
Doctoral Dissertation
Doctoral Program in Computer and Control Engineering (31.st cycle)

Mixing quantitative and qualitative
methods for sustainable transportation

in Smart Cities

Mariangela Rosano
* * * * * *

Supervisors
Prof. G. Perboli, Supervisor

Prof. T.G. Crainic Co-supervisor

Doctoral Examination Committee:
Prof. M.E. Bruni, Referee, University of Calabria
Prof. F. Maggioni, Referee, University of Bergamo
Prof. L. Brotcorne, INRIA Lille
Prof. N. Ricciardi, Sapienza University of Rome
Prof. M. Morisio, Polytechnic University of Turin

Politecnico di Torino
July, 2019



This thesis is licensed under a Creative Commons License, Attribution -
Noncommercial- NoDerivative Works 4.0 International: see
www.creativecommons.org. The text may be reproduced for non-commercial
purposes, provided that credit is given to the original author.

I hereby declare that, the contents and organisation of this dissertation constitute my own
original work and does not compromise in any way the rights of third parties, including
those relating to the security of personal data.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mariangela Rosano
Turin, July, 2019

www.creativecommons.org


Summary

The transportation system has been subject to significant paradigm shifts over the
past decades, as regards both the freight transportation and people mobility. On the one
hand, the urbanization and economic development in the mid-‘90s have led the rise of
faster-growing medium-large-sized companies that have specialized in the delivery of
small parcels, giving birth to the Global Courier, Express, and Parcel (CEP) market [64].
Since the 2000s, the advent of e-commerce changed the logistics and freight transportation
dramatically, with an increase of the deliveries to the Business-to-Consumer segments
in the urban areas and the competition of e-commerce giant platform to cope with the
increasing requests for fast and cheap deliveries.

On the other hand, the urbanization and demographic growth increase the need for
people mobility with a huge impact on the saturation of transportation infrastructure.
Freight vehicles compete with private and public vehicles transporting people for the
capacity of the streets and arteries of the city, and contribute significantly to congestion
and environmental nuisances, such as emissions and noise [20]. Thus, the urban space
needs to be rethought in order to optimize the flow of traffic, but also encourage the use
of non-motorized transport to move people and goods (e.g., bikes and cargo bikes), and
collaborative business models. Therefore, a different way of improving the performance
of the transportation system has to be found to make people and freight transportation
more efficient, cost-effective and sustainable, becoming key factors for the economic
development of a country and its competition at the international level. A number of new
organization and business models have recognized this challenge, leading researchers and
practitioners to propose initiatives that jointly optimize the economic, operative, social,
and environmental goals of transportation and logistics, mitigating their externalities and
inefficiencies.

City Logistics provides a first mean toward this end. Originally, Taniguchi et al.
[230] defined as City Logistics as “the process for totally optimizing the logistics and
transport activities by private companies in urban areas while considering the traffic
environment, the traffic congestion and energy consumption within the framework of a
market economy”. However, recent phenomena as the on-demand economy, e-commerce,
and urbanization, as well as pervasive technologies, lead to enlarge this framework and
give the birth to new domains as the Physical Internet, and their convergence into the
Hyperconnected City Logistics.

III



City Logistics has a multi-facet nature, characterized by concepts as multimodality
and intermodality, synchronization of information and physical flows, consolidation and
coordination, and finally, sustainability of the urban freight transportation and logistics
systems (operational, economic, social, and environmental) [185]. Despite the high
interest in City Logistics and its influence on urban development, not all initiatives and
proposals are successfully implemented. The main reasons of failure lie the lack of support
and commitment from the different actors (with different expertise) in the urban areas
[156, 203], also as a consequence of the lack of a managerial perspective in designing
sustainable policies appropriate for freight transportation and logistics. Indeed, usually
implementation and proposal are too focused on the technological aspects as platforms,
or optimization tools, missing a global vision and the lack between the business and
operational models.

Moreover, another reason comes from the coverage of the urban area. City Logistics
solutions can deal with the entire urban area, but very often they are focused on a limited
area or subareas of the city characterized by specific socio-economic and demographic
patterns, and the need to protect the cultural and historical property.

Much research and state-of-the-art in recent years have focused on technological
solutions and interesting developments are still ahead. In fact, City Logistics challenges
researchers to develop models, methods and decision support tools [109]. However,
the complex system above described involves several critical issues (e.g., large-scale
problems with a huge number of deliveries points, uncertainty) and actors that must
not be considered individually, and a holistic approach is necessary. This brings new
challenges and complexity for urban transportation system that must work as a system
integrator, incorporating current structures and, new and future business models (e.g., new
delivery options and low-emission transportation modes) in a modular manner. Moreover,
due to the on-demand economy, we are witnessing to a contraction in the timing for
decision making. In fact, it appears that medium-term “tactical” decisions may involve
very short-time horizons, highlighting the need of a flexible system able to represent
different behaviors into an overall model. This integration of new business models and the
common practice of outsourcing in the parcel delivery and transportation might become
sustainable if a negotiation process is done between actors (e.g., between shippers and
carriers), and attention is paid to the design of the infrastructure, the capacity planning
and the design of the different services. In doing so, negotiations and the decision-making
process must be aided by ad-hoc methodologies. These methodologies must aim a
comprehensive concept of sustainability from economic, operational, environmental and
social standpoints, and thus they must be based on a mixture of qualitative and quantitative
techniques. In fact, methods and models by the communities of researchers in Operation
Research, Management and Business, Transportation Science, Statistics and Computer
Science, within new frameworks as the City Logistics must be integrated. However, such
an approach is still missing in the literature.

This work contributes to filling this lack in the literature in terms of multi-disciplinary
approach and modeling framework for new planning problems. In particular, this thesis
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starts with the analysis of the recent relevant literature on intermodal freight transportation
that is acknowledged as the backbone of international trade, supporting the efficiency of
the above discussed emerging operational and business models, such as City Logistics,
in achieving sustainable transportation and logistics. For this reason and due to the
similarities at the logical level with the urban context, it can provide important insights
from which draw inspiration to optimize the urban freight transportation and design
a sustainable system. The review conducted on the intermodal freight transportation
literature confirms the multi-disciplinary and multi-facet nature of applications in freight
transportation. The results highlight the need for incorporating into simulation and
optimization tools a managerial perspective and a representation of the business models
of the various stakeholders. Thus, the challenge for simulation development is to model
the business models of the different actors and their interactions in terms of contracts,
pricing and costing schemes, and operational issues.

In this direction, the thesis has two goals:

• investigate if the integration between business and operational models is possible
and which could be the value of this type of integration;

• discuss the benefits of the integration of business and operational models in the
urban context. In particular, this thesis is focused on the last mile segment of the
supply chain that as mentioned, is the most critical segment due to the large scale
problems in a small-sized area and the different sources of uncertainties.

Then, two main problems in the transportation context are proposed to highlight how
qualitative and quantitative methods and models are used to support the decision-making
processes and to extrapolate industrial and public policies. These applications concern the
integration of traditional freight transportation modes with low-emissions vehicles and
new delivery options (e.g., cargo bikes and lockers), and the tactical capacity planning
problem, respectively.

This thesis is organized as follows. Chapter 1 provides an overview of urban freight
transportation and logistics, introducing the emerging challenges and proposing a multi-
disciplinary approach to deal with them and design a sustainable urban system.

In Chapter 2, we review the recent relevant literature on intermodal freight
transportation, to explore the need for linking new business and operational models and
incorporate them into decision support systems for new planning problems.

In Chapter 3, we present the first application of the proposed multi-disciplinary
approach that concerns the integration of traditional transportation modes (i.e., vans) and
new vehicles with a low-environmental impact (i.e., cargo bikes). This study integrates
a managerial analysis of the current business models in urban freight transportation and
parcel delivery, describing the stakeholders’ profiles in terms of their needs and, cost and
revenues structures. Then, the integration of business and operational models, is supported
by a performance analysis of the traditional and green delivery options, based on the
main variables that affect the last-mile logistics in urban areas (e.g., distance, delivery
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time). Finally, a quantitative analysis of the system is guaranteed through a Monte Carlo
simulation, to extrapolate mixed-fleet policies.

In Chapter 4, we extend the prior analysis investigating to what extent the integration
of traditional transportation with new delivery options can be sustainable, considering not
only vans and cargo bikes, but also the automated pick-up and delivery point “lockers”,
reflecting the current practice in the market. After introducing the context, we identify a
lack in the City Logistics initiatives regarding a standard framework for simulating and
studying the impact of optimization to achieve reasonable levels of efficiency in urban
freight transportation, limiting the possibility to validate solutions and policies in real
settings, and compromising the technology transfer to industry. Thus, we propose a new
standard simulation-optimization framework for building instances and assess operational
settings. To illustrate the usefulness of the framework, the authors conduct a case study,
in order to evaluate the impact of integrating delivery options to face the demand from
e-commerce, in an urban context as the city of Turin (Italy).

The integration of different transportation modes and outsourcing practices
necessitate complex negotiation, and monitoring of contracts between shipper and carrier.
In particular, in Chapter 5, we present a tactical capacity planning problem in freight
transportation. This problem considers a shipper who seeks to secure transportation and
warehousing capacity of multiple types from a carrier, to meet its demand for deliveries.
The medium-term nature of contracts, requires to deal with the uncertainty, that in this
study is expressed in terms of the demand of loads to be transported, the availability of
contracted capacity, the cost and the availability of additional capacity if required. After
introducing the problem, which is relevant in both the first and last mile segments of the
supply chain, we formulate a stochastic two-stage model and propose a meta-heuristic
based on the Progressive-Hedging (PH) algorithm. We present new instance sets for
tackling the problem partially derived by real parcel delivery applications. Then, we
discuss the extensive computational campaign conducted to evaluate the impact of
considering uncertainty in the first and last extremities of the supply chain (i.e., long-haul
shipment and last-mile delivery) and provide managerial insights.

Finally, Chapter 6 reports conclusions and future developments of the research activity.
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Chapter 1

Introduction to urban freight
transportation and logistics

In this chapter, we present, in a systematic way, the urban transportation and logistics
context describing the fundamental concepts and its role in the e-commerce era, with
emphasis on the notions of sustainability and sustainable transportation (Section 1.1). In
Section 1.2, we then identify some of the challenges that urban distribution raises being
a complex system. After an overview of the City Logistics initiatives implemented to
deal with these challenges and their major lacks (Section 1.3), a new approach mixing
qualitative and quantitative methods and models is presented in Section 1.4.

1.1 Urban freight transportation and logistics in the e-
commerce era

The growing urbanization and development of megacities make the urban
transportation extremely important to the functioning and prosperity of modern
economies.

The urban transportation refers to the mobility for people and goods connecting origin
and destination points within the urban areas [88, 18]. Thus, it includes, for example, the
public and private transportation, pedestrians and non-motorized transport modes (e.g.,
bikes) and freight distribution.

As highlighted by Bektaş, Crainic, and van Woensel [18], people mobility is
well-designed and developed, and it has been a longstanding pursuit in the literature
particularly for what concerns the modeling of the urban residents’ transport behavior and
the definition of smart urban mobility. Unfortunately, the same cannot be said for the
movement of goods that although presents similar general patterns (e.g., planning issues)
with the people-based transportation, it constitutes both a critical significance for
economic growth and a rather disturbing factor for urban life [176]. Indeed, it is
well-recognized that urban freight transportation and logistics are vital activities for the
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dynamism of cities for several reasons as:

• support the procurement and trading activities for firms established within city
borders. [7, 55]. Thus, the transportation of goods represents lifeblood for these
firms, being the connection with their customers and suppliers;

• improve citizens lifestyle creating job opportunities (2% to 5% of the total labor
force according to [222]) and, providing services and supporting their consumption
activities.

• enlarging the vision: an efficient urban distribution represents a competitive factor
at the national level.

Moreover, the changes in political, economic and social condition, and trends
heightened the role of urban freight transportation. Among the most important
phenomena, there are:

• the urbanization. According to the Organisation for Economic Co-operation and
Development (OECD), in the 1950s the 50% of the population was urban, and by
2050 it is likely to reach the 85% [177];

• the globalization, liberalization of economies and the opening of broad-free trade
economic zones. On the one hand, these phenomena increase the competition
between firms, which become more cost-oriented. On the other hand, they foster
the accessibility of customers and firms to long-distance market to support their
purchasing activities, and the procurement of raw materials and selling products,
respectively;

• the arise of new management and production principles such as the Just-In-Time
and Lean manufacturing that increase the recourse to transportation activities [66];

• the explosive growth of the e-Commerce that changes the entire logistics chain
dramatically. As Morganti et al. [165] point out, the 45% of European consumer
shop online. Indeed, the e-Commerce increases the product discoverability for the
final consumer that is increasingly requesting fast and on-time personalized delivery
for free or at least at the lower cost. In fact, the customer becomes less aware of
the implications of its delivery on the company and society, and less willing to
pay a delivery fee, due to the ubiquitousness that the so-called “free shipping” or
“free returns”, disregarding the hidden cost of logistics operations in charge of the
company. According to the survey in [161], for the 93% of online shoppers, the free
shipping affects its shopping habits, while the 58% are willing to spend more on
goods, to reach the free shipping thresholds. Incumbent e-Commerce platform such
as Amazon and Alibaba are facing the growing requests for fast and cheap deliveries
associated with the high-quality service level, and in this direction, the efficiency
of logistics becomes vital for their success. This link between e-Commerce and
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logistics is highlighted by the fact that e-Commerce counts the 10% of the overall
logistics demand, and this projection is expected to grow [98].

All these phenomena increase at a fast rate the volumes of goods moved and
consequently, the flow of vehicles that transit within the urban areas. Generally, the
freight coming from long-haul shipment is consolidated into urban trucks in distribution
centers located at the outskirts of the urban areas and then transferred to the second set of
infrastructures named satellite platforms, located within the city borders. At the satellite,
the freight is transferred to city-freighters (e.g., urban vans) that perform a designed route
inside the city to reach and serve the final customers. This final leg of the logistic process
is named the “last mile” and it starts when the loads leave the satellite and finishes with
the home delivery. The high volumes increase the complexity of the last mile that
becomes the bottleneck in the supply chain as well as the least efficient, and most
polluting and expensive, segment [104], accounting the 28% of the transport costs [113].
In particular, Gevaersa, Van de Voorde, and Vanelslandera [103] identify two main
problems connected to the cost-inefficiency of the last mile activity: the high failure rate
of delivery due the customer is not at home problem (about the 12% of delivery requires a
second round [246] and the lack of critical mass due to lack of market penetration and
density.

Although its relevant role in urban vitality, the freight transportation and logistics
industry generates negative externalities, such as traffic and congestion, environmental
nuisances, noise disturbance, with the result of unsafe and unlivable cities. Moreover, the
consequence of the traffic and congestion is the loss of about the 1% of the European
Gross Domestic Product (GDP) every year, corresponding to 100 billion Euros [18].
Concerning the environmental impact, despite the long distances involved in long-haul
transportation, urban freight transport is the most pollutant, due to the inefficiencies of
activities, its road-based nature (i.e., it is mainly operated using non-renewable fuels
vans) and the large number of stops, with severe consequences in terms of greenhouse-
gas (GHG) emissions, noise and visual pollution. Indeed, the transportation sector is
responsible for the 72.9% [90]. More in detail, according to the research and innovation
roadmap by ALICE Alliance [2], the urban freight emissions account for the 25% of urban
transport-related CO2 emissions and 30% to 50% of other transport-related pollutants
(e.g., particulate matter, nitrogen oxide N2O, methane CH4). The environmental impact of
transportation has harmful effects causing climate changes, global warming and damage
to human health (e.g., respiratory and cardiovascular problems). The complexities of these
impacts have led public authorities and stakeholders in the city to pursue environmental
policies and mitigation strategies. The European Commission sets binding emission
targets for the transportation industry, requiring the member states to achieve essentially
CO2-free City Logistics in major urban centers by 2030 [87].

Reducing global pollutant emissions and environmental protection are one of the
main pillars embraced by the concepts of sustainability and sustainable transportation. In
particular, as Ehmke [80] points out, the dilemma of urban freight transportation is to be

3



1 – Introduction to urban freight transportation and logistics

innovative and competitive, while reducing the environmental externalities.
In general, sustainability is challenging city managers, researchers and practitioners

in finding solutions and approaches that go beyond the urban planning activities. The
concepts of “sustainability” and “sustainable development” appear for the first time in the
report Our Common Future by the World Commission on Environment and Development
[237]. In the Brundtland report, the sustainable development is defined as:

the development that meets the needs of the present without compromising
the ability of future generations to meet their own needs.

Different contributions aim to express the meaning of sustainable transportation in line
with the principle of sustainability outlined previously [195, 253, 158, 16]. In particular,
they identify different issues and related objectives of sustainable transportation that can
be summarized as follows (Figure 1.1):

• People. Sustainable urban freight transportation aims to reduce the unsustainable
effects that can generate disease, damage or compromise the public health, safety
and security (e.g., traffic accidents, noise, and air nuisance). Moreover, it has to
ensure the accessibility offered by the transport system to all citizens, guaranteeing
their social inclusion.

• Environment. It refers to the reduction of GHG emissions, noise and visual pollution,
reducing the connected social costs and improving the air quality.

• Economy. Sustainable urban freight transportation has to ensure a profit (particularly
to the private stakeholders) reducing the cost-inefficiency due to environmental
aspects, regulations and restrictions while improving the cost-effectiveness of the
transportation operations.

• City. Sustainable urban freight transportation becomes a fundamental requirement
to obtain a sustainable development of the city, which becomes competitive and
attractive, and well-functioning.

1.2 Emerging challenges
From the global vision presented above, it is clear as the urban area, and particularly

the last mile, are represented as a complex system, challenging the city managers and
the stakeholders in finding factual solution to improve the efficiency of transport while
preserving the quality of life of citizens. In particular, in the following, the most important
emerging challenges for urban transportation and logistics are described.
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Figure 1.1: Pillars of the urban freight transportation sustainability.

Paradigm shifts In past decades, urban freight transportation and logistics have been
interested in different paradigm shifts to face the requirements of the modern economy. In
the beginning, urban freight transportation and logistics were more related to the business-
to-business and intra-business segments for procurement and selling purposes. The
urbanization has rapid growth, starting from the 1950s. According to the estimations of
the United Nations [238], the urban population was equal to 746 million in 1950, reached
the 7.6 billion in 2017 and additional 2.5 billion people are projected to be urban in 2050.
This phenomenon led to benefits to the urban fabric and the economic development of
cities. Also, the logistics have benefited from the urbanization and demographic growth,
and we saw a first change that has led to the creation of micro-small transport companies
with vehicle fleets of reduced size, which provide urban freight services in limited areas
of the city. The economic development since the 1990s has led the restructuring of there
small business in medium-large companies (e.g., TNT, DHL, etc.) that utilizing city vans
or small-medium trucks make consolidation-based delivery tours to serve the last-mile
segment of the supply chain. They are the faster-growing urban transport business [64],
giving rise to the CEP industry. More recently, the massive adoption of online shopping
and the development of e-Commerce giant platforms contribute to another paradigm shift
in urban distribution and logistics. Indeed, we see the transition from an offer-driven
logistics to a demand-driven logistics, in which the customer obsession and the demand
orchestrate the supply chain.

Multiple actors The urban transportation system involves many different actors with
sometimes conflicting goals and objectives (Table 1.1). In the literature, it is commonly
recognized that the four main actors who affect urban freight domains are briefly described
in the following [203, 195, 15, 171, 25]:

• Shippers. The shippers aim to reach their customers and suppliers to sell their
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products and procure raw material and semi-finished products, generating the
demand for transportation services. Generally, they engage third-party logistics
service providers (3PLs) and carriers to outsource the physical freight movement
and the logistics activities. The relationship between shippers and carriers requires
a complex decision-process by which the shippers decide the transportation mode,
shipment size, frequency, lead-time, delivery precision and flexibility, according
to its supply-chain and logistics planning strategies, and additional factors (e.g.,
freight rates, reliability, transit times, market and carriers considerations, etc.) [15,
168].

• Carriers. These companies are responsible for organizing and performing freight
transport efficiently (e.g., using different strategies for routing and avoid congestion)
and to eventually, provide customized services.
Since they are private stakeholders, the shippers and carriers are usually interested
in picking up and delivering products at the lower costs, but with a high-quality
service level and short lead-times [203].

• Administrators. This actor refers to the local public authorities responsible for
the management of the city and to ensure the livelihood and the welfare of the
community. Thus, the administrators aim to reduce the negative externalities related
to the transportation activities, reduce the social costs and guarantee the sustainable
development of the city, making it more livable, socially inclusive, attractive and
competitive [171, 175, 147, 224]. Starting from the beginning of the 21st century,
the role of the public authorities is no longer remained closed to restrictive measures
but becomes relevant in the design of policies for freight transportation in urban
areas.

• Customers. They are the final receivers of the goods moved in the city, as well as the
citizens, participatory members of the city. Customer’s main interest is to receive
the purchased good at the desired time and location, and the lower cost. Moreover,
they are interested to live in a pleasant, accessible, environmental-friendly and safe
city.

Table 1.1: Key actors in urban freight transportation and their objectives.

