution would require to have a huge
amount of power at disposal in a single location. While the
single pole solution would largely increase the installation
cost.

Takeaway: Concentrating all charging poles in very few
hubs, or spreading them among all city areas performs badly.
The intermediate solutions look beneficial, and must be care-
fully weighted also considering the cost of installing charging
stations.

IX. CONCLUSION

Designing an electric vehicle free floating car sharing sys-
tem leads to many interesting problems and trade-offs. In this
work, we built on actual rental traces to study via simulations
the impact of the charging station placement, and car return
policies. Differently from previous works, we followed a data
driven approach to simulate realistic scenarios.

While our results confirm many expectations, our
data-driven simulations let us exactly quantify the require-
ments for a FFCS system based on electric vehicles. Con-
sidering the car return policies, we showed that a FFCS based
on electric vehicles results feasible especially if customers
return the car to a nearby charging station whenever the
battery level drops below a minimum threshold. Considering
charging station placement, we proposed heuristic algorithms
and showed that it is better to place charging stations in
popular areas (e.g., downtown) rather than in areas where
cars stay parked for long time. Our simulations showed that
equipping just 6-8% of zones is enough to complete all trips
without discharging the battery. We further optimized the
placement in [17], while also validating on data from different
months.

Our results hint for possible alternative design solution
where the system itself takes care of charging cars to limit
discomfort for customers. Suitable relocation policies could
be a possible solution or considering incentives to customers,
e.g., via price differentiation as recently introduced by Car2go
and UBER. We plan to study this in our future work.
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