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Abstract: Metasurfaces enable us to control the fundamental properties of light with un-
precedented flexibility. However, most metasurfaces realized to date aim at modifying plane
waves. While the manipulation of nonplanar wavefronts is encountered in a diverse number of
applications, their control using metasurfaces is still in its infancy. Here we design a metareflector
able to reflect a diverging Gaussian beam back onto itself with efficiency over 90% and focusing
at an arbitrary distance. We outline a clear route towards the design of complex metareflectors
that can find applications as diverse as optical tweezing, lasing, and quantum optics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Metasurfaces are artificially engineered arrays of subwavelength-spaced optical scatterers
patterned on a flat surface [1–6]. The basic concept was introduced long ago in millimeter
and microwave technology to manipulate the wavefronts of light by spatially patterning an
interface [7–11]. Through advances in nanofabrication, this concept has nowadays been extended
to visible light, as nanopatterning tools allow us to induce local and abrupt phase changes to light
at the subwavelength scale. The wavefronts of reflected and transmitted beams can be engineered
nearly at will by adjusting material and geometrical parameters such as size, shape, separation,
and orientation of the metasurface building blocks.

The subwavelength separation of the metamaterial building blocks not only enables the control
of the phase, amplitude, and polarization of light at high spatial resolution, but also avoids the
formation of spurious diffraction orders, which appear in conventional diffractive optical systems
such as gratings. In the past few years, metasurfaces have been used for applications such as
cloaking [12–15], absorbing and antireflection coatings [16–18], high-resolution imaging [19,20],
focusing [21–24], slow light [25], polarization control [26–28], energy harvesting [29], and
tunable beam steering [30]. The versatility in their design together with their straightforward
fabrication, which usually involves a single-step lithographic process, makes metasurfaces good
candidates to realize multifunctional flat photonic devices [3, 31, 32].

Despite large efforts, metasurfaces are most often designed to manipulate plane waves [33–35].
This is mainly because a plane wave is independent of the position of illumination on the
metasurface, which significantly simplifies the computational complexity during the design
stage as it allows for the use of periodic boundary conditions. Light beams with more complex
wavefronts do not have this translation symmetry, and therefore require the simulation of full
device structures of the order of tens of micrometers. This often leads to design problems that are
computationally too expensive even for modern powerful computers. Nevertheless, the possibility
of modifying beams with strongly shaped wavefronts rather than plane waves is of very high
importance, in particular for reflectors, i.e., optical elements able to reflect a light beam back to
its source with minimal scattering. Such reflectors would be interesting for creating confocal
cavities in vertical-cavity semiconductor lasers or for optical tweezers.

In this article, we show that it is indeed possible to simulate and design metasurfaces that can
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Fig. 1. Concept and design of the reflective metasurface: (a) Spherical concave mirror (left)
and metasurface with the same behavior as a concave mirror (right) reflecting an incoming
beam. (b) Gaussian reflective metasurface reflecting a Gaussian beam back onto itself.
(c) Top view of the metasurface designed to reflect a circularly polarized Gaussian beam. All
the nanofins have the same dimensions and their angle of rotation changes with the square of
their distance from the center. (d) Unit cell consisting of a nanofin on top of a substrate. The
efficiency of the metasurface can be optimized by adjusting the height (t), length (L), and
width (w) of the nanofins and the unit cell size (P). The 2π phase coverage can be obtained
by varying the angle of rotation (θ).

reflect light beams with strongly shaped wavefronts by combining numerical computation and
far-field propagation methods. Specifically, we design a metasurface that can reflect a Gaussian
beam at visible and near-infrared wavelengths with high efficiency [see Fig. 1(a)-1(b)]. This
system is the metasurface equivalent of a concave spherical mirror. We realize such a metasurface
using dielectric nanofins [see Fig. 1(c)-1(d)] that act as half-wave plates in reflection. By properly
choosing the orientation of the nanofins and taking into account the coupling between elements
with full-wave numerical simulations of the whole structure, we design a mirror that is able to
refocus a Gaussian beam to the same focal point as the incident beam.

