POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Survey on Big Data for Network Traffic Monitoring and Analysis

Original

A Survey on Big Data for Network Traffic Monitoring and Analysis / Dralconzo, Alessandro; Drago, Idilio; Morichetta,
Andrea; Mellia, Marco; Casas, Pedro. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. -
ISSN 1932-4537. - ELETTRONICO. - 16:3(2019), pp. 800-813. [10.1109/TNSM.2019.2933358]

Availability:
This version is available at: 11583/2747298 since: 2019-09-11T11:55:247

Publisher:
IEEE

Published
DOI:10.1109/TNSM.2019.2933358

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

20 March 2024

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2933358, IEEE

Transactions on Network and Service Management

A Survey on Big Data for Network Traffic
Monitoring and Analysis

Alessandro D’ Alconzo¥, Idilio Drago’, Andrea Morichetta’, Marco Mellia®, Pedro Casas*
* AIT Austrian Institute of Technology, T Politecnico di Torino, ¥ Siemens Austria

Abstract—Network Traffic Monitoring and Analysis (NTMA)
represents a key component for network management, especially
to guarantee the correct operation of large-scale networks such
as the Internet. As the complexity of Internet services and
the volume of traffic continue to increase, it becomes difficult
to design scalable NTMA applications. Applications such as
traffic classification and policing require real-time and scalable
approaches. Anomaly detection and security mechanisms require
to quickly identify and react to unpredictable events while
processing millions of heterogeneous events. At last, the system
has to collect, store, and process massive sets of historical data for
post-mortem analysis. Those are precisely the challenges faced
by general big data approaches: Volume, Velocity, Variety, and
Veracity. This survey brings together NTMA and big data. We
catalog previous work on NTMA that adopt big data approaches
to understand to what extent the potential of big data is being
explored in NTMA. This survey mainly focuses on approaches
and technologies to manage the big NTMA data, additionally
briefly discussing big data analytics (e.g., machine learning) for
the sake of NTMA. Finally, we provide guidelines for future work,
discussing lessons learned, and research directions.

Index Terms—Big Data; Network Measurements; Big Data
Platforms; Traffic Analysis; Machine Learning.

I. INTRODUCTION

Understanding how Internet services are used and how
they are operating is critical to people lives. Network Traffic
Monitoring and Analysis (NTMA) is central to that task.
Applications range from providing a view on network traffic to
the detection of anomalies and unknown attacks while feeding
systems responsible for usage monitoring and accounting.
They collect the historical data needed to support traffic
engineering and troubleshooting, helping to plan the network
evolution and identify the root cause of problems. It is correct
to say that NTMA applications are a cornerstone to guarantee
that the services supporting our daily lives are always available
and operating as expected.

Traffic monitoring and analysis is a complicated task. The
massive traffic volumes, the speed of transmission systems,
the natural evolution of services and attacks, and the variety
of data sources and methods to acquire measurements are
just some of the challenges faced by NTMA applications. As
the complexity of the network continues to increase, more
observation points become available to researchers, potentially

The research leading to these results has been funded by the Vienna Science
and Technology Fund (WWTTF) through project ICT15-129 “BigDAMA”, with
the contribution from the SmartData@PoliTO center for data science and
big data. Authors sincerely thank Prof. Tanja Zseby, Dr. Felix Iglesias, and
Daniel C. Ferreira from TU Wien for their contributions to the work and early
versions of the manuscript.

allowing heterogeneous data to be collected and evaluated.
This trend makes it hard to design scalable and distributed
applications and calls for efficient mechanisms for online
analysis of large streams of measurements. More than that, as
storage prices decrease, it becomes possible to create massive
historical datasets for retrospective analysis.

These challenges are precisely the characteristics associated
with what, more recently, have become known as big data,
i.e., situations in which the data volume, velocity, veracity and
variety are the key challenges to allow the extraction of value
from the data. Indeed, traffic monitoring and analysis were
one of the first examples of big data sources to emerge, and
it poses big data challenges more than ever.

It is thus not a surprise that researchers are resorting to big
data technologies to support NTMA applications (e.g., [69],
[77], [87], [124]). Distributed file systems — e.g., the Hadoop1
Distributed File System (HDFS), big data platforms — e.g.,
Hadoop and Spark, and distributed machine learning and graph
processing engines — e.g., MLIlib and Apache Giraph, are some
examples of technologies that are assisting applications to
handle datasets that otherwise would be intractable. However,
it is by no means clear whether NTMA applications fully
exploit the potential of emerging big data technologies.

We bring together NTMA research and big data. Whereas
previous works documented advances on big data research and
technologies [34], [116], [126], methods supporting NTMA
(e.g., machine learning for NTMA [17], [85]), or specific
NTMA applications [12], [52], [105], [120], there is a lack
of systematic surveys describing how NTMA and big data are
being combined to exploit the potential of network data fully.

More concretely, the goal of this survey is to discuss fo what
extent NTMA researchers are exploiting the potential of big
data technologies. We aim at providing network researchers
willing to adopt big data approaches for NTMA applications
a broad overview of success cases and pitfalls on previous re-
search efforts, thus illustrating the challenges and opportunities
on the use of big data technologies for NTMA applications.

By summarizing recent literature on NTMA, we provide
researchers principled guidelines on the use of big data accord-
ing to the requirements and purposes of NTMA applications.
Ultimately, by cataloging how challenges on NTMA have been
faced with big data approaches, we highlight open issues and
promising research directions.

Uhttp://hadoop.apache.org/

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2933358, IEEE

Transactions on Network and Service Management

A. Survey methodology

We first identify papers summarizing big data research. We
have explored the literature for big data surveys, restricting
our focus to the last ten years. This literature has served as
a basis to our definition for big data as well as to limit our
scope in terms of the considered big data technologies.

Since none of these papers addresses big data for NTMA,
we have followed a similar methodology and reviewed papers
in the NTMA domain. We survey how NTMA researchers are
profiting from big data approaches and technologies. We have
focused on the last 5 years of (i) the main system and net-
working conferences, namely SIGCOMM, NSDI, CONEXT,
and journals (IEEE TON, IEEE TNSM), (ii) new venues
targeting analytics and big data for NTMA, namely the Big-
Dama, AnNet, WAIN and NetAl workshops, and their parent
conferences (e.g., IM, NOMS and CNSM); (ii) special issues
on Big Data Analytics published in this journal (TNSM).
We complement the survey by searching on Google Scholar,
IEEE Explorer, and ACM Digital library. To ensure relevance
and limit our scope, we select papers concerning publication
venues, the number of citations, and scope.

The survey is organized as follows: Sect. II introduces
concepts of big data and the steps for big data analytics, giving
also some background in big data platforms. Sect. III reviews
a taxonomy of NTMA applications, illustrating how NTMA
relates to the big data challenges. Subsequent sections detail
the process of NTMA and discuss how previous work has
faced big data challenges in NTMA. Sect. IV focuses on data
capture, ingestion, storage and pre-processing, whereas Sect. V
overviews big data analytics for NTMA. Finally, Sect. VI
describes lessons learned and open issues.

II. WHAT IS BIG DATA?
A. Definition

Many definitions for big data have appeared in the literature.
We rely on previous surveys that focused on other aspects of
big data but have already documented its definitions.

Hu at al. [54] argue that “big data means not only a
large volume of data but also other features, such as variety
and velocity of the data”. They organize definitions in three
categories: architectural, comparative, or attributive.

Architectural and comparative definitions are both abstract.
Following an architectural definition, one would face a big
data problem whenever the dataset is such that “traditional
approaches” are incapable of storing and handling it. Similarly,
comparative definitions characterize big data by comparing the
properties of the data to the capabilities of traditional database
tools. Those relying on attributive definitions (e.g., [65], [76])
describe big data by the salient features of both the data and
the process of analyzing the data itself. They advocate what is
nowadays widely known by the big data “V’s” — e.g., volume,
velocity, variety, veracity, value.

Other surveys targeting big data technologies [6], [54],
[126] and analytics [34], [116] share this view. We will stick
to the “5-Vs” definition because it provides concrete criteria
that characterize the big data challenges. We thus consider a
problem to belong to the big data class if datasets are large

Knowledge
Evaluation
Interpretation o
Visualization D
Q /3 1
>
=]
Q
q =
Modelling 73
and Analysis
o
2
|)
<
Collection 2
Preprocessing &
4 [}
3
[V}
=

Il

Raw Data

Figure 1: Knowledge Discovery in Data (KDD) [35], [116].

(i.e., volume) and need to be captured and analyzed at high
rates or in real-time (i.e., velocity). The data potentially come
from different sources (i.e., variety) that combine (i) structured
data such as column-oriented databases; (ii) unstructured data
such as server logs; and (iii) semi-structured data such as
XML or JSON documents. Moreover, data can be of different
quality, with the uncertainty that characterizes the data (i.e.,
veracity). At last, the analysis of the data brings advantages
for users and businesses (i.e., value). That is, new insights are
extracted from the original data to increase its value, preferably
using automatic methodologies.

We argue next that NTMA shares these characteristics.
Hence, NTMA is an example of big data application which can
profit from methodologies developed to face these challenges.

B. Knowledge discovery in big data

The process of KDD is often attributed to Fayyad et al. [35]
who summarized it as a sequence of operations over the data:
gathering, selection, pre-processing, transformation, mining,
evaluation, interpretation, and visualization. From a system
perspective, authors of [116] reorganized these operations in
three groups: input, analysis, and output.

Data input performs the data management process, from the
collection of raw data to the delivery of data in suitable formats
for subsequent mining. It includes pre-processing, which are
the initial steps to prepare the data, with the integration of
heterogeneous sources and cleaning of spurious data.

Data analysis methods receive the prepared data and extract
information, i.e., models for classification, hidden patterns, re-
lations, rules, etc. The methods range from statistical modeling
and analysis to machine learning and data mining algorithms.

Data output completes the process by converting informa-
tion into knowledge. It includes steps to measure the informa-
tion quality, to display information in succinct formats, and to
assist analysts with the interpretation of results. This step is
not evaluated in this survey and is ignored in the following.

The stages identified by Fayyad et al. can be further grouped
into data management and analytics (i.e., data analysis and

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2933358, IEEE

Transactions on Network and Service Management

Big data processing system
[[
General . Big graph
purpose ‘ e ‘ processing
<‘ «{ Hive/Pig ‘ «{ Giraph++
% «{ METEOR ‘

1
Big stream
processing

MapReduce
\Apache Hadoop|

{ Apache Samza ‘
MapReduce
Online

~‘ Power Graph ‘ «{ M3 ‘

Nephele ‘

\—{ Apache Flink ‘

Microsoft
Dryad
Apache HAMA
BSP on HDFS
Spark Berkeley
Amplab
BDAS on Tachyon
& Apache Mesos

Figure 2: Processing systems (based on [6], [97], [126]).