Actor Main interests Objective in the literature

Shipper Minimize cost, maximize service level Service time, time window
Carrier Minimize cost, maximize service level Travel cost, distance,

travel time, fleet size
Administrators Sustainable development, minimize externalities Environmental cost
Citizen Maximize service level, minimize externalities, Environmental cost

minimize transportation costs, maximize quality of life
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In Chapter 2, a detailed description of a complex transportation system, the actors
involved and their interaction is provided.

Common and scarce resources In urban areas, the movement of people and freight
coexist. Thus, as Crainic, Ricciardi, and Storchi [55] point out, freight vehicles share
and compete with public transportation modes and private-citizens cars for the use of
infrastructure and resources, e.g., streets, parking spaces, etc., and contribute significantly
to congestion, noise, and environmental pollution. Obviously, the city streets and urban
spaces have limited capacity making the conciliation of freight with people, and the
land-use planning challenges for the cities managers to order and regulate the efficient
adoption of commodities.

Large-scale problems As stated in Section 1.1, the home delivery has lead to a rapid
increase of the volumes of freight that transit within urban areas increased rapidly,
requiring to cope with large-scale problems. In particular, the online shopping generates a
fragmented demand composed by more frequent orders of small dimension, i.e., mainly
parcels up to 3 kg. Morganti et al. [165] refer to this issue as the “atomization of parcel
flows”, which has considerable repercussions on the last-mile logistics.

The urban freight is characterized by a phenomenal diversity [64], as cities throughout
the world are diverse in terms of social, political, geographical and economic patterns, as
well as the different business inside a city generate diverse flows volume and characteristics
(e.g., durable products differ from the e-grocery), which vary from city to city. Despite this
diversity, some data from contributions in the literature and internal analysis published in
[185] can give an idea of the dimension of problems in urban context. These data considers
all the good movements related to the business-to-business and business-to-consumer
segments as well as the home deliveries from the online shopping and e-Commerce, and
the end-consumer private movement flows (i.e., made with private transportation modes)
According to different contributions [165, 222, 175, 65, 94, 185], the city generates about:

• 0,1 delivery/collection per capita per day;

• 1 delivery/collection per job per week;

• 30 to 50 tons of goods per capita per year;

• about 4000 delivery/day in a medium-sized city;

• between the 40% and 45% of the total goods traffic in terms of road occupancy
rates for economic needs of local businesses;

• between 45% and 55% of the total goods traffic by the business-to-consumer and
the private movement flows.
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The high volume of transit flows can significantly disturb the urban transportation
system, compromising the environmental and economic sustainability of transportation
and logistics activities in the city. Indeed, the transportation and parcel delivery companies
are dealing with a new phenomenon in this sector: the diseconomies of scale. The high
density of deliveries point-to-point and the diversity of destinations lead to an increase in
the delivery travel and service times, instead of a decrease, due to traffic and congestion.

Planning issues and uncertainty The above issues demonstrate as the urban context is
a complex domain, where people and freight compete for common and shared resources
and different actors with conflicting objectives interact. Furthermore, it is characterized
by a rapid rate of growth, according to the political, economic and social evolution of the
environment, and changes require capital-intensive investment and long implementation
times [45]. In this context, accurate planning processes at different decision levels become
valuable, challenging researchers to develop appropriate methods, models and Decision-
Support Systems (DSS). The papers by Crainic and Gilbert [45] and Benjelloun and
Crainic [20] identify three planning levels (i.e., strategic, tactical and operational), which
are briefly discussed in the following:

• Strategic level. It involves the highest level of management and refers to the
decisions related to the logistics system design over a relatively long time horizon
that require large capital investments. For example, strategic decisions concern
infrastructure aspects (e.g., the location models of urban distribution centers or
satellites), the determining of the optimal fleet composition [96], the designing of
strategies and policies.

• Tactical level. It concerns all the medium-terms horizon decisions, which are usually
related to the definition of a transportation plan describing the adequate allocation
and utilization of existing resources, that allow achieving the best trade-off between
operating costs and service performance [45]. Tactical decisions are the service
network design, and the planning of transportation and warehousing capacity.

• Operational level. It concerns short term decisions as day-to-day operations. The
urban areas are dynamic contexts, thus anticipating future events (e.g., demand,
congestion and unfavorable conditions) and reacting in short or even real time is
valuable. Operational decisions concern the adjustment of tactical plans, such as
daily routing, assignment of delivery requests to vehicles.

It appears, however, that “tactical” may involve very short time horizons, e.g., the next day,
in urban freight transportation. In fact, to the classical planning levels, the availability of
reliable real-time (or quasi real-time) data streams, the computational capabilities installed
on the machines, and the intelligence present in the IoT network, create a new planning
level, the so-called “short-term tactical”, “pre-tactical” or even “day-before planning”
[56]. It is a decision level where, thanks to analytics and data from sensors in the city, we
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can design a tactical problem ranging over a shorter time horizon (normally one or two
days), but incorporating a simplified version of the operational actions. Relative to the
management environment and constraints, planning closely to operation-time is beneficial
when one has little or no restrictions on mustering facilities and people on very short
notice.

The planning process requires to operate in an uncertainty environment. Indeed,
usually at the time for decisions, not all the information is available, but some parameters
related to random events (e.g., the demand fluctuation) are uncertain. Thus, the decision-
marker deals with a stochastic problem and it has to take into account the different sources
of uncertainty in urban areas that could have a strong influence on the decisions and
performance of the transportation system. Chapter 5 will present a tactical decision-
making process under uncertainty that involves shippers and carriers, regarding the
capacity planning problem.

1.3 City Logistics
In the last decades, the issues that affect the freight transportation and logistics in urban

areas motivate the researchers and practitioners to design and develop solutions to make
this complex system more innovative and competitive, while reducing its inefficiencies
and environmental impact. In this direction, first attempts of actions came from the City
Logistics, which is defined by Taniguchi et al. [230] as:

the process for totally optimizing the logistics and transport activities by
private companies in urban areas while considering the traffic environment,
the traffic congestion and energy consumption within the framework of a
market economy.

As Crainic, Ricciardi, and Storchi [55] point out, an unequivocal definition of City
Logistics does not exist, and several classifications of the initiatives in this field are
available in the literature [154, 76, 202, 203, 63, 166]. However, the different contributions
converge to the following pillars that characterize a City Logistics measure:

• focus on freight transportation at the urban level;

• emphasis on reaching an integrated logistics system;

• reducing the inefficiency and environmental impact of transportation activities and
supporting the sustainable growth of livable cities.

In this subsection, an overview of the City Logistics measures is provided, according
to the classification depicted by Figure 1.2. In particular, the different City Logistics
initiatives can be grouped in the following categories:
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• Infrastructure. This category includes the initiatives related to the urban
transportation network, as the building of new infrastructure reserved for freight
operations or the improvement of the existing infrastructures and their links. Such
measures comprise for examples the nearby delivery areas and loading/unloading
lay-by zones, which are urban areas reserved for freight loading and unloading
purposes, avoiding the problem of double-parking by trucks [215, 65]. Other
measures of this type are the multi-use lanes or the preferred freight vehicles lanes
for freight distribution. The first case has been adopted in Barcelona [119] and in
Bilbao [257], where one of the road lanes is provided for the loading and unloading
of goods and their transit at certain time slots, and used for other vehicle activities
during the rest of the day. A consistent part of the City Logistics initiatives in this
category deal with the installation and allocation of Urban Distribution Centers
(UDCs) or Urban Consolidation Centers (UCCs). These are logistics terminals
where the goods coming from the long-haul shipments are consolidated into urban
vehicles, improving the transported payload, minimizing the logistics costs while
alleviating the traffic and congestion within urban areas. For further details about
the different UCCs located within Europe and outside, the interested reader could
refer to the comprehensive review by Browne et al. [29]. Finally, Crainic and
Sgalambro [47] proposed an extended generalization of the UCCs, named two-tier
city logistics system, where a second set of infrastructures named satellite
platforms are located inside the city. Here, the freight coming from the external
UCCs, is consolidated into smaller vehicles named city-freighters, which can travel
along the street in the inner city to the final customer. The complexity and the size
of the problem at the level of the whole city area pushed the researchers to explore
multi-tier logistics frameworks, where a set of depots of small size are located
inside the urban area. The size and the location of the depots, usually called
satellite depots, require, to be operationally efficient, a strong coordination of the
operations between the actors and the vehicles involved in the delivery process.
They enable the integration of environmental-friendly vehicles as electric vans and
cargo bikes [185]. More recently, the possibility to have mobile satellite depots, as
the Mobile Depot by TNT [153], enforces the effect of the synchronization of the
operations among the vehicles used at the different levels of the multi-tier system.
The usage of the mobile depot can be static, i.e., its position is fixed in the
optimization time horizon, or dynamic, i.e., the location changes in the operational
time horizon.

• Regulation and governance. This category comprises the “positive” measures as the
incentives to encourage the supporting of sustainable transportation, as well as the
“negative” ones, as restrictions, limitation or monetary impositions set by the local
administrators of the city. For example, today most cities have restrictive regulations
on time window to access in city centers or low-emission zones, especially historical
or pedestrian zones (e.g., Turin, Milan) and requirements of a minimum load factor
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to avoid empty trips (e.g., Copenhagen and Göteborg). Other types of regulation
measure are road-pricing and area-pricing, which impose monetary charges (e.g.,
tolls) for certain types of freight vehicles (e.g., congestion charging schemes in
London and Stockholm). This measure plays an important role in the demand and
vehicles fleet management, leading the freight transportation company to rationally
use their vehicles, reducing the costs and environmental impacts of operations.

Finally, the last governance measure implemented for example in Barcelona and
New York concerns the off-hour delivery or night delivery, which imposes the
freight companies to shift deliveries during less congested hours as the night.

• Technology. As stated by Taniguchi [225] a key element for promoting City
Logistics is the application of innovative Information and Communication
Technologies (ICTs) and Intelligent transport systems (ITS). In the projects already
implemented, these measures concerned mainly the development of platforms and
telematic systems for control and charging the access to regulated areas or for
booking the loading/unloading zones. Moreover, these system aimed to gather data
and information concerning the truck flows on urban road networks, through
on-board units, cameras and sensors spread all over the city, supporting dynamic
vehicle routing and scheduling according to the degree of congestion on the
transport network [202, 225].

Another important framework in this category concerns the technical innovation
related to the vehicle design, as the alternative vehicles and energy saving-engine,
that can be relevant to achieve low-energy and low-emission transportation
activities.

• Collaborative systems. This last category includes solutions at the planning level
that regard how the freight moves within the city, fostering the collaboration among
the different actors, transportation modes and integrating people and freight. In these
systems, the different actors share not only information, but also the management
and coordination rules. Many experiences in different cities (e.g., Turin [184],
London [138], Paris [64]) address the potential of multi-modality and intermodality
that integrate traditional vans with non-motorized vehicles as cargo bikes, for
sustainable urban freight transport, as investigated in Chapter 3.

Another concept is the “co-modality” or “cargo hitching” that considers the adoption
of public transport vehicles such as trains, trams, buses or taxis, which usually have
an underutilized capacity, for transporting passengers and goods simultaneously
[18, 106, 140, 227, 234].

Although the City Logistics aims to achieve an integrated logistics system as
mentioned before, most of the measures in this field are fragmented and mainly address
just some of the different aspects in the freight transportation, individually. Thus, a lack
of a global vision of this complex system emerges. In fact, as stated by Bektaş, Crainic,
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and van Woensel [18] the major challenge for City Logistics is to develop models and
methods that provide a comprehensive formulation of the system. In this direction, the
next subsection will be devoted to analyze the main issues of the current solutions in the
City Logistics and to propose a new multi-disciplinary approach that considers the
different stakeholders and matters of urban freight transportation to support the
decision-making processes.

Figure 1.2: A categorization of the main City Logistics measures.

1.4 A new approach to sustainable urban freight
transportation

The City Logistics measures presented in Section 1.3 have three main issues. First,
despite the good results and performance of their proposed solutions, they are usually
related to a limited spatial coverage. In fact, the major part of the City Logistics initiatives
is focused on a limited area of the city (e.g., a commercial district or the inner city), where
the socio-demographic patterns, occupation density and, cultural and historical values are
valuable, disregarding the overall urban context. Thus, it might be difficult to use at a
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regional or national level. Indeed, they do not consider the complexity and phenomenal
diversity of urban logistics, as discussed in Section 1.2, resulting strictly dependent on
the environment where they are implemented [149, 15, 137]. Moreover, as Dablanc [64]
point out, the success of these initiatives and best practices to improve the sustainability
of urban transportation depends on the local government interest and subsidies.

Second, the City Logistics initiatives fail due to the lack of support and commitment
from the different actors in the urban areas [156, 203]. Indeed, as emerged in the studies
conducted by Behrends [15], Vieira, Fransoo, and Carvalho [243], Marcucci et al. [156],
Dablanc [67], and Ville, Gonzalez-Feliu, and Dablanc [245], projects and research on
City Logistics address mainly the public authorities perspectives (e.g., dealing with
pricing policies, road infrastructure), while private companies are rarely involved. For
example, Behrends [15] highlights as in 2013 the public perspective is addressed in the
52% of papers, while only the 5% deals with the shippers and receivers perspectives. As
mentioned above, the urban transportation system is characterized by multiple actors
involved in complex interaction and with different background and conflicting objectives,
causing difficulties in converging to a coordinate and accepted solution. According to
[221], there is a lack of qualified expertise in local authorities for the proper conflict
resolution among the different participants in City Logistics projects. Modeling efforts
considers the importance of engaging the different actors and stakeholders in the city, only
within recent years [171, 137, 215, 123]. Thus, it becomes clear the need for designing
and deploying strategies for sustainable transportation, which are commonly accepted by
all the actors. Hence, authorities should choose the set of measures that receive the best
support from the stakeholders [215].

Finally, the third issue of the City Logistics initiatives, which is related to the previous
points, refers to the lack of a managerial perspective in designing sustainable policies
appropriate for freight transportation and logistics. The proposed solutions are too focused
on the technological aspects as platforms, or optimization tools, missing the lack between
the business and operational models and causing the ending of the projects when funds
and financial supports end [193, 97]. This aspect will be further discussed in the next
chapter of this thesis.

To deploy efficient and effective solutions to achieve sustainable urban transportation,
it emerges the necessity of a visionary and holistic approach that looks at the system, in
its entirety, and not only to the technological and scientific standpoints. For example, this
approach must take into account the different actors in the city, the complexity of their
interactions and relationships, the different technologies and logistics solutions and the
coexistence of freight and people, rarely considered together in City Logistics initiatives.

In this direction, the thesis aims to fill the above-discussed lacks in the literature and
to investigate whether a multi-disciplinary approach is valuable to support the decision
makers in the assessment of new factual solutions and, industrial and public policies in
the urban transportation system. The proposed multi-disciplinary approach integrates
qualitative and quantitative methods and model from the research communities of Business
and Management, Operation Research, Transportation and Computer Sciences. It could
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provide the following benefits and contributions to the community:

• an automatic decision-making process because of its technological component, i.e.,
optimization tools;

• integration of real data from the context;

• integration of methodologies and models that otherwise would remain a niche;

• actor-centric approach capable of allowing the communication and interaction with
non-technical staff or among actors with different backgrounds, going to fix the
issue related to the lack of stakeholders involvement and convergence.

Figure 1.3 depicts the building blocks of the approach, as following described:

• Behavior analysis. The starting phase for evaluating urban freight transport
initiatives that aim at improving sustainability concerns an analysis of the context
(e.g., urban characteristics, social and political issues) and particularly of the actors
involved. It attempts to understand which are the actors involved, and the reason
for that involvement, as well as to describe their behaviors under certain conditions
and their business models [123, 202, 226]. According to Kritzinger et al. [135],
Nilesh et al. [171], and Regan and Garrido [197], urban freight transportation
modeling lacks appropriate behavioral approach towards modeling related
processes and the planning or policy assessed under such circumstances does not
guarantee anticipated results. Moreover, understanding the interactions among
different actors is an essential step in the decision-making process to analyze the
causes of the urban goods movement and forecast the effects of new policies,
overcoming the unexpected consequences due to poor decision making [171]. In
this direction, the simulation can be applied to deeply study and reproduce the
connections and interactions among the actors. Moreover, qualitative tools (e.g.,
Value Proposition Canvas, Business Model Canvas (BMC) and Value Ring [183,
233, 180]) from the Business and Management field, become valuable.

• Economic analysis. To understand the context and actors involved, it is necessary
an economic analysis to investigate the economic feasibility of certain measures in
the short term and their sustainability in the long run, which will be monitored in
the future.

• Technology scouting. This block concerns the scouting of the possible opportunities
in term of technologies to adopt, and the most quantitative part of the approach,
including simulation and optimization tools and methods.

The outcomes of these phases converge in a unique framework to support the decision
process and the design of industrial and public policies. The presented framework is then
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Figure 1.3: Multi-disciplinary user-centric approach for urban freight transport
sustainability.

used to investigate the different challenges of urban transportation and parcel delivery
system, extrapolating some useful managerial insights, industrial and public policies.

In particular, one of these challenges concerns the integration of different
transportation modes and new delivery options in a unique service. It emerges from the
need perceived by firms to cope with the increasing focus on maximizing service level
and reduction of profitability. In this direction, the following chapter has the aim to
investigate the research on the intermodal transportation to understand how intermodal
systems, including intermodal and regional facilities (e.g., distribution centres and
satellites) can be repurposed at a logical level, on the urban freight transportation.
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Chapter 2

Intermodal transportation

The multi-level transportation systems such as those encountered in the context of
urban freight transportation and City Logistics are characterized by intermediate satellite
facilities, and the adoption of fossil-fuel van but also small and environment-friendly
vehicles to perform the last leg of distribution operations. This phenomenal diversity of
urban context as well as the adoption of multiple modes and options, require the adoption
of an intermodal approach to deal with urban freight transportation issues. Indeed,
intermodality is broadly acknowledged as the backbone of international trade, supporting
the efficiency of the above discussed emerging operational and business models, such
as City Logistics, in achieving sustainable transportation and logistics. As Catte [38]
points out, intermodality is a key component of environmental policies, integrating the
individual measures (e.g., congestion charges or traffic restriction) and providing viable
alternatives to the traditional model.

Thus, the research on the intermodal transportation could provide valuable and
interesting insights from which draw inspiration to design sustainable urban freight
transportation system. This chapter aims to study the intermodal freight transportation
system and simulation methods used to shape it, as proposed in the original work by
Crainic, Perboli, and Rosano [46].

Intermodal freight transportation is defined as the transportation of loads from the
origin to the destination of a shipment, involving at least two transportation modes and
services, such that the transfer from one mode to the other is performed at an intermodal
terminal.

It can be represented as a multi-actor complex system (MACSs), which involves
a broad range of interacting stakeholders, decision makers, operations, and planning
activities. Its complexity and the high level of interactions, make needed simulations of
the system to shape and monitor the transportation activities and support the decision-
making processes. On the one hand, simulation provides the instruments to validate
models and algorithms and to explore their worth under various internal and external
conditions. On the other hand, it is also a means to represent the behavior of a certain
system and to estimate its response to various policies and changes in its environment,
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from the availability and quality of infrastructure to energy prices and environmental
regulations. In this direction, the field of Operations Research offers a rich set of models
and methods to build and manage the “best” operation plans, to select operations or
manage alternatives to achieve desired levels of cost versus quality of service versus
environmental and societal impacts, and to evaluate strategies and policies.

After defining the freight transportation complex system, the rich literature concerning
simulation models and studies on various issues related to intermodal transportation
is reviewed, through the application of a three-layer taxonomy to derive trends and
patterns from the current research contributions and to propose a guide for future research
analyses. This analysis included a large set of papers published in scientific journals
and conferences within different disciplines, confirming the multidisciplinary nature
of applications to freight transportation that involves Computer Science, Mathematics,
Transportation Engineering, Management Science, and Economics. Moreover, on the
contrary of the several surveys on multi and intermodal transportation issues as part of
long-haul transportation or City Logistics, this taxonomy provides a global vision of the
system, including the decision makers, the actors (both public and private) involved and
the issues they want to address.

Several interesting insights emerge:

• Public, individuals and freight transportation are currently modeled and optimized
as separate systems. There is thus the need for new models, methods and software
tools able to represent the complete transportation system, including new active
modes, business and organizational models. Indeed, this is not just a matter of
defining a model, but to deeply understand the connection between the different
actors and how and why they can cooperate, which kind of data they might share
and which policies might be defined. Notice that this is an open issue at the regional
level as well, where research did not really advance after the first examples of an
integrated vision of the years 1990 [51, 60, 52, 130].

• The intermodal transportation systems, the rules and policies of the different actors,
and the interactions among actors and subsystems are often described in an
aggregated, simplified way. This approach is particularly used in network
representations and multi-agent simulations, where the level of intelligence and
optimization incorporated in the agents is generally quite low (e.g., simple
heuristics). This simplification is affecting, in particular, the characteristics related
to the geographical, organizational, behavioral and data sharing aspects. We
believe that a crucial point for the relevance and utilization of simulation lies with
the development of more detailed and flexible models, as well as better integration
of simulation and optimization.