2. Metasurface design

The design of the reflective metasurface is divided into three steps. First, we determine the phase
profile of the mirror required to reshape a given incoming beam. Second, we optimize the values
of the geometrical parameters of the building blocks of the metasurface in order to maximize the
efficiency of the mirror. Finally, we construct the entire mirror by mapping the required phase
profile with meta-atoms of appropriate orientations.
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2.1. Phase profile of the mirror

To determine the required phase profile, we consider the reflection of a Gaussian beam from a
concave spherical mirror. Among the many possible beam shapes a reflector can manipulate,
Gaussian beams are indeed the most relevant because of their simple cylindrical symmetry and
their experimental relevance. We choose the mirror to be located at z = 0 and the incoming beam
propagating in the −z direction. For Gaussian beams, the electric field is of the form [36]:

E(ρ, φ, z) = E0(z) exp
(
−

ρ2

w2(z)

)
exp

(
−i

kρ2

2R(z)

)
exp (iψ(z)), (1)

where (ρ, φ, z) are cylindrical coordinates, k is the wave number, R(z) is the radius of curvature
of the phase fronts, and w(z) is the spot size. The phase fronts are determined by the imaginary
exponential factors, of which the arguments can be rewritten in the form

Φinc(ρ, φ, z) = A(z)kρ2 + Φinc(ρ = 0, φ, z), (2)

where we have isolated the phase contribution that depends on ρ, because it is this contribution
that controls the curvature of the phase fronts (the other contribution is just a constant phase shift
at the plane of the mirror). For Gaussian beams, A(z) = 1/(2R(z)), where

R(z) = z

[
1 +

(
z0
z

)2
]

(3)

is the radius of curvature of the phase fronts and z0 is the Rayleigh distance. In the paraxial
approximation, the complex reflection amplitude of a spherical mirror of radius R is proportional
to exp(−ikρ2/R). Therefore, the phase profile of the beam after reflection from the concave
mirror is

Φrefl(ρ, φ, z) = kρ2(A(z) − 1/R) + Φinc(φ, z)

= kρ2(A(z′)) + Φinc(φ, z).
(4)

This gives rise to the imaging equation

A(z′) = A(z) −
1
R
. (5)

For Gaussian beams, Eq. (5) reads

1
R(z′)

=
1
R(z)

−
2
R
. (6)

As a result, if the mirror has the same curvature as the beam (R = R(z)), the wave fronts of both
the incident and reflected waves overlap, namely R(z′) = −R(z). Note that R(z) is positive since
the incident wave is diverging, whereas R(z′) is negative because the reflected wave is converging.
We thus obtain the phase profile required for the metasurface to reflect the wave back onto itself:

Φmirror =
−kρ2

R(z)
. (7)

We will use Eq. (7) in the following to calculate the reflection phase of the different elements
composing the Gaussian metareflector.

In addition, the relation can also be extended to design a metasurface able to focus the reshaped
beam to an arbitrary position z′. To this aim, we write

R(z′) = az′[1 + (z0/z′)2] = bR(z), (8)
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where a and b are constants, and from Eq. (8) we derive the ratio a/b as a function of z and z′:

a
b
=

z[1 + (z0/z)2]
z′[1 + (z0/z′)2]

. (9)

Equation (9) yields two pairs of values, (a < 0, b < 0) and (a > 0, b > 0), for any given values of
z and z′. However, one of the pairs leads to a nonphysical configuration. For instance, a = b = −1
yields z = z′ and R = R(z); whereas a = b = 1 also corresponds to z = z′ but gives rise to a
configuration with R = ∞. Substituting Eqs. (3) and (8) into Eq. (6), we obtain the required
radius of curvature of the metasurface,

R =
2b

b − 1
R(z) =

2a
b − 1

z′[1 + (z0/z′)2]. (10)

The phase profile of the metasurface required to focus the reflected beam at an arbitrary position
z′ thus becomes

Φmirror =
(1 − b)kρ2

2bR(z)
=

(1 − b)kρ2

2az′[1 + (z0/z′)2]
. (11)

2.2. Building block optimization

Using the equations developed in the previous section, it is possible to design a Gaussian
metareflector. The basic elements of the metasurface are identical dielectric nanofins of length
L, width w, and height t [Fig. 1(d)] arranged in a lattice with unit cell size P and different
orientations θ [Fig. 1(c)].

