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Fusing incomplete preference rankings in design for 
manufacturing applications through the ZMII-technique 

Fiorenzo Franceschini and Domenico A. Maisano 

Dept. of Management and Production Engineering (DIGEP), Politecnico di Torino,  

Corso Duca degli Abruzzi 24, Turin, 10129, Italy 

ABSTRACT 

The authors recently presented a technique (denominated “ZM”) to fuse multiple (subjective) preference 

rankings of some objects of interest - in manufacturing applications - into a common unidimensional ratio 

scale (Franceschini, Maisano 2019). Although this technique can be applied to a variety of decision-making 

problems in the Manufacturing field, it is limited by a response mode requiring the formulation of complete 

preference rankings, i.e. rankings that include all objects. Unfortunately, this model is unsuitable for some 

practical contexts – such as decision-making problems characterized by a relatively large number of objects, 

field surveys, etc. – where respondents can barely identify the more/less preferred objects, without 

realistically being able to construct complete preference rankings. 

The purpose of this paper is to develop a new technique (denominated “ZMII”) which also “tolerates” 

incomplete preference rankings, e.g., rankings with the more/less preferred objects only. This technique 

borrows the underlying postulates from the Thurstone’s Law of Comparative Judgment and uses the 

Generalized Least Squares method to obtain a ratio scaling of the objects of interest, with a relevant 

uncertainty estimation. 

Preliminary results show the effectiveness of the new technique even for relatively incomplete preference 

rankings. Description is supported by an application example concerning the design of a coach-bus seat. 

Keywords: Design for Manufacturing, Group decision making, Incomplete preference ranking, Thurstone’s 

Law of Comparative Judgment, Generalized least squares, ZMII-technique, Incomparability.  

INTRODUCTION 

A rather common decision-making problem is articulated as follows (Keeney and Raiffa, 1993; 

Franceschini et al., 2007; Coaley, 2014):  

 A set of objects (o1, o2, …) should be compared based on the degree of a specific attribute; 

 A set of judges (j1, j2, …) individually express their subjective judgments on (at least a portion 

of) these objects. In fact, judges may refrain from judging some objects, e.g., those for which 

they are unable to express their own judgement because of practical impediment or lack of 

adequate knowledge; 

 The above judgments should be fused into a single collective judgment. 
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Considering the Manufacturing and Quality Engineering/Management fields, possible examples 

concern: (i) the fusion of customer expectations on a set of product requirements (Nahm, et al. 

2013), (ii) the fusion of judgments by reliability and maintenance engineers on the design of 

appropriate preventive maintenance interventions, or (iii) the fusion of the opinions of designers and 

marketing experts on the brand image of several competing products (Lin et al. 2017; Zheng et al. 

2019). 

The scientific literature encompasses a plurality of fusion techniques, which may differ from each 

other for at least three features: (i) the response mode for collecting subjective judgments (e.g., 

ratings, rankings, paired-comparison relationships, etc.); (ii) the type of fusion model (e.g., 

heuristic, mathematical, statistical, fuzzy models, etc.) (Hosseini and Al Khaled, 2016; Wang et al. 

2017; Çakır, 2018), and (iii) the type of collective judgment (e.g., object rankings, 

ordinal/interval/ratio scale values, etc.). For an exhaustive discussion of the existing techniques, we 

refer the reader to the vast literature and reviews (Coaley, 2014; De Vellis, 2016). 

Regardless of the peculiarities of the individual fusion techniques, a key element for their success is 

the simplicity of the response mode (Harzing et al., 2009; Franceschini et al., 2019). For example, 

various studies show that comparative judgments of objects (e.g., “oi is more/less preferred than oj”) 

are simpler and more reliable than judgments in absolute terms (e.g., “the degree of the attribute of 

oi is low/intermediate/high”) (Edwards, 1957; Harzing et al., 2009; Vanacore et al., 2019). 

The authors have recently presented a fusion technique, denominated “ZM-technique”, which 

combines the Thurstone’s Law of Comparative Judgment (LCJ) (Thurstone, 1927; Edwards, 1957) 

with a response mode based on preference rankings (Franceschini and Maisano, 2019). The 

resulting collective judgment is expressed in the form of a ratio scaling (Roberts, 1979; 

Franceschini et al., 2019). An important requirement of the ZM-technique is that, apart from 

“regular” objects (i.e., o1, o2, …), preference rankings also include two “dummy” or “anchor” 

objects: i.e., oZ, which corresponds to the absence of the attribute of interest, and oM, which 

corresponds to the maximum-imaginable degree of the attribute (Franceschini and Maisano, 2019). 

Borrowing the language from Mathematics’ Order Theory, the original version of the ZM-technique 

requires judges to formulate linear preference rankings, i.e., complete rankings that include all 

(regular and dummy) objects, according to a hierarchical sequence with relationships of strict 

preference (e.g., “oi > oj”) and/or indifference (e.g., “oi ~ oj”) (Nederpelt and Kamareddine, 2004). 

For the sake of simplicity, such decision-making problem will be hereafter referred to as “complete 

ranking problem” or, even more simply, as “complete problem”. 

This is certainly a limitation, as it makes the response mode unsuitable for some practical contexts 

where ranking many objects can be problematic. It has also been observed that when formulating 

preference rankings judges tend to focus on the more/less preferred objects, providing more reliable 



 3

judgments about them, to the detriment of the remaining objects (Lagerspetz, 2016; Harzing et al., 

2009). Another limitation of the ZM-technique – and the traditional LCJ too (Montag, 2006) – is the 

impossibility to estimate the uncertainty related to the resulting scaling of objects. 

The above considerations raise the following research question: “How could the ZM-technique be 

modified/improved to (1) make the response more user-friendly and reliable and (2) determine a 

(statistically sound) estimate of the uncertainty related to the solution?”. 

The aim of this paper is to address the previous research question, proposing a new version of the 

ZM-technique – denominated “ZMII” – that overcomes the limitations of the original version, while 

preserving the basic principles. The ZMII-technique replaces complete preference rankings with 

incomplete ones, such as rankings which are focussed exclusively on the more/less preferred 

objects. Borrowing the language from Order Theory, these other rankings can be classified as 

partial, i.e., apart from strict preference and indifference relationships, they may also contain 

incomparability relationships (e.g., “oi || oj”) among (some of) the objects (Nederpelt and 

Kamareddine, 2004). For the sake of simplicity, a decision-making problem characterised by this 

type of rankings will be hereafter referred to as “incomplete ranking problem” or, even more 

simply, as “incomplete problem”. Although the problem of fusing incomplete preference rankings is 

well present in the scientific literature, it seems that there is no work which explicitly deals with 

their fusion into a ratio scaling (Gulliksen and Tucker, 1961; Kendall, 1963; Vincke, 1982; Alvo 

and Cabilio, 1991; González-Pachón and Romero, 2001). 

The rest of the paper is organized into five sections. Section “Case study outline” introduces a case 

study concerning the design of a civilian coach-bus seat, which will accompany the theoretical 

description of the new fusion technique. Section “Background information” briefly recalls the LCJ 

and ZM-technique. Section “Methodology” illustrates the new version of the fusion technique, 

which includes the construction of an overdetermined system of equations and its solution through 

the Generalized Least Squares (GLS) method (Kariya and Kurata, 2004); this section also shows 

that the new technique allows to estimate the uncertainty related to the solution, “propagating” the 

uncertainty of input data. Section “Application example” applies the new technique to the aforesaid 

case study. Section “Conclusions” summarizes the original contributions of this paper and its 

practical implications, limitations and suggestions for future research. Further details and 

technicalities on the new fusion technique are contained in the Appendix section. 