{ Spark SQL
~{ BigQuery

{ Apache Impala

~{Flink streaming

Spark
streaming

output). Note that differently from [116], we use the term data
analysis to refer to the algorithms for extracting information
from the data, whereas we use data analytics to refer to the
whole process, from data analysis to knowledge discovery.

We reproduce and adapt this scheme in Fig. 1 and will use it
to characterize NTMA papers according to the several stages
of the KDD process.

The KDD process described above applies to any data
analytics. However, the characteristics of the big data impose
fundamental challenges to the methodologies on each step.
For example, the data management process will naturally face
much more complex tasks with big data, given the volume, ve-
locity, and variety of the data. Data management is, therefore,
crucial with big data since it plays a key role in reducing data
volume and complexity. Also, it impacts the analysis and the
output phases, in particular in terms of speed of the analysis
and value of results.

The big data challenges (i.e., the “5-Vs”) call for an ap-
proach that considers the whole KDD process in a comprehen-
sive analytics framework. Such a framework should include
programming models that allow implementing application
logic covering the complete KDD cycle. We will show later
that a common practice to cope with big datasets is to resort
to parallel and distributed computing frameworks that are still
on expansion to cover all KDD phases.

C. Programming models and platforms

We provide a short overview of the most relevant pro-
gramming models and platforms for handling big data. While
surveying the literature, we will give particular emphasis on
works that make use of such models and platforms for NTMA.

Following the taxonomies found in [6], [126], we distin-
guish four types of big data processing models: (i) general
purpose — platforms to process big data that make little
assumptions about the data characteristics and the executed
algorithms, (ii) SQL-like — platforms focusing on scalable
processing of structured and tabular data, (iii) graph processing
— platforms focusing on the processing of large graphs, and
(iv) stream processing — platforms dealing large-scale data that
continuously arrive to the system in a streaming fashion.

Fig. 2 depicts this taxonomy with examples of systems.
MapReduce, Dryad, Flink, and Spark belong to the first type.

HBase
Column
oriented

noSQL

database

MapReduce

Hive JLucene w
Impala
L;
(SQL) File data

HDFS (Distributed File System)
JVM | OS | Hypervisor

Figure 3: Hadoop 2.0 stack with Spark (based on [14]).

Hive, HAWQ, Apache Drill, and Tajo belong to the SQL-like
type. Pregel, GraphLab follow the graph processing models
and, finally, Storm and S4 are examples of the latter.

A comprehensive review of big data programming models
and platforms is far beyond the scope of this paper. We refer
readers to [6], [126] for a complete survey.

1) The Hadoop ecosystem: Hadoop is the most widespread
solution among the general-purpose big data platforms. Given
its importance, we provide some details about its components
in Fig. 3, considering Hadoop v2.0 and Spark [14].

Hadoop v2.0 consists of the Hadoop kernel, MapReduce
and the Hadoop Distributed File System (HDFS). YARN is the
default resource manager, providing access to cluster resources
to several competing jobs. Other resource managers (e.g.,
Mesos) and execution engines (e.g., TEZ) can be used too,
e.g., for providing resources to Spark.

Spark has been introduced in Hadoop v2.0 onward aiming
to solve limitations in the MapReduce paradigm. Spark is
based on data representations that can be transformed into
multiple steps while efficiently residing in memory. In contrast,
the MapReduce paradigm relies on basic operations (i.e.,
map/reduce) that are applied to data batches read and stored
to disk. Spark has gained momentum in non-batch scenarios,
e.g, iterative and real-time big data applications, as well as
in batch applications that cannot be solved in a few stages of
map/reduce operations.

Several high-level language and systems, such as Google’s
Sawzall [92], Yahoo’s Pig Latin [45], Facebook’s Hive [110],
and Microsoft’s SCOPE [21] have been proposed to run on top
of Hadoop. Moreover, several libraries such as Mahout [89]
over MapReduce and MLIib over Spark have been introduced
by the community to solve problems or fill gaps in the
original Hadoop ecosystem. Finally, the ecosystem has been
complemented with tools targeting specific processing models,
such as GraphX and Spark Streaming, which support graph
and stream processing, respectively.

Besides the Apache Hadoop distributions, proprietary plat-
forms offer different features for data processing and cluster
management. Some of such solutions include Cloudera CDH,?
Hortonworks HDP,? and MapR Converged Data Platform.*

Zhttp://www.cloudera.com/downloads/cdh/5-8-2.html
3http://hortonworks.com/products/data-center/hdp/
“https://www.mapr.com/products/mapr-converged-data-platform

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2933358, IEEE

Transactions on Network and Service Management

Table I: Categories of NTMA applications [15].

Category Description

Maintenance and planning of networks.

Historically achieved through time series forecasting.
Categorize and recognize traffic flows for different
objectives, e.g., QOE, security etc.

Predict and isolate faults

and unwanted behaviors in networks.

Protect the network, react to (and prevent from)
malicious activities and general attacks.

Traffic prediction

Traffic classification

Fault management

Network security

III. CATEGORIZING NTMA APPLICATIONS
A. Taxonomy

We rely on a subset of the taxonomy of network manage-
ment applications found in [15] to categorize papers handling
NTMA with big data approaches. The previous work lists eight
categories, which are defined according to the final purpose
of the management application, namely: (i) traffic prediction,
(i) traffic classification, (iii) fault management, (iv) network
security, (v) congestion control, (vi) traffic routing, (vii) re-
source management, and (viii) QoS/QoE management.

We only survey works that fit on the first four categories for
two reasons. First, whereas the taxonomy in [15] is appropriate
for describing network management applications, the level of
dependence of such applications on NTMA varies consid-
erably. Traffic routing and resource management seem less
dependent on large-scale measurements than traffic prediction
and security, for example. Second, the literature on the use
of big data approaches for congestion control, traffic routing,
resource management, and QoS/QoE management is almost
nonexistent by the time of surveying. We conjecture that either
large-scale datasets targeting problems in these categories are
not available, or researchers have not identified potential on
applying big data approaches in those scenarios. We thus
ignore the works using big data approaches for those cases.

B. NTMA applications

Tab. I shows the categories used in our survey. Next, we list
examples of NTMA applications in these categories.

1) Traffic prediction: Traffic prediction consists of estimat-
ing the future status of network links. It serves as a building
block for traffic engineering, helping to define, for example,
the best moment to deploy more capacity in the network so
to keep QoS levels.

Traffic prediction is often faced as a time-series forecasting
problem [15]. Here both classic forecasting methods (e.g.,
ARIMA or SARIMA methods) and machine learning (e.g.,
deep neural networks) are employed. The problem is usually
formulated as the estimation of traffic volumes based on
previous measurements in the same links. Changes in network
behavior, however, make such estimations very complicated.
New services or sudden changes in service configurations (e.g.,
the deployment of novel bandwidth-hungry applications) poses
major challenges to traffic prediction approaches.

2) Traffic classification: Traffic classification aims at iden-
tifying services producing traffic [120]. It is a crucial step for
managing and monitoring the network. Operators need infor-
mation about services, e.g., to understand their requirements
and their impact on the overall network performance.

Traffic classification used to work well by simply inspecting
information in network and transport protocols. For instance,
Internet services used to be identified by simply inspecting
TCP/UDP port numbers. However, traffic classification is no
longer a simple task [85]. First, the number of Internet services
is large and continues to increase. Second, services must be
identified by observing little information seen in the network.
Third, little information remains visible in packets, since a
major share of the Internet services run on top of a handful of
encryption protocols (e.g., HTTPS over TCP). At last, Internet
services are dynamic and constantly updated.

Many approaches have been proposed to perform traffic
classification. They can be grouped according to the strategy
used to classify the packets: (i) Packet inspection analyzes the
content of packets searching for pre-defined messages [16]
or protocol fingerprints; (ii) Supervised machine learning
methods extract features from the traffic and, in a training
phase, build models to associate feature values to the services;
(iii)) Unsupervised machine learning methods cluster traffic
without previous knowledge on the services. As such, they
are appropriate to explore services for which training data
is unavailable [33]. (iv) Behavioral methods identify services
based on the behavior of end-nodes [60]. The algorithms
observe traffic to build models for nodes running particular
services. The models describe, for instance, which servers are
reached by the clients, with which data rate, the order in which
servers are contacted, etc.

3) Fault management: Fault management is the set of tasks
to predict, detect, isolate, and correct faults in networks.
The goal is to minimize downtime. Fault management can
be proactive, e.g., when analytics predict faults based on
measurements to avoid disruptions, or reactive, e.g., when
traffic and system logs are evaluated to understand ongoing
problems. In either case, a key step in fault management is
the localization of the root-cause of problems [15].

In large networks, diverse elements may be impacted by
faults: e.g., a failed router may overload other routes, thus
producing a chain of faults in the network. Diverse network
elements will produce system logs related to the problem,
and the behavior of the network may be changed in diverse
aspects. Detecting malfunctioning is often achieved by means
of anomaly detection methods that identify abnormal behavior
in traffic or unusual events in system logs. Anomalies, how-
ever, can be caused also by security incidents (described next)
or normal changes in usage patterns. Analytics algorithms
often operate evaluating traffic, system logs, and active mea-
surements in conjunction, so to increase the visibility of the
network and easy the identification of root-causes of problems.

4) Security: Many NTMA applications have been proposed
for assisting cyber-security [74]. The most common objective
is to detect security flaws, virus, and malware, so to isolate
infected machines and take countermeasures to minimize dam-
ages. Roughly speaking, there are two main approaches when
searching for malicious network activity: (i) based on attack
signatures; (ii) based on anomaly detection.

Signature-based methods build upon the idea that it is pos-
sible to define fingerprints for attacks. A monitoring solution
inspects the source traffic/logs/events searching for (i) known

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2933358, IEEE

Transactions on Network and Service Management

messages exchanged by viruses, malware or other threats; or
(i1) the typical communication patterns of the attacks — i.e.,
similar to behavioral traffic classification methods. Signature-
based methods are efficient to block well-known attacks that
are immutable or that mutate slowly. These methods however
require attacks to be well-documented.

