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A Grey-box Model Based on Unscented Kalman
Filter to Estimate Thermal Dynamics in Buildings

Marco Massano∗, Enrico Macii∗, Edoardo Patti∗, Andrea Acquaviva∗ and Lorenzo Bottaccioli∗
∗Politecnico di Torino, Turin, Italy. Email: name.surname@polito.it

Abstract—Buildings are responsible of about 40% of primary
energy consumption. The widespread diffusion of Internet-of-
Things devices provide allow collecting large amount of en-
ergy related data such as indoor air-temperature and power
consumption of heating/cooling systems. Collected information
can be used to develop data-driven models to learn building
characteristics and to forecast indoor temperature trends. In
this paper, we present a Grey-box model to estimate thermal
dynamics in buildings based on Unscented Kalman Filter and
thermal network representation. The proposed methodology has
been applied to different implementation of building thermal
networks to test their accuracy in temperature prediction. Results
show the accuracy of the proposed methodology in predicting
indoor temperature trends up to next 24-hours with a maximum
error of 1.50°C.

Index Terms—Building simulation, Unscented Kalman Filter,
Grey-box model, Parameter estimation, Thermal Dynamics

I. INTRODUCTION

Nowadays, more than half of the overall worlds population
lives in urban areas. Studies of the United Nation expects
that by 2030 urban areas will host around 68% of people [1].
Furthermore, one-third of the population will live in cities with
at least half a million of inhabitants [1]. Urbanization is largely
energy-intensive as reported by the United Nations habitat
division [2]. Cities consume about 75% of the global primary
energy supply and they are responsible for about 50-60% of
the worlds total greenhouse gas emissions [2]. In particular,
heating systems in buildings are responsible of roughly 40% of
the overall energy consumption [3]. In this context, ICT and, in
particular, Internet-of-Things (IoT) technologies play a crucial
role allowing to monitor and optimize energy consumption [4],
hence increasing the efficiency of energy systems. This is
confirmed by a widespread diffusion of heterogeneous and
pervasive devices in our houses and cities. Such IoT devices
allow to collect large amounts of energy data (e.g. indoor
air temperature) providing detailed information to derive and
model thermal dynamics in buildings. Results of these models
can foster novel control strategies and tools for energy man-
agement in buildings and cities, for example, by exploiting the
flexibility of electro-thermal devices. Thus, heating systems in
buildings can be included in Demand/Response [5], [6] and
Demand Side Management applications [7], [8]

In this paper, we propose a novel data-driven model based
on Unscented Kalman Filter to estimate thermal dynamics
in buildings. It takes advantages of information sampled by
pervasive IoT devices to allow control policies for: i) Optimal
Scheduling of system operation, ii) Model Predictive Control,

iii) Demand Side Management and iv) Demand/Response.
The rest of the paper is organized as follows. Section II

reviews literature solution to simulate thermal dynamics in
buildings. Section III introduces the Unscented Kalman Filter
and Section IV presents the proposed methodology. Section V
debates the experimental results conducted on different repre-
sentation of the thermal model of a test-case building. Finally,
Section VI discusses the concluding remarks and future works.

II. RELATED WORKS

In the last years, a strong research effort has been given to
model thermal energy consumption of buildings. In particular,
models to describe the thermal dynamics in buildings, either
residential or commercial, have been developed, [9]. Such
models can be grouped in three macro-categories: i) White-
box, ii) Black-box and iii) Grey-box.

White-box models have a complete knowledge and de-
scription of i) physical phenomena, ii) structural and thermal
parameters of buildings (e.g. thermal capacity of each element
like walls and windows). Among all, Energy+ [10] is one of
the most famous solution belonging to this category that needs
thermal capacitance, thermal resistance and thickness of the
materials to run simulations [11]. In [12], authors present a
methodology to realistically simulate thermal behaviours of
building by integrating Building Information Models with data
sampled by IoT devices to monitor indoor air temperature
and by replacing information about Test Meteorological Years
with real meteorological data sampled by weather stations.
However, even if most of the fundamental parameters and
settings are known, White-box models are not error free.
Indeed, some other parameters are not known mainly related
to inhabitant behaviours and weather conditions (e.g. window
openings and temporary cloud covering, respectively) that can
significantly affect the thermal behaviour.