Thanks to the birefringent response of the dielectric nanofinswith asymmetric cross-section [37],
for appropriate values of their dimensions, a 2π phase coverage can be obtained by changing
their angle of rotation θ between 0 and π. In this approach, known as geometrical phase or Berry-
Pancharatnam (BP) phase metamaterials [38, 39], maximum polarization conversion efficiency
is obtained when the nanofins function as half-wave plates, converting either left-handed or
right-handed circularly polarized incident light to its orthogonal polarization state while inducing
a phase shift of Φ = 2θ (Φ = −2θ).
During the optimization of the building block, we maximize the polarization conversion

efficiency in reflection, i.e., the cross-polarization reflection coefficient, S31. We also require
high and uniform amplitude in the entire [0, 2π] phase range. To this aim, we perform numerical
simulations of the building block using the finite-element method (COMSOL Multiphysics) with
periodic boundary conditions in the x and y directions and circularly polarized incident light.
We first compute the spectrum of S31 for a fixed value of θ and different values of the dimensions
of the nanofins and the building block size. Thereafter, we span θ between 0 and π for optimized
values of the other parameters to confirm that S31 has a uniform amplitude and complete 2π
phase coverage.

2.3. Whole mirror

Finally, the whole mirror is designed by creating an array of nanofins with the optimized
parameters found in the previous step on a two-dimensional lattice and rotating each nanofin in
accordance with the phase map obtained before.
On the one hand, the phase shift Φ required for each nanofin in the lattice is computed from

Eq. (7). On the other hand, the relationship between the angle of rotation θ and the phase shift Φ
is obtained from the phase coverage simulations of the building block for different values of θ
between 0 and π. The phase shift is related to the angle of the nanofins and a linear relationship
with slope close to 1/2 between θ and Φ is often but not always obtained. In cases where
the relationship between θ and Φ is not linear, which occurs because the near-field interaction
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between neighboring nanofins changes with the orientation of the nanofins, the required values of
θ can be obtained by interpolation from the data obtained from the phase coverage simulations.
As an example, a top view of a Gaussian metareflector is shown in Fig. 1(c). All the nanofins

are identical and their angle of rotation is proportional to the inverse of the square of their
distance from the center. This mirror is optimized for a wavelength of λ = 700 nm, has a focal
length f = 35 µm, and a radius of 8.2 µm. Metareflectors with shorter focal length are possible;
however, when the metasurface is closer to the focal point, the curvature of the phase fronts gets
larger, which means that the required phase for reflection is changing faster over the surface of
the metasurface. In order to accurately discretize the phase profile with the unit cells, a shorter
focal length will ultimately require smaller unit cells, eventually leading to a limit imposed by
fabrication.

The whole mirror is finally simulated with the finite-element method (COMSOL Multiphysics)
for circularly polarized incident light. The simulation domain of the fully dielectric mirror
is terminated with perfectly matched layers on the top and the bottom sides and a scattering
boundary condition on the cylindrical side. The simulation domain of the metareflector with
the metallic substrate is terminated with a perfectly matched layer on the top side, a perfect
electric conductor on the bottom side, and a scattering boundary condition on the cylindrical
side. Such a hybrid mirror does not require a perfectly matched layer on the bottom side due to
the small value of the skin depth of the metallic substrate (smaller than 20 nm). The length of
the simulation domain is limited by the available random-access memory and is shorter than the
distance f between the beam waist of the Gaussian beam and the mirror. In order to calculate the
focal point of the reflected beam, the scattered beam is propagated with a two-step method [40],
wherein the Huygens-Fresnel (HF) principle [41] for beam propagation from spherical point
scatterers in a source plane is used to propagate the field using Fresnel diffraction integrals. The
HF method is limited by the requirement that the destination plane must be located in the far-field.
The two-step method addresses this limitation by two subsequent propagation steps back and
forth from a far-field dummy plane; hence, providing an approach for field propagation between
a source and destination plane separated by an arbitrary distance. To compute the results we
started from the electric field distributions obtained from the finite-element calculations (see
Fig. 9 in the Appendix as an example) and then used the two-step method to propagate the fields
to planes around the focal point of the reflected beam.