CASE STUDY OUTLINE 

The conceptual description of the ZMII-technique will be accompanied by a practical application to 

the following real-life case study. A company designing and manufacturing passenger seats for 

different civilian means of transport (buses, trains, planes, ferries, etc.) should innovate the design 
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of its range of coach-bus seats (see Figure 1). A team of designers decide to accomplish this 

objective through the Quality Function Deployment (QFD) tool (Kowalska et al., 2018; Zheng et 

al., 2019).  

(a) Rendering image (b) CAD drawing  

Figure 1. Example of a passenger coach-bus seat.  

 

One of the initial phases of the QFD is the identification and prioritization of customer 

requirements (CRs) (Franceschini et al., 2015; Franceschini and Maisano, 2015). Assuming that the 

marketing function of the company has identified the twelve major CRs (o1 to o12 in Table 1), the 

next step is to prioritize them according to their importance. The new fusion technique can be used 

to merge the individual (subjective) CR judgments of a panel of twenty regular coach-bus 

passengers (j1 to j20). The case study will be developed after the description of the new fusion 

technique. 

 
Table 1. List of the major CRs related to a civilian coach-bus seat, from the perspective of passengers. 

Abbr. Description 
o1 Arm rests not too narrow 
o2 Does not make you sweat 
o3 Does not soak up a spilt drink 
o4 Hole in tray for coffee cup 
o5 Arm rest folds right away 
o6 Does not hit person behind when you recline 
o7 Comfortable when you recline 
o8 Comfortable seat belt 
o9 Enough leg room 
o10 Magazines can be easily removed from rack 
o11 Seat belt feels safe 
o12 Comfortable (does not give you back ache) 
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BACKGROUND INFORMATION 

This section is organized in two subsections, which respectively recall the Thurstone’s LCJ and the 

ZM-technique. 

Thurstone’s Law of Comparative Judgment 

Thurstone (1927) postulated the existence of a psychological continuum, i.e., an abstract and 

unknown unidimensional scale, in which objects are positioned depending on the degree of a certain 

attribute – i.e., a specific feature of the objects, which evokes a subjective response in each judge. 

The position of a generic i-th object (oi) is postulated to be distributed normally, in order to reflect 

the intrinsic judge-to-judge variability: oi ~ N(xi, i
2), where xi and i

2 are the unknown mean value 

and variance related to the degree of the attribute of that object. E.g., considering the case study in 

the section “Case study outline”, twelve CRs are supposed to be positioned in the psychological 

continuum according to their degree of importance for a panel of twenty coach-bus passengers.  

Considering two generic objects, oi and oj, it can be asserted that: 

oi – oj ~ N(xi – xj, i
2 + j

2 – 2·ij·i·j), (1) 

where ij is the Pearson coefficient denoting the correlation between the positions of objects 

oi and oj. The probability that the position of oi in the psychological continuum is higher than that of 

oj can be expressed as: 

pij = P(oi – oj > 0) = 1 – 
 



















jiijji

ji xx

 2

0
22

, (2) 

 being the cumulative distribution function of the standard normal distribution z ~ N(0, 1). 

The LCJ (case V) includes the following additional simplifying assumptions (Thurstone, 1927; 

Edwards, 1957): i
2 = 2 i , jiij , ,  , and   112 2   . Eq. 2 can therefore be expressed 

as: 

pij = P(oi – oj > 0) = 1 – [-(xi – xj)]. (3) 

Although pij is unknown, it can be estimated using the information contained in a set of (subjective) 

judgments by a number (m) of judges (Thurstone, 1927). Precisely, each judge expresses his/her 

judgment for each paired comparison (i.e., ji, ) through relationships of strict preference (e.g., 

“oi > oj” or “oi < oj”) or indifference (e.g., “o1 ~ o2”). Then, for each judge who prefers oi to oj, a 

frequency indicator fij is incremented by one unit. In the case the two objects are considered 

indifferent, fij is conventionally incremented by 0.5, so that: 

fij = mij – fji, (4) 



 6

mij being the total number of judges who express their judgment for the i,j-th paired comparison. In 

general, mij ≤ m since judges may sometimes refrain from expressing their judgments on some of 

the possible paired comparisons.  

The observed proportion of judges that prefer oi to oj can be used to estimate the unknown 

probability pij: 

ij

ij
ij m

f
p ˆ . (5) 

Of course, the relationship of complementarity jiij pp ˆ1ˆ   holds.  

Returning to Eq. 3, it can be expressed as: 

ijp̂ = 1 – [-(xi – xj)], (6) 

from which: 

xi – xj = --1(1 – ijp̂ ). (7) 

It can be noticed that, if all judges express the same judgment, the model is no more viable ( ijp̂  

values of 1.00 and 0.00 would correspond to - )ˆ1(1
ijp  values of  ). A simplified approach 

for tackling this problem is associating values of ijp̂ ≥ 0.977 with --1(1 – 0.977) = 1.995 and 

values of ijp̂ ≤ 0.023 with --1(1 – 0.023) = -1.995. More sophisticated solutions to deal with this 

issue have been proposed (Gulliksen, 1956; Edwards, 1957). 

Extending the reasoning to all possible paired comparisons for which mij  ≥ 1 (i.e., for at least one 

judge there is a paired-comparison relationship of strict preference or indifference), the relevant ijp̂  

values can be determined and the following system of equations can be constructed: 

 








 





1:,0ˆ11
ijijji mjipxx . (8) 

Since the rank of the system is lower than the number (n) of unknowns of the problem (i.e., xi, i ) 

– and the system itself would be indeterminate – the following conventional condition was 

introduced by Thurstone (1927): 





i

ix 0 . (9) 

Eqs. 8 and 9 are then aggregated into a new system, which is over-determined (i.e., it has rank n 

while the total number of equations – q – is higher than n) and linear with respect to the unknowns:  
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 
































i
i

ijijji

x
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0

1:,0ˆ11





. (10) 

This system can be expressed in matrix form as: 

  0BXA 













],0[0
1

qhbxa h

n

k
khk





, (11) 

X = […, xi, …]T 1 nR  being the column vector containing the unknowns of the problem, ahk being 

a generic element of matrix A nqR  , and bh being a generic element of vector B 1 nR . For details 

on the construction of A and B, see (Gulliksen, 1956). 

In the case each judge expresses his/her judgment on the totality of the 2/)1(2  nnC n  paired 

comparisons, the system in Eq. 10 is complete – i.e., with q = 12 
nC  equations – and can be solved 

in a closed form as (Thurstone, 1927): 

  jpx
m

i
ijj 





1

1 ˆ1ˆ . (12) 

The LCJ unfortunately has some limitations, including the following ones: 

1. the response mode is relatively tedious for judges; 

2. the LCJ results into an interval scaling, i.e., objects are defined on a scale with meaningful 

distance but arbitrary zero point (Thurstone, 1927; Roberts, 1979); 

3. the solution can be determined only when the system of equations is “complete”; 

4. no uncertainty estimation is provided. 