Black-box models are empirical models based on statistical
data that neglect information on physical phenomena, struc-
tural and thermal parameters of buildings. Black-box models
aim at finding relation among input and output variables.
In [13], [14], authors present two solutions based on neural
networks techniques to estimate and predict indoor air temper-
ature in buildings. Such solutions exploit a data-set of about
six years with information sampled by IoT devices deployed
in a real-world building. The main limitation of this approach
is the need of a consistent data-set to train and validate neural
networks including all possible energetic conditions. Indeed,
this data-set is not available for every building.



Grey-box models are a combination of both White- and
Black-box, where statistical information are blended with
physical phenomena, structural and thermal parameters of
buildings. Several studies demonstrates that the thermal be-
haviour of a building can be modeled as an Resistor-Capacitor
(RC) circuit [15]–[17]. In this analogy with electric circuits,
resistors and capacitors are walls and air mass, electric voltage
is the temperature and the electric current is the heat flow.

Bacher et al. [18] proposed a model that couples a set of
continuous time stochastic differential equations with a set of
discrete time measurement equations. In the model, variation
of temperature can be affected by disturbance that can not
be measured directly, such as windows openings, presence of
people, machines, heating systems and solar gain.

Techniques like Kalman filters and genetic algorithms are
used to estimate the effects of unmeasured disturbances on
the dynamics of state variables. In [19], authors performed a
virtual and mini test-bed experiment to test the capability of
Kalman filters to detect process disturbance. In the estimation
process, they have summed together solar heat gain and losses
from internal sources.

Fux et al. [20] applied the Extended Kalman Filter to a
1R1C circuit that models a commercial building. This self-
adaptive thermal model provides estimations of the unmea-
sured heat flows caused by inhabitants, predicting the indoor
air temperature with an error ranging from 0.5°C to 3°C for
future 3 and 48 hours, respectively.

Kalman filters has been applied also to design a Parameter-
Adaptive Building model by simultaneously tuning the param-
eters of the model and estimating the states of the system [21].

Finally in [22], authors used the Unscented Kalman Filter
to define the state parameters of a multi-zone thermal network
validating their results with Energy+ simulation. This model is
first trained with a 7-days data-set consisting of known loads to
learn the constant parameters; then, it is able to characterize
the unknown loads (i.e. sun irradiance). Predictions of tem-
perature trends are quite accurate. Indeed, the resulting Root
Mean Square Difference is about 1.48°C.

With respect to literature solutions, our model estimates the
effects of solar heat gain and HVAC (Heating, Ventilation and
Air Conditioning) systems on the indoor air temperature in
buildings. In particular, solar heat gain is modelled by re-
projecting the solar radiation on the building facades. Further-
more, we discuss the performance of our model with i) dif-
ferent configurations of the proposed RC circuit, ii) different
parameters representing the building elements and iii) different
length of the training set.

III. UNSCENTED KALMAN FILTER

Kalman filters belongs to Bayesian filters family. They
describe a general probabilistic approach for estimating an un-
known probability density function recursively over the time.
They use a mathematical model to describe a phenomena,
and real control measurements to validate the model. Kalman
filters results particularly efficient when a dual estimation

is needed, i.e. when they have to estimate both state and
parameters [23].