Methods based on anomaly detection [12], [44] build upon
the assumption that attacks will change the behavior of the
network. They build models to summarize the normal network
behavior from measurements. Live traffic is then monitored
and alerts are triggered when the behavior of the network
differs from the baseline. Anomaly detection methods are
attractive since they allow the early detection of unknown
threats (e.g., zero-day exploits). These methods, however, may
not detect stealth attacks (i.e., false negatives), which are
not sufficiently large to disturb the network. They sometimes
suffer from large numbers of false positives too.

C. Big data challenges in NTMA applications

We argue that NTMA applications belonging to the cate-
gories above can profit from big data approaches. Processing
such measurements poses the typical big data challenges (i.e.,
the “5-Vs”). We provide some examples to support the claim.

Considering volume and velocity and taking traffic classifi-
cation as an example: it has to be performed on-the-fly (e.g., on
packets), and the input data are usually large. We will see later
that researchers rely on different strategies to perform traffic
classification on high-speed links, with some works applying
algorithms to hundreds of Gbps streams.

Consider then variety. As more and more traffic goes
encrypted, algorithms to perform traffic classification or fault
management, for example, have poorer information to operate.
Modern algorithms rely on diverse sources — e.g., see [113]
that combines DNS and flow measurements. Anomaly detec-
tion, as another example, is usually applied to a variety of
sources too (e.g., traffic traces, routing information, etc), so to
obtain diverse signals of anomalies.

In terms of veracity, we again cite cyber-security. Samples
of attacks are needed to train classifiers to identify the attacks
on real networks. Producing such samples is a challenging
task. While simple attacks can be reproduced in laboratory,
elaborate attacks are hard to reproduce — or, worst, are simu-
lated in unrealistically ways — thus limiting the analysis.

Finally, value is clearly critical in all the above applications
— e.g., in cyber-security, a single attack that goes undetected
can be unbearable to the operation of the network.

IV. DATA MANAGEMENT FOR NTMA

We now survey how the data management steps (cf. Fig. 1)
are performed in NTMA applications. Big data analytics for
NTMA are instead covered in Sect. V.

A. Data collection

Measuring the Internet is a big data challenge. There are
more than half a million networks, 1.6 billion websites, and
more than 3 billion users, accessing more than 50 billion

web pages, i.e., exchanging some zettabytes per year. At no
surprise, the community has spent much work in designing and
engineering tools for data acquisition at high-speeds; some of
them are discussed in [32]. Here the main challenges addressed
by the community seem to be the scalability of data collection
systems and how to reduce data volumes at the collection
points without impacting the data quality.

Measuring the Internet can be accomplished coarsely in
two means: (i) active measurements, and (ii) passive measure-
ments. The former indicates the process of injecting data into
the network and observing the responses. It is a not scalable
process, typically used for troubleshooting. Passive measure-
ments, on the contrary, build on the continuous observation of
traffic, and the extraction of indexes in real-time.

A network exporter captures the traffic crossing monitoring
points, e.g., routers aggregating several customers. The ex-
porter sends out a copy of the observed network packets and/or
traffic statistics to a collector. Data is then saved in storage
formats suitable for NTMA applications. Analysis applications
then access the data to extract knowledge.

The components of this architecture can be integrated into a
single device (e.g., a router or a dedicated network monitor) or
deployed in a distributed architecture. We will argue later that
big data already emerges since the first stage of the NTMA
process and, as such, distributed architectures are common in
practical setups. The large data rate in the monitoring points
has pushed researchers and practitioners into the integration of
many pre-processing functionalities directly into the exporters.
The most prominent example is perhaps flow-based monitor-
ing, in which only a summary of each traffic flow is exported
to collectors. Next, we provide a summary of packet- and flow-
based methods used to collect data for NTMA applications.

1) Packet-based methods: Analyzing packets provides the
highest flexibility for the NTMA applications, but also requires
a significant amount of resources. Deep Packet Inspection
(DPI) means to look into, and sometimes export, full packet
contents that include application headers and payload. The
data rate poses challenges (i.e., velocity), which can be faced
using off-the-shelf hardware [115], provided hardware support
is present [58]. Indeed, there exist technologies to perform DPI
at multiple Gbit/s, while also saving the packets to disk [31].

The network monitoring community has proposed multiple
alternatives to avoid the bottlenecks of packet-based methods.
The classical approach is to perform pre-processing near the
data collection. Filtering and sampling are usually set on
collection points to export only a (small) subset of packets
that pass the filtering and sampling rules. Other ad-hoc trans-
formations may be employed too, e.g., the exporting of packet
headers only, instead of full packet contents. In a similar
direction, authors of [75] propose to collect only the initial
packets of each flow, since these packets are usually sufficient
for applications such as traffic classification.

As an illustration, Tab. II describes the volume of packet
traces captured in some real deployments. The first two lines
report the size of packet traces capture at (i) an ISP network
where around 20k ADSL customers are connected; (ii) a
campus network connecting around 15k users. Both captures
have been performed in morning hours and last for at least 1

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2933358, IEEE

Transactions on Network and Service Management

6

Table II: Size of real packet traces captured at different vantage points with different methodologies.

Description Duration pcap (GB) Headers up to L4 (%)
Full packets of 20 k ADSL users (morning) 60 mins 675 6.8
Full packets of 15 k Campus users (morning) 100 mins 913 6.3
Only 5 kB or 5 packets per flow, 20 k ADSL users 1 day 677 22.5

Table III: Estimated measurement streams for a flow exporter
observing 50 Gbit/s on average (source [32], [52]).

Sampling rate Protocol Packets/s | Bits/s
1:1 NetFlow v5 4.1k 52 M
1:1 NetFlow vO 10.2 k 62 M
1:10 4.7k 27 M
1:1 IPFIX 125 k 75 M

hour. More than half of TB is saved in both cases. The table
also shows that the strategy of saving only packet headers up
to the transport layer only partially helps to reduce the data
volume — e.g., around 45 GB of headers per hour would still
be saved for the ISP trace. Finally, the last line shows the size
of a full day of capture in the ISP network with a setup similar
to [75] (i.e., saving only 5 packets or 5kB per flow). Whereas
the data volume is reduced significantly, more than 600 GB of
pcaps are saved per day.

Nowadays, DPI is challenged by encryption as well as by
restrictive privacy policies [40]. Alternatives to performing
DPI on encrypted traffic have been presented [103].

2) Flow-based methods: Flow-based methods process
packets near the data collection, exporting only summaries
of the traffic per flow [52]. A network flow is defined as
a sequence of packets that share common characteristics,
identified by a key. NTMA applications that analyze flow
records have lower transmission requirements since data is
aggregated. Data privacy is better protected and issues related
to encryption are partially avoided. Nevertheless, there is an
unavoidable loss of information, which makes the analysis
more limited. In 2013, Cisco estimated that approximately
90% of network traffic analyses are flow-based, leaving the
remaining 10% for packet-based approaches [90].

Diverse flow monitoring technologies have been proposed.
Cisco NetFlow, sFlow and IPFIX are the most common
ones. NetFlow has been widely used for a variety of NTMA
applications, for example for network security [86]. sFlow
relies heavily on packet sampling (e.g., sampling 1 every 1000
packets). This may hurt the performance of many NTMA
applications, even if sFlow is still suitable for detecting attacks
for example. Finally, IPFIX (IP Flow Information Export pro-
tocol) is the IETF standard for exporting flow information [52].
IPFIX is flexible and customizable, allowing one to select the
fields to be exported. IPFIX is used for a number of NTMA
applications, such as the detection of SSH attacks [53].

Even flow-based monitoring may produce very large
datasets [32]. For illustration, Tab. III lists the volume of
flow-level information exported when monitoring 50 Gbit/s on
average. The table is built by extrapolating volumes reported
by [52] for flow exporters in a real deployment. The table
includes Cisco’s NetFlow v5 and NetFlow v9 as well as IPFIX.

Flow-based NTMA applications would still face more than
70 Mbit/s if IPFIX is chosen to export data. Since these
numbers refer to a single vantage point, NTMA applications
that aggregate multiple vantage points may need to face several
Gb/s of input data. Finally, the table reports data speeds when
employing sampling (see 1:10 rate). Sampling reduces the data
volume considerably but limiting NTMA applications.

At last, NTMA applications often need to handle historical
data. The storage needed to archive the compressed flow data
from the vantage point used as an example in Tab. II grows
linearly over time, and the archival consumes almost 30 TB
after four years [32] of archival.

B. Data ingestion

The previous step is the KDD step that depends the most
on the problem domain since the way data is acquired varies
a lot according to the given scenario. Not a surprise, generic
big data frameworks mostly provide tools and methods for
transporting raw data from its original sources into pre-
processing and analytics pipelines. The process of transporting
the data into the frameworks is usually called data ingestion.
Since data at its source is still unprocessed, handling such raw
data may be a huge challenge. Indeed, large data streams or
a high number of distributed collectors will produce a deluge
of data to be parsed and pre-processed in subsequent stages.

Several generic tools for handling big data ingestion can
be cited: (i) Flume,> a distributed system to collect logs from
different sources; (ii) Sqoop,6 which allows to transmit data
between Hadoop and relational databases; (iii) Kafka,7 a plat-
form that provides a distributed publish-subscribe messaging
system for online data streaming; among others. These tools
focus on scalability — e.g., they allow multiple streams to be
processed in a distributed fashion. Once data is delivered to
the framework, pre-processing can take place on the streams.

Considering NTMA, few solutions have been proposed to
ingest traffic measurements into big data frameworks. Here the
main challenges seem to be the transport of data in different
formats and from various sources into the frameworks. The
research community has made interesting progresses in this
front, and we cite two examples.

Apache Spot® is an open platform that integrates modules
for different applications in the network security area. It relies
on Kafka for performing data ingestion. Users and developers
have to provide Spot with python scripts that parse the original
measurements into a pre-defined, but flexible, format. Both the
original data and converted records are loaded and stored in
the big data framework.

Shttps://flume.apache.org
Shttp://sqoop.apache.org
"https://kafka.apache.org
8http://spot.incubator.apache.org

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2933358, IEEE

Transactions on Network and Service Management

Storage
infrastructure
I
NosQL

- Relational
File System o

lewSQL
\

o] oo | [t e (ol | [S|
‘ HDFS ‘ PostgressQL| ‘Mongol’!‘ DynamoDB‘ BigTable ‘ Giraph ‘
o] | o] | Fa | [
Microsoft ‘ saL-lite ‘ ‘Cou:hsase‘ ‘ Riak ‘ ommnn‘
osmos
‘ '::;;:c"l'(‘ Jackrabbit ‘ Cassandra ‘ Titan
Sy =

Figure 4: Generic big storage systems (based on [14], [24]).