ZM-technique 

The ZM-technique was proposed to overcome some of the above limitations of the LCJ 

(Franceschini and Maisano, 2019). A significant drawback of the LCJ response mode is that paired 

comparisons can be tedious and complex to manage, since much repetitious information is required 

from judges. This problem can be overcome asking each judge to formulate a preference ranking, 

i.e., a sequence of objects in order of preference (more preferred ones in the top positions and less 

preferred ones in the bottom ones). 

Apart from regular objects (o1, o2, …), judges should include two special dummy objects in their 

rankings: one (oZ) corresponding to the absence of the attribute of interest and one (oM) 

corresponding to the maximum-imaginable degree of the attribute (Franceschini and Maisano, 
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2019). E.g., considering the case study in the section “Case study outline”, oZ corresponds to a 

fictitious CR of no importance at all, while oM corresponds to a fictitious CR of the maximum-

imaginable importance. When dealing with these special objects, two important requirements 

should be considered by judges: 

1. oZ should be positioned at the bottom of a preference ranking, i.e., there should not be any other 

object with preference lower than oZ. In the case the attribute of another object is judged to be 

absent, that object will be considered indifferent to oZ and positioned at the same hierarchical 

level. 

2. oM should be positioned at the top of a preference rankings, i.e., there should not be any other 

object with preference higher than oM. In the case the attribute of another object is judged to be 

the maximum-imaginable, that object will be considered indifferent to oM and positioned at the 

same hierarchical level. 

Next, the preference rankings of judges can be turned into paired-comparison data (e.g., the four-

object ranking (o3 ~ o1) > o2 > o4 is turned into the 64
2 C  paired-comparison relationships: 

“o1>o2”, “o1~o3”, “o1>o4”, “o2<o3”, “o2>o4”, and “o3>o4”; it can be noticed that this response mode 

forces judges to be transitive (e.g., if “o1>o2” and “o2>o4”, then “o1>o4”). 

Next, the traditional LCJ can be applied to the resulting paired-comparison data and a scaling (x) of 

the objects can be determined (Eq. 12). Through the following transformation, the resulting scaling 

(x) is transformed into a new one (y), which is defined in the conventional range [0, 100]: 

  i
x̂x̂

x̂x̂ˆŷŷ
ZM

Zi
ii 




 100X , (13) 

where: Zx̂  and Mx̂  are the scale values of oZ and oM, resulting from the LCJ; ix̂  is the scale value of 

a generic i-th object, resulting from the LCJ; iŷ  is the scale value of a generic i-th object in the new 

scale y. This transformation can also be expressed in vector form as: 

    
T

ZM

ZiT

i x̂x̂

x̂x̂
...ˆŷ...ˆˆˆ 











 ..., 100,...,, XXYY , (14) 

being Ŷ  a column vector whose components result from a system of n decoupled equations. Since 

scale y “inherits” the interval property from scale x and has a conventional zero point that 

corresponds to the absence of the attribute (i.e., Zŷ ), it can be reasonably considered as a ratio 

scale (Roberts, 1979; Franceschini et al., 2019). We note that the two dummy objects, oZ and oM, 

are used to “anchor” the x scaling to the y scaling (Paruolo et al., 2013). 

Although the ZM-technique simplifies the response mode and allows to obtain a ratio scaling, it still 

does not solve other relevant limitations of the traditional LCJ: 
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 The procedure is not applicable to the system in Eq. 10 when it is not complete (i.e., there is at 

least one (i, j) paired comparison for which mij = 0). 

 It does not contemplate neither the variability of ijp̂  values, which are actually treated as 

deterministic parameters (not probabilistic ones), nor the propagation of this variability on the 

X̂  solution (and therefore on the transformed solution, Ŷ ). 

In fact, since fij is determined considering a sample of mij paired comparisons (as illustrated in 

subsection “Thurstone’s LCJ”), it will be distributed binomially; ijp̂  is the best estimator of pij, 

according to the information available. In formal terms: 

)]ˆ1(ˆ,ˆ[~ 2
ijijijfijijfij ppmpmBf

ijij
  , (15) 

In the hypothesis that 5ˆ  ijij pm , when 5.0ˆ0  ijp , or   5ˆ1  ijij pm , when 1ˆ5.0  ijp , the 

following approximations can be reasonably introduced (Ross, 2014):  











 




ij

ijij
pijpij

ijijijfijijfij

m

pp
pNp

ppmpmNf

ijij

ijij

)ˆ1(ˆ
,ˆ~

)]ˆ1(ˆ,ˆ[~

2

2





. (16) 

It is worth remarking that, even when all judges express their judgments for all the possible 

paired comparisons (i.e., jimmij , ), the variance of pij may change from one paired 

comparison to one other, as it also depends on the relevant ijp̂  value.  

METHODOLOGY 

Response-mode simplification 

Although the formulation of preference rankings is less tedious and complex to manage than the 

direct formulation of paired-comparison relationships, it still may be problematic for some practical 

situations, e.g., asking judges to rank more than a handful of objects during a field survey or a 

telephone/street interview may put a very high demand on their cognitive abilities (Harzing et al., 

2009; Lenartowicz and Roth, 2001). To overcome this obstacle, a more flexible response mode that 

tolerates incomplete preference rankings can be adopted. Below is a list of some possible types of 

incomplete preference rankings. 

 Preference rankings including only the more preferred objects (or “t-objects”, where “t” stands 

for “top”) and the less preferred ones (or “b-objects”, where “b” stands for “bottom”); from now 

on, these rankings will be denominated “Type-t&b” rankings. The t parameter is conventionally 

defined as the number of regular objects (i.e. excluding the two dummy objects) within the t-
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objects, while the b parameter is conventionally defined as the number of regular objects within 

b-objects. In the example in Figure 2(a), t=b=2. 

 Preference rankings including only the more preferred objects (i.e., t-objects) among those 

available; see the example in Figure 2(b). From now on, these rankings will be denominated 

“Type-t” rankings. 

 Preference rankings excluding the two dummy objects (oZ and oM). A preference ranking of this 

type, when also including all regular objects, will hereafter be referred to as “quasi-complete” 

(see the example in Figure 2(c)).  

 Combining the previous types of incomplete preference rankings, one can obtain Type-t&b or 

Type-t preference rankings that exclude the dummy objects.   

Figure 2 also shows that a generic incomplete ranking can be transformed into a “reconstructed” 

ranking, which includes all the (dummy and regular) objects. E.g., considering Type-t&b rankings, 

the objects that are not considered by judges can be allocated at an intermediate hierarchical level 

with respect to the t- and b-objects, with mutual incomparability relationships. As for Type-t 

rankings, the objects that are not considered by judges can be allocated at a lower hierarchical level 

with respect to the t-objects. As for the rankings that do not include oZ and oM, they can be 

reconstructed in compliance with the following constraints:  

1. oM will – by definition – be at a higher hierarchical level with respect to the other objects, with 

the exception of those positioned at the highest hierarchical level (oi). A relationship of 

incomparability with the latter objects (“oM || oi”) indicates hesitation between a possible 

relationship of indifference (“oM  oi”) or strict preference (“oM > oi”); 

2. oZ will – by definition – be at a lower hierarchical level with respect to the other objects, with the 

exception of those positioned at the lowest hierarchical level (oi). A relationship of 

incomparability with the latter objects (“oZ || oi”) indicates hesitation between a possible 

relationship of indifference (“oZ  oi”) or strict preference (“oZ < oi”). 