3. Results

3.1. Unit cell optimization

There are several possible material combinations that could be used to realize a reflective
metasurface. Plasmonic, all-dielectric, and hybrid nanostructures have been extensively used
for lenses and each materials system may be optimal for a particular wavelength range. Due
to their smaller optical losses, we focus here on two materials systems, both composed of
dielectric nanofins. In the first case, we design mirrors optimized for a free-space wavelength
of λ = 1064 nm, a typical laser source in the near infrared of interest for optical tweezers. For
this purpose, we use nanofins made of TiO2 (data from Ref. [42]), a transparent material with a
relatively large refractive index, placed on top of an Al mirror to minimize transmission of light
[see the schematic in Fig. 2(a)]. In the second case, we design a fully dielectric metasurface for
operation at shorter wavelengths. Here, we instead used Si nanofins (data from Ref. [43]) on top
of a Si substrate (data from Ref. [44]) separated by a transparent dielectric spacer [see schematic
in Fig. 2(d)].
The cross-polarized reflection spectrum S31 for the hybrid structure with TiO2 nanofins on a

metal substrate is shown in Fig. 2(b). With this structure, high efficiencies (80%-95%) can be
obtained at wavelengths over 1000 nm for optimized values of the geometrical parameters. We
found that, for the size here chosen (width w = 80 nm and length L = 350 nm), TiO2 nanofins

                                                                                        Vol. 27, No. 15 | 22 Jul 2019 | OPTICS EXPRESS 21073 



(a)

(d)

0

0.2

0.4

0.6

0.8

1

0.8 0.9 1 1.1 1.2

|S
3
1
|2

λ(µm)

P=380nm

P=405nm

P=430nm

P=455nm

P=480nm

(b)

0

0.2

0.4

0.6

0.6 0.7 0.8 0.9 1

|S
3
1
|2

λ(µm)

P=330nm

P=355nm

P=380nm

P=405nm

P=430nm

(e)

(c)

 0  0.5  1
0

π/2

−π/2

±π

λ=1000nm

λ=1050nm

λ=1100nm

λ=1150nm

λ=1200nm

(f)

 0  0.5  1
0

π/2

−π/2

±π

λ=680nm

λ=700nm

λ=720nm

λ=740nm

λ=760nm

Fig. 2. Optimized hybrid and purely dielectric metasurfaces for reflection of focused beams:
(a) Schematic of the hybrid structure with TiO2 nanofins on an Al mirror. (b) Spectra of the
cross-polarized reflectance |S31 |

2 for different sizes of the unit cell P. (c) Phase coverage
of the hybrid structure for P = 380 nm at selected wavelengths. (d) Schematic of the fully
dielectric metasurface with Si nanofins on top of a Si substrate separated by a SiO2 spacer.
(e) Spectra of the cross-polarized reflectance |S31 |

2 for different unit cell sizes P. (f) Phase
coverage of the dielectric metasurface with Si nanofins for the same parameters as in (e) for
P = 400 nm at selected wavelengths.

with a thickness of ≈ 700 nm allow the system to work as a half-wave plate in reflection. Similar
results have also been obtained for Si nanofins on top of an Al mirror (see Appendix, Fig. 5). In
this case, the optimized structures are thinner due to the higher refractive index of Si, but at the
same time the cross-polarized reflection is diminished to 80% [see Fig. 5(a)] due to larger index
mismatch between air and Si, leading to larger reflection in the co-polarized beam.