Unscented Kalman Filter (UKF) is based on the assumption
that a probability distribution function is easier to be approx-
imated than an arbitrary non linear function [24]. Therefore
the distribution is approximated by the gaussian density, and
it is represented by a set of deterministic chosen samples.
These so called sigma points completely get the true mean
and covariance of the gaussian distribution. When propagated
through nonlinear systems, they get the true mean and covari-
ance accurately to the second order (Taylor series expansion)
of any non-linearity. The core of UKF is the Unscented
Transform that allows, with a nonlinear transformation, to
compute statistics of a random variable. The n-dimensional
random variable x, with mean x̂(k|k) and covariance matrix
P (k|k) for kth iteration, is approximated by the following
equations through 2n+1 weighted sigma points and correlated
weights:

χ0(k|k) = x̂(k|k) i = 0

W (0)
m =

κ

(n+ κ)

χi(k|k) = x̂(k|k) +
(√

(n+ κ)P (k|k)
)
i

i = 1, ..., n

W (0)
c =

1

2(n+ κ)
(1)

χi(k|k) = x̂(k|k)−
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(n+ κ)P (k|k)
)
i

i = n+ 1, ..., 2n

W (i)
m = W (i)

c =
1

2(n+ κ)

where n represents the state dimension, κ is a scaling pa-
rameter such that κ+ n 6= 0 with n, κ ∈ R. Wi is the weight
associated to ith point, and it can be associated to the mean
weight (Wm) or to the covariance (Wc). Weights are then
normalized, so they satisfy

∑2n
i=0Wi = 1. These sigma vectors

are propagated through the nonlinear function f(·) yielding a
transformed set of points.

χi
k+1|k = fk

(
χi
(
k|k
))

(2)

The Prediction Step calculates the a-priori mean and
covariance as follows:

x̂(k + 1|k) =

2N∑
i=0

W (i)
m χik+1|k

Px(k + 1|k) = (3)
2N∑
i=0

W (i)
c [χik+1|k − x̂(k + 1|k)][χik+1|k − x̂(k + 1|k)]T +Q

where Q represents a noise term.
The Update Step is performed in measurement space.

Thus the sigma points are transformed into Y through the
measurement function h(·):

Yik+1|k = hk(χik+1|k) (4)



and the a-posteriori mean and covariance are calculated as
follow:

ŷ(k + 1|k) =

2N∑
i=0

W (i)
m Yik+1|k

Py(k + 1|k) = (5)
2N∑
i=0

W (i)
c [Yik+1|k − ŷ(k + 1|k)][Yik+1|k − ŷ(k + 1|k)]T +R

where R represents the measurement noise. Then, the residual
of the measurement is computed by the following equation:

y = z− ŷ(k + 1|k) (6)

Cross-covariance of state and measurement is calculated by:

P xy(k + 1|k) = (7)
2N∑
i=0

W (i)
c [χik+1|k − x̂(k + 1|k)][Yik+1|k − ŷ(k + 1|k)]T

Then, the Kalman gain (K) is computed as:

Kk = P xy(k + 1|k)P−1(k + 1|k) (8)

Finally, the UKF estimation, and its covariance, is calculated
as follows:

x̂(k + 1|k + 1) = x̂(k + 1|k) +Kky (9)

P (k + 1|k + 1) = Px(k + 1|k)−KkPy(k + 1|k)KT
k

Algorithm 1 summaries the steps involved in the Unscented
Kalman filter.

Algorithm 1 Unscented Kalman Filter
Initialization

Initialize the belief in the state
Prediction

Generate χ and Wm,Wc

Project χ to f(·) creating Y = f(χ)
Compute mean and covariance of the prior
x̄− =

∑
WmY

P̄− =
∑
W c(Y − x̄−)(Y − x̄−)T + Q

Update
Project Y to h(·) creating Z = h(Y)
Compute mean and covariance of the posterior
x̄+ =

∑
WmZ

P̄+ =
∑
W c(Z − x̄+)(Z − x̄+)T + R

Compute residual y = z− x̄+

Compute K =
[∑

W c(Y − x̄+)(Z − x̄+)T
]
P−1

+
Update mean and covariance of the UKF estimation
x = x̄− + Ky
P = P̄− + KP̄+K

IV. METHODOLOGY

This section describes the proposed methodology used to
create a Grey-box model that exploits UKF for predicting
temperature trends in buildings. As highlighted in [15]–[17],
thermal systems in buildings can be modelled and approxi-
mated through an electric RC circuit (see Figure 1). The main
assumption is that a building is composed by a finite number
of parts (n), called nodes. Each resistance between two nodes
represent a wall, a window or the air mass. Figure 1 (a) shows