For the sake of simplicity, both the incomplete and reconstructed rankings will hereafter be referred 

to as “incomplete”, without distinction.  

 



 11

oM 
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o2, o5 

{oM || o3} > (o1~o6) > (o2~o5) > {oZ || (o4~o7)}

     (c) Quasi-complete ranking 
 (without oZ and oM) 

o3> (o1~o6) > (o2~o5) > (o4~o7) 

oZ and oM 
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graphic form: 

Incomplete  
rankings 
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Reconstructed 
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missing objects: 

(b) Type-t ranking (t=2) 

(oM~o1) > o2 > […] 

o3, o4, o5, o6, o7 and oZ 

oM, o1

o2

[…] 

t-objects 

 
Figure 2. Example of three different types of incomplete rankings formulated by judges. These rankings can 
be turned into reconstructed rankings, which include all the (regular and dummy) objects; for ease of 
understanding, the reconstructed parts are marked in red. 
 

Artificial generation of incomplete rankings 

This subsection illustrates the artificial “deterioration” of a complete preference ranking to generate 

a set of corresponding incomplete rankings. Simulating practical circumstances where the 

formulation of complete rankings can be problematic, this mechanism can be used to generate 

incomplete rankings. Let us focus on the example in Figure 3, in which an (initial) complete 

preference ranking (a) is decomposed exclusively into paired-comparison relationships of strict 

preference and indifference. Then, this complete ranking is artificially deteriorated into several 

incomplete preference rankings that are compatible with it, e.g., quasi-complete, Type-t&b or 

Type-t rankings, as respectively exemplified in Figure 3(b), (c) and (d). For the incomplete 

rankings, new paired-comparison relationships of incomparability gradually replace those of strict 

preference and indifference, which characterize the complete ranking. The compatibility between 

the incomplete rankings and the “source” complete ranking is given by the fact that – excluding the 

paired-comparison relationships of incomparability – the remaining ones are identical (Fahandar et 

al., 2017). 

The degree of completeness of a generic k-th preference ranking can be quantitatively described by 

the synthetic indicator: 

nk C

k
c

2

th ordering preference  in the ipsrelationshcomparison paired  usable"" of No.
 , (17) 
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(c) Type-t&b ranking (t=b=2) 
with ordered objects and oZ/oM 

(oM~o1)>o2>{o3||o4||o7}>(o5~o6)>oZ 

o4
o3

o7

oM, o1

o2

o5, o6

oZ

 oZ oM o1 o2 o3 o4 o5 o6 o7

oZ -         
oM > -        
o1 > ~ -       
o2 > < < -      
o3 > < < < -     
o4 > < < < || -    
o5 > < < < < < -   
o6 > < < < < < ~ -  
o7 > < < < || || > > -

(ck = 33/36 = 91.7%) 

o4 o3 o7
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Possible paired-comp. relationships: 

 “>” and “<”  strict preference; 
 “~”   indifference; 
 “||”   incomparability. 

(a) Complete ranking 

(oM~o1)>o2>(o3~o7)>o4>(o5~o6)>oZ 

oM, o1 

o2 

o4 

o5, o6 

oZ 

o3, o7 

 oZ oM o1 o2 o3 o4 o5 o6 o7 
oZ -         
oM > -        
o1 > ~ -       
o2 > < < -      
o3 > < < < -     
o4 > < < < < -    
o5 > < < < < < -   
o6 > < < < < < ~ -  
o7 > < < < ~ > > > - 

(ck = 36/36 = 100%) 

{oM||o1||o2}>{o3||o4||o7}>{o5||o6||oZ} 

o4 o3 o7 

o1 oM o2 

o5 oZ o6 

(e) Type-t&b ranking (t=b=2) with 
unordered objects and without oZ/oM 

 oZ oM o1 o2 o3 o4 o5 o6 o7

oZ -         
oM > -        
o1 > || -       
o2 > || || -      
o3 > < < < -     
o4 > < < < || -    
o5 || < < < < < -   
o6 || < < < < < || -  
o7 > < < < || || > > -

(ck = 27/36 = 75%) 

{oM||o1||o2}>{o3||o4||o5||o6||o7||oZ} 

(f) Type-t ranking (t=2) with  
 unordered objects and without oZ/oM 

o1oM o2

o4 o3 o5 o6 oZo7

 oZ oM o1 o2 o3 o4 o5 o6 o7

oZ -         
oM > -        
o1 > || -       
o2 > || || -      
o3 || < < < -     
o4 || < < < || -    
o5 || < < < || || -   
o6 || < < < || || || -  
o7 || < < < || || || || -

(ck = 18/36 = 50%) 

(b) Quasi-complete ranking 
(without oZ and oM) 

{oM||o1}>o2>(o3~o7)>o4>{(o5~o6)||oZ} 

o2

o4

o3, o7

 oZ oM o1 o2 o3 o4 o5 o6 o7

oZ -         
oM > -        
o1 > || -       
o2 > < < -      
o3 > < < < -     
o4 > < < < < -    
o5 || < < < < < -   
o6 || < < < < < ~ -  
o7 > < < < ~ > > > -

(ck = 33/36 = 91.7%) 

oZo5, o6 

oM o1

{oM||o1}>o2>{o3||o4||o7}>{(o5~o6)||oZ}

oM o1

oZo5, o6 

o2 

(d) Type-t&b ranking (t=b=2) with 
ordered objects and without oZ/oM 

 oZ oM o1 o2 o3 o4 o5 o6 o7

oZ -         
oM > -        
o1 > || -       
o2 > < < -      
o3 > < < < -     
o4 > < < < || -    
o5 || < < < < < -   
o6 || < < < < < ~ -  
o7 > < < < || || > > -

(ck = 30/36 = 83.3%) 
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Figure 3. Example of deterioration of a complete preference ranking (a), generating several 
incomplete/reconstructed rankings (b, c, d, e and f); for ease of understanding, the reconstructed parts of the 
latter rankings are marked in red. 
 
which expresses the fraction of “usable”1 paired-comparison relationships (i.e. these of strict 

preference or indifference), with respect to the total ones: 2/)1(2  nnCn , where n is the total 

number of (regular and dummy) objects of the problem. E.g., Figure 3 reports the ck values related 

to the rankings (see below the tables with the paired-comparison relationships). For complete 

preference rankings, ck = 1. 

                                                      
1 The adjective “usable” indicates that the strict-preference and indifference relationships are the ones contributing to 
the solution of the decision-making problem of interest (cf. Sect. A.1 in the Appendix). 
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Interestingly, even very incomplete rankings may contain a relevant portion of usable paired-

comparison relationships. E.g., consider the Type-t ranking in Figure 3(f), in which the two more 

preferred regular objects were merely identified, without being ordered. Despite the apparently high 

degree of incompleteness, half of the total paired-comparison relationships are usable (ck = 50%). 