A promising project is PNDA (Platform for Network Data
Analysis).” Developed by the Linux Foundation, it is an open-
source platform capable of managing and grouping together
different data sources. It then performs analysis on such data
sources. It does not force data in any specific schema and it
allows the integration of other sources, producing custom code
for the analysis stage. It makes use of standard tools in big
data frameworks, including Kafka for data ingestion. Here, a
number of plugins for reading data in virtually all popular
NTMA formats is available on the project website.

Spot and PNDA experiences clearly show that ingesting
NTMA data into generic frameworks requires some effort
to plugin the NTMA formats into the frameworks. Once
such plugins exist, standard ingestion tools like Kafka can be
employed. The availability of open source code (e.g., PNDA
plugins) makes it easier to integrate these functionalities in
other NTMA applications.

C. Data storage

In theory, generic store systems of big data frameworks
can be used with NTMA too. In practice, a number of
characteristics of the big data frameworks complicate the
storage of NTMA data. In order to ease the understanding of
these challenges, we first provide some background in generic
big data storage systems. Then, we evaluate how the NTMA
community is employing these systems in NTMA applications.

1) Generic systems: Fig. 4 reproduces a taxonomy of big
data storage and management systems [14], [24]. Colors rep-
resent the media (i.e., memory or persistent media) primarily
exploited by the system.

Most big data storage systems focus on horizontal scala-
bility, i.e., growing the capacity of the system across multiple
servers, rather than upgrading a single server to handle increas-
ing data volumes. This approach results in large distributed
systems, which carry many risks, such as node crashes and
network failures. Consistency, availability, and fault tolerance
are therefore of large concern in big data storage [14], [54].

In terms of file systems, Google has pioneered the devel-
opment by the implementation of the Google File System
(GFS) [46]. GFS was built with horizontal scalability in
mind, thus running on commodity servers and providing fault

9http://pnda.io/overview

tolerance and high performance. Colossus [79], the successor
of GFS and Facebook Haystack [8] are other examples. Open
source derivatives of GFS appeared later, including Apache
HDFS and Kosmosfs.

On a higher abstraction level, relational databases suffer per-
formance penalties with large datasets. NoSQL databases [49]
are alternatives that emerged for such scenarios. NoSQL
databases scale better than the relational ones by over-
coming the intrinsic rigidity of database schemas. NoSQL
databases adopt different physical data layouts: (i) Key-value
databases store data in sets of key-value pairs organized into
rows. Examples include Amazon’s Dynamo [30] and Mem-
cached;'” (ii) column-oriented databases (inspired on Google’s
BigTable [23]) store data by column instead of by row. Exam-
ples are Cassandra [64] and HBase;!! (iii) document oriented
databases store data in documents uniquely identified by a key.
An example is MongoDB;!? (iv) Graph oriented databases
store graphs — i.e., nodes and edges. They impose a graph
schema to the database, but profiting from it to implement
efficient operations in graphs. An example is Titan.!?

Finally, NewSQL systems aim at providing a similar perfor-
mance of NoSQL databases, while maintaining properties of
relational systems [107], e.g., relational data models and SQL
queries [19]. An example is Google Spanner.'*

2) NTMA storage in big data frameworks: Being the In-
ternet a distributed system, a key problem is how to archive
measurements in a centralized data store. Here no standard
solution exists, despite multiple attempts to provide scalable
and flexible approaches [96], [112]. The measurements are
usually collected using ad-hoc platforms and exported in
formats that are not directly readable by big data frameworks.
Therefore, both special storage solutions and/or additional data
transformation steps are needed.

For example, libpcap, libtrace, 1libcoral,
libnetdude and Scapy are some libraries used for
capturing packets. These libraries read and save traces using
the pcap format (or pcap—ng). Distributed big data file and
database systems, such as HDFS or Cassandra, are generally
unable to read pcap traces directly, or in parallel, since
the pcap traces are not separable — i.e., they cannot be
easily split into parts. One would still need to reprocess the
traces sequentially when reading data from the distributed
file systems. A similar problem emerges for formats used to
store flow-based measurements. For example, nfdump is a
popular format used to store NetFlow measurements. While
files are split into parts by the collector according to pre-set
parameters (e.g., saving one file every five minutes), every
single file is a large binary object. Hadoop-based systems
cannot split such files into parts automatically.

A number of previous works propose new approaches to
overcome these limitations: (i) loading the measurements in
original format to the distributed system, while extending the
frameworks to handle the classic formats; (ii) proposing new

1Ohttp://memcached.org
https://hbase.apache.org/
2https://www.mongodb.com/
Bhttp://titan. thinkaurelius.com/

4 https://cloud.google.com/spanner/

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2933358, IEEE

Transactions on Network and Service Management

storage formats and tools for handling the big network data;
(iii) transforming the network data and importing it into con-
ventional big data storage systems (discussed in Sect. IV-D).

Lee and Lee [69] have developed a Hadoop API called
PcapInputFormat that can manage IP packets and NetFlow
records in their native formats. The API allows NTMA ap-
plications based on Hadoop to seamlessly process pcap or
NetFlow traces. It thus allows traces to be processed with-
out any previous transformation while avoiding performance
penalties of reading files sequentially in the framework. A
similar direction is followed by Ibrahim et al. [56], who
develop traffic analysis algorithms based on MapReduce and
a new input API to explore pcap files on Hadoop.

In [84], Nagele faces the analysis of pcap files in a
fast and scalable way by implementing a java-based hadoop-
pcap library. The project includes a Serializer/Deserializer
that allows Hive to query pcaps directly. Authors of [109]
use the same Serializer/Deserializer to build a Hadoop-based
platform for network security that relies on sFlow, Netflow,
DNS measurements and SPAM email captures.

Noting a similar gap for processing BGP measurements,
authors of [87] introduce BGPStream. BGPStream provides
tools and libraries that connect live BGP data sources to
APIs and applications. BGPStream can be used, for instance,
for efficiently ingesting on-line data into stream processing
solutions, such as Spark Streaming.

All these APIs are however specific, e.g., to HDFS, pcap
or NetFlow. Thus, similar work has to be performed for each
considered measurement format or analytics framework.

Some authors have taken a distinct approach, proposing new
storage formats and solutions more friendly to the big network
measurements. Authors of [7] propose DBStream to calculate
continuous and rolling analytics from data streams. Other
authors have proposed to extend pcap and flow solutions
both to achieve higher storage efficiency (e.g., compressing
traces) and to include mechanisms for indexing and retrieving
packets efficiently [41], [42]. These solutions are all built
upon key ideas of big data frameworks, as well as key-value
or column-oriented databases. They are however specialized
to solve network monitoring problems. Yet, the systems are
generally centralized, thus lacking horizontal scalability.

D. Pre-processing

NTMA algorithms usually operate with feature vectors that
describe the instances under study — e.g., network flows, con-
tacted services, etc. We, therefore, consider as pre-processing
all steps to convert raw data into feature vectors.

Some papers overcome the lack of storage formats by trans-
forming the data when ingesting it into big data frameworks.
Similarly, a set of features must be extracted for performing
NTMA, both for packet and flow-based analysis. Next, we re-
view works performing such pre-processing tasks for NTMA.

1) Transformations: A popular approach to handle the big
network measurements is to perform further transformations
after the data leaves the collection point. Either raw pcap or
packets pre-processed at the collection point (e.g., sampled or
filtered) are passed through a series of transformations before
being loaded into big data frameworks.

8

Authors of [124] use an extra pre-processing step to convert
measurements from the original format (i.e., pcap in HDFS)
into a query-optimized format (i.e., Parquet). This conversion
is shown to bring massive improvements in performance, but
only pre-selected fields are loaded into the query-optimized
format. Authors of [98] propose a Hadoop-based framework
for network analysis that first imports data originally in
perfSONAR format into Apache Avro. Authors of [67] process
flow logs in MapReduce, but transforming the original binary
files into text files before loading them into HDFS.

Marchal et al. [77] propose “a big data architecture for
large-scale security monitoring” that uses DNS measurements,
NetFlow records and data collected at honeypots. Authors
take a hybrid approach: they load some measurements into
Cassandra while also deploying Hadoop APIs to read binary
measurement formats directly (e.g., pcaps). The performance
of the architecture is tested with diverse big data frameworks,
such as Hadoop and Spark. Similarly, Spark Streaming is used
to monitor large volumes of IPFIX data in [20], with the IPFIX
collector passing data directly to Spark in JSON format.

In [70] sFlow records of a large campus network are
collected and analyzed on a Hadoop system in order to
classify host behaviors based on machine learning algorithms.
sFlow data are collected, fields of interest are extracted and
then ingested into Cassandra using Apache Flume. Sarlis et
al. propose a system for network analytics based on sFlow
and NetFlow (over Hadoop or Spark) that achieves 70%
speedup compared to basic analytics implementations with
Hive or Shark [100]. Measurements are first transformed into
optimized partitions that are loaded into HDFS and HBASE
together with indexes that help to speed up the queries.

An IPFIX-based lightweight methodology for traffic clas-
sification is developed in [83]. It uses unsupervised learning
for word embedding on Apache Spark, receiving as input
“decorated flow summaries”, which are textual flow summaries
augmented with information from DNS and DHCP logs.
Finally, specifically for big data scenarios, Cisco has published
a comprehensive guide for network security using Netflow and
IPFIX [99]. Cisco presents OpenSOC, an integral solution to
protect again intrusion, zero-day attacks and known threats in
big data frameworks. OpenSOC includes many functionalities
to parse measurements and load them into big data frameworks
using, for example, Apache Flume and Kafka.

All these works reinforce the challenge posed by the lack
of NTMA formats friendly to big data frameworks. At the
one hand, transformations boost analysis performance, and
performance seems to be the main focus of the community
so far. At the other hand, information may be lost in transfor-
mations. Eventually, data replicated in many formats increase
redundancy and make harder integration with other systems.

2) Feature engineering: Several libraries exist to perform
feature extraction and selection in big data frameworks. While
many of them are domain-specific, generic examples are found
in Spark ML and Spark MLIib."> Instead, the research about
feature extraction and selection in NTMA is scarce in general.
Here the main challenges seem to be the lack of standard or

Shttps://spark.apache.org/mllib/

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2933358, IEEE

Transactions on Network and Service Management

Machine Learning

Non Distributed

\ Batch Stream \ \ Batch \

|
Weka MOA

—{ MapReduce

StormMOA

Vowpal Wabbit

Mahout SaMOA

T

Debellor

Radoop

Jubatus

Spark

TensorFlow on GPU|

Tensorflow

i,

Figure 5: Machine learning for big data (based on [13]).

large-accepted features for each type of NTMA applications.
Minimally, the community lacks ways to compare and bench-
mark systems and features in a systematic way.