For both the Si and the TiO2 nanofins, the hybrid dielectric-metal structures present a complete
and almost uniform phase coverage [see the polar plots in Fig. 2(c) and Fig. 5 in the Appendix]:
there is an almost linear relationship between the phase shift of reflection and the angle of rotation
of the nanofins. This can be understood by noticing that these nanofins do not support any
internal geometrical resonance (Mie type mode) at λ > 1000 nm; the reflection phase is due only
to the birefringent propagation of the two orthogonal circularly polarized modes through the
nanofin structure.
A very different situation is encountered for the fully dielectric structure, consisting of Si

nanofins on a Si substrate [see schematic in Fig. 2(d)]. In this case, the spectral response
exhibits a plateau of constant amplitude at around 700 nm [see Fig. 2(e) and Fig. 6]. The isolated
nanofins (t = 200 nm, w = 80 nm, L = 300 nm) have an almost constant reflection amplitude
(see Fig. 8 of the Appendix for the spectra of the isolated nanofins), which is the result of
spectrally overlapping electric-dipole and magnetic-dipole resonances [45, 46]. The resulting
spectrum is due to the far-field interference of light reflected from the nanofins and from the Si
substrate. Changes in both spacing [300 nm in the plot of Fig. 2(d)] and period between the
nanofins influence the interference conditions and the overall reflection. Despite being resonant,
the nanostructure shows uniform phase coverage also in this case [see Fig. 2(f) and Fig. 7 in the
Appendix] in the wavelength region where the reflection |S31 |

2 is spectrally flat.
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Fig. 3. Reflection phase response of the nanofins: (a) Phase coverage of the hybrid dielectric-
metal structure with TiO2 nanofins for λ = 1064 nm, P = 380 nm, and values of the other
parameters as in Fig. 2(b). (b) Relation between the nanofin angle of rotation and the desired
reflection phase used to determine the rotation of every individual fin to obtain the reflection
phase distribution in (c). Red points correspond to the data from (a) and the blue line to the
interpolation of this data. (c) Phase shift distribution required to build a metareflector for a
Gaussian mirror of radius 12.57 µm and NA = 0.24 for a wavelength of λ = 1064 nm and
focal length of f = 50λ as a function of the distance to the center of the mirror discretized
with the unit cell size P = 380 nm in the x and y directions.

3.2. Phase relation between the different nanofins

As discussed in Sec. 3.1, the results are qualitatively very similar for all the structures, but
the reflection efficiency is different for each of the discussed configurations. Due to the larger
cross-polarized reflection efficiency, we focus for the remainder of this article on the hybrid
structure with TiO2 nanofins on the Al mirror (see Figs. 10 and 11 in the Appendix for the results
for other configurations). To design a full Gaussian metareflector, it is important to correlate the
phase of each nanofin to its rotation angle with respect to the surface normal. To do so, we first
verified full and almost homogeneous phase coverage of the cross-polarized reflected signal as
a function of the nanofin angle at the wavelength of operation λ = 1064 nm [Fig. 3(a)]. Then
we interpolated the polar plot to provide a 1-to-1 correspondence between the nanofin rotation
and the phase of the reflected signal [Fig. 3(b)]. We observe once again that the relationship is
not perfectly linear because of the changing near-field interactions with different orientations
of the nanofins. To design the profile of the full Gaussian metareflector, we finally assumed a
Gaussian beam that is strongly focused but for which the paraxial approximation [Eq. (4)] is
still valid and we choose the Rayleigh distance equal to 1.02 µm. Figure 3(c) shows the phase
relation for a Gaussian metasurface as a function of the radial distance from the mirror center
according to Eq. (7). To extract the exact positions and orientations of the nanofins, we finally
fixed the optimal distance between the nanofins as P = 380 nm, discretized the phase of each
nanofin at multiple values of P in a square lattice, and converted the corresponding phase to a
physical rotation angle for each nanofin. The result of such a procedure was already shown in
Fig. 1(c). It is interesting to point out that the difference in phase between consecutive elements
grows quadratically with the distance; for a too large angle the phase gradient will be too large
and the phase distribution will not be well discretized with the unit cell size used. This ultimately
implies a trade-off between the diameter of the mirror, the distance to the focal point, and the
numerical aperture.