• The complexity of the transportation systems yields large-sized simulation models,
which will grow even larger and with more details when the results of the previous
items will become available. This requires significant and continuously growing
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computational efforts. We therefore, see a research avenue with significant benefits
in increased exploration and exploitation of parallel computing, particularly for new
hardware and software high-performance computing architectures, which become
more and more affordable.

• New business and organizational frameworks, e.g., Hyperconnected systems (City
Logistics, Physical Internet, Synchromodality) and Logistics 4.0 are viewed mainly
as key concepts for the development of transportation and logistics systems [3, 18,
54]. Stakeholder cooperation and the integration, synchronization, and automation
of operations are at the core of these concepts and development frameworks.
Current studies of such systems are few and their representations are still quite
simplified. More efforts are certainly required in this broad field, the first results
with a Technology Readiness Level larger than 6 being presented currently only for
a survey of the recent results in EU FP7 and H2020 projects in [193].

• Few studies address policy-making processes, and there is a need for tools
supporting policy makers in designing sustainable policies appropriate for freight
transportation and the continuous evolution of the society (e.g., the codesign with
citizens and companies of urban policies). Overcoming this lack implies
incorporating into simulation and optimization tools a managerial perspective and a
representation of the business models of the various stakeholders. While such
policies are currently showing their effectiveness in terms of acceptance and
efficiency, the challenge for simulation development is to model, at the appropriate
level for the tradeoff between detail and computation efficiency, the business
models of the different actors and their interactions in terms of contracts, pricing
and costing schemes and operational issues [155, 190].

Thus, results highlight the need of a more comprehensive methodology that
encourages quantitative and qualitative researchers to “speak” a common language,
to support the policy-making process commonly. The first attempt took the form of
the GUEST methodology used in this thesis, which is a business framework for
researchers used to develop their ideas into business and managerial applications,
by moving the projects to real sustainability [183, 233]. It is a lean business
approach that extends the work of Osterwalder and Pigneur [179] and other lean
startup movements, adapted for MACSs, such as freight transportation systems.

This chapter is organized as follows. Section 2.1 describes the intermodal freight
transportation system, analyzing the stakeholders involved and their interactions. Section
2.2.1 introduces the methodology and taxonomy adopted. Finally, Section 2.3 presents
the outcomes and general trends emerged.
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2.1 Intermodal transportation as a complex system
Bektaş, Crainic, and van Woensel [18] define intermodal transportation as the

transportation of people or freight from their origin to their destination by a sequence of
at least two modes of transportation without any handling of the freight itself when
changing modes. Intermodal transportation aims to reduce cargo-handling, damages, and
loss, as well as to improve security and transport speed. The main characteristic of
intermodal freight transportation is that the goods are moved in one loading unit or
vehicle and are not handled when changing modes [89]. Although different types of
packaging may be present (e.g., boxes, pallets, swap bodies, containers, etc.), going
forward we will refer to the packaging simply as “containers” [89].

An intermodal transportation system is made up of several different actors interacting
with each other, including shippers that generate demand for transportation, carriers
that provide the transportation services, facility and physical infrastructure managers,
institutional authorities that regulate the system, and customers and citizens that ask for
goods.

Shippers generate the freight transportation demand, as they are generally the senders
of the goods. They plan shipments to satisfy their customers and either organize or
participate in the organization of how their freight should be moved. Thus, they define
their logistics strategy, which may include intermodal transport.

Carriers perform the transport for the shippers. Some carriers operate dedicated
services, in which a vehicle/container serves a single customer, and others operate on the
basis of consolidation, in which each vehicle/container may contain different customers’
freight with different origins or eventual destinations.

Freight logistics providers (FLPs), 3PLs in particular, undertake various logistics tasks
within an intermodal transportation system, providing a range of value-added logistics
services, such as warehousing, distribution, shipping, inventory management, co-packing,
labeling, repacking, weighing, and quality control. FLPs also collaborate with shippers
for both domestic and international intermodal transportation activities. Shippers may
actually outsource logistics activities in order to focus on their core businesses and benefit
from the expertise of the FLPs. On the other hand, 3PLs also interact with carriers
to secure timely transportation capacity for their customers. In this sense, they may
sometimes appear as carriers.

Facility and infrastructure managers may be public entities or private firms with public
stakeholders. They do not plan, organize, or realize freight transportation services but
instead deal with the management of the physical network and infrastructure, including
roads and highways, the rail infrastructure in Europe, intermodal port terminals, and so on.
Thus, they play a central role by providing efficient physical networks and the necessary
technology and sensors layers to control and optimize the utilization of the infrastructure
and facilities.

Institutional authorities (e.g., governments and public administrations) are the actors
who tax, give incentives, set up policies, and regulate transport activities. Through the
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policies they set, these actors increasingly frequently aim to guide the transportation and
logistics system towards “new”, more beneficial to society, and resilient ways of operation
(e.g., the usage of specific corridors or vehicle and motorization types, mode changes
from road-based to water- and rail-based transportation, the reduction of externalities,
the consideration of environmental impacts, etc.). We include in this class of actors
local and national governments as well as transnational institutions such as the European
Commission.

Finally, customers represent the receivers of the shipments. They can be the final
client, retailer, distributor, or wholesaler. Customers include citizens as well, and, hence,
they are mindful about emissions, safety, and viability within their local areas, and they
can influence the institutional authorities through their votes.

The aforementioned actors have their own goals, make their own decisions, and are
linked with the others through many interconnections, interactions, and interdependencies.
All contribute to make intermodal transportation a complex system. Furthermore, these
decisions and interrelations may be affected by uncertainty from many different sources,
often related to demand, travel times, and handling operations [152, 187]. Hence, the
efficiency and reliability of the intermodal transportation system require coordination
and fast information flows among several actors, interoperability among the operational
activities and modes, and behavioral aspects.

We illustrate this situation and complexity through the Social Business Network (SBN)
shown in Figure 2.1. The SBN represents a complex system in a standard visual manner
and is part of the GUEST methodology [183, 233]. The SBN is a graph composed of
nodes and arcs. The nodes represent players grouped by type. The arcs symbolize the
relationships between nodes, and their graphical representation is based on their type
(i.e., commercial, normative, or stakeholdership). Figure 2.1 shows the SBN for an
intermodal transportation system made up of the aforementioned actor types: shippers,
carriers, customers, facility and infrastructure managers, and institutional authorities. The
graph clarifies that an intermodal system has an additional level of complexity due to the
correlations between the actors. Moreover, this level of complexity is just one of many
that come from examining the system from various points of view, including the presence
of multiple objectives (e.g., performance-based, economic, environmental, or social) and
of different levels of decision making (e.g., real-time, operational, tactical, or strategic).

This brief analysis illustrates the many components, decisions, and interactions
characterizing intermodal transportation and points to the many ways of approaching its
study. The diversity of scope and goals of the studies reviewed in this analysis further
supports these observations. A comprehensive classification of intermodal transportation
simulation models and applications must reflect this diversity of means, scopes, and goals
as well as identifying less-studied areas in order to provide a global picture of current
research and highlight research needs and opportunities. This is the main scope of the
taxonomy we introduce in this chapter, as detailed in the next sections.
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Figure 2.1: Relationships among the main actors in freight transportation systems.

2.2 The taxonomy

2.2.1 Taxonomy construction methodology
From a methodology point of view, our classification was a cluster-analysis-based

taxonomy with polythetic classes [11, 12]. Thus, to build it, we followed the three-step
method described by Bailey [12]. We began with an empirical analysis of a database
of studies. In the second stage, we represented the cluster on paper. Finally, the third
stage was envisioning a mental concept for the cluster, often by mentally generating a
name or label for the cluster (such as “Network Description”). We then started to retrieve
studies from refereed journals and conference proceedings to source the intermodal freight
transportation simulation literature. We referred to the Scopus bibliographic database for
our analysis because it contains articles from all major journals dealing with transportation.
Many journals are also recognized by the ERA 2012 Journal List evaluation across eight
discipline clusters [10]. The following list of keywords (and their combinations) was used
to search for studies: intermodal, simulation, freight, transportation, planning, network,
and supply chain. Only English language literature was included. Additional studies
were retrieved by tracking the research cited in some studies. We also decided to include
studies dated from 2007 to 2017 to consider only the most recent literature. We used
the online database to find about 350 studies. We then first reduced the entire set of
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selected studies to a total of 150 by restricting the topic area. Thus, we did not consider
studies dealing with terminal operations and management, such as the optimization of
container terminal operations, the allocation and scheduling of terminal equipment, and
the optimization of terminal area use. Reviews analyzing the roles of simulation and
optimization in intermodal container terminals were presented by Gambardella and Rizzoli
[100], Stahlbock and Voß [214], and Bierwirth and Meisel [22]. A second screening
removed studies dealing with the simulation of telecommunication-related issues (e.g.,
connected vehicle protocols) and other similar topics, which yielded a final selection of
about 89 studies.

Figure 2.2: Taxonomy structure.

Figure 2.2 depicts the result of our process and is structured in three levels of detail.
The taxonomy provides four axes at the first level: Network Description, Planning,
Simulation Method, and Scope. The first two axes concern the problem specifications,
the third axis describes how the simulation method was implemented, and the fourth
investigates the role of simulation. Each axis is structured at the second level in several
categories, for which more precise information is provided by subcategories at the third
level. Due to the large number of factors that play important roles in defining an intermodal
freight transportation system and their high correlation, we decided to consider only the
axes at the root level as mutually exclusive and jointly exhaustive. Our analysis is therefore
not globally exhaustive, but we believe it provides a good general overview of the literature
trends in the simulation of intermodal freight transportation systems.

The rest of this section presents brief descriptions of the object and scope of each axis
and its categories.
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2.2.2 Network description
Intermodal freight transportation simulators may focus on the entire transportation

system of the region considered or on a subset only. This axis thus identifies the network
on which simulation is used, and it includes three categories: Types, which specify the
degree of modal combination represented; Modes, which specify the transportation modes
considered; and Territory, which refers to the geographical dimension of the intermodal
transportation system.

Types

This category focuses on the definition of the network studied in terms of the kind of
mode combination. The three main network types are:

• Unimodal: the term “Intermodality” is often equated in practice and in many papers
to container-based transportation. Thus, for example, North American railroads
created Intermodal divisions and operate many services identified as “intermodal”,
that is, as containers being moved by trains. This is reflected in the literature where
a good number of papers focus on one particular mode as part of the intermodal
chain. The unimodal-type category reflects this situation and groups the associated
papers;

• Multimodal: involves at least two modes and one terminal for transfer;

• Intermodal: refers to a multimodal chain of container-transportation services [53]
with no freight handling. In fact, as defined above, intermodal transportation
generally implies that freight is packed into a box, a container, and is not handled
from the time it is packed at the origin until the time it arrives at the point where
the container is to be opened, usually at the destination. Thus, it is the container
that is moved and transferred.

Modes

We describe the transportation modes according to their main transportation
engineering infrastructure categories:

• RO: roads;

• RA: railways;

• IWW: inland waterways;

• M: maritime transportation and coastal navigation;

• A: air transportation.
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When several modes are present in a study, we indicate them by a combination of single
identifiers (e.g., RO/RA stands for the usage of a multimodal or intermodal system using
roads and rails).

Territory

The geographic extension of the network is classified into:

• International: it covers from multi-country level to the continent and the entire
world;

• National: it covers single national cases and regional cases (with multiple
municipalities);

• Urban: it focuses on single cities and their surrounding areas.

2.2.3 Planning
This axis is concerned with the decision-making process, thereby investigating the

types of decisions and actors involved according to four categories:

• Decision makers: refers to the actors making the decisions, thereby determining the
point of view of the problem;

• Decision objects:states the type of planning and the object of the decision-making
process on which the simulation project focuses;

• Objectives: gives the categories of the Key Performance Indicators (KPIs) used to
measure and compare the effectiveness of alternatives;

• Time horizon: expresses the time perspective of the planning problem.

The last two categories are complementary in determining the objectives, formulations,
and requirements of the problem and identifying scenario alternatives.

Decision makers

This category identifies the actors for which the proposed models were designed,
following the main roles defined in Section 2.1.

Decision objects

This category denotes the type of problem being analyzed from the point of view of
the scope of the decision process considered. We define five subcategories:
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• Infrastructure: refers to the construction or enhancement of infrastructure, including
the locations of hubs and other types of terminals and the design of the physical
network;

• Policy: addresses the choice and evaluation of policies;

• Operations: is concerned with the planning of shipment and transportation
activities (e.g., capacity planning, service network design, resource allocation and
reallocation, storage of freight and (empty) containers, mode and route choice,
vehicle routing, management of disruptions, etc.);

• Cooperation: is concerned with the evaluation of the strengths and synergies arising
from collaborations, cooperation, and coalitions among carriers, among shippers,
or between shippers and carriers, with or without participation from institutional
authorities;

• Technology: refers to the validation of new technologies and the evaluation of their
impacts on the intermodal transportation system.

Objectives

This category describes the goals of the model and the metrics used to measure and
compare the effectiveness of alternatives:

• Economics: economic evaluation of the simulated operation, which can include
several metrics besides operational costs, such as travel time, fuel consumption,
vehicle-traveled distance, and charges (e.g., road pricing);

• Environment: evaluation of the environmental footprint of transportation networks,
mainly through GHG and particle emissions and fuel consumption;

• Performances: metrics related to the quality of the service offered, which can be
measured in terms of speed, flexibility, efficiency, reliability, and resilience.

Time horizon

As discussed in Chapter 1, planning activities can be divided into:

• Strategic planning: long-term planning decisions, which require the highest level of
forecasting, investments, and management and which concern the physical structure
of the intermodal transportation system, such as the hub and terminal location,
usually identified as network design problems;

• Tactical planning: medium-term decisions focusing mainly on the efficient
allocation and utilization of existing resources to improve the performance of the
system;
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• Operational planning: short time decisions, including real-time decisions.

2.2.4 Simulation method
This axis aims to identify the simulation method adopted in the model. It is composed

of three categories: Numerical, which specifies numerical simulations, Optimization,
which concerns the use of optimization approaches, and Simulation Optimization Relation,
which describes the relationship between simulation and optimization.

Numerical

This category denotes simulations conducted numerically without using optimization
methods, but simply calculating the evolution of observation parameters in the intermodal
freight transportation system as a result of varying initial conditions.

Optimization

In this setting, demand is represented by one or several commodity-specific origin-
destination matrices (mode choices may be included in the matrix definition as well), and
the supply side of the transportation system is represented by a multimodal network with
provisions for intermodal transfer. Modes are used to model services (e.g., container-
based transportation), vehicles, etc. The behavior of the system under various scenarios
is then simulated through an optimization network model (a nonlinear model when
congestion phenomena are considered) assigning the demand to the network according
to a generalized cost (combining, for example, monetary cost, time value, and energy
consumption. Strategic Transportation ANalysis model (STAN) [51, 52] represents a
typical example of this approach. The way both approaches work is based on the type
of simulation used. The simulation commonly combines the following two categories,
concerning their evolution over time and the inclusion of sources of uncertainty.

• Static or Dynamic. Static simulation does not represent time explicitly but rather
enables the evaluation of a system behavior in a steady state. The simulation
model describes the relationship between the input and output variables. Different
inputs are generated from the probability distributions of a stochastic system to
obtain unknown stochastic outputs. The Monte Carlo simulation is an example of
a static simulation. On the contrary, Dynamic simulation analyzes the changes in
the system state that occur over time. The simulation model describes all of the
entities involved and their interactions to evaluate their impact on the entire system.
Agent-based simulation is an example of this category, which can be further split
into a discrete and continuous simulation.

• Stochastic or Deterministic. A Deterministic simulation model exactly computes
the future states of the system once the input data and initial state have been defined.
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On the other hand, in a Stochastic simulation, the behavior of the system is not
precisely predicted, but it is affected by uncertainty. Thus, the model uses random
inputs and produces random output variables to represent and describe the expected
behavior.

Thus, the combinations of the approaches discussed above are as follows:

• Static-Stochastic;

• Static-Deterministic;

• Dynamic-Stochastic;

• Dynamic-Deterministic.

Simulation optimization relation

This category enhances the classification proposed in [95]:

• Optimization with simulation-based iterations (OSI): one or more complete
simulation runs are performed during some iterations of an optimization procedure;

• Simulation with optimization-based iterations (SOI): one or more complete
optimization procedures are performed during a simulation process; the
simulation-by-optimization approach is a specific case of SOI in which a single
iteration of the optimization model is performed;

• Alternate simulation–optimization (ASO): both simulation and optimization run
alternately, either to the end or incompletely, with feedback loops in each iteration;

• Sequential simulation–optimization (SSO): simulation and optimization run
sequentially, with either optimization following simulation or the opposite;

• Simulation (SIM): simulation without any optimization procedure.

2.2.5 Scope
This axis classifies the role of the simulation and includes two categories: simulated

objects and simulation objectives.

Simulated objects

This category defines the main objects of the simulation:

• Behaviors and interactions: the simulation model is used to reproduce the respective
behaviors of several entities and their interactions;
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• Flow: the object of the simulation is the estimation of traffic values, including flows
of vehicles, freight, containers, etc.;

• Scenario: a simulation framework is created to set up the scenario to which the
optimization procedure is then applied;

• Event: the simulation is used to reproduce a stochastic event.

Simulation objectives

This category classifies the simulation purpose according to four categories:

• What-if analysis: the objective is to analyze a hypothetical system under some
possible/forecasted/imagined scenario as well as to compare two or more system
alternatives;

• Forecasting: the simulation aims to study and evaluate the characteristics of an
actual system as well as predict its performance under various conditions/scenarios;

• Validation: the focus is on the validation of a proposed solution, a new policy, a
mathematical model, or a modeling approach;

• Enhancement: the simulation is combined with optimization to enhance the solution,
which usually requires alternate simulation and optimization procedures connected
through a performance feedback loop.

2.3 Analysis discussion
Figure 2.3 summarizes the number of publications from 2007 to 2017. An exponential

increase in the number of published studies applying simulation models to intermodal
freight transportation may be observed. The decrease observed for the years 2014 and
2017 may be explained by the fact that the volumes related to very popular conferences
(e.g., City Logistics) were scheduled for publication in these years but were not yet
indexed. This factor did not reflect any negative trend. On the contrary, from the rising
one, more studies are expected in the near future. This confirms the fact that the simulation
is a powerful tool in the decision-making process dealing with freight distribution and
intermodal transportation systems.

Table 2.1 shows the list of journals where the studies used in this analysis appeared.
The list is sorted according to the number of publications and listed in descending order.
Procedia - Social and Behavioral Sciences is the most prevalent journal in this field and
accounted for 25% of the total publications in the considered period. This finding can be
explained by the number of referred conference proceedings published in this journal (e.g.,
City Logistics and EWGT). Note that some conferences changed their policy, and their
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Figure 2.3: Number of studies selected from each year.

proceedings are currently part of a new journal called Transportation Research Procedia.
The European Journal of Operational Research (EJOR), Journal of Transport Geography,
and Transportation Research Part B also published several studies on the topic. These
four journals accounted for 48% of total publications. On the other hand, in most journals,
we found only a single contribution, underlying the extreme clustering of this topic. The
journals appearing in Table 2.1 cover many areas of applications, including economics,
computer science, management science, operations research, and transport engineering.
This finding also shows the inter-disciplinary nature of research in the simulation of
intermodal freight transportation.

We now present an analysis of the literature according to the axes and categories of
the taxonomy.

2.3.1 Network description
This subsection is dedicated to an analysis of the distribution of the literature according

to the different network characteristics.

Types and modes

Table 2.2 presents the studies sorted by type of network and mode. The most
analyzed networks are multimodal and intermodal (54%), whereas unimodal networks
account for approximately 46% of the studies. All unimodal-network studies address
road transportation, as simulation models are proposed to handle emissions and
congestion issues in cities. The most studied combinations of modes were road–rail and
road–rail–maritime transportation. Hence, roads, studied both in unimodal and
multimodal networks, appear to be the most critical mode. In particular, road
transportation is the most flexible mode in terms of departure time and routing and is

30



2.3 – Analysis discussion

Journal Name Count

Procedia — Social and Behavioral Sciences 22
European Journal of Operational Research 3
Journal of Transport Geography 3
Transportation Research Part B: Methodological 4
Transportation Research Part C: Emerging Technologies 4
Transportation Research Part E: Logistics and Transportation Review 3
Winter Simulation Conference 3
Decision Support Systems 2
Transportation Research Record 2
24th European Modeling and Simulation Symposium, 8th International Conference on Service Systems
and Service Management, Advanced Manufacturing and Sustainable Logistics, Applications of Evolutionary
Computing, Computers and Operations Research, Control Engineering Practice, European Transport (Trasporti
Europei), European Transport Research Review, EUT Edizioni Università di Trieste, Expert Systems with
Applications, Flexible Services and Manufacturing Journal, ICLEM 2010: Logistics for Sustained Economic
development — infrastructure, information, integration, INFORMATIK 2007 — Informatik Trifft Logistik, Beitrage
der. Jahrestagung der Gesellschaft fur Informatik e.V., International Journal of Physical Distribution and
Logistics Management, International Journal of Transport Economics, Journal of Computational Science, 1 (43)
Journal of the Eastern Asia Society for Transportation Studies, Eastern Asia Society for Transportation Studies,
Journal of Transportation Systems Engineering and Information Technology, Networks and Spatial Economics,
Proceedings of the 2011 Summer Computer Simulation Conference, Research in Transportation Economics,
Simulation Modelling Practice and Theory, Statistica Neerlandica, Supply Chain Forum: An International Journal,
Open Engineering, IFAC Papers OnLine, Transport Policy, Transportation Letters: The International Journal of
Transportation Research, Transportation, World Electric Vehicle Journal, WSEAS Transactions on Systems,
EURO Journal on Transportation and Logistics, Winter Simulation Conference, Maritime Policy and Management,
Cybernetics and Information Technologies, IEEE Transactions on Automation Science and Engineering

Total 89

Table 2.1: Journals in the intermodal freight system simulation literature.

largely involved within with the first- and last-mile activities of intermodal transportation
systems [186, 184].