Most works either refer to old datasets, e.g., [3], [25], [73].
The work in [57] studies traffic features in classic datasets for
attack/virus detection and DM/ML testing (e.g., DARPA [81]
dataset). Such datasets have been criticized and their use
discouraged [78]. Authors consider whether the features are
suitable or not for anomaly detection, showing that features
present high correlation, thus mostly being unnecessary.

Abt et al. [1] study the selection of NetFlow features to
detect botnet C&C communication, achieving accuracy and
recall rates above 92%. In [62] Netflow features undergo fea-
ture selection for the case of DDoS detection. In [119] IPFIX
records are used in feature selection processes, obtaining a set
of key features for the classification of P2P traffic. All these
papers handle relatively small datasets. Few authors rely on
large datasets [5], but instead propose features that are finely
tailored to the specific problem at hand. In a nutshell, each
work proposes a custom feature engineering, with no holistic
solution yet.

V. BIG DATA ANALYTICS FOR NTMA

The next step of the NTMA path is data analysis. We
recall that we do not intend to provide an exhaustive survey
on general data analytics for NTMA. In particular, here we
focus on how the main analytics methods are applied to big
NTMA datasets. Detailed surveys of other NTMA scenarios
are available, e.g., in [12], [44], [74], [85].

As for data management, generic frameworks exist and
could be used for NTMA. We next briefly summarize them.
After it, we dig into the NTMA literature.

A. Generic big data frameworks

Several taxonomies have been proposed to describe analysis
algorithms. Algorithms are roughly classified as (i) statisti-
cal or (ii) machine learning. Machine learning are further
categorized as supervised, unsupervised and semi-supervised,
depending on the availability of ground truth and how data is
used for training. Novel approaches are also often cited, such
as deep neural networks and reinforcement learning.

Many challenges emerge when applying such algorithms
to big data, due to the large volumes, high dimension etc.
Some machine learning algorithms simply do not scale linearly
with the input size, requiring lots of resources for processing
big data sets. These problems are usually tackle by (i) pre-
processing further the input to reduce its complexity; (ii)
parallelizing algorithms, sometimes replacing exact solutions
by more efficient approximate alternatives.

Several approaches have been proposed to parallelize sta-
tistical algorithms [51] or to scale machine learning algo-
rithms [59], [95], [108]. Parallel version of some statistical
algorithms are presented in [10]. Pébay et al. [91] provide
a survey of parallel statistics. Parallel neural networks are
described in [2], [80], [125]. Parallel training for deep learning
are covered in [9], [26], [66].

Frameworks do exist to perform such analyses on big data.
Fig. 5 reproduces a taxonomy of machine learning tools able
to handle large data sets [13]. Both non-distributed (e.g., Weka
and R) and distributed (e.g., Tensorflow and MLIib) alterna-
tives are popular. Additional challenges occur with streaming
data, since algorithms must cope with strict time constraints.
We see in the figure that tools targeting these scenarios are
also available (e.g., StormMOA).

In terms of NTMA analytics, generic framework implement-
ing algorithms that can scale to big data could be employed
too, naturally. Next we explore the literature to understand
whether big data approaches and frameworks are actually
employed in NTMA.

B. Literature categorization

In our examination, we focus on understanding the depth of
the application of big data techniques in NTMA. In particular
Tab. IV evaluates each work under the following perspectives:

« We check whether works face large data volumes. We
arbitrarily define thresholds to consider a dataset to be big
data: All works handling data larger than tens of GBs or
works handling backbone network use cases. Similarly,
we consider big data volumes when the study covers
periods of months or years if dataset size is not specified.

o We verify if popular frameworks are used, i.e., Spark,
Hadoop, MapReduce; we accept also custom implemen-
tations that exploit the same paradigms.

o We check if machine learning is used for NTMA.

o« We verify if big data platforms are used in the ML
process (see Fig. 5).

« We check velocity, i.e., if works leverage online analysis.

o We address variety, i.e., if authors use more than one data
source in the analysis.

We leave out two of the 5 “V’s”, i.e., veracity and value,
since it is cumbersome to evaluate them. For example, while
some works discuss aspects of veracity (e.g., highlighting false
positives of trained classifiers), rarely the veracity of the big
data used as input in the analysis is evaluated.

Tab. IV shows that big data techniques are starting to per-
meate NTMA applications. Network security attracts more big
data research. In general, it is interesting to notice the adoption

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2933358, IEEE

Transactions on Network and Service Management

of machine learning techniques. However, observe the limited
adoption of big data platforms for machine learning.
Next, we dig into salient conclusions of this survey.

C. Single source, early reduction, sequential analysis

From Tab. IV, we can see how most of the works are dealing
with the big volumes of data. This outcome is predictable
since network traffic is one of the leading sources of big
data. From the last column, variety, we can notice that the
researchers infrequently use different sources together, limiting
the analysis on specific use cases.

As we have seen before in Sect. IV, a group of works applies
big data techniques in the first phases of the KDD process.
This approach allows the analytics phase to be performed
using non-distributed frameworks (Fig. 5).

For example, in [94] authors use Hadoop for real-time
intrusion detection, but only computing feature values with
MapReduce. Classic machine learning algorithms are used
afterward on the reduced data. Similarly, Vassio et al. [122] use
big data approaches to reduce the data dimension, while the
classification is done in a centralized manner, with traditional
machine learning frameworks. Shibahara et al. [104] deploy a
system to classify malicious URLs through neural networks,
analyzing IP address hierarchies. Only the feature extraction
is performed using the MapReduce paradigm.

In summary, we observe a majority of works adopting a
single (big data) source, performing early data reduction with
the approaches described in Sect. IV (i.e., pre-processing data),
and then performing machine learning analysis with traditional
non-distributed platforms.

D. Big data platforms enabling big NTMA

A small group of papers performs the analytics process with
big data approaches. Here different directions are taken. In
Hashdoop [38], authors split the traffic into buckets according
to a hash function applied to traffic features. Anomaly detec-
tion methods are then applied to each bucket, directly imple-
mented as Map functions. Authors of [72] present a distributed
semi-supervised clustering technique on top of MapReduce,
using a local spectral subspace approach to analyze YouTube
user comment-based graphs. Authors of [68] perform both pre-
processing of network data using MapReduce (e.g., to filter
out non-HTTP GET packets from HTTP traffic logs) as well
as simple analytics to summarize the network activity per
client-server pairs. Lastly, the Tsinghua University Campus
has tested in its network an entropy-based anomaly detection
system that uses IPFIX flows and runs over Hadoop [111].

In traffic classification, Trevisan et al. [114] developed
AWESOME, an SDN application that allows prioritizing traffic
of critical Web services, while segregating others, even if they
are running on the same cloud or served by the same CDN.
To classify flows, the training, performed on large datasets, is
implemented in Spark.

Considering other applications, some works consider the
analysis of large amounts of non-traffic data with big data
approaches. Authors in [106] use MapReduce as a basis for
a distributed crawler, which is applied to analyze over 300

10

million pages from Wikipedia to identify reliable editors, and
subsequently detect editors that are likely vandals. Comarela
et al. [29] focus on routing and implement a MapReduce
algorithm to study multi-hop routing table distances. This
function, applied over a TB of data, produces a measure of
the variation of paths in different timescales.

In a nutshell, here big data platforms are enablers to scale
the analysis on large datasets.

E. The rare cases of online analysis

Only a few works focus on online analysis and even fewer
leverage big data techniques. Besides the previously cited [94],
[111], Apiletti et al. in [4] developed SeLINA, a network
analyzer that offers human-readable models of traffic data,
combining unsupervised and supervised approaches for traffic
inspection. A specific framework for distributed network ana-
Iytics that operates using Netflow and IPFIX flows is presented
in [27]. Here, SDN controllers are used for the processing
to improve scalability and analytics quality by dynamically
adjusting traffic record generation.

In sum, online analysis in NTMA is mostly restricted
to the techniques to perform high-speed traffic capture and
processing, described in Sect. IV. When it comes to big data
analysis, NTMA researchers have mostly focused on batch
analysis, thus not facing challenges of running algorithms on
big data streaming.

F. Takeaway

The usage of ML seems to be widespread, especially for
network security and anomaly detection. However, just some
works use machine learning coupled with big data platforms. A
general challenge when considering machine learning for big
data analytics is indeed parallelization, which is not always
easy to reach. Not all machine learning algorithms can be
directly ported into a distributed framework, basically due to
their inherent centralized designs. This hinders a wider adop-
tion of big data platforms for the analytics stage, constraining
works to perform data reduction at pre-processing stages.

In sum, in terms of complexity, most ML algorithms scale
poorly with large datasets. When applied to the often humon-
gous scale of NTMA data, they clearly cannot scale to typical
NTMA scenarios.

VI. CHALLENGES, OPEN ISSUES AND ONGOING WORK

We discuss some open issues and future directions we have
identified after literature review.

1 — Lack of a standard and context-generic big NTMA
platform: The data collection phase poses the major chal-
lenges for NTMA. The data transmission rate in computer
networks keeps increasing, challenging the way probes collect
and manage information. This is critical for probes that have to
capture and process information on-the-fly and transmit results
to centralized repositories. Flow-based approaches scale better,
at the cost of losing details.

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Network and Service Management

Table IV: Analyzed papers divided by application category (rows) and big data characteristics (columns).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2933358, IEEE

11

Category Volume? Big data frame- | ML based? Big data ML? Velocity - Online | Variety?
work? analysis?
Traffic Prediction [36] [102] [47] [111] [36] [102] [47] [47] [111] [36]
[123] [111] [123] [111]
Traffic Classification [4]1 [43] [71] [4]1 (711 [18] [4]1 [37] [43] [4] [114] [4] [43] [37]
[114] [122] [114] [122] [127] [71] [101]
[18] [114]
Fault Management [88] [51 [50] [38] [27] [27] [5] [50] [118] [38] [63] [38] [61] [27] [61] [27]

[118] [38] [61]
[93] [27] [22]

[38] [61] [93] [63]
[122]

Network Security

[11] [94] [106]
(55] [82] [68]
[117] [48]

[11] [94] [104]
[106] [72] [28]
[121] [68] [48]

[94] [104] [106]
[72] 28] [39]
[121] [82] [117]

[28] [72] [111]

[11] [82] [94]
[111] [48]

To solve the lack of flexible storage formats we have seen
in Sect. IV-D that researchers have developed APIs or layers
that transform the data in pre-defined shapes. Those APIs
are not generic and not comprehensive. As an example, in
NTMA one would like to associate to a given IP address both
its geographical (e.g., country) and logical (e.g., Autonomous
System Number) location. There is no standard library that
supports even these basic operations in the frameworks.