a single node RC circuit of a building where Rin and Cin
represent the resistance and capacity of all the element in
the building itself. Figure 1 (b) shows a two node RC circuit
where indoor air mass is between walls resistance and capacity.
Furthermore, there may be a direct input heat source applied to
each node (e.g. solar radiation, air-heating system and lights).
Buildings can be represented by a single-zone RC circuit (see
Figure 1 (a) and Figure 1 (b)) or with a multi-zone RC circuit
(see Figure 1 (c)); this depends on the level of detail and
aggregation to provide to the model. In a single-zone model the
unique heat exchange will be with the external environment.
Whilst, a multi-zone model considers also the heat exchange
with the adjacent zones.

Fig. 1. Thermal networks representation. a) single-zone 1-node; b) single-
zone 2-node c) multi-zone 1-node

The variation of temperature at a Node of zone i is de-
termined by heat exchange with adjacent zone(s) j and by
external/internal heat supply. This is modelled by the following
equation:

Ci
dTi
dt

=
∑
j

Tj − Ti
Ri,j

+AiQradi + Q̇inti (10)

where Ci is the thermal capacity (J /◦C) of zone i, Ri,j is
the thermal resistance (◦C/W ) between zone i and zone j, Ai
represent the fraction of wall irradiated by solar radiation (m2),
Qradi is the solar radiation (W /m2) and Qinti the interior heat
supply of zone i (W ). Each zone can be divided in infinite
sub-zones. A typical procedure to do so consists in considering
also temperature of walls as an heat exchange source.

The UKF task is to train the model with a series of measure-
ments and to estimate unknown parameters and disturbances.
Heat transfer equations that describe the physical system yield
the following set of continuous time differential equations:

ẋ = f(x, u, d, p)

z = h(x, u)
(11)

where f(·) and h(·) are the same function described in
Section III representing respectively state transition and mea-
surement function; x ∈ Rn is the state vector representing
the temperature of the state and ẋ is the state temperature



rate of change; u ∈ Rm is the input vector (e.g., outdoor
temperature); d is the disturbance vector (e.g. solar load,
heater loads, infiltration) and p is the selected uncertain model
parameters; z ∈ mathbbRm is the output vector of the system
and represents the temperature of thermal zones. This model
is used to reproduce the true building thermal evolution.

As described in [22], to allow the parameter estimation
with UKF, the state x in Equation 11 has been augmented
combining together temperatures T̄ = [T1 · · ·Tn]T with un-
certain parameters p̄ = [(RC)1 · · · (RC)k]T and disturbances
d̄ = [AwQrad/C Qint/C]T . The result is an augmented
state vector x̄:

x̄ =

[ T̄
p̄

d̄

]

Multiplying p̄ and d̄ parameters through the state variables
T̄ and u causes the state update function f(x̄(k), u(k)) to be-
comes non-linear. This non-linearity is needed by UKF to pre-
dict the state equations. To implement the filter, Equation 11 is
discretized with a 1-min interval steps Euler integration. The
full discrete-time stochastic system becomes as follow:

x̄(k + 1) = f(x̄(k), u(k)) + ω̄1(k)

p̄(k + 1) = p̄(k) + ω̄2(k)

b̄(k + 1) = d̄(k) + ω̄3(k)

z̄(k + 1) = h(x̄(k), u(k)) + v̄(k)

(12)

where ω̄ and v̄ are process and measurements noise, respec-
tively. They are assumed to be zero mean, multivariate, white
gaussian with covariance Q and R, (i.e. ω̄ ≈ N(0, Q) and
v̄ ≈ N(0, R)), respectively. In particular ω̄1(k) represents
process noise for temperatures, ω̄2(k) represents estimation
uncertainty in RC parameters and ω̄3(k) represents process
noise for disturbances.