Mode/Combination Distribution

Modes Unimodal (46%) Multimodal (11%) Intermodal (43%)
RO 100% 10% 8%
RA 3%
IWW 8%
M 3%
RO RA 40% 24%
RO/RA IWW 11%
RO/RA/M 20% 19%
RO/IWW 3%
RO/IWW M 11%
RO/M 11%
RO/RA/IWW/M 10% 11%
RO RA A 10%
RO RA M IWW A 10%

Table 2.2: Distribution of network modes and combinations.
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Unimodal Multimodal/intermodal
RO RA IWW M RO-RA RO-RA-IWW RO-RA-M RO-RA-IWW/M-A RO-RA-A RO-M RO-IWW RO-RA-IWW-M

Urban 30% 0% 0% 0% 2% 0% 2% 0% 0% 0% 0% 0%
National 5% 3% 1% 0% 4% 3% 4% 1% 0% 1% 1% 4%
International 0% 0% 0% 0% 7% 1% 3% 0% 1% 0% 0% 0%

Table 2.3: Cross analysis of modes and territory.

Geographic extension

Figure 2.4 shows the distribution of the geographic extension of the networks analyzed
in the selected literature. The studies principally focused on urban networks (44%) and
on Smart City and City Logistics projects in particular [21, 189] in recent years. These
works introduced new freight distribution models specifically designed for urban areas
and characterized by complex interactions among the considered actors in the literature
[171, 229]. International and national networks made up lower percentages of the selected
studies (24% and 32%, respectively).

Figure 2.4: Distribution by geographical extension.

The figures in Table 2.3 confirm the previous observation regarding the strong
relationship between the analyzed modes and the geographic extent of the network. The
studies considering unimodal road transportation constituted 79% of the urban-network
literature, which was 30% of the total set of selected studies. Hence, road transportation
was the dominant mode of freight distribution studied in the literature, whereas only a
few works considered mode combinations (e.g., road–rail [5, 146] and
road–rail–maritime networks [200]).

The studies at the national level usually considered multimodal or intermodal networks
(75%) rather than unimodal networks (25%). The most studied networks were composed
of the road–rail–maritime [72, 75, 91, 143], road–rail–inland waterways–maritime [207,
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Figure 2.5: Distribution of decision objects according to the time horizon.

141], and road–rail–inland waterways [30, 151, 150] modes, with a few studies considering
a unimodal road network [9, 68, 129, 8]. The road–rail mode was the most analyzed
network at the international level [27, 127, 211, 213, 256, 115], followed by the road–rail–
maritime [124, 162] and road–maritime [170, 248, 194] modes.

2.3.2 Planning objectives
This subsection analyzes the literature from the point of view of the objective of the

planning process.

Time horizons and decision objects

Figure 2.5 shows the distribution of the research efforts dedicated to simulating
transportation systems according to the time horizon and decision object. Most papers
addressed strategic planning (38%), whereas the remaining ones were split between
tactical and operational problems (33% and 29%, respectively).

Considering the decision objects, studies addressing the planning of operations
accounted for approximately 37% of the total, whereas those investigating policy and
infrastructure measures covered approximately 30% and 17% of the total, respectively.
Cooperation and technology were less frequently studied decision objects (approximately
10% and 7% of the total, respectively).

Operation planning problems were principally studied at the tactical and operational
levels. The papers within this category addressed the following problem classes:

• Freight demand and freight flow forecasting [40, 129, 174, 205, 256];
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• Evaluation of costs and performance associated with different transportation
networks and alternative routing [27, 70, 159, 211, 255, 81];

• Dynamic resource allocation for intermodal freight transportation [247];

• Improvement of service level and enhancement of operational efficiency [8, 212,
77];

• Representation of actors and their logistics decisions [26, 91, 181, 200, 209];

• Measurement and maximization of network resilience [30, 162];

• Vehicle routing and variants [58, 62, 115, 135, 196]; and

• Optimization of empty container allocation [136].

The papers comparing different policies, mostly at the tactical or strategic levels, dealt
with:

• Evaluation of new forms of e-grocery services and City Logistics measures in
e-commerce [79, 231];

• Assessment of alternative urban freight initiatives and policies [111, 126, 217, 224,
232, 78];

• Analysis of route choice strategies and routing policies [178, 235, 236];

• Assessment of policy strategies to develop intermodal services [6, 13, 33, 124, 143];
and

• Assessment of consolidation strategies and cooperation policies [6, 34, 146].

Infrastructure studies were mainly undertaken at the strategic level. They included
the stochastic location-routing problem [120], network design [27, 72, 122], intermodal
hub-and-spoke networks [254], hub locations in urban multimodal networks [5, 127, 213,
69, 242, 249], terminal locations [151, 150], and the effect of land bridges [248].

A small set of papers investigated cooperation and collaboration. Horizontal
cooperation was studied by Dahl and Derigs [68], Gonzalez-Feliu et al. [112],
Gonzalez-Feliu and Salanova [110], and Liu et al. [145], and Naima [170], whereas
vertical collaboration between trading partners and carriers was analyzed by Chan and
Zhang [39] and Puettmann and Stadtler [194]. Caris, Macharis, and Janssens [34]
analyzed the cooperation between inland terminals, and Wisetjindawat et al. [252]
investigated the cooperation between government agencies and logistics companies in
disaster relief operations.

The effect of technology was mainly studied at the tactical and operational levels.
The technologies most frequently involved were mobile communication and in-roadway
sensors [182], tracking technologies [9], information and communication technologies
[75, 116, 228, 74], and electric commercial vehicle fleets [26, 93].
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Figure 2.6: Distribution of papers according to decision makers and geographical
extension.

Decision makers

Figure 2.6 shows the distribution of papers according to the different decision makers
considered. Clearly, the institutional authorities’ perspective, combined with the facility
and infrastructure managers’ perspective, was the most analyzed (42%), with the
remaining 58% being equally split between carriers and shippers.

The predominance of institutional authorities may be traced to their increasing
involvement in addressing environmental and city-related issues. With respect to the
former, note that following the ratification of the Kyoto Protocol, institutional authorities
have introduced numerous projects since 2005 to promote more environmentally
responsible freight transportation, supporting intermodal and collaborative transportation
systems. Regarding the latter, a key role is played by the local governments within City
Logistics and Smart Cities concepts and projects aiming to reduce negative transportation
impacts and improve security and quality of life [144]. This finding was evidenced by the
prominence given to urban transport in studies funded under major EU framework
programs, such as the comprehensive policy framework on urban transport presented in
the Green Paper [42], the Action Plan on Urban Mobility [41], and the Roadmap to a
Single European Transport Area in the White Paper [73]. Papers addressing institutional
authority efforts strongly focused on the freight distribution within urban areas (about
74%). They studied the introduction of new policies (approximately 48%), the
interactions within the freight transportation system, and the estimation of freight flow
(approximately 24%).

Papers addressing the facility and infrastructure managers’ perspectives were mainly
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concerned with the infrastructure and policy fields (23% and 38%) in a national context
(42%). The carrier perspective was principally considered within an urban context (57%)
and principally dealt with operations planning (39%) and technology (18%) issues. Finally,
shippers were considered as decision makers in all three network subcategories, with the
problems addressed focusing on the operations planning subcategory (35%).

Objectives

With respect to the simulation objectives, 49% of the papers addressed the reduction of
operating costs, 23% addressed emission reductions, and 28% addressed the improvement
of service performance. Focusing on emission reductions, the evolution in the number
of studies considering the topic is interesting, as illustrated in Figure 2.7, which shows a
significant increase in 2012-2013. After this peak, the number of papers explicitly dealing
with the emissions reduction goes back to the same levels of the the period 2007-2010.
This behavior, in our opinion, is not a sign of a less focus on emissions reduction, but
is related to the introduction of a more global vision of sustainability in transportation
mixing economic, social and environmental aspects. Table 2.4 shows that emission
reductions were considered when addressing urban areas (67%) and road transportation
(70%). Institutional authorities and carriers appeared most often as decision makers
in papers aimed at the environmental impacts of freight transportation (22% and 44%,
respectively). The institutional authorities were particularly concerned with new policies
(33%) and operations planning (37%) at the strategic and tactical levels. The environment
impact of freight transportation was considered in a multitude of different ways. A set of
papers indirectly evaluated this impact by measuring, for example, traffic reduction [5],
road usage, traveled kilometers, the fill rate of trucks, or the number of trucks needed [9,
79, 159, 174, 167]. Other papers directly estimated GHG emissions; Gonzalez-Feliu and
Salanova [110] and Hrušovský et al. [125] considered emissions in CO2 equivalent units,
Hillbrand and Schmid [122] and Holmgren et al. [124], and Sihn et al. [211] measured
CO2 emissions in tons, and Tamagawa, Taniguchi, and Yamada [224] and Teo, Taniguchi,
and Qureshi [231, 232], and Duin et al. [78] focused on NOx emissions.

Emissions metrics were usually mixed with other metrics. For example, Crainic et al.
[62] proposed an optimization model for the Two-Echelon Vehicle Routing Problem (2E-
VRP), whose objective function aimed at reducing generalized travel costs, composed of
fixed, operational, and environmental costs. In Teo, Taniguchi, and Qureshi [231] and Teo,
Taniguchi, and Qureshi [232], the authors considered different performance measurements
to evaluate the short-term effect of distance-based road pricing, including carrier and
shipper costs; the number of trucks; the distance traveled; the number of complaints;
and SPM, CO2, and NOx emissions. Similarly, Tamagawa, Taniguchi, and Yamada
[224] presented a methodology for evaluating City Logistics measures considering both
economic aspects (e.g., toll revenues, transport profits of freight carriers, and transport
costs of shippers) and environmental aspects (e.g., total NOx emissions and the number
of zones in which NOx emissions exceeded the environmental limit).
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Figure 2.7: Trends in studies considering emission reductions as final objective.

Geographic extension International National Urban

15% 19% 67%

Modes RO RA IWW MA

70% 19% 4% 7%

Time horizons Strategic Tactical Operational

44% 30% 26%

Decision makers Carrier Shipper Inst. Authorities FI Managers

44% 19% 22% 15%

Decision objects Infrastructure Policy Cooperation Technology Operations

19% 33% 4% 7% 37%

Table 2.4: Emission reductions in relation to the other categories.

2.3.3 Simulation method
This subsection focuses on the different aspects of the simulation methodology used,

providing insights about the simulation types adopted in the literature and how the
simulation process is mixed with optimization models.

Numeric or optimization

Figure 2.8 presents the distribution of the studies according to the methods that they
applied.

Simulation combined with optimization was most frequently applied (69%), and
numerical simulation accounted for the remaining 31% of the papers. Dynamic simulation
was proposed in approximately 66% of the papers. Among these, 43% focused on urban
areas, 41% on national areas, and 16% on international networks.
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Figure 2.8: Distribution of the simulation methods.

Figure 2.9: Composition of studies with dynamic simulation by year.

Figure 2.9 shows the number of papers that applied dynamic simulation to intermodal
freight transportation from 2007 to 2017. Confirming the previous result, a large portion
of the total published papers studies that applied simulation to the topic of interest (dotted
line) adopted dynamic simulation models (bars). Among these papers and along the
considered time period (with the exception of the years 2010 and 2016), we observe
more use of dynamic simulations combined with optimization models than of numerical
simulations.

Deterministic simulation is still very present (slightly less than 50% of the studies). Yet,
as illustrated in Figure 2.10, this presence is currently diminishing, stochastic approaches
appearing more often. Notice that the peak of 2012 corresponds to a flurry of studies
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Figure 2.10: Number of papers with stochastic/deterministic simulations per year.

targeting issues in urban last mile and City Logistics.
We complete the analysis of the simulation methods applied to intermodal freight

transportation systems according to a more global vision. Table 2.5 presents the
distribution of the literature for each simulation method resulting from the combination of
the Numerical/Optimization, Static/Dynamic, and Deterministic/Stochastic approaches.

Numerical
Optimization Deterministic Stochastic

Static 9%
12%

1%
10%

Dynamic 10%
17%

9%
30%

Table 2.5: Distribution of the simulation methods.

The main outcome highlighted that a subset of papers (30%) adopted stochastic and
dynamic simulations combined with optimization methods, whereas numerical simulations
were mainly dynamic and deterministic (10%). Furthermore, the results that referred
to static simulation pointed out that it was mainly applied as an experimental tool for
validating new optimization models or procedures, either by reproducing a stochastic
phenomenon or by generating hypothetical scenarios. For the latter, each generated
scenario represented a static system because, once determined, it did not change during
the execution of the procedure. Hence, the main role of the static simulation was to
produce several combinations of the input data for testing the procedure under study.
However, the low values indicate that very few models were validated by means of
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simulations, limiting their validity in some cases.
Static simulation usually created scenarios by randomly generating values either

from a specific distribution, which was supposed to fit the real data, or by applying a
Monte Carlo simulation. For example, Andersen, Crainic, and Christiansen [6] applied
simulation during the experimental phase to observe the behavior of the proposed model
and to analyze the impact of possible modifications in external and internal policies. In
addition, starting from statistical data, the authors introduced a random number generator
based on a uniform distribution to study the uncertainty about future demand that arises
throughout the planning horizon. Another example comes from Yang, Low, and Tang
[255], where simulation was used to represent the variability of the transit time of an
intermodal route in experimental tests. Authors assumed that transit times follow a
Beta distribution, which is a popular choice for modeling time distributions thanks to
its versatility in defining the shape of the time distribution. Several other papers applied
static simulations in similar contexts (e.g., [8, 58, 115, 127, 135]).

Several papers used a Monte Carlo simulation as their main tool. Tadei, Perboli,
and Perfetti [219] proposed a deterministic approximation to the multi-path traveling
salesman problem with stochastic travel costs and applied the Monte Carlo method for
the validation of their approximation. The Monte Carlo simulation used random sampling
and statistical modeling to estimate the distribution of travel times in the city of Turin.
Similarly, Wang and Meng [248] proposed a mathematical model to estimate the market
share of Asian ports from a network level, considering the intermodal route choices of
intermodal operators. They applied Monte Carlo simulations to estimate the port market
share estimation model because of the stochastic nature of the route choice. Miller-Hooks,
Zhang, and Faturechi [162] dealt with the measurement and maximization of network
resilience when forecasting possible future disruptions. The authors applied a Monte
Carlo simulation for the generation of disaster realizations based on assumed probability
distribution functions for event occurrences and consequences. Wanitwattanakosol et
al. [249] proposed a multiple criteria decision-making model based on a combination
of a fuzzy stochastic analytic hierarchy process (AHP) and data mining techniques to
select a suitable freight logistics hub. The authors employed Monte Carlo simulation
to handle the uncertainty in the global AHP weights and to allow the investigation of
whether the differences among the decision alternatives were statistically significant.
This type of analysis provided more information for decision makers to make more
precise discrimination among the competing alternatives. Finally, Martínez-López, Munín-
Doce, and García-Alonso [157] presented a multi-criteria decision method to identify
the most suitable motorways of the sea, with specific attention paid to the freight flows
between France and Spain. Through a Monte Carlo simulation, the authors conducted a
sensitivity analysis to evaluate the influence on the results of the forecast assumed, and
they constructed a multi-criteria decision matrix.

A subset of static simulation papers applied game theory to understand the interplay
among multiple actors. Engevall and Dahlberg [83] applied cooperative game theory
for the analysis of the cost impact on different actors (municipality and shippers) in a
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city distribution center system under different scenarios. Liu et al. [145] focused on
behavior analysis of the competition between separate carriers in the duopoly intermodal
freight transport market. A two-stage dynamic game model with complete information on
cooperative investment and price competition strategies was formulated based on game
theory. Naima [170] applied a two-stage game to find the best form of cooperation that
allowed a win-win situation for all of the actors involved. The authors considered three
freight forwarders: two truck-operating freight forwarders and one freight forwarder
with its own ship. The resulting best form of cooperation was that between a large
truck-operating company and the ship-operating company. According to the simulation
results, this cooperation should generate larger payoffs in the form of profits not only to
the members of the coalition but also to the freight forwarders.

Finally, a static simulation was applied by Macharis and Pekin [150] to show the
effects of different policy measures for the stimulation of intermodal transport in Belgium
by applying a location analysis model based on a geographic information system (GIS).
After the creation of a GIS network connecting the port of Antwerp, intermodal terminals,
and end-consumer locations using the road, rail, and inland waterways modes, the model
compared the price of intermodal transport with that of unimodal road transport.

A large subset of simulation by optimization papers considered demand models for
urban freight transportation. Traditionally, demand models were developed to estimate
the number of trips undertaken by people, usually back and forth between their residences
and workplaces during rush hour in a city, and were based on the so-called four-step
approach: 1) trip generation to determine the number of origin and destination trips in
each zone; 2) trip distribution to determine the number of trips between origin-destination
pairs; 3) mode choice to compute the proportion of trips between origin-destination pairs
by transportation mode; and 4) the assignment step, which simulated the behavior of the
system by assigning the demand for origin-destination trips, eventually by mode, to the
network representation, yielding the flow traffic on the network. Applied to freight, such
models involved significantly more complex modal network representations as well as the
definition of commodities groups [51, 60, 117].

There is, however, a rather widespread consensus in the scientific community that,
for people and, even more so, for freight, the traditional models do not suitably account
for the actual decision processes generating the demand for travel. More disaggregated
models are therefore proposed, which is reflected in the simulation literature. Thus,
Gentile and Vigo [102] claim that traditional approaches to estimate freight demand
models seem to be more suitable for regional and national planning than for the urban
context due to, among other things, the somewhat arbitrary aggregation of many different
economic activities into a few broad categories. The authors proposed new generation
and distribution models of freight movements in urban areas disaggregated by commodity
type (e.g., fresh food, dry, frozen, and hanging garments). Comi and Nuzzolo [40]
underscored the importance of considering end-consumer choices because, according
to the authors, such choices undoubtedly affect freight distribution flows. Hence, they
presented a modeling system to simulate urban freight flows with combined shopping
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and restocking demand models. The set of models involved the simulation of end-
consumer choices and restocking processes related to the type of retail activities. A
similar observation was made by Russo and Comi [205]. They argued that goods arrive in
a city to satisfy end consumer demands (pull movements), whereas, at the regional scale,
the producer seeks to anticipate consumer demand, and the freight arrives on the market
before it is required (push movements). Hence, the authors developed a framework for the
simulation of goods movements at the urban scale to analyze the relationships between
end consumers and other concerned decision makers (e.g., producers, wholesalers, and
retailers). Gonzalez-Feliu et al. [111] also developed a simulation framework using an
interactive trip substitution module to model end consumer movements, the links between
these movements and inter-establishment movements, and the integration of these flows.
In a similar vein, Nuzzolo and Comi [174] argued that the existing models of urban
freight demand forecasting were mainly developed to simulate only some aspects of
urban freight transport and, thus, are unable to forecast all of the numerous effects of
implementing urban traffic and transportation measures. Therefore, they presented a
modeling approach that focused on the relationships among city logistics measures, actors,
and choice dimensions in the form of a multi-stage model considering a discrete choice
approach for each decision level. Durand and Gonzalez-Feliu [79] focused on e-grocery
and applied a simulation-by-optimization approach to three scenarios related to e-grocery
distribution developments to identify and analyze the effects of new forms of proximity
delivery on household shopping trips.

The papers mentioned above focused on demand, estimating urban goods movements
in an aggregated manner. However, there are several examples of micro-simulation
models of urban goods movements representing explicit tours and individual shipments
[126, 142, 129, 251]. Hunt and Stefan [126] proposed a tour-based micro-simulation of
individual vehicle movements combined with a network equilibrium, which considered
the congestion on links. We will further discuss Liedtke [142] and Joubert, Fourie, and
Axhausen [129], and Wisetjindawat, Yamamoto, and Marchal [251] in the next section
because they modeled freight systems using multi-agent approaches.