Considering analytics, few researchers tackled the problem
from a big data perspective. There is a lack of generic
approaches to access the data features, with the ability to
run multiple analytics in a scalable way. Thus, researchers
usually rely on single data sources and sequential/centralized
algorithms, that are applied to reduced data (see Sect. V-C).

In a nutshell, the community has yet to arrive at a generic
platform for the big NTMA problem, and most solutions
appear to be customized to solve a specific problems.

2 — Lack of distributed machine learning and data mining
algorithms in big data platforms limits NTMA: Several
researchers started adopting machine learning solutions to
tackle NTMA problems. However, as analyzed in Sect. V,
most recent papers focus on “small data”, with few of them
addressing the scalability problem of typical big data cases.
Most papers use big data techniques just in the first steps of
the work, for data processing and feature extraction. Most of
the machine learning analysis is then executed in a centralized
fashion. This design represents a lack of opportunity. For
example, applying machine learning with large datasets could
produce more accurate models for NTMA applications.

From a scientific point of view, it is interesting to conjecture
the causes of this gap: The reasons may be several, from
the lack of expertise to platform limitations. We observe that
the availability of machine learning algorithms in big data
platforms is still at an early stage. Despite the availability
of solutions like the Spark MLIib and ML tools that have
started to provide some big data-tailored machine learning,
not all algorithms are ported. Some of these algorithms are
also simply hard to parallelize. Parallelization of traditional
algorithms is a general problem that has to be faced for big
data in general, and for big NTMA in particular.

3 — Areas where big data NTMA are still missing: From
Tab. IV, it is easy to notice the lack of proposals in some
important categories. For example, even though fault manage-
ment is a category in which usually a great amount of data

must be handled, few papers faced this problem with big data
approaches. The reasons may be linked to what we discussed
earlier, i.e., the lack of generic and standard NTMA platforms.
Similarly, as examined in Sect. III, some categories of NTMA
applications (e.g., QoS/QoE management) are hardly faced
with big data approaches.

4 — Lack of relevant and/or public datasets limits repro-
ducibility: To the extent of our survey, only two contributions
disclose a public dataset, namely [93] and [114]. Few works
use open data, like the well-known MAWI dataset which is
used for example in [38], [121], the (outdated) KDD CUP
99 [39], [94], and Kyoto2006 [55]. Apart from these cases,
public datasets are scarce and often not updated, posing
limitations in reproducibility of researches as well as limiting
the benchmark of new, possibly more scalable, solutions.

5 — Ongoing projects on big NTMA: We have seen a solid
increase in the adoption of big data approaches in NTMA.
Yet, we observe a fragmented picture, with some limitations
especially regarding interoperability and standardization. In
fact, ad-hoc methodologies are proliferating, with no platform
to support the community.

In this direction, Apache Spot was a promising platform
(see Sect. IV-B). Unfortunately, its development has stopped,
thus questioning its practical adoption by the community and
practitioners. PNDA is instead actively developed, and the
project starts collecting interest from the community, albeit in
its early stage. Beam'® is a framework offering the unification
of batch and streaming models, increasing portability and
easing the work of programmers that do not need to write two
code bases; yet, no applications for NTMA exists.

In sum, there is a lot of work to be done to arrive at a
practical big data solution for NTMA applications. The NTMA
community shall start creating synergies and consolidating
solutions while relaying on the consolidated platforms offered
by the big data community.

REFERENCES

[1] S. Abt, S. Wener, and H. Baier. Performance Evaluation of Classifi-
cation and Feature Selection Algorithms for Netflow-Based Protocol
Recognition. Proc. of the INFORMATIK, pages 2184-2197, 2013.

[2] J. B. Ahn. Neuron Machine: Parallel and Pipelined Digital Neurocom-
puting Architecture. Proc. of the CyberneticsCom, pages 143-147,
2012.

16https://beam.apache.org

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2933358, IEEE

(3]

[4]

[3]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Network and Service Management

F. Amiri, M. R. Yousefi, C. Lucas, A. Shakery, and N. Yazdani. Mutual
Information-Based Feature Selection for Intrusion Detection Systems.
J. Netw. Comput. Appl., 34(4):1184-1199, 2011.

D. Apiletti, E. Baralis, T. Cerquitelli, P. Garza, D. Giordano, M. Mel-
lia, and L. Venturini. SeLINA: A Self-Learning Insightful Network
Analyzer. IEEE Trans. Netw. Service Manag., 13(3):696-710, 2016.
B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred. Taking
the Blame Game out of Data Centers Operations with NetPoirot. Proc.
of the SIGCOMM, pages 440-453, 2016.

F. Bajaber, R. Elshawi, O. Batarfi, A. Altalhi, A. Barnawi, and S. Sakr.
Big Data 2.0 Processing Systems: Taxonomy and Open Challenges. J.
Grid Comput., 14(3):379-405, 2016.

A. Bar, A. Finamore, P. Casas, L. Golab, and M. Mellia. Large-Scale
Network Traffic Monitoring with DBStream, a System for Rolling Big
Data Analysis. Proc. of the BigData, pages 165-170, 2014.

D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a
Needle in Haystack: Facebook’s Photo Storage. Proc. of the OSDI,
pages 47-60, 2010.

Y. Bengio. Learning Deep Architectures for Al
Trends in Machine Learning, 2(1):1-127, 2009.

J. Bennett, R. Grout, P. Pebay, D. Roe, and D. Thompson. Numeri-
cally Stable, Single-pass, Parallel Statistics Algorithms. Proc. of the
CLUSTR, pages 1-8, 2009.

K. Benzidane, H. E. Alloussi, O. E. Warrak, L. Fetjah, S. J. Andaloussi,
and A. Sekkaki. Toward a Cloud-Based Security Intelligence with Big
Data Processing. Proc. of the NOMS, pages 1089-1092, 2016.

M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. Network
Anomaly Detection: Methods, Systems and Tools. Commun. Surveys
Tuts., 16(1):303-336, 2014.

A. Bifet and G. D. F. Morales. Big Data Stream Learning with
SAMOA. Proc. of the ICDMW, pages 1199-1202, 2014.

Big Data Working Group. Big Data Taxonomy. Technical report, Cloud
Security Alliance, 2014.

R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo. A Comprehensive Survey
on Machine Learning for Networking: Evolution, Applications and
Research Opportunities. J. Internet Serv. Appl., 9(16), 2018.

T. Bujlow, V. Carela-Espaiiol, and P. Barlet-Ros. Independent Compar-
ison of Popular DPI Tools for Traffic Classification. Comput. Netw.,
76(C):75-89, 2015.

A. Callado, C. Kamienski, G. Szabo, B. P. Gero, J. Kelner, S. Fer-
nandes, and D. Sadok. A Survey on Internet Traffic Identification.
Commun. Surveys Tuts., 11(3):37-52, 2009.

P. Casas, J. Vanerio, and K. Fukuda. GML Learning, a Generic Machine
Learning Model for Network Measurements Analysis. Proc. of the
CNSM, pages 1-9, 2017.

R. Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Rec.,
39(4):12-27, 2011.

M. Cermék, T. Jirsik, and M. LaStovicka. Real-Time Analysis of
Netflow Data for Generating Network Traffic Statistics Using Apache
Spark. Proc. of the NOMS, pages 1019-1020, 2016.

R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. SCOPE: Easy and Efficient Parallel Processing of Massive
Data Sets. Proc. VLDB Endow., 1(2):1265-1276, 2008.

M. Chandramouli and A. Clemm. Model-Driven Analytics in SDN
Networks. Proc. of the IM, pages 668-673, 2017.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
Distributed Storage System for Structured Data. ACM Trans. Comput.
Syst., 26(2):4:1-4:26, 2008.

M. Chen, S. Mao, and Y. Liu. Big Data: A Survey. Mobile Netw.
Appl., 19(2):171-209, 2014.

Y. Chen, Y. Li, X.-Q. Cheng, and L. Guo. Survey and Taxonomy of
Feature Selection Algorithms in Intrusion Detection System. Proc. of
the Inscrypt, pages 153-167, 2006.

D. Ciresan, U. Meier, and J. Schmidhuber. Multi-Column Deep Neural
Networks for Image Classification. Proc. of the CVPR, pages 3642—
3649, 2012.

A. Clemm, M. Chandramouli, and S. Krishnamurthy. DNA: An SDN
Framework for Distributed Network Analytics. Proc. of the IM, pages
9-17, 2015.

R. Cogranne, G. Doyen, N. Ghadban, and B. Hammi. Detecting
Botclouds at Large Scale: A Decentralized and Robust Detection
Method for Multi-Tenant Virtualized Environments. IEEE Trans. Netw.
Service Manag., 15(1):68-82, 2018.

Foundations and

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]
[50]

[51]

[52]

[53]

12

G. Comarela, G. Giirsun, and M. Crovella. Studying Interdomain
Routing over Long Timescales. Proc. of the IMC, pages 227-234,
2013.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s Highly Available Key-Value Store. SIGOPS Oper. Syst. Rev.,
41(6):205-220, 2007.

L. Deri, A. Cardigliano, and F. Fusco. 10 Gbit Line Rate Packet-to-
Disk Using n2disk. Proc. of the TMA, pages 441-446, 2013.

I. Drago, M. Mellia, and A. D’ Alconzo. Big Data in Computer Network
Monitoring. In Encyclopedia of Big Data Technologies. Springer
International Publishing, 2018.

J. Erman, M. Arlitt, and A. Mahanti. Traffic Classification Using
Clustering Algorithms. Proc. of the MineNet, pages 281-286, 2006.
A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya,
S. Foufou, and A. Bouras. A Survey of Clustering Algorithms for Big
Data: Taxonomy and Empirical Analysis. IEEE Trans. Emerg. Topics
Comput., 2(3):267-279, 2014.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining
to Knowledge Discovery in Databases. Al Magazine, 17(3):37-54,
1996.