The measurement noise is correlated with the accuracy of
the measure used to study the system. In our case, this is
the accuracy of the temperature sensors. Temperature noise
is correlated with the accuracy of the equation that define
the state. The more the law is detailed and involves all the
possible sources of heat, the smaller has to be the noise value.
RC noise parameter must be set to a value greater than zero
to allow the filter to vary its estimation over the time. Also
disturbance process noise is a parameter, but it differs from
the previous because the disturbance noise is considered only
when disturbance have to be estimated. The noise level for RC
parameters should be much smaller than for disturbances due
to RC values that are constant over the time, while disturbance
bias may change over the day.

In a first iteration, the filter runs only for night hours
to have disturbance (both solar gains and HVAC systems)
equal to zero, and to better estimate RC parameters. In a
second iteration, the filter runs considering also day hours
to estimate both RC parameters and disturbance. After these
two iterations, all the RC parameters and disturbance patterns

are used together to predict the indoor air-temperature trends
for the next 24-hours. During first iteration, the disturbance
process covariance Q is set equal to zero to not estimate
disturbance parameters. Whilst, during the second iteration,
Q is inflated to allow the disturbance parameters to change
over the time and follow the real behavior of the phenomena.

Another important parameter to be initialized is the co-
variance matrix P . It represents the uncertainty on the x̂0

initial state estimation, and, in contrast to measurement noise
covariance, it cannot be estimated experimentally. In this work,
we apply the approach proposed in [25], [26] to initialize P0

as follows:

P0 = diag((x̂0 − x0)T (x̂0 − x0)) (13)

The exact value of state x0 is rarely known in practice, but
more often are known upper (xu) and lower (xl) bounds
that are used to approximate x̂0. Using this approximation,
it is possible to set x̂0 = 0.5(xu + xl) and x̂0 − x0 =
0.5(xu − xl).

In this brief, both solar radiation and interior heat gain are
treated as external disturbances. As a matter of fact, it is a
frequent scenario to not have exhaustive information about
their shape. On the contrary, it is common to have information
about outdoor temperature profiles, so they have been treated
as a known input.

V. EXPERIMENTAL RESULTS

This section presents the experimental results of the pro-
posed methodology i) in estimating thermal parameters of a
building and ii) in predicting indoor air temperature trends up
to future 24 hours. Tests are performed considering a math-
ematical solution of the investigated thermal networks and a
building simulated with Energy+. For all the tests, weather
conditions (i.e. outdoor temperature and solar radiation) are
taken from the Energy+ weather file for Turin.

The first test is conducted on a simple 1-node thermal
network (Figure 1 (a)) where temperature profile are created
ad-hoc with Eulerian 1-minute discretization of Equation 10.
This test-case is used to check the filter’s performance on the
estimation of the RC parameters. Figure 2 shows results on
estimating the RC parameter. After two or three simulated
days, RC parameters converges to the real value. After ten
simulated days, it reaches a complete convergence.

Fig. 2. Parameter Convergence



Figure 2 shows how the covariance associated to the RC-
parameters converges. This is confirmed by the decreasing
P trend that is the area highlighted in yellow in the plot.
This is also confirmed by the covariances evolution of both
temperature and parameters in Figure 3 that drop to zero in
few simulation-steps.

Fig. 3. Covariances Convergence

Furthermore, we tested the ability of our solution in predict-
ing the indoor air temperature trends for the future 24 hours.
We performed our test considering a ”virtual and realistic
building”, which is an industrial-like building spreading over
a base surface of 10 000m2. The RC circuit is designed to
dived the whole area into five thermal zones (see Figure 1 (c)).
The first four are oriented towards the cardinal directions,
while the fifth is located in the center of the building. To
compare our results with realistic indoor temperature trends,
we simulated the same virtual building with Energy+. The
outdoor temperature trend is considered as the input of the
thermal network (see Section IV). To take into account the
effect of solar radiation on outdoor air temperature, we used
the the Tsol−air calculated as:

Tsol−air = Text + k ·GTI (14)

where GTI is the incident global solar radiation on the tilted
surface and k is the radiative loss factor of the surface.
As presented by Bottaccioli et al. [27], Tsol−air represents
the ”projection” of the external temperature over a surface
considering the effect of solar radiation.