A subset of papers proposed models for more extended geographical areas. Liedtke and
Carillo Murillo [143] developed a logistics and transport market equilibrium model that,
combined with a hierarchical choice model mapping the decisions of shippers forwarders,
covered the interactions between the demand for freight transport and the infrastructure
supply, including potential investors in the intermodal infrastructure. The model was used
to analyze the welfare effects of two policies that could promote intermodal services, that
is, investment grants for terminal operators and the internalization of external costs. Zhang
et al. [256] developed a dynamic intermodal multi-product freight network simulation-
assignment equilibrium model applied to a large-scale intermodal rail network. In their
model, shipper decisions were disaggregated at the individual shipment level using a
dynamic micro-assignment methodology in which a joint mode, path, service, and carrier
choice was made. Puettmann and Stadtler [194] tested the idea that collaboration reduces
operational costs on a chain with one multimodal operator and two carriers in charge of
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pre-haul and end-haul drayage. In the explored collaboration scheme, the three parties did
not exchange any information and planned their own operations. However, they iteratively
exchanged proposals, and the resulting costs were compared to those in the solution
without coordination. The authors included stochastic demand in their scheme, which
called for the adaptation of plans, because of the time lag between the departure and
the arrival of orders. Vidović et al. [242] addressed the problem of optimally locating
intermodal freight terminals in Serbia. They combined a multiple-assignment p-hub-
network design with simulation, which was used as a tool to estimate the intermodal
transport flow volumes caused by the unreliability and unavailability of specific statistical
data. The simulation was also used as a method to analyze, in quantitative terms, the time,
economic, and environmental effects of different scenarios concerning the intermodal
terminal development.

As discussed above, dynamic simulation was proposed in a relevant proportion of
papers. Several studies applied multi-agent simulation (MAS) to urban areas. Suksri
and Raicu [217], Tamagawa, Taniguchi, and Yamada [224], Taniguchi, Tadashi, and
Masayuki [228], Teo, Taniguchi, and Qureshi [231], Teo, Taniguchi, and Qureshi [232],
and Roorda et al. [200] presented different methodologies to evaluate City Logistics
measures combining multi-agent approaches and learning models to simulate the dynamic
behavior of urban stakeholders. All of them simulated the dynamic behavior of freight
carriers, retailers or shippers, residents, transport planners, and local authorities. Hence,
citizens and local authorities were considered as actors and decision makers who react
to carriers and shippers’ decisions. The citizens complained to the local authorities if
the negative impact of freight transportation exceeded their tolerance limits, and the
local authorities were accountable for the wellbeing of the residents. Their aim was to
minimize the level of the residents’ dissatisfaction as well as to decide whether they
should implement new urban freight distribution measures in the areas. However, there
are some examples of MAS applied to urban areas that did not consider these two types
of decision makers. Schroeder et al. [209] applied micro-simulation and agent-based
approaches for transport policy analysis, but they considered only two actors, transport
service providers, and carriers, under different traffic conditions and policy measures.
Other MAS applications to urban areas were presented by Duin et al. [78] and Page,
Knaak, and Kruse [181]. Duin et al. [78] evaluated the dynamic usage of UDCs, and
Page, Knaak, and Kruse [181] modeled city courier services to study alternative logistic
structures from ecological, economic, and social points of view. Boussier et al. [26]
and Patier et al. [182] applied MAS to model the management process of delivery area
booking while also considering car drivers. Finally, Bakhtadze et al. [14] introduced a
systematic approach to MAS supply chain dynamic organization and the management of
motor vehicle traffic in the case of a swap body for urban and interurban transportation.

Only one paper applied discrete event simulation to reproduce urban freight
transportation, Ambrosino and Sciomachen [5]. In this study, the authors developed an
algorithm to solve the problem of locating hubs for freight mobility in urban and
suburban areas, and a discrete event simulation model implemented in Witness 2008 was
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applied to validate the solution under different operational scenarios. Finally, Uchiyama
and Taniguchi [235] and Uchiyama and Taniguchi [236] proposed an evolutionary game
theory approach. The approach considered a route choice model considering travel time
reliability and traffic impediments, including traffic accidents.

MAS models applied at the national and international levels were proposed by Baindur
and Viegas [13], Burgholzer et al. [30], Holmgren et al. [124], Joubert, Fourie, and
Axhausen [129], Liedtke [142], and Samimi, Mohammadian, and Kawamura [207], and
Sirikijpanichkul et al. [213]. These models investigated different issues from the previous
set of MAS models. Public policy evaluations were performed by Baindur and Viegas
[13] and Holmgren et al. [124]. Baindur and Viegas [13] presented an agent-based
simulation model to understand the impacts of different policy interventions proposed by
the European Commission and business strategies by intermodal operators to encourage
modal shifts from road to maritime-based intermodal services on a given trade corridor.
Holmgren et al. [124] developed TAPAS, a model composed of two connected layers.
One layer simulated physical activities and passive entities (e.g., vehicles, production
facilities, and transportation infrastructure). The other layer simulated the decision making
and interactions between the actors (e.g., the transport-chain coordinator, product buyer,
transport buyer, transport planner, production planner, and customer). Similarly, Liedtke
[142] developed a commodity transport model for a multi-national context consisting
of a micro-behavior simulation with an agent-based approach assessing the effects of
behavior-oriented transport policy measures while considering complex logistics reaction
patterns. Burgholzer et al. [30] analyzed the impact of disruptions in intermodal transport
networks by developing a micro-simulation-based model. Samimi, Mohammadian, and
Kawamura [207] proposed an activity-based framework of freight demand modeling in
which an individual firm or a group of firms with similar characteristics is the main actor.
Finally, Joubert, Fourie, and Axhausen [129] used an agent-based approach to generate
commercial activity chains to understand the effect that the inclusion of commercial
vehicles has on private cars.

More DES models were proposed for national and international settings than for cities,
in particular, by Arnäs, Holmström, and Kalantari [9], Caris, Macharis, and Janssens
[33, 34], Dekker et al. [70], Dotoli et al. [75], Fanti et al. [91], Hillbrand and Schmid
[122], Lam, Lee, and Tang [136], Macharis et al. [151], McLean and Biles [159], Meng
and Wang [160], Sihn et al. [211], and Sinha and Ganesan [212], and Febbraro, Sacco,
and Saeednia [92]. The simulations in these papers aimed to reproduce a process and
the movements of orders through the physical network rather than the dynamic behavior
of the decision makers. Thus, Arnäs, Holmström, and Kalantari [9] reproduced the
shipment process to analyze how in-transit services offered to customers may constitute
a platform for hybrid shipment control. Caris, Macharis, and Janssens [33] introduced
a DES model, named SIMBA, aimed to support decision making in intermodal barge
waterway transport, and they used the model to analyze the behavior of the system
under various network configurations. Applications of SIMBA were reported by Caris,
Macharis, and Janssens [34] for the evaluation of the potential of cooperation mechanisms
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previously selected by a service network design model in a corridor network as well as by
Macharis et al. [151] for the analysis of the impact of a new intermodal barge terminal
on the Belgian waterways network. McLean and Biles [159] presented a DES model of
a container liner (maritime) shipping network considering multiple service routes and
schedules. Reproducing shipping activities, container ship operations, and intermodal
container movements, the model aimed to evaluate the operational costs and performance
associated with liner shipping as well as the effect of the individual service schedules
on the overall system. Focusing on the same segment of the industry, Meng and Wang
[160] proposed a DES model to assist in decision making for container carriers and port
operators in a competitive context. Implemented in ARENA, the model yields predicted
container shipment demand for each carrier and throughput for each port. Dotoli et al.
[75] focused on motor carriers and presented the timed Petri net modeling technique to
describe their operations and the movements of trucks within an intermodal transportation
system. The model structure was modular with a top-down approach. Each module
reproduced a subsystem of the network: truck terminals, highways, railways, ports, and
ships. The model was applied to evaluate the effect of the introducing a new Information
and Communication Technology (ICT).

Dekker et al. [70] simulated a company’s supply chain with a DES model from the
(stochastic) order generation process to the production and distribution processes to test the
use of temporary storage offered by intermodal transshipment points for the positioning
of stocks of fast-moving consumer goods. Additionally, taking a logistics-network
perspective, Hillbrand and Schmid [122] and Sihn et al. [211] designed a DES simulation
and evaluation model to evaluate multimodal logistics concepts (e.g., point-to-point
transportation, consolidation terminals, and milk runs) by combining individual logistics
building blocks (e.g., a factory, a transshipment center, etc.). Luan [146] presented a
system-dynamic and continuous simulation model to analyze the advantages of freight
consolidation. The analysis showed that freight consolidation tended to increase the
capacity utilization of a single vehicle, the vehicle loading ratio, and the freight profit.
Note that this study included the only example of a model based on the system-dynamic
approach.

DES models were also proposed as components of more comprehensive solution
methods. Thus, Lam, Lee, and Tang [136] proposed a linear approximation method
under the temporal difference learning framework to address a stochastic model for a
simple two-ports two-voyages system. The algorithm required a discrete event simulation
model for updating the predicted parameters and average cost. Herazo-Padilla et al.
[121] presented a similar approach considering the stochastic version of the location-
routing problem. A hybrid solution procedure based on ant colony optimization and a
discrete-event simulation was proposed. Fanti et al. [91] inserted a DES model in a DSS
for tactical and operational decision making within intermodal transportation networks.
The DES model mimed the system and applied the optimization strategies proposed by
the optimization module. The model also provided performance measures. Similarly,
Sinha and Ganesan [212] considered a typical container business operation problem and
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deployed a simulation optimization technique to analyze several opportunities to improve
the overall system performance. The DES model therein measured the performance of
the optimization technique based on different KPIs, including fleet size, unmet demand,
service level, and utilization.

Simulation-optimization relationship

Simulation with optimization-based iterations (SOI) was the approach used by the
largest (40%) group of studies considered in this analysis. Recall that, in the SOI
approach, the optimization procedures run within a simulation framework. Accordingly,
Macharis et al. [151] evaluated different policy measures to stimulate intermodal transport
in Belgium with a GIS-based simulation model, which applied Dijkstra’s algorithm to
compute the shortest paths and associated transport costs from the port of Antwerp to
Belgian municipalities via intermodal terminals. Wisetjindawat et al. [252] developed
an evaluation model for relief operations in response to the three most likely earthquake
scenarios to affect the Aichi prefecture. The framework included four steps: initial
assumptions, estimation of the level of damage, estimation of the number of victims, and
delivery of relief supplies. A Vehicle Routing Problem (VRP) was applied within the last
step to estimate the optimal level of resources (e.g., the number of drivers, number of
trucks, and expected fuel consumption) to dedicate to the operation. Another example was
proposed by Teo, Taniguchi, and Qureshi [232], in which an agent-based model included
an exact solution method to solve the vehicle routing problem of the carriers’ delivery
jobs. The model was used to evaluate the short-term effect of distance-based road pricing
on the major stakeholders, including carriers, shippers, administrators, and customers.
Approximately 50% of the SOI approaches were applied within a multi-agent framework
to simulate the actors’ behavior [13, 30, 142, 181, 182, 200, 207, 209, 217, 228, 231, 232,
78].

The sequential simulation-optimization approach was considered in 22% of the
papers[5, 8, 34, 58, 93, 115, 120, 127, 135, 151, 162, 196, 219, 242, 249, 255, 256, 125].
Ambrosino and Sciomachen [5] illustrates this class of approaches. The authors
considered the problem of locating hubs for freight mobility in urban and suburban areas,
with an application to the freight multimodal network of the city of Genoa. The solution
was validated using a discrete event simulation model. The model analyzed the freight
flows in the city under different operational scenarios with and without the selected
platforms. A second illustration is the work of Miller-Hooks, Zhang, and Faturechi [162],
which formulated the problem of measuring the network resilience level and determining
the optimal set of preparedness and recovery actions by developing a two-stage stochastic
program. Monte Carlo simulation was employed to generate the disaster realizations. The
integer L-shaped method was then applied.

A set of papers adopted alternate simulation-optimization techniques to analyze
several opportunities and improve overall system performance [91, 116, 178, 212, 224,
136, 213]. These approaches, also identified as hybrid approaches because of the
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complementarity of the two models, integrate a feedback loop between the optimization
and simulation models, the former selecting a set of candidate variables based on the
output of the latter. For example, Fanti et al. [91] described an optimization model
connected by a web service to a simulation module (implemented in ARENA). The
mechanism was as follows: the optimization algorithms proposed solutions that were sent
to the simulation module, which applied the proposed solutions, matching them to the
current state of the system. The simulation outputs thus evaluated the effects of the
proposed solutions on the system, and they were then sent back to the optimization model.
Finally, the optimization model evaluated the system performance and provided a new set
of candidate variables to the simulation model until the simulation outputs led to a
satisfactory system performance. The set of candidate variables was selected at this point.
This approach is highly interesting because it allows an automatic re-planning of values
proposed by the optimization model. Furthermore, the simulation model here has two
important objectives: the forecasting of system performance and the improvement of the
optimization model solution. A similar approach was proposed by Sinha and Ganesan
[212]. The model in this study aimed to manage container business operations with
heterogeneous customer demand and service priorities under an uncertain environment.
The problem was based on an optimization model where the objective function was
estimated using a function of the stochastic simulation output. The optimization engine
selected a set of values that were used as inputs to the simulation model. The
optimization model selected the next trial solution based on the KPIs computed by the
simulation until the predefined satisfaction criteria were achieved or the desired level of
improved output was obtained. As in the previous case, this simulation model was based
on a discrete-event simulation technique to evaluate the system performance in terms of
increased profit and demand fulfillment rate under various scenarios. Sirikijpanichkul
et al. [213] developed a model for the evaluation of road-rail intermodal freight hub
location decisions. The modeling process began with an analysis of potential hub location
sites using a set-covering problem. The result was a set of scenarios of the candidate hub
locations. The screened options were then transmitted to the land-use allocation and
transport network model as input data. Next, the hub and network outputs of each option
were calculated. These output data were then fed into individual stakeholders’ objective
functions in the multi-objective evaluation model. The model determined if the solution
was mutually satisfactory for every player by considering the results of every individual
objective function. If so, the location choices became the outcome; otherwise, feedback
was provided to re-select a new set of screened hub location options. The process was
iteratively repeated until the final solution was achieved.

Finally, 30% of the papers applied simulation without any optimization procedure [9,
26, 27, 33, 39, 40, 75, 79, 102, 111, 122, 124, 126, 129, 146, 159, 173, 174, 170, 211,
248, 251]. One-third of these papers dealt with freight demand models for estimating
urban freight transport flows. They applied simulation by optimization to estimate the
different O–D matrices (e.g., shopping mobility O–D matrices, restocking quantity O–D
matrices, delivery O–D matrices, and restocking vehicle O–D matrices). The remaining
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Figure 2.11: Distribution of papers according to the objects simulated.

two-thirds proposed simulation models to evaluate the effects of policy measures on the
performance of the transport network (34%), compare several logistics organizations and
service schedules (40%), evaluate the effects of new technologies (13%), and compare
different network designs (13%). These papers applied DES in 46% of the cases and
simulation by optimization in 34%.

2.3.4 Scope
We complete the literature analysis with the simulation object and objectives.

Simulated object

Figure 2.11 presents the objects simulated in the selected literature and the
corresponding distribution of papers. Simulation is usually applied to reproduce the
behaviors and interactions between actors (47%). Approximately 22% of the studies
used simulation to forecast flows and 25% to reproduce scenarios. Only 6% of the studies
applied simulation to represent an event.

Behaviors and interactions were mainly simulated by dynamic simulation (84%)
applying MAS (47%), DES (28%), and game theory (6%). Furthermore, behaviors and
interactions were modeled by applying optimization with the assumption that each actor
was rational and acted according to his objective. Hence, the majority of these papers
(50%) applied an SOI combination where the optimization methods were included in the
simulation frameworks.
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From the geographic extension point of view, 48% of the studies in this group was
concerned with urban areas, whereas the remaining 52% was split between national
and international geographic coverage (33% and 20%, respectively). Focusing on the
decision makers, institutional authorities were those that principally studied behaviors and
interactions (44%), followed by carriers (31%) and shippers (25%). Finally, behaviors
and interactions were principally considered when evaluating policies (47%), logistics
services (30%), the building of infrastructure (19%), and cooperation mechanisms (19%).

Flows were usually estimated by simulation by optimization (72%), whereas DES was
used in only 28% of papers. Simulation was also usually applied alone to forecast the
flows. All user equilibrium models are included in this category. From the geographic
extension point of view, 61% of the papers estimating flows were concerned with urban
areas, 33% considered the national level, and 6% had an international geographic range.
Focusing on decision makers, institutional authorities were the most interested in flow
forecasting (68%), followed by carriers (28%) and shippers (11%). Finally, flows were
principally forecasted when evaluating logistics services (40%), policies (20%), and
infrastructure building (18%).

With respect to the simulation of a static scenario, the simulation represented the
framework of optimization methods when various policies were applied. Hence, the
optimization procedure was run once the scenario was set up. This was a typical SSO
combination, which occurred in 50% of the papers simulating static scenarios. The SOI
approach was applied in 17% of the cases.

Only a few papers applied simulation to reproduce complex micro-events. For
example, Andersen, Crainic, and Christiansen [6] used it to represent more accidental
demand, and Orozco and Barceló [178] randomly generated different events (e.g., new
customer calls) during the simulation. Qureshi, Taniguchi, and Yamada [196] presented a
micro-simulation-based evaluation of an exact solution approach for the vehicle routing
problem. The simulation reproduced the traffic network under normal conditions and
conditions in which a stochastic traffic incident event occurs, thereby changing the travel
times. A stochastic event was considered when simulating freight distribution services
(80%), and it was reproduced applying a DES and distribution approach.

2.3.5 Simulation objectives
Figure 2.12 shows that most studies used simulation to compare two or more

alternatives. Furthermore, 42% of the papers proposing what-if analysis investigated the
behavior and interactions between several actors in the system. The what-if analysis was
performed using the SOI (48%) and SIM (43%) approaches. In addition, 28% of the
studies applied simulation to validate an optimization model, an approach, or a solution.
This validation was generally performed with the SSO approach (about 53%). The
simulation reproduced the scenarios, evaluating alternatives to demonstrate the efficiency
and applicability of the proposed optimization model. Approximately 19% of the studies
applied simulation to forecast the future behavior of an existing system. This category
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Figure 2.12: Distribution of the simulation objectives.

included all freight demand models. Finally, approximately 11% of the studies applied
simulation to enhance a solution proposed by optimization models. The approach used to
improve the solutions was the ASO approach. The feedback loop between the two
models allowed the improvement of the solutions according to the simulation outputs.

Researchers have increasingly studied the urban context as well as the environment,
with most analyses having the reduction of GHG emissions as final objective.
Environmental aspects were mainly considered in urban areas , either directly or
indirectly by means of generalized costs, e.g., measuring traffic reduction, road
occupancy, and traveled kilometers in CO2 equivalent units. Only a few papers directly
estimated GHG emissions by measuring CO2 or NOx emissions in tons. Furthermore,
very few papers proposing a multi-criteria approach considered different metrics for the
comparison of potential alternatives. It would be interesting to integrate simulation and
multi-criteria analysis because of the multi-criteria nature of the urban intermodal
transportation system. Almost all papers proposing new policies and solutions for freight
distribution within cities considered trucks or trucks and electric vans only. Hence, while
intermodality appears very successful for interurban, national, and international networks,
urban freight distribution seems currently to be analyzed from an unimodal, road
transportation, with few, if any, interactions with the surrounding intermodal
transportation. An interesting result is the role of institutional authorities as decision
makers. They appear to be very active and interested in the improvement of freight
distribution within urban areas, particularly by reducing the environmental impact. This
finding may be a consequence of the direct involvement of the public sector in smart city
and city logistics projects. On the other hand, the studies insist on an operational
perspective, while just a few evaluate the policy impacts on the overall system over a long
time horizon. Moreover, no significant presence of public authorities as decision makers
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was observed in the national context. From a modeling point of view, dynamic simulation
is the most frequently applied. This type of simulation is particularly used to reproduce
both the behavior of several entities and the dynamism and interaction between them. An
increasing number of studies have proposed multi-agent simulations, even if, as
highlighted in the future directions, they are still lacking in terms of accuracy of behavior
representation.
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Chapter 3

Mixing traditional and green business
models for urban parcel delivery

The analysis in the previous chapter highlighted the lack of appropriate and efficient
tools that incorporate into simulation and optimization methods the managerial perspective,
supporting decision makers in designing sustainable policies. This lack is relevant both in
urban freight transportation and people mobility. Indeed, the work by Francesco et al. [97]
and Perboli et al. [190], concerning the business of car-sharing mobility service, already
proved the absence of studies linking the business models of the stakeholders operating
the system, their business development, and the operational models.

An analysis of such a complex and hyper-connected system requires a holistic vision
of the context, adopting different methodological approaches in order to gain full insights
and to understand the extent of the challenge posed. Such tools imply facing the issues of
the urban freight transportation system through a multi-disciplinary approach described
in the introduction, incorporating qualitative and quantitative methods and models. In
fact, they have to be able to incorporate different sources of information, including socio-
demographic and managerial data, city and traffic information. This approach provides
the managers of transportation companies and local administrations with a tool able to
quantify and certify the service costs, to compare the commercial behavior of different
transportation companies subcontractor and to perform what-if analyses of a specific City
Logistics measure, assessing its real impact on a specific city.