P. Fiadino, V. Ponce-Lopez, J. Antonio, M. Torrent-Moreno, and
A. D’Alconzo. Call Detail Records for Human Mobility Studies:
Taking Stock of the Situation in the ”Always Connected Era”. Proc.
of the Big-DAMA, pages 43-48, 2017.

S. Fiadino, P. Casas, A. D’Alconzo, M. Schiavone, and A. Baer.
Grasping Popular Applications in Cellular Networks with Big Data
Analytics Platforms. IEEE Trans. Netw. Service Manag., 13(3):681—
695, 2016.

R. Fontugne, J. Mazel, and K. Fukuda. Hashdoop: A Mapreduce
Framework for Network Anomaly Detection. Proc. of the INFOCOM
WKSHPS, pages 494-499, 2014.

G. Frishman, Y. Ben-Itzhak, and O. Margalit. Cluster-Based Load
Balancing for Better Network Security. Proc. of the Big-DAMA, pages
7-12, 2017.

C. Fuchs. Implications of Deep Packet Inspection (DPI) Internet
Surveillance for Society. Technical Report 1, Uppsala University,
Media and Communication Studies, 2012.

F. Fusco, X. Dimitropoulos, M. Vlachos, and L. Deri. pcaplndex:
An Index for Network Packet Traces with Legacy Compatibility.
SIGCOMM Comput. Commun. Rev., 42(1):47-53, 2012.

F. Fusco, M. P. Stoecklin, and M. Vlachos. NET-FLi: On-the-Fly
Compression, Archiving and Indexing of Streaming Network Traffic.
Proc. VLDB Endow., 3(1-2):1382-1393, 2010.

J. Garcia and T. Korhonen. Efficient Distribution-Derived Features for
High-Speed Encrypted Flow Classification. Proc. of the NetAl, pages
21-27, 2018.

P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macid-Fernandez, and
E. Vazquez. Anomaly-Based Network Intrusion Detection: Techniques,
Systems and Challenges. Comput. Secur., 28:18-28, 2009.

A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayana-
murthy, C. Olston, B. Reed, S. Srinivasan, and U. Srivastava. Building
a High-Level Dataflow System on Top of Map-Reduce: The Pig
Experience. Proc. VLDB Endow., 2(2):1414-1425, 2009.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System.
SIGOPS Oper. Syst. Rev., 37(5):29-43, 2003.

R. Gonzalez, F. Manco, A. Garcia-Duran, J. Mendes, F. Huici, S. Nic-
colini, and M. Niepert. Net2vec: Deep Learning for the Network. Proc.
of the Big-DAMA, pages 13-18, 2017.

S. Hameed and U. Ali. Efficacy of Live DDoS Detection with Hadoop.
Proc. of the NOMS, pages 488-494, 2016.

J. Han, H. E, G. Le, and J. Du. Survey on NoSQL Database. Proc. of
the ICPCA, pages 363-366, 2011.

R. Harper and P. Tee. Cookbook, a Recipe for Fault Localization. Proc.
of the NOMS, pages 1-6, 2018.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer-Verlag New
York, 2 edition, 2009.

R. Hofstede, P. éeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras. Flow Monitoring Explained: From Packet Capture to
Data Analysis with NetFlow and IPFIX. Commun. Surveys Tuts.,
16(4):2037-2064, 2014.

R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras. SSH Compromise
Detection Using NetFlow/IPFIX. SIGCOMM Comput. Commun. Rev.,
44(5):20-26, 2014.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2933358, IEEE

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]
[66]
[67]
[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Network and Service Management

H. Hu, Y. Wen, T.-S. Chua, and X. Li. Toward Scalable Systems for
Big Data Analytics: A Technology Tutorial. IEEE Access, 2:652-687,
2014.

T. Huang, H. Sethu, and N. Kandasamy. @A New Approach to
Dimensionality Reduction for Anomaly Detection in Data Traffic. I[EEE
Trans. Netw. Service Manag., 13(3):651-665, 2016.

L. T. Ibrahim, R. Hassan, K. Ahmad, and A. N. Asat. A Study
on Improvement of Internet Traffic Measurement and Analysis using
Hadoop System. Proc. of the ICEEI, pages 462-466, 2015.

F. Iglesias and T. Zseby. Analysis of Network Traffic Features for
Anomaly Detection. Mach. Learn., 101(1-3):59-84, 2015.

Intel. Data Plane Development Kit (DPDK), 2014.

W. lJiang, E. Zavesky, S.-F. Chang, and A. Loui. Cross-Domain
Learning Methods for High-Level Visual Concept Classification. Proc.
of the ICIP, pages 161-164, 2008.

T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: Multilevel
Traffic Classification in the Dark. Proc. of the SIGCOMM, pages 229—
240, 2005.

H. Kasai, W. Kellerer, and M. Kleinsteuber. Network Volume Anomaly
Detection and Identification in Large-Scale Networks Based on Online
Time-Structured Traffic Tensor Tracking. IEEE Trans. Netw. Service
Manag., 13(3):636-650, 2016.

M. Kim, H. Na, K. Chae, H. Bang, and J. Na. A Combined Data
Mining Approach for DDoS Attack Detection. Proc. of the ICOIN,
2004.

S. Kobayashi, K. Otomo, K. Fukuda, and H. Esaki. Mining Causality
of Network Events in Log Data. IEEE Trans. Netw. Service Manag.,
15(1):53-67, 2018.

A. Lakshman and P. Malik. Cassandra: A Decentralized Structured
Storage System. SIGOPS Oper. Syst. Rev., 44(2):35-40, 2010.

D. Laney. 3d Data Management: Controlling Data Volume, Velocity,
and Variety. Technical report, META Group, 2001.

Q. V. Le. Building High-Level Features using Large Scale Unsuper-
vised Learning. Proc. of the ICASSP, pages 8595-8598, 2013.

Y. Lee, W. Kang, and H. Son. An Internet Traffic Analysis Method
with MapReduce. Proc. of the NOMS, pages 357-361, 2010.

Y. Lee and Y. Lee. Detecting DDoS Attacks with Hadoop. Proc. of
the CoNEXT, pages 7:1-7:2, 2011.

Y. Lee and Y. Lee. Toward Scalable Internet Traffic Measurement and
Analysis with Hadoop. SIGCOMM Comput. Commun. Rev., 43(1):5—
13, 2013.

B. Li, M. H. Gunes, G. Bebis, and J. Springer. A Supervised Machine
Learning Approach to Classify Host Roles on Line Using sFlow. Proc.
of the HPPN, pages 53-60, 2013.

M. Li, C. Lumezanu, B. Zong, and H. Chen. Deep Learning IP Network
Representations. Proc. of the Big-DAMA, pages 33-39, 2018.

Y. Li, O. Martinez, X. Chen, Y. Li, and J. E. Hopcroft. In a World That
Counts: Clustering and Detecting Fake Social Engagement at Scale.
Proc. of the WWW, pages 111-120, 2016.

Y. Li, J.-L. Wang, Z.-H. Tian, T.-B. Lu, and C. Young. Building
Lightweight Intrusion Detection System Using Wrapper-Based Feature
Selection Mechanisms. Comput. Secur., 28(6):466—475, 2009.

H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung. Intrusion Detection
System: A Comprehensive Review. J. Netw. Comput. Appl., 36(1):16—
24, 2013.

G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson, and
F. Schneider. Enriching Network Security Analysis with Time Travel.
Proc. of the SIGCOMM, pages 183-194, 2008.

J. Manyika and others. Big Data: The Next Frontier for Innovation,
Competition, and Productivity, 2011.

S. Marchal, X. Jiang, R. State, and T. Engel. A Big Data Architecture
for Large Scale Security Monitoring. Proc. of the BigData.Congress,
pages 56-63, 2014.

J. McHugh. Testing Intrusion Detection Systems: A Critique of
the 1998 and 1999 Darpa Intrusion Detection System Evaluations
as Performed by Lincoln Laboratory. ACM Trans. Inf. Syst. Secur.,
3(4):262-294, 2000.

M. K. McKusick and S. Quinlan. GFS: Evolution on Fast-forward.
Queue, 7(7):10:10-10:20, 2009.

T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Cernocky. Strategies
for Training Large Scale Neural Network Language Models. Proc. of
the ASRU, pages 196-201, 2011.

“"MIT Lincoln Laboratories”. DARPA Intrusion Detection Data Sets,
1999.

P. Mulinka and P. Casas. Stream-Based Machine Learning for Network
Security and Anomaly Detection. Proc. of the Big-DAMA, pages 1-7,
2018.

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

13

A. Murgia, G. Ghidini, S. P. Emmons, and P. Bellavista. Lightweight
Internet Traffic Classification: A Subject-Based Solution with Word
Embeddings. Proc. of the SMARTCOMP, pages 1-8, 2016.

W. Nagele. Large-Scale PCAP Data Analysis Using Apache Hadoop,
2011.

T. T. Nguyen and G. Armitage. A Survey of Techniques for Internet
Traffic Classification Using Machine Learning. Commun. Surveys Tuts.,
10(4):56-76, 2008.

B. Nickless. Combining Cisco NetFlow Exports with Relational
Database Technology for Usage Statistics, Intrusion Detection, and
Network Forensics. Proc. of the LISA, pages 285-290, 2000.

C. Orsini, A. King, D. Giordano, V. Giotsas, and A. Dainotti. BG-
PStream: A Software Framework for Live and Historical BGP Data
Analysis. Proc. of the IMC, pages 429-444, 2016.

K. Otomo, S. Kobayashi, K. Fukuda, and H. Esaki. Finding Anomalies
in Network System Logs with Latent Variables. Proc. of the Big-
DAMA, pages 8-14, 2018.

S. Owen, R. Anil, T. Dunning, and E. Friedman. Mahout in Action.
Manning Publications Co., Greenwich, CT, USA, 2011.

M. Patterson. NetFlow Vs. Packet Analysis, 2013.

P. Pebay, D. Thompson, J. Bennett, and A. Mascarenhas. Design and
Performance of a Scalable, Parallel Statistics Toolkit. Proc. of the
IPDPS, pages 1475-1484, 2011.

R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the
Data: Parallel Analysis with Sawzall. Sci. Programming, 13(4):277-
298, 2005.

A. Putina, D. Rossi, A. Bifet, S. Barth, D. Pletcher, C. Precup, and
P. Nivaggioli. Telemetry-Based Stream-Learning of BGP Anomalies.
Proc. of the Big-DAMA, pages 15-20, 2018.