3.3. Whole mirror

In Fig. 4, the quality of the reflected beam is analyzed for the TiO2-on-Al metasurface (see Figs. 10
and 11 in the Appendix for the purely dielectric metasurface and for the hybrid metasurface with
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Fig. 4. Simulation results of the hybrid Gaussian metasurface built with TiO2 nanofins on
top of an Al substrate, optimized at the trapping wavelength λ = 1064 nm with unit cell
size P = 380 nm and the values of the other parameters as in Fig. 2(b). This mirror has a
radius of 12.57 µm, and a focal length f = 50λ = 53 µm. Top: Intensity distribution of the
incident Gaussian field (Ii) as a function of the distance z scaled with λ (a), at z = 1350 nm
(b), at z = 25λ (c) and at the focal distance z = f = 50λ (d). Bottom: Intensity distribution
of the cross-polarized reflected field (Ic) as a function of the distance z scaled with λ (e), at
z = 1350 nm (f), at z = 25λ (g), and at the focal distance z = f = 50λ (h).

Si nanofins). The plot shows the beam profile obtained from propagating the optical field using
the two-step method. The entire reflective metasurface has radius Rm = 12.57 µm, so that it
covers 99.9% of the total power in the incident beam, and a focal length of f = 50λ.

First, it is important to note that the cross-polarized reflected beam [Fig. 4(e)] is nearly identical
to the incident Gaussian beam [Fig. 4(a)] and that the back-focusing takes place at the expected
focal distance f = 50λ. Plots of the intensity distribution at different distances show that the beam
radius is the same for the incident beam [Fig. 4(b)-4(d)] and the cross-polarized reflected beam
[Fig. 4(f)-4(h)]. In particular, the beam waist of the Gaussian beam is w0 = (3.21 ± 0.02) µm for
both the incoming [Fig. 4(d)] and the reflected beam [Fig. 4(h)].

The intensity of the reflected beam is also consistent with the reflection coefficient calculated
above for the nanofins. For example, in Fig. 4(g), the peak intensity of the reflected beam is about
90% of the peak intensity of the incident beam. From our simulations, we estimate that about
9% of the intensity is lost by dissipation in the materials and about 1% is lost by conversion to
co-polarized reflection (which is a divergent beam not focused back to the focal point of the
incident beam).
In addition, the quality of the reflection can be assessed from the reflection phase at a plane

between the metasurface and the focal point of the beam, as in Fig. 12 in the Appendix. We see
again an excellent agreement between the reflection phase created by our metareflector and the
ideal phase of a reflected beam perfectly overlapping with the incident beam.

4. Conclusion

We have proposed a designmethod for metasurfaces that canmanipulate nonplanar wavefronts. As
an example, we have designed a Gaussian reflective metasurface, i.e., the metasurface equivalent
of a concave spherical mirror. We demonstrated that such metasurfaces can produce a reflected
cross-polarized beam that perfectly overlaps with the incident field. Our optimized designs have
power efficiencies over 90%, obtained by using TiO2 nanofins as metasurface building block
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placed on an Al back mirror. Such a metasurface building block ensures minimal losses, together
with a homogeneous and complete phase coverage. We envision several applications for reflective
metasurfaces like the ones presented in this article. For example, they could be used to realize
ultracompact reflective mirrors and confocal microcavities or could be used as mirrors in optical
tweezers and other nanophotonic devices.

A. Appendix

A.1. Optimization of the unit cell

A.1.1. Optimization of dielectric nanofins on an Al mirror
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A.1.2. Optimization of the dielectric structure
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Fig. 6. Spectra of the cross-polarized reflectance |S31 |
2 of the dielectric structure made of

Si nanofins of width w = 80 nm, height t = 200 nm, lengths L = 250 nm (a), L = 300 nm
(b) and L = 350 nm (c) and angle of rotation θ = 0 on top of Si substrate of thickness
ts = 700 nm with a SiO2 spacer of thickness td = 300 nm. |S31 |

2 increases by increasing L
or the unit cell size P.