The next chapters propose the application of this multi-disciplinary methodology to
deal with different aspects of the urban freight. One of these issues is associated with the
introduction of new delivery options among emerging technologies, including drop boxes
[71], cargo bikes [184], electric vehicles [223], autonomous vehicles [101], and drones
[169], to increase the efficiency of delivery activities, mitigating the effects of decreasing
marginal revenues. In particular, this chapter focuses on the integration of one of the
most popular new business models (e.g., green delivery operated by cargo bikes) with
those of traditional methods (i.e., vans). Many contributions in the literature investigate
the adoption of green transportation modes, but without considering integrating them

53



3 – Mixing traditional and green business models for urban parcel delivery

with traditional systems, in terms of operations management, cost and revenue structures,
and policies. This study, published in [185] represents the first attempt to fill this gap.
Unfortunately, the integration of different delivery options is not straightforward, owing
to the interactions and conflicts among actors, their business models, and the technologies
themselves [220]. Thus, to assess and harmonize the different business and operational
models, we propose an unconventional approach, starting with qualitative research from a
business perspective of parcel delivery systems, using qualitative business management
tools (i.e., BMC, SBN, and SWOT analysis). Then, we investigate the operations of
such system thought a context-aware integration of business and operational models, and
finally, we present a strategic discussion based on a quantitative analysis of the options
and policies available. In particular, this quantitative analysis of strategic actions and their
execution in operations is implemented by means of a simulator.

The key innovative research investigations can be summarized as follows:

• we investigate the integration of modes (traditional and green), supported by a
detailed cost and revenue analysis based on the business model, which is an area
that is under-researched. In fact, although a few studies have investigated the costs
associated with the last mile [105], our is the first to consider a cost structure for
delivering goods in urban areas, which includes economic and environmental costs.
In particular, we consider the emissions and costs of the overall last-mile chain,
according to the latest regulation, the ISO/TS 14067:2013 “Greenhouse gases -
Carbon footprint of product - Requirements and guidelines for quantification and
communication”, which is not present in the literature.

• We provide the first analysis of business models that characterize the new practices
and technologies of urban parcel delivery by couriers. Thus, our approach does not
focus strictly on operations but proposes a holistic vision, including interactions
between international couriers and external firms or subsidiaries managing activities
in the last-mile segment.

• We show how mixing qualitative and quantitative analyses enabled us to derive
better results than when using quantitative analyses alone.

This chapter is organized as follows. Section 3.1 introduces how the proposed multi-
disciplinary methodology has been implemented in this study. Section 3.2 goes into the
details of the MACS presented in the previous chapter (Figure 2.1) analyzing the context of
the urban parcel delivery and presenting the business models of the actors involved. These
actors’ operational models are discussed in Section 3.3 in terms of the times, distances,
and costs (both operating and environmental) associated with various types of vehicles.
In Section 3.4, we introduce our Monte Carlo-based simulation-optimization framework,
while in Section 3.5 the results are used to highlight synergies between operators in the
last-mile segment and to extrapolate mixed-feet policies.
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3.1 Methodological framework
The main innovative feature of this study is the proposal of a holistic vision of a

complex parcel delivery system, including both business and operational perspectives.
The multi-disciplinary approach presented in this thesis is implemented through the key
five steps of the GUEST methodology that mix qualitative analyses, particularly in first
stages to understand the complex system, with quantitative analyses to extrapolate mixed-
fleet policies, useful for the industrial decision-makers involved. In particular, the phases
are the following:

• Go. This phase investigates the stakeholders in the last mile segment of the supply
chain. Here, we focus on the city of Turin, in particular, and Europe, in general, as
well as an international courier delivery service operating in Italy. The aim of this
preliminary analysis is to gather information and provide a full description of the
stakeholders’ profiles in terms of their needs and cost structures.

• Uniform (see Section 3.2). The knowledge of the system must be assessed in a
standard way in order to obtain a shared vision of a MACS. In doing so, in this phase
we represent the system by means of the SBN that depicts the relationships and
interconnections between actors. Then, we explicitly describe the governance and
business models of each operator deriving the BMC [179] and finally, opportunities
and threats in such system are identified using a SWOT analysis.

• Evaluate (see Section 3.3). Given the gap in the research concerning the link
between business and operational models, we overcome this lack by proposing
a deep analysis and comparison, identifying the key factors of the business and
operational models. On the one hand, the full structure of the costs and revenues
is described explicitly for each transportation option. On the other hand, the
integration of business and operational models is supported by a performance
analysis of the traditional and green delivery options, based on the main variables
that affect the last-mile logistics in urban areas (e.g., distance, delivery time).

• Solve (see Section 3.4). Given the outcomes from the previous phase, a Monte Carlo
simulation is conducted to obtain a comprehensive vision of the overall complex
system, rather than focusing on the central area, as in the previous step.

• Test (see Section 3.5). The findings of the Monte Carlo simulation are tested and
analyzed in order to extrapolate mixed-fleet policies.

These analyses are conducted using three streams of data related to the business
models, the cost structures, and the operations. These data are the result of primary
research on parcel delivery systems in Europe, focusing on the city of Turin, along with
information provided by a major international parcel delivery company operating on
all continents and involved in the URBan Electronic LOGistics (URBeLOG) project

55



3 – Mixing traditional and green business models for urban parcel delivery

[240, 155] and the stakeholders involved in the Synchro-NET H2020 project [218, 193].
With regard to the business models, the data were gathered from interviews with the
Chief Executive Officer (CEO) and Chief Operating Officer (COO) of this company.
The simulation analyses are based on the customer distribution and daily volumes of
deliveries in Turin, and registered by the international parcel delivery company during
the final three weeks of 2014 and the beginning of 2015. Finally, the data on costs are
taken from financial statements and the interviews with the COOs and marketing directors
of the stakeholders in order to obtain specific feedback on the financial and operational
dynamics.

3.2 Parcel delivery business model analysis
As discussed in the previous chapter, transportation and CEP industry can be

represented as a multi-actor system owing to the number of players involved and their
high level of interconnection. Focusing on the urban area, the aim of this section is to
conduct a comprehensive study of this industry, the operators, and their interactions, by
adopting a business-development oriented approach, which has received little attention in
the literature. The results of this section represent the starting point and the knowledge
base needed for the quantitative analysis conducted in this study.

Figure 3.1 represents a declension of the global SBN illustrated in the Figure 2.1, with
emphasis on the commercial relationships between transportation and logistics companies
at the urban level. Then, for each actor, we define a business model using the BMC tool
proposed by Osterwalder and Pigneur [179]. The purpose of this analysis is to identify, for
each of the nine building blocks of the BMC, similarities, conflicts, and possible synergies
between the various strategies adopted by the companies and, in general, to evaluate
their coexistence, especially given the complexities typical of the last-mile segment.
Besides, adding a further level of detail, a SWOT analysis is conducted to identify relevant
strengths, weakness, opportunities, and threats in each case, and to investigate how these
models might achieve a strategic fit.

We identify three main actors in the urban transportation and parcel delivery systems,
as shown in Figure 3.1. For the sake of simplicity and clarity of exposition, we provide
a brief overview of the actors and their roles, while Sections 3.2.1 to 3.2.3 give details
about their business models:

• International courier delivery services (hereinafter, international courier). This is a
parent company that operates international and national long-haul shipments (e.g.,
TNT, FedEx, UPS, etc.).

• Manager of a traditional fleet. In general, this actor is responsible for the
management of parcel delivery in the last-mile segment and, depending on the
geographical area, may take different configurations. For example, in North
America, this is an internal department of the international courier, but with
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Figure 3.1: Relationships among the main actors in the urban transportation and parcel
delivery systems.

autonomy in the management of the area and in the procurement of external
capacity in the market. In contrast, in European countries, it is common practice to
outsource the operations in the last-mile segments to traditional courier delivery
services (hereinafter, traditional subcontractors). These are typically small or
medium-sized firms, generally organized as a legal form of cooperatives with
limited financial capacity, but capable of managing parcel deliveries locally. From
an operational standpoint, the activities are not affected by the different structures.
However, in the second case, the flexibility increases because costs can be reduced
if demand decreases, and it is necessary to guarantee profit margins for both
companies.

• Manager of a green fleet. The increasing awareness of environmental problems
related to transportation and the drive toward sustainability has led to the
development of new business models for more conscious and optimized
management of parcel deliveries in the last-mile segment. In fact, new firms known
as green subcontractor courier delivery services (hereinafter, green subcontractors)
now operate in several European cities (e.g., Turin, Milan, Paris, Berlin, London,
Copenhagen). Their business models are similar to those of traditional couriers,
except they also consider the environmental impact of their activities, often using
green vehicles such as bikes and cargo bikes. As mentioned earlier, we focus on the
European parcel delivery system and, thus, we consider external firms responsible
for the management of traditional and green fleets. However, owing to the
decision-making and economic autonomy of the single departments in North
American companies, the results of this study are still valid when these firms
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decide to internalize all operations.

• Customers. Customers are the final users of logistics and transportation activities,
and include the business-to-business (B2B), business-to-consumer (B2C), consumer-
to-consumer (C2B), consumer-to-consumer (C2C), and intra-business segments.

3.2.1 Business model of international courier
Figure 3.2 depicts the BMC related to the international courier. Its main customers

are differentiated in the following segments, each with their own behaviors and needs
that must be satisfied. The B2B segment consists of firms that use couriers as a means
to move products output from their logistic chain, which represent the inputs to other
customer firms. The B2B segment also includes e-commerce, involving goods flows
between e-retailers and between e-retailers and producers. The B2C segment consists of
firms that sell goods directly to final consumers, bypassing distribution chains. Examples
include e-stores and website service providers. Then, the C2B segment is strictly related
to reverse logistics. This represents the process of returning products, which retrace the
supply chain, for different reasons, such as the disposal of waste, processing scraps or
packaging, end-user guarantees, dismantling or recycling end-of-life products, customer
rejections, or order mismatches for new products. Individuals who require transportation
of goods or documents for private needs and online auction websites (e.g., eBay) are parts
of the C2C segment. Finally, intra-business consists of firms that use courier services to
link plants and warehouses. The value proposition that the international courier offers
is mainly represented by “time sensitive” or “time critical” transportation of products.
For their features of speed and reliability, these services are also called “express and
overnight deliveries,” because they must be performed in a shorter time window. For
this reason, couriers provide more than a transportation service, and include a specific
time, called a “transit time” [37]. Another component of the value proposition is a
superior customer experience, owing to the high added value of express deliveries. In fact,
customers obtain benefits deriving from the shipment efficiency, speed, reliability, and
security (e.g., through “tracking & tracing”) of the services received. Other important
benefits are customized pickup and delivery activities in the last mile, and solutions based
on product types to be transported (e.g., fragile or perishable products). For small and
medium-sized business customers, the international courier offers two other types of value,
namely cost optimization and sales market extension. First, firms using express deliveries
are capable of realizing Just-In-Time (JIT) manufacturing, with the resulting reduction
in inventory levels and optimized production process and costs. The last component of
the value proposition is strictly related to the customer strategy. In fact, time-sensitive
transport, together with internationalization, increase catchment areas and create new
business opportunities for firms. The main channels used to reach customers and to
communicate with them to deliver this value proposition can be classified as direct and
indirect channels. Website and mobile applications represent the first contact points with
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customers to raise the awareness of the services offered and to help them to evaluate several
propositions. Retail stores are physical structures located throughout a territory in order
to increase customer proximity. Another type of channel related to marketing strategy is
brand identity, realized through personalized vehicles showing the brand of the courier.
These channels are generally owned by the company, and allow an immediate awareness,
without intermediaries. The indirect channels are mainly partner-owned websites used
in e-commerce. Customer relationships are maintained through the availability of retail
stores, websites, help desks, and call centers. These provide customers, both businesses
and consumers, with direct support and assistance in all phases of the shipment process,
offering a high level of customer retention and loyalty. Lockers and, in general, delivery
machines located in urban areas allow an indirect relationship with customers and provide
them with a self-service option, available 24 hours a day, throughout the year. Moreover, in
order to increase the strength of customer relationships, the international courier interacts
with its customers through social initiatives and the creation of a community (e.g., the
“UPS Foundation” [239]). The revenue streams that the international courier obtains derive
from selling time-sensitive delivery services to each customer segment, through identified
channels. The key resources required to make the business model work are the physical
assets, such as vehicle fleets and point-of-sale systems, intangible assets, such as software
and other tools used to optimally allocate trips, licenses and partnerships, and, finally, the
human resources, including drivers. According to the analysis of value chain conducted by
LUISS Business School and Associazione Italiana Corrieri Aerei Internazionali (AICAI)
[37], the main activities that represent the core business of the international couriers are
process and operations management and customer care. The first consists of ordinary
activities, such as route planning, intermodal transportation, customs clearance, pickups
and deliveries, and monitoring the overall process. The second refers to activities for
customer relationship management, and are strictly related to the steps in the transportation
process: pre- and after-sales support, tracking and tracing of parcels, and proof of delivery.
To support its business model, the international courier creates partnerships and alliances
with high strategic value. The key partners are suppliers, subcontractors for outsourcing
activities in the last mile, cargo operators and handling agents, logistics, and commercial
joint ventures, all aimed at making the business more efficient and developing new models.
Finally, another relevant partnership is created with local administrations in order to meet
government regulations and to ensure the sustainability of parcel delivery in urban areas
(e.g., the URBeLOG project [240]). To operate the business model, the main costs the
international courier incurs are related to the key resources, as well as materials (e.g.,
fuel costs, packaging, consumables, etc.), personnel costs, handling fees, acquisition
and maintenance of vehicles, equipment, structures and ICT systems, operation costs,
such as government and auditors fees, and subcontractor fees when outsourcing activities.
Other costs include marketing and advertising expenditure, and those related to risk
management.
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3.2.2 Business model of traditional subcontractor
As mentioned previously, international couriers outsource pickups, deliveries, and

transportation activities in the last-mile segment to subcontractor couriers (see Figure
3.3 for the BMC), representing the main customer segment to whom they offer a value
proposition, consisting of last-mile parcel deliveries. Outsourcing generates value for
customers through several benefits in terms of more efficiency and flexibility, owing to
better management of activities in urban areas with respect to peak demand and qualitative
and temporal constraints imposed by time-sensitive deliveries. Other advantages for the
international courier are the wide geographical coverage, cost reductions, the possibility
of focusing on its core activities (e.g., multimodal and intermodal transport or customer
care), access to specialized resources and expertise (e.g., about territorial knowledge), and
benefits from learning economies. The traditional subcontractor firms reach customers
through commercial agreements and tenders, which represent their best practice. Thus,
subcontractors establish a relationship with the customer segment, maintained by a
constant information exchange along all transportation activities (e.g., tracking services
and feedback), permitting the co-creation of value for the final user. The main revenue
stream for traditional subcontractors consists of the income they receive from customers
for last-mile parcel delivery services. The key resources required to make their business
models work are the physical assets, such as vehicles (mainly vans, often customized
with the customer brand), warehouses, and human resources, such as drivers and the
employees responsible of parcel handling and warehouse management. The key activities
included in the core business of traditional subcontractors are the optimal management
of transportation services and the planning of trips and dispatchers in order to achieve
high service levels in terms of parcel delivery, fulfilling their timeline constraints. After
receiving parcels at the hub, the traditional subcontractor checks on the accuracy and
integrity of packages, as well as the related information and bar codes, along conveyors
called “sorters”. Then, parcels are assigned to a driver according to zoning criteria, and are
ready for shipment [184]. An important key activity is also the management of anomalies,
such as returns for data errors or residuals when receivers are not at home. These days,
there is a considerable impact of deliveries that fail at the first attempt (approximately
12% of all deliveries) [246]. Another key activity is related to its coordination with
international courier customers. The interplay between these two actors is important to
the success of multimodality and to the correct fulfillment of parcel deliveries, along with
the subsequent satisfaction of final users. A key partnership is established with suppliers
of strategic assets, particularly with vehicle dealers and leasing companies, but also with
drivers. The cost structure consists of expenses related to acquisitions, maintaining and
fueling vehicles, equipment and materials, warehouses, personnel costs, and penalties,
which may be incurred as a result of breaching contractual terms.
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3.2.3 Business model of the green subcontractor
The increasing awareness of environmental problems related to transportation and the

intent to make the industry more sustainable have led to the development of new business
models for more conscious and optimized management of parcel deliveries in the last-mile
segment. Examples are new firms that use business models similar to those of traditional
subcontractors, but that also consider the environmental impact of their activities, often
using green vehicles such as bikes and cargo bikes. Figure 3.4 depicts the BMC related to
the green subcontractor. The customer segments are identifiable principally as those where
international couriers outsource last-mile operations, but also include the B2B and B2C
segments for intercity and intracity postal services. The value proposition offered by green
subcontractors consists of cycle-logistics services capable of overcoming the complexities
of parcel deliveries in urban areas. For example, these include mobility restrictions (e.g.,
LTZ areas), and inadequate or insufficient infrastructure (e.g., limited usability of loading
and unloading zones). Furthermore, their value proposition penalizes the competitiveness
of traditional subcontractors. Cycle-logistics provide customers with several sources
of gain creators and pain relievers, including speed, punctuality, and flexible service,
because of the better performance of bikes in city traffic, the interoperability between
traditional road vehicles and bikes, and cost reductions, but without compromising quality
of service. This last factor is another important component of the value proposition.
In fact, better management of parcel delivery in the last mile, and the decreases in
expenditure (e.g., fuel, insurance, parking fine, etc.) lead to cost optimization. Green
subcontractors offer their customer segments the possibility of delivering small-sized
parcels, between 0 to 3 kg, or up to 6 kg. Finally, another value proposition for customer
segments is provided by the green image and green credentials required to create a
sustainable supply chain. Green subcontractors reach their customers through websites,
which are the first channel through which they can increase awareness and knowledge of
their services. Other channels include media and interviews published in magazines that
specialize in transportation and environmental issues. As was the case with traditional
subcontractors, green subcontractors establish relationships with customer segments that
are maintained by constant information exchange along all transportation activities (e.g.,
tracking services, feedback, and information about CO2 savings). The main revenue
stream for green subcontractors consists of the income they receive from customers for the
sale of last-mile parcel delivery services and cycle logistics, revenue from CO2 savings
and the carbon credit trading, and fees and royalties from affiliates. The key resources
required to make the business model work are the physical assets, such as vehicles with a
low environmental impact (bikes and cargo bikes), warehouses, and fit human resources
(bikers), whose performance determines the service quality and punctuality. Owing to
the simplicity of this business model, it is affected by high repeatability. Thus, important
key resources include intangible assets such as partnerships, but also the ICT tools and
software required to optimize operations management [184]. The key activities underlying
the business model are the same as those of the traditional subcontractors. In fact, green
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subcontractors are generally start-ups and, thus, fundraising is an important activity,
necessary for the future development of their business models. Key partnerships are
established with technical partners, investors, and sponsors, who are all important in terms
of providing support and improving the business model. Other key partners are the bikers
and, importantly, local administrations. In order to operate their business models, the
main costs to green subcontractors are related to their key resources, as well as to vehicles,
equipment (e.g., bags customized for parcel transportation), consumables, information
technologies, personnel, warehouses, and marketing and advertising.
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3 – Mixing traditional and green business models for urban parcel delivery

Analyzing the BMCs, all operators offer their customer segments a value proposition
consisting of time-sensitive transportation services and express delivery. However, the
SBN highlights how the dynamics within the urban transportation and parcel delivery
system become more complex with the diffusion of subcontracting and the partial
autonomy of fleet managers. In particular, major international couriers in the industry do
not manage the entire process. Indeed, to serve their customer segments, they focus on
long-haul shipments, while outsourcing the deliveries in the last-mile segment to
subcontractors, both traditional and green. This process allows better operational
performance and economic efficiency in terms of road transportation in urban areas, as
well as capillarity and strategic diffusion in territory, leading to customer proximity.

The SWOT analysis (Figures 3.5 and 3.6) and the BMCs show that, for traditional
subcontractors, the main sources of weaknesses and threats are their impact on the
environment and the critical issues affecting European regions, as traffic and congestion,
Low-Traffic zones (LTZ), and the absence of loading and unloading zones. These factors
compromise the management of deliveries, inducing disadvantageous conditions for
couriers with traditional vehicles. In contrast, these same points represent strengths for
green subcontractors. The latter group uses low-emission vehicles with a low
environmental impact, such as bikes, in last-mile parcel deliveries, allowing them to earn
additional income from CO2 savings and carbon credit trading, as highlighted in the
revenue streams block of the BMCs (Figure 3.4). However, the operational model of
green subcontractors has a limitation in that the reduced capacity of bikes limits the sizes
of parcels they can deliver. This constraint is partially overcome using next-generation
cargo bikes, which have a maximum payload of about 100–150 kg per bike, according to
estimates provided by [198] based on Europe.