The indicator ck can be extended from a single (k-th) preference ranking to sets of (m) preference 

rankings – such as those characterizing a whole (complete or incomplete) decision-making problem. 

We thus define a new aggregated indicator (c): 

m

c

Cm

Cc

k

k
c

m

k
k

n

m

k

n
k

m

k

m

k





















1

2

1
2

1

th

1

th

ordering preference  in the ipsrelationshcomparison paired  usable"" of no. Total

ordering preference  in the ipsrelationshcomparison paired  usable"" of No.

. (18) 

Eq. 18 shows that c can be interpreted as the arithmetic average of the ck values of the preference 

rankings under consideration. 

GLS solution 

In general, the system in Eq. 11 will not necessarily be complete, as the number of equations (q) 

could be lower than 12 
nC  (i.e., for any paired comparison with mij = 0, no equation can be 

formulated) and therefore cannot be solved through the LCJ. 

The literature dealt with the problem of solving such incomplete systems through the Ordinary 

Least Squares (OLS) method. For example, Gulliksen (1956) discusses some approximate 

numerical methods for the OLS solution formula to Eq. 11 (Kariya and Kurata, 2004; Ross, 2014): 

  BAAAX 
 TT 1ˆ . (19) 

Additionally, it can be demonstrated that, in the case in which the system of equations is complete, 

the LCJ solution coincides with the OLS one – i.e., that one minimizing the sum of the squared 

residuals related to the equations in Eq. 11 (Gulliksen, 1956): 

  
 











q

h
h

n

k
khk bxa

1

2

1

, (20) 

n being the number of elements in X̂ , and q being the total number of equations available. In 

general, the OLS solution is possible even for incomplete systems, as long as q ≥ n; this condition is 

easily met in practice (Gulliksen, 1956).  
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Even though the OLS method provides an effective solution to the problem of interest, it does not 

provide any practical estimate of the uncertainty associated with the elements of X̂ . In fact, 

although it is possible to calculate the covariance matrix of X̂  as: 

  1
 AAX

T , (21) 

it is of no practical use for this specific problem, as the uncertainties of the X̂  elements are 

identical and not affected by the real uncertainty of input data (i.e., ijp̂  values, see subsection “ZM-

technique”) (Gulliksen, 1956). This limitation can be overcome using the Generalized Least 

Squares (GLS) method, which is more articulated than the OLS method as it includes several 

additional steps (see the qualitative representation in Figure 4). 

Input 1: Observed proportions ijp̂ . Input 2: Variances related to ijp̂  values. 

Formulation of a system of (linear) equations. 

Determination of X̂ . 

Weighting of the previous equations, considering 
the uncertainties of input variables. 

End. 

Estimation of the X̂  uncertainty, 
propagating the uncertainty of input data. 

Output 1: Determination of Ŷ   
(ratio scaling). 

Output 2: Estimation of the Ŷ  uncertainty, 

propagating the uncertainty of X̂ . 

1. 

2. 

3. 

4. 

5. 

6. 
OLS and GLS
GLS only 

Key: 

 

Figure 4 – Flow chart representing the main steps of the OLS and GLS solution to the problem of 
interest; the GLS solution includes several additional steps (see red dashed blocks) with respect to 

the OLS one. 
 
The idea of applying the GLS to the problem of interest, when it is characterized by incomplete 

rankings, had already been advanced several decades ago by Arbuckle and Nugent (1973), who 

contemplated this and other goodness-of-fit criteria, such as maximum likelihood. These techniques, 

however, have not been applied extensively, probably due to some computational constraints that 

are nowadays overcome. Additionally, the GLS solution proposed by Arbuckle and Nugent (1973) 

was combined with a classic response mode, based on the direct formulation of paired-comparison 

relationships. 

From a technical point of view, the GLS method allows obtaining a solution that minimizes the 

weighted sum of the squared residuals related to the equations in Eq. 11, i.e.:  

  
 











q

h
h

n

k
khkh bxaw

1

2

1

, (22) 
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in which weights (wh) take into account the uncertainty in the ijp̂  values. It can be demonstrated 

that, for a generic equation related to a generic i,j-th paired comparison: 
  2

21

ˆ

ˆ1
ijp

ij

ij
h p

p
w 



















 

(Arbuckle and Nugent, 1973).  

Next, weights are aggregated into a (squared) matrix W    11  qqR , whose construction is 

illustrated in the “Detailed description of the GLS” subsection (in the Appendix), and X can be 

estimated as: 

  BWAAWAX 
 TT 1ˆ . (23) 

Combining Eqs. 23 and 14, the final (ratio) scaling Ŷ  can be obtained as: 

])[(ˆ]ˆ[ˆˆ 1 BWAAWAYXYY   TT . (24) 

Next, the uncertainty related to the elements in  Ti ,...ŷ...,ˆ Y 1 nR  can be determined by applying 

the relationship: 

   
T

ˆ
T

ˆ XYXYY JAWAJ   ])[(Σ 1 . (25) 

where  XY
J ˆ

nnR   is a Jacobian matrix containing the partial derivatives related to the equations of 

the system in Eq. 14, with respect to the elements of X̂ . For details, see the “Detailed description of 

the GLS” subsection (in the Appendix). 

Assuming that the pij and iŷ  values are approximately normally distributed, a 95% confidence 

interval related to each iŷ  value can be computed as: 

iyUy iiii  2ˆˆ , (26) 

iU  being the so-called expanded uncertainty of iŷ  with a coverage factor k = 2 and ),(, iii Y  

(JCGM 100:2008, 2008).  

APPLICATION EXAMPLE 

Returning to the case study in section “Case study outline”, twenty regular bus-coach passengers (j1 

to j20, i.e., judges) should prioritize the twelve CRs (o1 to o12, i.e., objects) in Table 1, according to 

their importance (i.e., attribute).  

Let us initially assume that the passengers interviewed have adequate knowledge of the CRs and are 

in the practical conditions to formulate their complete rankings, which represent a complete 

problem (see Table 2(a)). These rankings are then translated into a number of paired-comparison 

relationships (i.e., 6612
2 C  for each preference ranking, resulting in total 66·20 =1320 paired-
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comparison relationships) and the LCJ is applied, producing the scaling in Table 3(a) (see also the 

graphical representation in Figure 5). These results are already referred to the conventional scale 

(y), which is included in the range [0, 100]. Consistently with the considerations in subsection “GLS 

solution”, the results of the LCJ are identical to those of the OLS. On the other hand, the application 

of the GLS method produces a very close – although non-identical – result. The difference stems 

from the fact that – unlike LCJ and OLS – the GLS takes into account the uncertainties related to 

ijp̂  values. The GLS solution is therefore superior from both a conceptual and practical point of 

view. 