We have performed eight tests where, for each test, we
gradually increased the complexity of the model as follows:
i) considering solar radiation as disturbance; ii) considering so-
lar radiation and HVAC as disturbance; iii) estimating together
R and C; iv) estimating separately R and C. For each level
of complexity, we performed the 1-node circuit (considering
only zone temperature as a node), and the 2-node circuit (con-
sidering also wall temperature). To evaluate the accuracy of
our results compared with results of Energy+ simulations (our
benchmark), we adopted the following performance indicators.
i) Mean Absolute Error (MAE) is defined as the average of
the absolute difference between the state estimation and the
reference data. ii) Root Mean Square Error (RMSE) is the
standard deviation of differences between state estimation and
observed values. iii) Correlation Coefficient is a 0 to 1 number

representing the strength of the correlation between the state
estimation and observed values.

Figure 4 shows the prediction for the future 24 hours of
indoor air temperature for 1-node circuit. In this scenario,
only solar radiation is considered as a disturbance and RC
is estimated as coupled parameters. This plot highlights that
the predicted air temperature follows with a good accuracy the
benchmark trend.

Fig. 4. 24-hours prediction with solar gain as disturbance for 1-node circuit

Fig. 5. Solar gain disturbance pattern of thermal network of the five zones
and GHI of the same days

Figure 5 shows the estimated disturbances pattern due to
solar gain in the thermal network of the zones. With the
black line is reported, as a comparison, the Global Horizontal
Irradiance (GHI). As shown in the plot, trends are very similar
to the real solar radiation profile. The few differences are due
to the different orientations.

Fig. 6. 1-zone 24-hours prediction with solar gain and HVAC as disturbance

Figure 4 shows the prediction for the future 24 hours of
indoor air temperature for a second 1-node circuit. In this
second scenario, solar radiation and HVAC are considered as a
disturbance and RC is estimated as coupled parameters. In this



case, our solution estimates two different disturbance profiles,
causing some instability in the recognition of disturbance
pattern and decreasing the accuracy of the prediction. However
also in this case, our forecasts follows with a good accuracy
the benchmark trend.

Table I reports the performance indicator for all the eight
tests we performed. In the table, GTI stands for solar radiation
disturbance. CP and SP refers to RC estimated as coupled
or separate parameters, respectively. The best performance is
given by the combination of 1-node CP circuits that considers
only solar radiation as disturbance. However in case of 1-node
SP circuits, errors slightly get worst. Even if we introduce the
HVAC system in our computations, the error rate increases but
performance is still accurate. For 2-node circuits, performance
is slightly worse than 1-node circuits. This is due to the
temperature of walls that is an additional parameter to be
estimated and not an input of the model as for 1-node circuits.

TABLE I
PERFORMANCE INDICATOR FOR THE EIGHT TESTS

Test RMSE [°C] MAE [°C] CORR

1-node, GTI, SP 0.464 0.384 99.2
1-node, GTI, CP 0.370 0.295 99.1

1-node, GTI+HVAC, SP 1.50 1.14 98.3
1-node, GTI+HVAC, CP 1.24 0.90 98.3

2-node, GTI, SP 1.16 1.01 98.4
2-node, GTI, CP 0.73 0.63 98.9

2-node, GTI+HVAC, SP 1.75 1.40 96.9
2-node, GTI+HVAC, CP 1.09 1.32 91,2

VI. CONCLUSION

In this paper, we presented a Grey-box model to predict
indoor air temperature in buildings by learning their thermal
characteristic and dynamics. The grey-box model is trained
using the UKF to learn parameter of the thermal network
and the disturbances due to solar gain and HVAC systems.
First, we discuss the motivation that drive the development
of such models and presented the literature solution for such
problem. We than present the formulation of the UKF filter
and the methodology used to test several thermal networks.
The experimental results show the accuracy of the approach
in forecasting indoor-air temperature trends. As future work,
we plan to test this method with on filed measurements in
complex buildings with more detailed thermal networks and
compare the accuracy of different learning algorithms.
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