For all operators, vehicles represent a main item of the cost structure, both in terms
of operational costs and social costs related to externalities. Owing to the relevancy
of these costs, a further quantitative analysis is provided in Section 3.3.2. Finally, the
SBN shows how the international courier can guide subcontractors using a financial lever.
On the other hand, the competition arcs between traditional and green subcontractors
represents a threat, as confirmed by the SWOT. In fact, if subcontractors begin competing
on operational costs, customers of the international courier may perceive a reduction of
in service quality. Such a price war might be caused by the coexistence of traditional
and green subcontractors in the same geographical area, or by the similarities in their
business models, in terms of their cost and revenue structures, which reduce the margins
of differentiation. A similar situation might occur when a fleet is owned internally by
the international courier. In fact, the partial organizational independence of local depot
fleet managers and their strategic objectives in terms of cost reductions might have similar
effects to those of a price war between traditional and green subcontractors.
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Figure 3.5: SWOT analysis referred to the traditional subcontractor.

Figure 3.6: SWOT analysis referred to the green subcontractor.

3.3 Parcel delivery operational model analysis
The analysis of the BMCs shows how combining traditional and green subcontractors

might determine benefits in terms of efficient last-mile supply chain management but, at
the same time, may hide the threat of a price war, reducing the service quality. Thus, there
is a need to better understand the costs and the performance structure of the system. More
specifically, we analyze two issues that have received scant attention in the literature:
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• the break-even points for vehicles and cargo bikes, in terms of the distance between
two consecutive stops, in order to determine the portion of a city where they can
coexist (Section 3.3.1);

• the operational costs per kilometer of the different classes of vehicles (Section
3.3.2). In this case, partial data can be found in the literature, but no detailed cost
analyses have been conducted previously for the parcel delivery sector.

The following analyses are conducted using real data from the customer distribution and
daily volumes of deliveries in Turin for the last three weeks of 2014 and the beginning of
2015. The primary data are provided by an international parcel delivery company that
operates in Italy and is involved in the URBeLOG project [240].

3.3.1 Break-even distance between vehicles and bikes
The methodology adopted is based on the main aspects that affect the last-mile logistic

system: destination features (e.g., number, localization, delivery frequency, and lead time),
parcel features (e.g., quantity, weight, and volume), and the performance of the respective
vehicles. Referring to these variables, the following sections analyze the locations of
deliveries within the city and the break-even distances between them.

Delivery locations and parcel sizes According to [103], reaching the critical mass is
one of the major problems associated to the last-mile. Thus, to evaluate the presence of a
critical mass for the value proposition of green subcontractors, we studied the distribution
of the destinations in the urban areas and, in particular, in the city center. In these areas,
the benefits related to the use of environment-friendly vehicles are more relevant because
of the presence of mobility restrictions (e.g., LTZ areas) and the various aspects related to
the quality of life of the public. Therefore, we have designed an ideal area composed of
quadrilaterals (see Figure 3.7, where the coordinates of the vertices are highlighted) that
includes the center of Turin, as well as the surrounding neighborhoods directly reachable
by bikes.

First, we filtered the deliveries in this area by the weight of parcels. As defined in the
Green Paper proposed by the European Commission [86], the term “parcel” refers to a
box with a weight less than 30 kg, and manageable by a single person. Thus, we classify
parcels as follows: “mailer” (0–3 kg), “small parcels” (3–6 kg), and “large deliveries”
(more than 6 kg). We observed that the mailers are the predominant parcels and with the
small parcels account about the 80% of the total flow of parcels, and the remaining part is
represented by the large deliveries. This trend highlights the increasing role of e-commerce
that implies frequent deliveries of limited sizes. Despite the 77.49% of deliveries falling
outside the city center, the mailers still represent the more profitable category for both
subcontractors. They are easy to handle for green couriers using bikes, who can avoid
traffic and other urban restrictions. Thus, the distribution of these parcels represents the
critical mass to make the business model of green subcontractors sustainable.
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Figure 3.7: Ideal area of direct coverage by green subcontractors using bikes.

Distance analysis and definition of the break-even distance In this step, we analyze
the total time per vehicle stop for traditional vehicles and bikes. Here, we aim to determine
the break-even distance, expressed in kilometers, where the performance of traditional
subcontractors is equal to that of green subcontractors. Note that the term “stop” refers
to the time when the vehicle stops to do one or more deliveries. The term “time per
stop” refers to the “travel time” plus the “delivery time”, expressed in minutes. The
first is the time required to reach the destination point of the delivery from the origin
point (e.g., hub, subcontractor location, or a previous destination). The second is the
time required for parking and performing the delivery (e.g., customer contact, pick up
the parcel in the vehicle, and collect the proof of delivery). The time per stop is strictly
related to the distance traveled by the courier. Thus, we calculate the distance from the
hub of a green subcontractor operating in Turin to each destination point, referred to as
the customer location [240]. We measure it using the Manhattan distance, which is the
distance measured along axes at right angles. This can be computed by adding, as an
ideal point, an intermediate point with the latitude of point A and the longitude of point B.
This approach considers the topography of the grid of Turin, according to Roman town
planning. We extract a representative sample with mean µ=0.58 km and variance σ2=0.05
km2. Then, we conduct an analysis based on the total time per stop, using different speed
profiles and delivery times for the traditional and green subcontractors. These parameters
are assumed as follows:

• for traditional subcontractors, the average speed in the town center is 25 km/h, 35
km/h, and 40 km/h, with a delivery time between 4 and 5 minutes, considering the
complexities related to parking;
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• for green subcontractors, the average speed is 15 km/h, 20 km/h, and 30 km/h, with
delivery times between 2 and 2.5 minutes.

This analysis is based on several scenarios related to speed and delivery times for both
types of couriers, and on the location of the final customers destinations. The findings
confirm those of the previous qualitative SWOT and BMC analyses. Thus, although
traditional subcontractors can travel faster, the analysis highlights the benefits of cargo
bikes. In fact, given the delivery time of traditional subcontractors, when urban congestion
reduces the speed (e.g., from 40 km/h to 25 km/h) the total time per stop increases from
about 5.40 to 6 min, increasing the benefit of using bikes. Therefore, we analyze the break-
even distance between the two options (see Table 3.1). The average break-even distance
is about 1.89 km. By varying the values of speed and time, we deduce the following.
The break-even distance increases when the driver speed increases or the delivery time
decreases. Similarly, the break-even distance increases when the condition vB < vo

D is
true and the bike speed increases or its delivery time decreases. The combination of the
speed of the vehicle at 25 km/h and the bike at 30 km/h gives a constant advantage to the
bike. This setting is similar to the values measured in congested city centers, showing the
advantage of using cargo bikes in urban delivery operations.

Table 3.1: Break even distances.

vD [km/h]⧸tD [mi n] 4 4.5 5 4 4.5 5

2 2.5 tB [mi n]⧸vB [km/h]

25 1.25 1.56 1.88 0.94 1.25 1.56
1535 0.88 1.09 1.31 0.66 0.88 1.09

40 0.80 1.00 1.20 0.60 0.80 1.00

25 3.33 4.17 5.00 2.50 3.33 4.17
2035 1.56 1.94 2.33 1.17 1.56 1.94

40 1.33 1.67 2.00 1.00 1.33 1.67

25 Bike Bike Bike Bike Bike Bike
3035 7.00 8.75 10.50 5.25 7.00 8.75

40 4.00 5.00 6.00 3.00 4.00 5.00

3.3.2 Cost efficiency analysis of vehicular and cargo bike delivery
Operating cost analysis In recent years, several companies have been faced with a
trade-off between a reduced environmental impact of their activities and the reduced
economic efficiency as a result of the consequent additional costs. However, they have
also recognized the benefits for competitiveness, in terms of value proposition and brand
reputation, of having a greener image. According to this new perspective, they have
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adopted measures in the city logistics domain when renewing vehicles in their fleets,
eliminating those lower than the Euro 4 class and experimenting with green vehicles. The
first type of vehicle uses innovative propulsion systems (e.g., electric, hybrid, or methane
vans). We also consider alternative vehicles, such as bikes and cargo bikes, and traditional
and electric pedal cycles. An actual case is represented by the partnership between Nissan
Motor Co. Ltd. and DHL Express in their “GoGreen” program. They introduced fully
electric vehicles (“e-NV200”) in their courier fleet, first testing them in Tokyo’s urban
area, and then adopting this option in several Italian branches [172]. Each type of vehicle
has different impacts, both environmental and economic. Here, couriers need to consider
the financial requirements and investment, as well as the outsourcing strategies and the
costs related to fleet management and maintenance. The operating cost analysis (see Table
3.2) compares the different vehicles in terms of cost efficiency and environmental impact.
The selection of the benchmark vehicles in our study reflects the transition occurring
in the industry. In particular, we consider traditional vehicles (gasoline or diesel), fully
electric vehicles, and cargo bikes. These vehicles cover a large part of couriers’ fleets.

In the proposed methodology, we estimate and compare the total cost per kilometer
(TC K ) [31] for each vehicle. According to [31], the T C K includes both operating costs
(OPC ), represented by variable costs (e.g., gasoline) and the cost of ownership OW C ,
which includes fixed monthly costs. Moreover, the latter costs are not related to the
distance traveled, which means the courier incurs these costs regardless of usage (e.g.,
purchase costs, personnel costs). The sum of these two costs is then expressed in euros
per kilometer for the last-mile segment [e/km], which the company incurs when using
the vehicle for a year of its technical life cycle. The TC K [31] function is:

TC K = (OPC +OW C )/T K = ((v + t x + i +p)+ ( f + t +mr ))/T K , (3.1)

where:

• OW C is the cost of ownership, including all annual fixed costs (i.e., purchase cost
of vehicles, taxes, and personnel costs). In particular, concerning the purchase
cost of vehicles, we consider the interests based on fixed rate paid by the company
according to the financial plan and we imputed a fixed depreciation rate (20%
annual) due to usage and obsolescence of the vehicle, allocating the the cost of
vehicle over its useful life. For simplicity, we did not considered neither value
discounts due to inflation, nor opportunity costs being the considered assets essential
for the core business of the parcel delivery company and the investment in these
physical assets in line with the current practice;

• OPC is the total annual variable (operating) cost (i.e., fuel and tire costs);

• T K is the total kilometers traveled annually.

The values for each item, described in detail below, were estimated from the primary
data with regard to the commercial practices and costs. These data were obtained from
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financial statements and from the interviews with the COOs and the marketing directors of
the international courier, its service providers and suppliers, as well as the partners and the
Advisory Board members of the Synchro-NET project. A number of further assumptions
are made with regard to the operational aspects of the company in our study, considering
actual conditions:

• total annual usage, in terms of kilometers traveled in the last mile segment, of about
25000 km/year;

• total annual usage, in terms of hours required to reach each destination and to
deliver the parcels, of about 2000 h/year;

• the speed of commercial vehicles in urban areas is about 35 km/h;

• each driver must make about 80 deliveries per day, with an average time of 4.5
minutes per delivery to perform all operations, from parking the vehicle to the
collecting the proof of delivery;

• each cost component refers to the technical life cycle of the vehicle, estimated to be
five years.

The components of fixed and variable costs are the following:

• Purchase cost of vehicle (v): based on estimates realized by several car dealers,
and based on a leasing agreement of five years. During this period, the company
operating in the transportation and parcel delivery market in the last mile provides
a depreciation and amortization schedule of this asset.

• Vehicle taxes (t x): refers to the expenditure and taxes related to the vehicles,
according to current regulations, such as ownership tax.

• Insurance (i ): the cost of the truck liability insurance, based on the capacity of the
vehicle and the third-party cargo insurance. This excludes theft and fire insurances,
which is included in the leasing agreement. Owing to the liberalization process in
the insurance industry in 2014 in various countries, including Italy, the cost of the
policy refers to an average price offered by several insurance companies, based on
secondary research.

• Personnel costs (p): the total remuneration payable to a driver, including taxes
and employees’ social security contributions, according to the National Collective
Labor Agreement prescribed for the category to which they belong.

• Fuel ( f ): the costs related to the fuel supply (gasoline and diesel) and to the
power supply, depending on the propulsion system of the vehicle. These values are
estimated from the consumption figures in the technical specifications provided by
the manufacturers. For gasoline and diesel, prices are the average monthly domestic
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prices, taken from statistical data provided by the Italian Ministry of Economic
Development for 2015. The electricity price is an average cost, based on the prices
charged to business customers by major suppliers operating in the energy industry.

• Tire costs (t): based on the list prices charged by the leading manufacturers,
discounted by a corrective factor of 15% for the purchase of high quantities for the
whole fleet. Furthermore, the average usage is estimated to be 50000 km/year (data
given by fleet managers).

• Maintenance and repair costs (mr ): estimated from the data provided by the
Automobile Club Italia (ACI) [1], and related to the expenditure for activities
required to maintain the effectiveness of the vehicle performance during its life
cycle, given the distance traveled. These activities are classified in terms of time or
condition-based maintenance, which prevent negative events and maintain normal
conditions of use. Otherwise, this is the breakdown maintenance or repair cost after
a failure has occurred.

Environmental costs According to the technical specification ISO/TS 14067:2013
“Greenhouse gases – Carbon footprint of product - Requirements and guidelines for
quantification and communication”, the carbon footprint is defined as the total amount of
GHG emitted directly or indirectly by an activity, a product, a company, or an individual.
As such, we quantify the amount of emissions for the last-mile delivery process. In
particular, we consider the GHG emissions derived directly from fuel combustion, the
indirect emissions emitted during the production process of the fossil fuel, and the
consumption of energy related to the charging of batteries. However, because we focus
on the last-mile segment, we omit the GHG emissions from the long-haul shipment that
connects the first and the last mile, and those of the production and disposal process of
vehicles. We also consider other pollutants involved in the process, such as nitrogen
oxides (NOx), which are included in the conversion to CO2, using an appropriate factor
of 4.7 kg per liter of fuel consumed [133]. To evaluate how the environmental impact
affects the cost efficiency of the courier, we express the carbon footprint in economic
terms by applying the Pigouvian tax, known as the carbon tax, based on the price paid
for CO2 emissions in the atmosphere (see Table 3.2). This price mechanism does not
limit the quantity of emissions, but reduces them by making it cost-effective to switch to
innovative technologies with a lower environmental impact. In particular, we conduct a
scenario analysis imposing different values of the carbon tax, based on the tariffs applied
in several counties, for example, 17 e/t in France, and 150 e/t in Sweden [82, 128].

As shown in the BMCs, all operators incur costs related to vehicles used, including
the operational and social costs. As illustrated in the above analysis, this cost is higher for
the traditional subcontractors using fossil-fuel vehicles than it is for green subcontractors.
In particular, while diesel vans are preferred to petrol engines, few of which are used
because of the high running costs, electric vehicles permit greater cost savings because
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Table 3.2: Cost analysis results.

Costs Tariffs Carbon Tax Fossil fuel vehicle Diesel fuel vehicle Electric vehicle Bike
[e/tons] [e] [e] [e] [e]

TCK [e/km]
Annual kilometer cost 2.70 2.68 2.66 1.50

Environmental costs [e]
Direct CO2 Emissions [tons] 4.15 3.38
Indirect CO2 Emissions [tons] 4.15 3.38
Equivalent CO2 Emissions [tons] 8.46 5.52
Total Emissions [tons] 16.76 12.28
Carbon Tax [e] 17.00 284.92 208.63

30.00 502.80 368.18
90.00 1508.40 1104.53

150.00 2514.00 1840.88
Electric Battery Emissions [tons] 3.08
Carbon Tax [e] 17.00 52.31

30.00 92.31
90.00 276.94

150.00 461.56
Direct CO2 Emissions [tons] 0.00

of the lower insurance tariff and the exemption from the ownership tax payment. Bike
couriers obtain an economic efficiency derived from lower vehicle management costs,
as well as from lower personnel costs related to the skills of riders (e.g., they do require
a driving license, lower job time). Moreover, they benefit from the additional revenue
earned from CO2 savings and carbon credit trading. In fact, assuming that carbon credit
prices are 30% lower than the carbon tax tariffs, using bike subcontractors might earn an
average revenue of about 0.02 e per stop [185], as compared with traditional vehicles
(petrol and diesel). This estimate assumes greater relevance when we consider the high
volumes of parcels delivered in urban areas.

3.4 Simulation
As stated in Section 3.2, in order to avoid the service quality reduction due to

competition among traditional and green subcontractors, the international courier should
identify strategic policies able to harmonize the two. The complexity of the overall
system suggests adopting a tool that considers the interconnection between the actors,
while explicitly considering their operations and optimization. Thus, we develop a DSS
for managing and deploying mixed-fleet policies in a specified urban area. The overall
system is based on the simulation-optimization approach presented in [191] for the air
transportation market, while the economic and operational data are the same as those
used in Section 3.3.2.
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3.4.1 The DSS
The diagram of the DSS is shown in Figure 3.8. According to Crainic, Perboli, and

Rosano [46], the DSS applies a sequential simulation-optimization, where the simulations
are numerical. It is based on a Monte Carlo simulation, a last-mile optimization meta-
heuristic, and a data aggregation and analytic module. The first block is a high-level
generator of realizations. These are the inputs to the meta-heuristic that optimizes the
day-to-day operations of the various fleets. The solutions to each realization are then
analyzed in terms of the KPIs. Finally, the data aggregation block computes the average
KPIs from the Monte Carlo simulation, which is performed to evaluate the impact of the
combination of traditional and green subcontractors. For this simulation, we focus only
on couriers using bikes and cargo bikes. Future studies will also consider other green
vehicles, such as fully electric and hybrid vans.

The simulator implements a Monte Carlo method, a module for geo-referencing the
data, and a post optimization software to compute the KPIs. It requires a logical graph of
the city including a set of depots and customers, an instance that describes the deliveries to
be performed, and the operational scenarios needing to be evaluated. These inputs include
also information concerning the customer density, specificities of the vehicles adopted in
a certain operational scenario, as well as their travel times and costs matrices. Moreover,
time dependence and sources of uncertainty in the travel times, classes of parcels and
service times can be also taken into account in the simulation. The overall simulation
process for a given demand situation is described as follows:

• Consider an instance defining the number of parcels and, for each parcel, the volume
and the parcel types (mailer, standard, etc.).

• Create a set of 30 realizations R, one for each day of a month, with the same number
of parcels and characteristics, but different destinations. Each of them represents
the realization of all the random variables and thus, corresponds to a operational
working day. The process is the following:

– Identify the set of destinations located in central and semi-central areas;

– For each parcel, find the node of the logical graph nearest to its actual GIS
position, and assign the parcel to the node. The distance between the GIS
position of the parcel destination and a logical node is computed by means of
the Manhattan distance.

• For each realization r ∈ R, build a vehicle routing problem. Then, evaluate the
resulting problem for each operational scenario. To evaluate the scenarios, the
simulator integrates an optimization algorithm that minimizes the costs of deliveries
and computes the routes for the fleet of the vehicles. Our algorithm is inspired by
the method based by Ropke and Pisinger [201], which is one of the most successful
approach for different Vehicle Routing problems, including the Vehicle Routing
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with Time Windows (VRPTW), and it implements the ruin and recreate paradigm
with an adaptive selection of its destruction and reparation operation. The existing
time slots make this problem a VRPTW, and the number of trip settings made it
necessary to have an underlying flexible algorithm capable of handling multiple
configurations. Additional constraints are related to technical restrictions due to the
usage of the bikes, the possibility to fix the number of routes, and balancing of the
routes in terms of workload. In fact, the algorithm can be run in two different ways:
minimization of the fleet or fleet with fix dimension and load balancing among the
vehicles. In the first, the costs are minimized reducing the number of vehicles to use.
While in the second, the fleet is given and the algorithm split the deliveries among
the vehicles, balancing the load. After building an initial solution using a best
insertion algorithm, the heuristic iteratively chooses a removal heuristic R, removes
q customers from the routes in the current solution by applying R, and reinserts the
previously removed customers in the existing routes. If the new solution is better
than the best one found so far, the new solution is accepted as both the new best
and the new current solution. On the contrary, if it is not better, the new solution
becomes the current solution according to the greedy acceptance concept defined in
the work by Schrimpf et al. [208]. We use three removal heuristics:

– random removal: q customers are chosen randomly;

– radial ruin: given a customer c∗ , a percentage chosen at random on the total
number of customers equal to α= 0.5 is removed. The customers are the ones
nearest to c∗ according to the distance matrix;

– small radial ruin: similar to radial ruin, but with α= 0.3.

The removal heuristics are chosen by a roulette wheel algorithm, where the
probability of each heuristic is set to 0.2, 0.4, and 0.6, respectively. The insertion
heuristic implies a standard regret insertion. In order to increase its portability in
cloud-based environments, the algorithm was implemented using Jsprit, a Java
based, open source toolkit for solving rich traveling salesman and vehicle routing
problems [114].

• Given the solutions and the KPIs, the data aggregation module geo-references the
routes using the Google Maps API, attaches their respective KPIs, computes the fleet
KPIs, and presents the performances of the traditional and the green subcontractors.
Then, in order to obtain more accurate values of the KPIs, each route duration
is evaluated using the empirical distribution of the travel times over the day, as
presented in the work by Maggioni, Perboli, and Tadei [152].
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Figure 3.8: Monte Carlo simulator diagram.