To study the effectiveness of the GLS in the presence of incomplete rankings, the complete 

rankings in Table 2(a) were intentionally deteriorated, replacing some of the relationships of strict 

preference (“>” and “<”) and indifference (“~”), with incomparability relationships (“||”), according 

to the logic described in the subsection “Artificial generation of incomplete rankings”. Rankings 

with different degrees of completeness were generated, under the assumption that they were 

produced by a panel of relatively “heterogeneous” passengers, e.g., in terms of knowledge of the 

CRs, ability to concentrate, education level, etc.. The deterioration of complete rankings was 

performed combining the following “deterioration parameters” (cf. subsection “Artificial generation 

of incomplete rankings”): 

1. Type of ranking (hereafter abbreviated as “Ranking type”), which can be “Complete”, “Quasi-

complete”, “Type-t&b” and “Type-t”; 

2. Ability of the judge to manage oZ and oM (hereafter abbreviated as “Manage oZ/oM?”), which can 

be “Yes” or “No”; 

3. Value of t and/or b (hereafter abbreviated as “t/b value”), which can be “1”, “2” and “3”;  

4. Ability of the judge to order the t- and/or b-objects (hereafter abbreviated as “Order 

t/b-objects?”), which can be “Yes” or “No”. 

Table 2(b) contains the resulting incomplete or – to be more precise – non-necessarily-complete 

rankings2. These rankings constitute a new incomplete problem, characterized by a relatively low 

degree of completeness (c ≈ 62.2%). 

                                                      
2 In fact, one of the initial twenty complete rankings – i.e., that by j4 – was not intentionally deteriorated, under the 
assumption that j4 is a passenger with a high capacity to provide precise and detailed responses. 



 17

 

Table 2. Incomplete preference rankings (in the semi-last column) that are obtained by deteriorating some complete “source” rankings (in the second column). It can be noticed that 
the deterioration mechanism may differ from ranking to ranking, as it is obtained combining the four deterioration parameters: “Ranking type”, “Manage oZ/oM?”, “t/b value” and 
“Order t/b-objects?”. 

Judge (a) Complete problem Ranking type Manage oZ/oM? t/b value Order t/b-block(s)? (b) Incomplete problem ck 
j1 (oM~o1~o8~o12)>o9>o7>o6>o11>o2>o4>(o3~o10~oZ~o5) Type-t&b Yes 3 Yes (oM~o1~o8~o12)>{o2||o4||o6||o7||o9||o11}>(o3~o10~oZ~o5) 83.5% 

j2 (oM~o8)>o11>o9>(o7~o12)>o1>(o4~o2)>(o10~o6~o3)>(o5~oZ) Type-t&b N/A 3 No {oM||o8||o9||o11}>{o1||o2||o4||o7||o12}>{oZ||o3||o5||o6||o10} 71.4% 

j3 (oM~o9)>o1>o11>o12>o8>o5>(o3~o2)>o7>(o6~o10~o4~oZ) Type-t No 3 Yes {oM||o9}>o1>o11>{oZ||o2||o3||o4||o5||o6||o7||o8||o10||o12} 49.5% 

j4 (oM~o9~o12)>o8>o1>(o4~o2)>o7>o11>(o6~o3)>(o10~oZ~o5) Complete Yes N/A N/A (oM~o9~o12)>o8>o1>(o4~o2)>o7>o11>(o6~o3)>(o10~oZ~o5) 100.0% 

j5 oM>o1>o9>(o8~o4)>(o6~o11~o12)>(o2~o7)>o3>(o10~oZ~o5) Type-t&b No 1 Yes {oM||o1}>{o2||o3||o4||o6||o7||o8||o9||o11||o12}>{oZ||(o10~o5)} 57.1% 

j6 (oM~o12)>(o9~o8)>o1>(o11~o2)>(o10~o3~o6)>o7>(o4~o5~oZ) Type-t Yes 3 Yes (oM~o12)>(o9~o8)>{oZ||o1||o2||o3||o4||o5||o6||o7||o10||o11} 50.5% 

j7 oM>(o1~o8)>o9>o12>o2>(o7~o4)>o11>o5>(o6~o10~oZ~o3) Type-t&b N/A 1 No {oM||o1||o8}>{o2||o4||o5||o7||o9||o11||o12}>{oZ||o3||o6||o10} 67.0% 

j8 (oM~o9)>(o2~o7~o1)>o5>(o8~o12)>o11>(o6~o4)>(o10~oZ~o3) Type-t Yes 3 Yes (oM~o9)>(o2~o7~o1)>{oZ||o3||o4||o5||o6||o8||o10||o11||o12} 60.4% 

j9 (oM~o11~o12)>o9>(o1~o6~o7)>o5>(o2~o3)>o4>o8>(oZ~o10) Type-t Yes 3 Yes (oM~o11~o12)>o9>{oZ||o1||o2||o3||o4||o5||o6||o7||o8||o10} 50.5% 

j10 (oM~o12)>(o11~o5)>o9>o7>(o4~o2)>(o8~o6)>o1>(o10~oZ~o3) Type-t&b N/A 1 No {oM||o12}>{o1||o2||o4||o5||o6||o7||o8||o9||o11}>{oZ||o3||o10} 56.0% 

j11 (oM~o12)>(o7~o8~o1)>o11>o9>o2>o3>(o10~o6~o4)>(o5~oZ) Type-t Yes 3 Yes (oM~o12)>(o7~o8~o1)>{oZ||o2||o3||o4||o5||o6||o9||o10||o11} 60.4% 

j12 (oM~o8~o9~o12)>(o11~o2)>(o1~o5)>o6>o7>(o3~o10)>(oZ~o4) Type-t Yes 3 Yes (oM~o8~o9~o12)>{oZ||o1||o2||o3||o4||o5||o6||o7||o10||o11} 50.5% 

j13 oM>o8>(o1~o12)>o9>o2>(o11~o5)>o7>o10>(oZ~o6~o3~o4) Type-t&b N/A 3 No {oM||o1||o8||o12}>{o2||o5||o7||o9||o10||o11}>{oZ||o3||o4||o6} 70.3% 

j14 (oM~o1)>o8>o12>(o2~o5)>(o9~o6)>(o11~o4)>o3>o7>(oZ~o10) Type-t N/A 3 No {oM||o1||o8||o12}>{oZ||o2||o3||o4||o5||o6||o7||o9||o10||o11} 44.0% 

j15 oM>o12>(o9~o2)>o1>(o8~o6~o7)>(o11~o10)>o5>(o4~oZ~o3) Type-t&b N/A 3 No {oM||o2||o9||o12}>{o1||o6||o7||o8||o10||o11}>{oZ||o3||o4||o5} 70.3% 

j16 (oM~o8~o9)>o12>o7>(o4~o5)>o6>o1>o11>o3>o10>o2>oZ Type-t No 3 Yes {oM||(o8~o9)}>o12>{oZ||o1||o2||o3||o4||o5||o6||o7||o10||o11} 48.4% 

j17 oM>o11>o2>(o4~o8~o1)>(o5~o12)>(o3~o9)>o7>o10>(oZ~o6) Type-t No 2 Yes {oM||o11}>o2>{oZ||o1||o3||o4||o5||o6||o7||o8||o9||o10||o12} 38.5% 

j18 (oM~o9~o12)>o1>o2>(o6~o8)>o7>(o11~o5)>o4>(o10~oZ~o3) Quasi-complete No N/A N/A {oM||(o9~o12)}>o1>o2>(o6~o8)>o7>(o11~o5)>o4>{oZ||(o10~o3)} 95.6% 

j19 (oM~o8~o12)>o2>o7>(o11~o1)>o9>(o6~o4)>o3>(o10~oZ~o5) Type-t No 3 Yes {oM||(o8~o12)}>o2>{oZ||o1||o3||o4||o5||o6||o7||o9||o10||o11} 48.4% 