M. M. Rathore, A. Paul, A. Ahmad, S. Rho, M. Imran, and M. Guizani.
Hadoop Based Real-Time Intrusion Detection for High-Speed Net-
works. Proc. of the GLOBECOM, pages 1-6, 2016.

V. C. Raykar, R. Duraiswami, and B. Krishnapuram. A Fast Algorithm
for Learning Large Scale Preference Relations. Proc. of the AISTATS,
pages 388-395, 2007.

F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E. Culler. Wide
Area Cluster Monitoring with Ganglia. Proc. of the CLUSTR-03, pages
289-298, 2003.

S. Sakr, A. Liu, and A. G. Fayoumi. The Family of Mapreduce and
Large-scale Data Processing Systems. ACM Comput. Surv., 46(1):1—
44, 2013.

T. Samak, D. Gunter, and V. Hendrix. Scalable Analysis of Network
Measurements with Hadoop and Pig. Proc. of the NOMS, pages 1254—
1259, 2012.

O. Santos. Network Security with NetFlow and IPFIX: Big Data
Analytics for Information Security. Cisco Press, Indianapolis, 1 edition,
2015.

D. Sarlis, N. Papailiou, I. Konstantinou, G. Smaragdakis, and
N. Koziris. Datix: A System for Scalable Network Analytics. SIG-
COMM Comput. Commun. Rev., 45(5):21-28, 2015.

L. Schiff, O. Ziv, M. Jaeger, and S. Schmid. NetSlicer: Automated and
Traffic-Pattern Based Application Clustering in Datacenters. Proc. of
the Big-DAMA, pages 21-26, 2018.

K. Shadi, P. Natarajan, and C. Dovrolis. Hierarchical IP flow clustering.
Proc. of the Big-DAMA, pages 25-30, 2017.

J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. BlindBox: Deep
Packet Inspection over Encrypted Traffic. Proc. of the SIGCOMM,
pages 213-226, 2015.

T. Shibahara, K. Yamanishi, Y. Takata, D. Chiba, M. Akiyama, T. Yagi,
Y. Ohsita, and M. Murata. Malicious URL Sequence Detection Using
Event De-Noising Convolutional Neural Network. Proc. of the ICC,
pages 1-7, 2017.

A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller.
An Overview of IP Flow-Based Intrusion Detection. Commun. Surveys
Tuts., 12(3):343-356, 2010.

M. Spina, D. Rossi, M. Sozio, S. Maniu, and B. Cautis. Snooping
Wikipedia Vandals with MapReduce. Proc. of the ICC, pages 1146—
1151, 2015.

M. Stonebraker. NewSQL: An Alternative to NoSQL and Old SQL
for New OLTP Apps, 2011.

P. Sun and X. Yao. Sparse Approximation Through Boosting for
Learning Large Scale Kernel Machines. IEEE Trans. Neural Netw.,
21(6):883-894, 2010.

H. Tazaki, K. Okada, Y. Sekiya, and Y. Kadobayashi. MATATABI:
Multi-Layer Threat Analysis Platform with Hadoop. Proc. of the
BADGERS, pages 75-82, 2014.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2933358, IEEE

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Network and Service Management

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: A Warehousing Solution
over a Map-Reduce Framework. Proc. VLDB Endow., 2(2):1626-1629,
20009.

G. Tian, Z. Wang, X. Yin, Z. Li, X. Shi, Z. Lu, C. Zhou, Y. Yu, and
D. Wu. TADOOP: Mining Network Traffic Anomalies with Hadoop.
Proc. of the SecureComm, pages 175-192, 2015.

B. Trammell, P. Casas, D. Rossi, A. Bar, Z. Houidi, I. Leontiadis,
T. Szemethy, and M. Mellia. mPlane: An Intelligent Measurement
Plane for the Internet. IEEE Commun. Mag., 52(5):148-156, 2014.
M. Trevisan, I. Drago, M. Mellia, and M. M. Munafo. Towards Web
Service Classification using Addresses and DNS. Proc. of the TRAC,
pages 38-43, 2016.

M. Trevisan, I. Drago, M. Mellia, H. H. Song, and M. Baldi. AWE-
SoME: Big Data for Automatic Web Service Management in SDN.
IEEE Trans. Netw. Service Manag., 15(1):13-26, 2018.

M. Trevisan, A. Finamore, M. Mellia, M. Munafo, and D. Rossi.
Traffic Analysis with Off-the-Shelf Hardware: Challenges and Lessons
Learned. IEEE Commun. Mag., 55(3):163-169, 2017.

C.-W. Tsai, C.-F. Lai, H.-C. Chao, and A. V. Vasilakos. Big Data
Analytics: A Survey. J. Big Data, 2(1):21, 2015.

S. O. Uwagbole, W. J. Buchanan, and L. Fan. Applied Machine
Learning Predictive Analytics to SQL Injection Attack Detection and
Prevention. Proc. of the IM, pages 1087-1090, 2017.

R. Vaarandi, B. Blumbergs, and M. Kont. An Unsupervised Framework
for Detecting Anomalous Messages from Syslog Log Files. Proc. of
the NOMS, pages 1-6, 2018.

S. Valenti and D. Rossi. Identifying Key Features for P2p Traffic
Classification. Proc. of the ICC, pages 1-6, 2011.

S. Valenti, D. Rossi, A. Dainotti, A. Pescape, A. Finamore, and M. Mel-
lia. Reviewing Traffic Classification. In Data Traffic Monitoring and
Analysis - From Measurement, Classification, and Anomaly Detection
to Quality of Experience. Springer, Heidelberg, 1 edition, 2013.

J. Vanerio and P. Casas. Ensemble-Learning Approaches for Network
Security and Anomaly Detection. Proc. of the Big-DAMA, pages 1-0,
2017.

L. Vassio, D. Giordano, M. Trevisan, M. Mellia, and A. P. C. da Silva.
Users’ Fingerprinting Techniques from TCP Traffic. Proc. of the Big-
DAMA, pages 49-54, 2017.

S. Wassermann, P. Casas, T. Cuvelier, and B. Donnet. NETPerfTrace:
Predicting Internet Path Dynamics and Performance with Machine
Learning. Proc. of the Big-DAMA, pages 31-36, 2017.

M. Wullink, G. C. M. Moura, M. Miiller, and C. Hesselman. EN-
TRADA: A High-Performance Network Traffic Data Stream. Proc. of
the NOMS, pages 913-918, 2016.

J. Yuan and S. Yu. Privacy Preserving Back-Propagation Neural
Network Learning Made Practical with Cloud Computing. /EEE Trans.
Parallel Distrib. Syst., 25(1):212-221, 2014.

Y. Zhang, T. Cao, S. Li, X. Tian, L. Yuan, H. Jia, and A. V. Vasilakos.
Parallel Processing Systems for Big Data: A Survey. Proc. IEEE,
104(11):2114-2136, 2016.

J. Zhao, T. Tiplea, R. Mortier, J. Crowcroft, and L. Wang. Data
Analytics Service Composition and Deployment on Edge Devices.
Proc. of the Big-DAMA, pages 27-32, 2018.

BIOGRAPHIES

Alessandro D’Alconzo received the M.Sc. degree
in Electronic Engineering with honors in 2003, and
the Ph.D. in Information and Telecommunication
Engineering in 2007, from Polytechnic of Bari, Italy.
Since March 2018, he is head of the Data Science
office at the Digital Enterprise Division of Siemens
Austria. Between 2016 and 2018, he was Scientist at
the Center for Digital Safety & Security of AIT, Aus-
trian Institute of Technology. From 2007 to 2015,
he was Senior Researcher in the Communication
Networks Area of the Telecommunications Research

14

Center Vienna (FTW). His research interests embrace Big Data processing sys-
tems, network measurements and traffic monitoring ranging from design and
implementation of statistical based anomaly detection algorithms, to Quality
of Experience evaluation, and application of secure multiparty computation
techniques to cross-domain network monitoring and troubleshooting.

Idilio Drago is an Assistant Professor (RTDa) at
the Politecnico di Torino, Italy, in the Department of
Electronics and Telecommunications. His research
interests include Internet measurements, Big Data
analysis, and network security. Drago has a PhD in
computer science from the University of Twente. He
was awarded an Applied Networking Research Prize
in 2013 by the IETF/IRTF for his work on cloud
storage traffic analysis.

Andrea Morichetta (S’17) received the M.Sc. de-
gree in Computer Engineering in 2015, from Politec-
nico di Torino. He joined the Telecommunication
Networks Group in 2016 as a PhD student under
the supervision of Prof. Marco Mellia, funded by
the BIG-DAMA project. In summer 2017 he had a
summer internship at Cisco in San Jose, CA. In 2019
he spent six months at the Digital Insight Lab of
the AIT Austrian Institute of Technology as visiting
researcher. His research interests are in the fields of
traffic analysis, security and data analysis.

Marco Mellia (M’97-SM’08) graduated from the
Politecnico di Torino with Ph.D. in Electronics and
Telecommunications Engineering in 2001, where he
held a position as Full Professor. In 2002 he visited
the Sprint Advanced Technology Laboratories, CA.
In 2011, 2012, 2013 he collaborated with Narus
Inc, CA, working on traffic monitoring and cyber-
security system design. His research interests are in
traffic monitoring and analysis, and in applications
of Big Data and machine learning techniques for
traffic analysis, with applications to Cybersecurity
and network monitoring. He has co-authored over 250 papers and holds 9
patents. He was awarded the IRTF Applied Networking Research Prize in
2013, and several best paper awards. He is Area Editor of ACM CCR, and
part of the Editorial Board of IEEE/ACM Transactions on Networking.

Pedro Casas is Scientist in AI/ML for Networking
at the Digital Insight Lab of the Austrian Institute of
Technology in Vienna. He received an Electrical En-
gineering degree from Universidad de la Reptiblica,
Uruguay in 2005, and a Ph.D. degree in Computer
Science from Institut Mines-Télécom, Télécom Bre-
tagne in 2010. He was Postdoctoral Research at
the LAAS-CNRS in Toulouse from 2010 to 2011,
and Senior Researcher at the Telecommunications
Research Center Vienna (FTW) from 2011 to 2015.
His work focuses on machine-learning and data
mining based approaches for Networking, big data analytics and platforms,
Internet network measurements, network security and anomaly detection, as
well as QoE modeling, assessment and monitoring. He has published more
than 150 Networking research papers in major international conferences and
journals, received 13 awards for his work - including 7 best paper awards. He
is general chair for different conferences, including the IEEE ComSoc ITC
Special Interest Group on Network Measurements and Analytics.