A.2. Simulations of fully dielectric reflector
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Fig. 7. Phase coverage of the dielectric structure for the same parameters as in Fig. 6(a)
[Fig. 7(a)], Fig. 6(b) [Fig. 7(b)], and Fig. 6(c) [Fig. 7(c)] but keeping the unit cell size fixed
to P = 400 nm and for wavelength values within the plateau of constant reflectance |S31 |

2.
The radial coordinate is |S31 |

2 and the angular coordinate is the phase angle of S31.

 0

 0.25

 0.5

 0.75
(a)

|S
3

1
|2

(b) (c) P=355nm

P=380nm

P=405nm

P=430nm

0

0.25

0.5

0.75
(d)

|S
1

1
|2

(e) (f)

0

0.25

0.5

0.75
(g)

|S
4

1
|2

(h) (i)

0

0.25

0.5

0.75
(j)

|S
2

1
|2

(k) (l)

0

0.25

0.5

0.75

0.6 0.8 1

(m)

A

λ [µm]
0.6 0.8 1

(n)

λ [µm]
0.6 0.8 1

(o)

λ [µm]

Fig. 8. Spectra of the [(a)-(c)] cross- and [(d)-(f)] co-polarized reflected and [(g)-(i)] cross-
and [(j)-(l)] co-polarized transmitted intensities, and [(m)-(o)] absortion loss for [(a), (d),
(g), (j), (m)] the dielectric structure, [(b), (e), (h), (k), (n)] the dielectric structure without
the Si substrate and [(c), (f), (i), (l), (o)] the standalone Si nanofin in air, for the parameter
values as in Fig. 6. The outliers at the smallest wavelengths are due to a too coarse mesh—a
finer mesh is not possible with the available computer resources. For wavelengths above
650 nm, the accuracy is better than 1%.
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(a) (b)

Fig. 9. Intensity of the (a) incident and (b) cross-polarized reflected field at the initial plane
z = 1350 nm used in the 2-step method for the hybrid structure with TiO2 nanofins on Al
with parameter values as in Fig. 4 of the main text.
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A.3.1. Field propagation with the two-step method
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Fig. 10. Simulation results of the dielectric mirror built with Si nanofins on top of a poly-Si
substrate with a SiO2 spacer, optimized at the typical trapping wavelength λ = 700 nm with
the values of the other parameters as in Fig. 7(b). This mirror has a radius of 8.2 µm and a
focal length f = 35 µm, giving a numerical aperture NA = 0.23. Top: Intensity distribution
of the incident field (Ib) as a function of the distance z scaled with λ (a), at z = 550 nm (b),
at z = 25λ (c) and at the focal distance z = f = 50λ (d). Bottom: Intensity distribution of
the cross-polarized reflected field (Ic) as a function of the distance z scaled with λ (e), at
z = 550 nm (f), at z = 25λ (g) and at the focal distance z = f = 50λ (h).
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A.3.3. Hybrid mirror with Si nanofins on Al
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Fig. 11. Simulation results of the hybrid Gaussian mirror built with Si nanofins on top of
an Al substrate, optimized at the typical trapping wavelength λ = 1064 nm with the values
of the other parameters as in Fig. 5(a). This mirror has a radius of 12.57 µm and a focal
length f = 50λ, giving a numerical aperture NA = 0.24. Top: Intensity distribution of the
incident Gaussian field (Ii) as a function of the distance z scaled with λ (a), at z = 850 nm
(b), at z = 25λ (c) and at the focal distance z = f = 50λ (d). Bottom: Intensity distribution
of the cross-polarized reflected field (Ic) as a function of the distance z scaled with λ (e), at
z = 850 nm (f), at z = 25λ (g) and at the focal distance z = f = 50λ (h).

A.3.4. Reflected phase profile
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Fig. 12. Phase of the ideal Gaussian field (blue line) and cross-polarized reflected field (red
dotted line) at the plane z = 1350 nm for the hybrid structure with TiO2 nanofins on Al with
parameter values as in Fig. 4 of the main text.
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