j20 (oM~o9~o11)>o12>o8>o1>o5>(o2~o7)>o4>(o6~o10~oZ~o3) Type-t&b N/A 4 No {oM||o8||o9||o11||o12}>{o1||o2||o5||o7}>{oZ||o3||o4||o6||o10} 71.4% 

o1 to o12 are the regular objects, while oZ to oM are the dummy objects; 
“>”, “~” and “||” respectively depict the strict preference, indifference and incomparability relationships; 
{oi || oj || …} is a generic block containing incomparable objects; 
(oi ~ oj ~ …) is a generic block containing indifferent objects; 
the degree of completeness of a generic k-th preference ranking is depicted by ck (see Eq. 17); 
the degree of completeness of the whole incomplete problem is depicted by c = (ck)/m ≈ 62.2% (see Eq. 18). 
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Table 3(b) (see also the graphical representation in Figure 5(b)) contain the results of the 

application of the GLS to the paired-comparison relationships resulting from the incomplete 

problem in Table 2(b). The GLS results obtained for the complete problem (in Table 3(a)) can be 

then used as a “gold standard” to evaluate the goodness of the GLS results obtained for the 

corresponding incomplete problem. Quite surprisingly, these two typologies of results are very 

close, both in terms of accuracy and dispersion. It can be noticed that results tend to worsen 

especially for the less preferred objects (see for example the relatively wider deviations and 

uncertainty bands) related to o3, o4, o5, o6 and o10; this is probably due to the relatively lower 

amount of usable paired-comparison relationships that include these objects, which are often 

omitted from Type-t incomplete rankings. 

 
Table 3. Solutions (i.e., y scalings) resulting from the application of different fusion techniques (i.e., LCJ, 
OLS and/or GLS) to the complete problem in Table 2(a) and the incomplete problem in Table 2(b). GLS 
solutions are associated with relevant uncertainties (cf. Eq. 26). 

Objects (a) Complete problem (b) Incomplete problem 
 LCJ=OLS GLS GLS 

oZ 0.0 0.0 ±6.8 0.0 ±11.2 
oM 100.0 100.0 ±7.3 100.0 ±8.5 
o1 68.5 67.4 ±8.0 70.0 ±10.7 
o2 53.3 53.1 ±7.8 56.6 ±11.2 
o3 15.6 18.6 ±8.3 6.7 ±15.6 
o4 31.2 31.8 ±7.6 24.1 ±14.0 
o5 33.3 33.7 ±7.4 17.5 ±13.7 
o6 29.7 31.9 ±7.7 23.0 ±14.1 
o7 47.1 46.9 ±7.7 45.5 ±12.1 
o8 70.9 70.3 ±7.9 75.9 ±10.5 
o9 77.4 74.8 ±8.2 77.4 ±10.6 
o10 8.3 10.6 ±8.7 7.2 ±14.8 
o11 58.5 55.7 ±7.7 55.9 ±10.8 
o12 81.0 79.1 ±8.3 83.9 ±10.5 
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Figure 5. Graphical representation of the solutions (i.e., y scalings) in Table 5. Objects (oi, i.e., the CRs 
related to a civilian coach-bus seat, as illustrated in section “Case study outline”) are sorted in ascending 
order with respect to the corresponding GLS results obtained for the complete problem (represented by 
triangles). 

 

The above results prove that the proposed technique seems effective, even for relatively incomplete 

rankings. The authors plan to study the effect of the afore-mentioned deterioration parameters on 

the solution accuracy, through a conspicuous amount of factorial experiments (Box, Hunter, Hunter 

1978). Preliminary results show that, unsurprisingly, the solution accuracy tends to decrease 

dramatically for problems characterized by many type-t rankings. On the other hand, results are 

much better for problems characterized by many type-t&b rankings. For more information, please 

refer to the “Additional study of the solution accuracy” subsection, in the Appendix. 

CONCLUSIONS 

The ZMII-technique allows to fuse multiple incomplete preference rankings into a ratio scaling, with 

a relevant uncertainty estimation. This technique represents an important improvement over the 

ZM-technique, proposed in (Franceschini and Maisano, 2019), whose application is limited to 

complete problems. 

From a technical point of view, the ZMII-technique is based on the formulation of a system of 

equations – borrowing the underlying postulates/assumptions of the LCJ – and its solution through 
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the GLS method. From a practical point of view, the new response mode makes the technique more 

flexible and adaptable to a variety of contexts in which the concentration effort of judges cannot 

realistically be too high (e.g., decision-making problems with a relatively large number of objects, 

telephone or street interviews, etc.). This flexibility encourages the reliability of input data, as it 

prevents judges from providing forced and unreliable responses. Furthermore, the fusion technique 

can also be applied to problems characterized by “heterogeneous” preference rankings (e.g., partly 

complete and partly incomplete, with different forms of incompleteness). 

Based on the above considerations, the ZMII-technique reasonably represents an appropriate 

response to the previously formulated research question: “How could the ZM-technique be 

modified/improved to (1) make the response more user-friendly and reliable and (2) determine a 

(statistically sound) estimate of the uncertainty related to the solution?”. 

Preliminary results show that the ZMII-technique is largely automatable, computationally efficient 

and provides relatively accurate results, even when preference rankings are characterized by a 

relatively low degree of completeness. Additionally, it seems that much better results can be 

obtained for incomplete rankings containing both the more and the less preferred elements (i.e., 

Type-t&b rankings). 

Regarding the future, we will test the new technique in a more organic way. Precisely, we plan to 

investigate the accuracy of the solution depending on various factors, such as (i) level of 

completeness of the problem, (ii) number of judges, (iii) number of objects, (iv) degree of 

agreement between judges, etc.. 
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APPENDIX 

A.1 Detailed description of the GLS 

This subsection provides a detailed illustration of the GLS-method application to the problem of 

interest. From an operational point of view, the GLS requires the definition of a (squared) weight 

matrix (W), which encapsulates the uncertainty related to the equations of the system. A practical 

way to define W is to apply the Multivariate Law of Propagation of Uncertainty (MLPU) to the 
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system in Eq. 10, referring to the input variables affected by uncertainty (i.e., ijp̂  values) (Kariya 

and Kurata, 2004); these variables can be collected in the column vector . Precisely, W can be 

determined propagating the uncertainty of the elements in  to the equations of the system:  

  1
 T

 JJW , (A1) 

where J is the Jacobian matrix containing the partial derivatives of the first members of Eq. 10, 

with respect to the elements in , and  is the covariance matrix of . 

By applying the GLS method to the system in Eq. 11, a final estimate of X can be obtained as 

(Kariya and Kurata, 2004): 

  BWAAWAX 
 TT 1ˆ . (A2) 

The uncertainty of the solution can be estimated through a covariance matrix X, which can be 

obtained by applying the following relationship: 

  1
 AWAX

T . (A3) 

X – unlike the homologous matrix resulting from the OLS method (see Eq. 21, in the subsection 

“GLS solution”) – is of considerable practical use, since it is obtained by propagating the real 

uncertainty of input data. 

Focussing on the problem of interest, the vector containing the input variables affected by 

uncertainty is  = […, pij, …]T 1)1(  qR . On the other hand, the partial derivatives in the Jacobian 

matrix J )1()1(  qqR  can be determined in a closed form, by approximating terms -1(1 – ijp̂ ) (see 

Eq. 10) through the following formula (Aludaat and Alodat, 2008): 
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from which: 
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The matrix 
)1()1(  qqR  diagonally contains the variances related to the input variables, i.e., ijp̂  

terms: 
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p m
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ij

)ˆ1(ˆ
2 
 . (A6) 

The relevant covariances can be neglected, upon the reasonable assumption that the estimates of 

different pij values are (statistically) independent from each other. 

Next, it is possible to determine the matrix W (Eq. A1) and, subsequently, X̂  (Eq. A2) with the 

relevant uncertainty (Eq. A3); this solution is defined on an interval scale (x), as illustrated in the 

“Thurstone’s LCJ” subsection.  

Through Eq. 14, the x scaling can be transformed into a new one (y scaling), which is included in 

the conventional range [0, 100]. The uncertainty related to the elements in  Tiŷ...ˆ ... ,,Y 1 nR  

can be determined by applying the relationship: 

   
T

ˆˆ XYXXYY JJ  ΣΣ , (A7) 

where  XY
J ˆ

nnR   is a Jacobian matrix containing the partial derivatives related to the equations in 

Eq. 24, with respect to the elements of X . In the hypothesis that the n (regular and dummy) objects 

are ordered as (oZ, oM, o1, o2, o3, …) and therefore  TMZ x̂x̂x̂x̂x̂ˆ ... ,,,,, 321X  and 

 TMZ ŷŷŷŷŷˆ ... ,,,,, 321Y ,  XY
J ˆ  would be: 
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Combining Eqs. A7 and A3, Y can be expressed as:  

   
T

ˆ
T

ˆ XYXYY JAWAJ   ])[(Σ 1 . (A9) 

A.2 Additional study of the solution accuracy 

This subsection contains an additional study of the solution accuracy, depending on the degree of 

completeness of a generic (incomplete) problem. The methodological approach is articulated into 

three points: 

 A number of complete problems (with twelve regular objects and twenty judges) are randomly 

generated, determining the relevant solutions.  
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 These complete problems are then artificially deteriorated into incomplete problems, determining 

the new corresponding solutions. This deterioration process is consistent with that one 

exemplified in the section “Artificial generation of incomplete rankings”. 

 The solution of each incomplete problem is compared with the solution of the corresponding 

“source” complete problem, which can be interpreted as a “gold standard” or “true value”. This 

comparison is performed using the response indicator  , which expresses the accuracy of the 

solution of a certain incomplete problem, with respect to the solution of the “source” complete 

problem: 

 
n

ŷŷ
n

i
ii




 1

2

(complete)

 , (A10) 

iŷ  being the scale value of the i-th object, resulting from the solution of the incomplete problem 

(i.e.,  Tiŷ.ˆ ... ,, ..Y  see section “ZM-technique”); 

(complete)iŷ  being the scale value of the i-th object, resulting from the solution of the complete 

problem (i.e.,  Tiŷ.ˆ ... ,, .. (complete)(complete) Y ); 

n being the number of (dummy and regular) objects. 

The closer the 
(complete)iŷ  values get to the iŷ  values, the more   will tend to decrease. For 

complete rankings, the calculation of this response indicator will obviously “degenerate” into 

0 . 

Unlike the incomplete problem exemplified in the section “Application example”, the new 

incomplete problems consist of “homogeneous” preference rankings, i.e., all rankings are 

characterized by the same form of incompleteness (e.g., all Type-t rankings with t=2, unordered t 

objects and without oZ/oM). Table A.1 shows the form of incompleteness of the (incomplete) 

rankings related to each incomplete problem, depending on the four deterioration parameters: 

“Ranking type”, “Manage oZ/oM?”, “t/b value” and “Order t/b objects?” (cf. section “Application 

example”). 
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Table A.1. General characteristics of the simulated problems and corresponding   values. The preference rankings 
related to each problem are characterized by the same combination of the deterioration parameters: “Ranking type”, 
“Manage oZ/oM?”, “t/b value”, and “Order t/b objects?”. 

Problem no. Ranking type Manage oZ/oM? t/b value Order t/b-objects? c   
1 Complete Yes N/A N/A 100.0% 0.0 
2 Complete Yes N/A N/A 100.0% 0.0 
3 Quasi-complete No N/A N/A 96.6% 0.9 
4 Quasi-complete No N/A N/A 96.0% 2.1 
5 Type-t&b Yes 1 Yes 65.1% 5.2 
6 Type-t&b Yes 1 Yes 60.9% 4.9 
7 Type-t&b Yes 2 Yes 77.0% 5.1 
8 Type-t&b Yes 2 Yes 74.8% 2.4 
9 Type-t&b Yes 3 Yes 89.7% 3.3 
10 Type-t&b Yes 3 Yes 87.7% 1.9 
11 Type-t&b No 1 Yes 61.2% 6.5 
12 Type-t&b No 1 Yes 57.5% 5.0 
13 Type-t&b No 2 Yes 73.1% 6.3 
14 Type-t&b No 2 Yes 71.4% 2.7 
15 Type-t&b No 3 Yes 85.8% 5.3 
16 Type-t&b No 3 Yes 84.3% 2.4 
17 Type-t&b N/A 1 No 58.6% 6.8 
18 Type-t&b N/A 1 No 56.1% 5.1 
19 Type-t&b N/A 2 No 66.2% 8.1 
20 Type-t&b N/A 2 No 65.5% 3.9 
21 Type-t&b N/A 3 No 70.7% 6.9 
22 Type-t&b N/A 3 No 70.4% 8.3 
23 Type-t Yes 1 Yes 32.3% 25.9 
24 Type-t Yes 1 Yes 31.6% 32.8 
25 Type-t Yes 2 Yes 44.7% 19.8 
26 Type-t Yes 2 Yes 43.8% 21.0 
27 Type-t Yes 3 Yes 55.4% 18.7 
28 Type-t Yes 3 Yes 54.8% 18.0 
29 Type-t No 1 Yes 30.7% 25.9 
30 Type-t No 1 Yes 30.2% 32.5 
31 Type-t No 2 Yes 43.2% 19.7 
32 Type-t No 2 Yes 42.4% 20.7 
33 Type-t No 3 Yes 53.9% 18.4 
34 Type-t No 3 Yes 53.2% 17.9 
35 Type-t N/A 1 No 30.2% 26.1 
36 Type-t N/A 1 No 29.7% 32.6 
37 Type-t N/A 2 No 39.5% 19.8 
38 Type-t N/A 2 No 39.1% 20.0 
39 Type-t N/A 3 No 46.5% 17.4 
40 Type-t N/A 3 No 46.0% 18.4 

 
 

The graph in Figure A.1 shows a very strong correlation between the solution accuracy (depicted by 

 ) and the degree of completeness of the incomplete problems (depicted by c, cf. Eq. 18). This 

trend is fairly well approximated by a second order polynomial model (R2 ≈ 90.2%). Also, it is not 

surprising that the solution accuracy deteriorates significantly when switching from problems with 

Type-t&b rankings (red-square series) to problems with Type-t rankings (green-triangle series). 
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 Figure A.1. Graphical representation of the results in Table 5.  
 