3.4.2 Test instances and KPIs
This section briefly describes the test instances used for the numerical experiments. We

performed our experiment using data from actual missions observed during the URBeLOG
project [240]. More specifically, we consider three typical settings, named I1, I2, and I3,
ranging from 1000 to 4000 parcels. The settings were generated from real data gathered
during the three weeks at the end of 2014 and the beginning of 2015 in a medium-sized
city (e.g., Turin, Italy). For each setting, 30 instances were considered. Each parcel is
characterized by a destination point (e.g., latitude and longitude), a weight, a volume,
and a time window within the delivery must be made. We also consider that parcels are
available at the depot of the (traditional or green) subcontractor at the beginning of the
working day. Each instance includes more than 50% “mailer” parcels, distributed mainly
in the central area. “Large” parcels comprise, on average, 20% of all parcels, but their
destinations are located in semi-central or suburban areas, where the green courier cannot
operate. The courier operates from a central depot outside the city for the vehicles, while
a secondary depot is located nearby the city center for the cargo bikes. All parcels are
considered to be destined for urban areas only. For the sake of simplicity, we suppose
there are no availability issues for vehicles and cargo bikes. The TCK are those computed
in the Section 3.3.2.

The traditional and green subcontractors are characterized by the classes of parcels
they can handle, their average speed in central and semi-central areas, service time, and
maximum capacity. The values use in this study are taken from interviews with the CEO
and the COO of the international courier company.

• Classes. The traditional subcontractor can handle any class of parcels, while the
green subcontractor one only handle “mailer” and “small” parcels.
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• Speed. In the meta-heuristic, the cost function considers travel times. The vans of
traditional subcontractors have an average speed of 20 km/h in city center, which
is usually affected by traffic congestion, and 35 km/h in a semi-central area. The
speed of green subcontractors is 20 km/h, on average, in both areas.

• Service Time. The service time is about four minutes when operators handle
large deliveries, and three minutes for smaller parcels. On the other hand, green
subcontractors can easily stop their bikes (e.g., on the sidewalk), so the average
service time is about two minutes.

• Capacity. Vans have a maximum capacity of 700 kg. The green subcontractor uses
messenger bags, with a capacity of 20 kg, and cargo bikes that have a box that can
contain up to 50 kg. When necessary, green subcontractors combine a cargo bike
and a messenger bag.

All data come from the URBeLOG project [240].
For each instance, we define five operational scenarios combining the two areas to be

served by the green subcontractor and the three classes of parcels that each subcontractor
can handle. Note that for the simulation, we defined the “small” parcel class as those
parcels with a weight of up to 5 kg. The scenarios are as follows:

• Scenario S_0. Only the traditional subcontractor operates in this area.

• Scenario S_3_C. The green subcontractor delivers “mailer” parcels (up to 3 kg) in
the central area. The traditional subcontractor delivers all remaining parcels.

• Scenario S_3_S. The green subcontractor delivers “mailer” parcels (up to 3 kg) in
both the central and semi-central areas. The traditional subcontractor delivers all
remaining parcels.

• Scenario S_5_C. The green subcontractor delivers “mailer” and “small” parcels
(up to 5 kg) in the central area. The traditional subcontractor delivers all remaining
parcels.

• Scenario S_5_S. The green subcontractor delivers “mailer” and “small” parcels
(up to 5 kg) in both the central and semi-central area. The traditional subcontractor
delivers all remaining parcels.

To evaluate the efficiency of combining traditional and green subcontractors in each
scenario, we measure three KPIs:

• Equivalent vehicle (Veh Eq). The number of equivalent vehicles used by the
subcontractors. Note that to compare traditional and green subcontractors, we
implement a conversion from bikes to vans. The conversion considers a full-time
work shift of a traditional subcontractor, which, based on European regulations,
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is six-and-a-half hours. More specifically, we compute the number of equivalent
vehicles as the sum of the working time of each biker, divided by the hours in a
work shift of a traditional subcontractor.

• Number of parcels per hour (nD/h). It is common practice to define the efficiency
of a courier in terms of the number of parcels per hour. This KPI considers only the
speed and the service type of the courier.

• CO2 savings. CO2 savings measures the kilograms of CO2 not emitted in the case
of green subcontractors and their environment-friendly vehicles.

3.5 Computational results
The simulation highlights how the emergence of green subcontractors changes the

dynamics of urban freight distribution systems in the last-mile segment. Figure 3.9
and Figure 3.10 summarize the efficiency of the traditional subcontractor and green
subcontractor, respectively. These are measured in terms of equivalent vehicles and
number of parcels per hour, when the green subcontractor delivers “mailer” and “small”
parcels. Note that KPIs are expressed in percentages with respect to the benchmark
scenario S_0. The detailed results obtained from the Monte Carlo simulation are shown in
Table 3.3. The values reported in the table are the mean values of the 30 replications. We
do not report the detailed measures of the variance or the confidence level, because they
are relatively low. In particular, the intervals of the variances of the values of equivalent
vehicles and parcels per hour are less than 1%, while for CO2, they are less than 3%.
This proves the significance of the discussion in terms of a combination of traditional
and green vehicles. With regard to the performance of the traditional subcontractor, the
simulation highlights three main results:

• the number of equivalent vehicles is reduced by half;

• there is a loss of efficiency;

• the capacity of vans is saturated.

By outsourcing “mailer” and “small” parcels, the traditional subcontractor manages only
large parcels (over 5 kg), which are usually difficult to handle, with a consequent increase
in the service time needed to execute the delivery operations. The latter causes a rapid
saturation of the vans’ capacity and, thus, a reduction in the number of parcels in a single
round and in the duration of each route. Consequently, the traditional subcontractor
needs double the number of rounds and loses efficiency, here measured as the number of
deliveries per hour. Figure 3.9 shows that the traditional subcontractor loses more than
15% efficiency when “mailer” parcels are delivered by the green subcontractor, and more
than 30% when “small” parcels are outsourced as well.
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Finally, it is interesting that the choice of the city area where the green subcontractor
operates does not affect the KPIs of the traditional subcontractor, owing to the distribution
of the parcels. In contrast, Figure 3.10 shows that, for the green subcontractor, the area
of service is relevant for its efficiency. In fact, when it manages “mailers” and “small”
parcels, extending the service from the central area to the semi-central area decreases the
efficiency of the green subcontractor, in terms of the number of deliveries.

However, to maintain an equilibrium condition in the system after the transition to
low-emission vehicles, it is necessary to improve quality of service, which, based on the
value proposition of the green subcontractor’s business model, must at least compensate
for the loss of efficiency the traditional subcontractor incurs. In fact, the results of the
simulation highlight that when the green subcontractor manages parcels up to 5 kg in
size, the benefits are negligible compared with the consequent inefficiency incurred by
the traditional operator. However, particularly when the green subcontractor operates in
the central and semi-central areas, the benefits in terms of costs savings (operational and
environmental) are, on average, 29% and, thus, are lower than the reduction in efficiency
of about 34%. This negative variance discourages the traditional courier from outsourcing
this segment, while it is more inclined to outsource parcels up to 5 kg in the central area.

Moreover, it is important to extend this analysis to the case in which the fleet of
vehicles is owned by the international courier (internal fleet) as opposed to being owned
and managed by another firm (external fleet). In the latter case, the green subcontractor
incurs costs related to the vehicles, general costs, those related to the structure, and a
percentage of its margin. Thus, according to this classification, the above-mentioned
values refer to the case of an internal fleet.

In contrast, when the fleet is external, the dynamics change. First, we have to move
from a cost per kilometer to a cost per stop, owing to the typical contract scheme. This
can be done by considering an average distance between two vehicle stops of about
700 m and a minimum requirement of 80 deliveries per day [240]. Then, the results of
the analysis show that a loss of efficiency of 30% for the traditional subcontractor, as
illustrated in Figure 3.9, must be overturned by an increase in the performance of the
green subcontractor of about 70%, without guaranteeing its desired fee of a 15% margin.
This percentage, related to the increase in the performance, translates to 130 deliveries
per day, which is difficult to achieve for the green subcontractor. Moreover, for the
external fleet, the cost savings connected to parcels between 3 and 5 kg in the semi-central
area are, on average, 36%, compared with the loss of efficiency of the 34%. Therefore,
the consequences of this inefficiency do not justify outsourcing the deliveries. More
specifically, the contractual schemes imply revenue based on the number of deliveries and
penalties should a minimum number not be fulfilled. Thus, the loss of efficiency owing
to the smaller number of deliveries of the traditional subcontractor, resulting from the
outsourcing to the green subcontractor, and the higher distance of the remaining deliveries
might have a negative impact on the service quality of the traditional subcontractor, forcing
a renegotiation of the agreement conditions. The new contract should consider increasing
the number of deliveries required for the green subcontractor in order to balance the loss
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of efficiency for the traditional subcontractor, without altering the equilibrium state of the
service level in the system. Specifically, the green subcontractor should decrease its costs
per stop to a value of about 1.90 e/stop and have a critical margin of the 10%, which is
nearly identical to the gross contribution margin. Moreover, the outsourcing of all parcels
leads to complexity in the management of a high number of agreements with different
contractual clauses, based on the class of parcels. This could imply strategic risks, owing
to reduced control over the process, entrusting activities that could be strategic levers, and
increasing the bargaining power of green subcontractors.

With regard to environmental issues, we compute the CO2 savings from outsourcing
“mailer” and “small” deliveries. Table 3.4 shows the CO2 savings in each scenario as the
difference between the total emissions generated in scenario S_0 and those generated in
the other scenarios by traditional vans. Outsourcing both “mailer” and “small” parcels
(scenarios S_5_C and S_5_S) to the green subcontractor can lead the highest reduction of
emissions, close to 14 tons of CO2 per year. The area served by the green subcontractor has
a strong impact on the number of kilometers traveled and, thus, on emissions. Reducing
the need to access the central and semi-central areas, the length of the routes traveled by
the traditional subcontractor reduce by about 25%. Consequently, the CO2 savings are
more than 40%.

Thus, it is possible to derive policies that guide the behavior of the various operators
and stakeholders in the urban freight transportation system. In particular, the main actions
to consider in order to guarantee a balanced mix of traditional and green transportation
and, thus, the efficient performance of the system are as follows:

• In the case of an internal fleet (i.e., the fleet is owned by the international courier),
the green subcontractor must manage the “mailers” in the central and semi-central
areas. In fact, as shown in the analysis described in Section 3.3.1, this is the
most profitable segment for this courier, because it permits it to maintain the high
quality level imposed by the international courier customers. Moreover, the green
subcontractor must manage the small parcels in the center of the city, where traffic
conditions and mobility restrictions increase its benefits and reduce the costs for
the traditional subcontractor. In contrast, outsourcing the management of deliveries
of parcels greater than 5 kg in the rest of the city not only affects the quality level
perceived by the final customer, but also decreases the efficiency, reducing the
margins for the traditional subcontractor.

• In the case of an external fleet (i.e., the fleet is owned by a series of subcontractors),
the green subcontractor must manage the “mailers” in the central and semi-central
areas. The outsourcing of parcels between 3 kg and 5 kg requires a change in the
contractual scheme, decreasing the margins of the green subcontractor, which must
increase its role in the selling of energy and environmental credits. Thus, the results
show that the goal required by the green subcontractor in terms of increases in
deliveries, and the reduction in the efficiency of the traditional subcontractor means
the model is neither feasible nor sustainable. For the traditional subcontractor, a
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Figure 3.9: Traditional subcontractor efficiency in terms of equivalent vehicles (Veh Eq)
and parcels delivered per hour (nD/h).

better solution is to internalize the green fleet, which it will use to manage parcels
up to 3 kg in the central area.

• However, the green aspects of the problem are currently important topics. The
introduction of business models based on a low environmental impact leads to a
reduction in emissions in a medium-sized city, such as Turin, which means efficient
management and control of the system are needed. In fact, focusing only on a
reduction of emissions could lead to a cannibalization between the two types of
business models. As such, the operational processes of the two couriers need to be
optimized and monitored.

3.5.1 Sensitivity analysis
The main sources of uncertainty in our study that have been the subject of our

assumptions are related to the service times, classes of parcels and travel times. While
the service times are monitored by the companies and the travel times depend mainly to
the speed of vehicles, heavily affected by traffic and congestion, the composition of the
demand is the most relevant parameter whose uncertainty will affect in the near future
the congestion and the development of urban areas [108]. Moreover, according to the
annual report by Amazon [4], the parcels weighing up to 5 kg represents about 85% of e-
commerce parcels in Italy. Thus, we now turn to the sensitivity of the problem, analyzing
how the sustainability performance indicators vary when e-commerce conditions change
significantly resulting in higher (e-commerce market growth) or lower (e-commerce
market downturn) demands of mailers and small parcels. In doing so, we created a second

82



3.5 – Computational results

Figure 3.10: Green subcontractor efficiency in terms of equivalent vehicles (Veh Eq)
and parcels delivered per hour (nD/h). Notice that S_0 has no value because the green
subcontractor is not used in this scenario.

Table 3.3: Results of Monte Carlo simulation. Note that the green subcontractor has no
value in S_0 because it is not included in this scenario.

Instances nD/h Veh Eq
Traditional subcontractor

S_0 S_3_C S_3_S S_5_C S_5_S S_0 S_3_C S_3_S S_5_C S_5_S

I1 15.65 12.82 12.98 10.44 10.38 7.49 2.16 3.53 2.28 3.62
I2 16.18 13.79 13.77 10.92 10.73 9.89 3.03 4.86 3.07 4.98
I3 15.47 13.29 13.01 10.50 10.21 8.40 2.54 4.18 2.70 4.41

Green subcontractor
S_0 S_3_C S_3_S S_5_C S_5_S S_0 S_3_C S_3_S S_5_C S_5_S

I1 NA 11.94 11.24 12.47 11.94 NA 3.70 6.55 3.88 6.88
I2 NA 12.03 11.36 12.51 12.06 NA 4.96 8.39 5.45 9.02
I3 NA 11.82 11.16 12.56 12.04 NA 3.85 6.89 4.12 7.14

set of instances with up to 500 customers, varying the composition of the demand in terms
of classes of parcels, as follows:

• current situation: 55% of mailers, 25% of small parcels and 20% of large parcels;

• e-commerce market downturn: 50% of mailers, 20% of small parcels and 30% of
large parcels;

• e-commerce market growth: 60% of mailers, 30% of small parcels and 10% of
large parcels.
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Table 3.4: CO2 savings per day with respect to scenario S_0.

Instances CO2 savings

S_3_C S_3_S S_5_C S_5_S
I1 22% 34% 27% 45%
I2 16% 34% 26% 44%
I3 16% 41% 20% 48%

Table 3.5 reports the average results of the sensitivity analysis, assuming that the best
policy suggested in the previous section has been designed. In particular, we show the
changes in the solutions with respect to the cost of the vehicle used (Column 3), CO2
savings (Column 4) and nD/h (Column 5). Notice that the CO2 savings are not reported
in the scenario S_0, which refers to the adoption of vans only.

We observe that the e-commerce market downturn, and the relative reduction of the
number of parcels up to 5 kg, take benefit in terms of reduction of vehicle costs. On the
contrary, nD/h are more sensitive to this market condition. Indeed, the downturn increases
the number of parcels with more than 5 kg and penalizes the number of deliveries, causing
a decrease of the operative efficiency of the traditional courier (-22% and -23%, in the
scenario without and with green subcontractors, respectively).

The e-commerce market growth increases the number of vehicles needed to cope
with the higher flows of mailers and small parcels, with a consequent increase in the
operative cost (25% in S_0), while the effect of this condition in the vehicles cost is
limited in the scenarios in which the cargo bikes are adopted (12%). Despite the nD/h
increase, the results confirm the outcomes above, highlighting that in the scenarios with
the subcontracting to green operators, the traditional subcontractor incurs in a potential
deterioration of its operative performance. The increasing number of mailers and small
parcels typical of e-commerce growth allows obtaining the highest CO2 savings (28%),
due to the possibility to outsource these classes of parcels to the green subcontractor.
On the contrary, in case of a market downturn, the higher number of large parcels may
cause the saturation of vehicles and the increase of traveled distances, penalizing the
environmental sustainability (3% of CO2 savings compared to 28%), as discussed in the
computational results.

Based on our analysis and simulation results, the outsourcing of deliveries to green
subcontractors could result in benefits in terms of CO2 emissions and on the quality level
required by time-sensitive services, owing to the reduction of delivery times.

However, the switch to vehicles with a low environmental impact could cause a loss of
efficiency for traditional subcontractors. For this reason, to maintain an equilibrium in the
system, it is important that this inefficiency is contained and balanced by an increase in
service quality when using green vehicles, without compromising the profitability already
undermined by the dynamics in the CEP industry. This requires two measures of action.
First, redefining contractual schemes between traditional and green subcontractors or
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Scenario Market condition VehEq costs CO2 savings nD/h
[e] [kg] [n.]

S_0 Downturn (-15%) - 18% -22%
S_3,5_C,S Downturn (-15%) - 21% 3% -23%

µ 998,55 -1.16 0.99
σ2 535041.03 333.29 0.014

S_0 Growth (+15%) 25% 20%
S_3,5_C,S Growth (+15%) 12% 28% 14%

µ -1197.93 -55.56 -0.81
σ2 1620417.72 278.45 0.39

Table 3.5: Sensitivity analysis.

integrating the green fleet into the international Courier company. Second, a continuous
process of optimizing activities by implementing a DSS is needed to assess in advance
the consequences of mixed fleet policies and to achieve reasonable levels of efficiency.

In this direction, Chapter 4 extends this study analyzing the integration of vans, cargo
bikes and self-service pick-up and delivery points named lockers, by introducing a new
simulation-optimization framework that generalizes many types of routing problems
encountered in urban areas, for building instances and assessing operational settings in
realistic urban scenarios.

85



86



Chapter 4

A simulation-optimization framework
for intermodal last-mile delivery

This chapter introduces a simulation–optimization framework for building instances
and assessing operational setting. This framework, originally applied in the work by
Perboli et al. [192], is used to evaluate the integration of traditional transportation modes
and new intermodal delivery options (e.g., lockers) to cope with ever-increasing volumes
of freight generated by e-commerce. In particular, it extends the study presented in
the previous Chapter 3, discussing the integration of different transportation modes
and delivery options, i.e., vans, cargo bikes, and lockers. This simulation-optimization
framework arises from the awareness emerged in Chapter 3 about the need of DSSs
for a continuous process of optimization to achieve reasonable levels of efficiency in
urban freight transportation. According to the multi-disciplinary approach presented in
this thesis, the simulation-optimization framework generalizes to many types of routing
problems encountered in urban areas and allows to describe and combine requirements
coming from various stakeholders, mixing data and information gathered from different
sources (e.g., behavioral and socio-economic data, city network). Moreover, this DSS
generates new instance sets which are realistic (i.e, they include all the characteristics of
the original datasets) making the results and validation of models directly comparable
with real or realistic settings. Thus, it mitigates the issues of current solutions based
on artificial data, concerning their limited exploratory capacity and thus, the technology
transfer to the CEP industry.

The framework has the innovative feature of describing an (urban) operational context
by combining different sources of data, which to our vision are needed to contextualize
the problem and to validate different scenarios or policies in the urban context.

To illustrate the usefulness of that framework, we apply it to address the dynamic
and stochastic VRP with time windows (DS-VRPTWs) problem under the context of the
online urban freight distribution in the city of Turin (Italy). We analyze how the solution
quality in realistic urban scenarios is sensible to various stakeholder parameters such as
customers’ geographical distribution, the available types of vehicles and their limitations
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and the use of lockers for delivering part of the demand.
Our experimental plan leads to a broad variety of realistic benchmarks, each of these

being specialized in a particular operational context in the online urban collection of
parcels. This portfolio of benchmarks is made available to the community under a simple
common format, to reuse them in different case studies.

This chapter is organized as follows. Section 4.1 review the literature for vehicle
routing case studies and applications in realistic urban areas. In Section 4.2, we describe
the simulation-optimization framework proposed to analyze realistic urban freight
distribution problems. Section 4.3 shows how the framework can be exploited to realize a
concrete case study in a realistic urban context.

4.1 Literature review
The research community has been recently devoting significant efforts to propose

efficient and innovative approaches to address many types of urban freight distribution
problems. However, a standard framework for simulating and studying the impact of
optimization in City Logistics is currently missing, limiting the possibility to validate
in real settings the technology transfer to industry. In particular, as highlighted by Kim
et al. [132] there is an obvious lack of available realistic benchmark dataset for the city
VRP. Indeed, while different contributions on VRPs in urban areas are present in the
literature, real-world based applications represent a small portion of it. For this reason,
we focus our review on realistic VRP related case studies one can find in the literature up
to these days, identifying the scope of the city VRP applications already addressed by the
scientific community, and the benchmarks that are still currently available in that field.
This review is initially based on the excellent work by Kim et al. [132], which we restrain
in order to focus on real case studies, in particular, those for which the benchmarks are
still available. Vigo [244] considers a real-world problem of distributing pharmaceutical
products in downtown Bologna (Italy), modeled as an asymmetric Capacitated Vehicle
Routing Problem (CVRP). The test instances, involving up to 70 customers, are still
available on the author’s web page. Variability in vehicle travel times has been studied
from several aspects. In particular, in [134] the authors worked on shortest paths under
dynamic travel times in a downtown area in Shanghai. The raw data based on 1 month of
taxi Global Positioning System (GPS) data and 3 months of bus GPS data in Shanghai
during the year 2007 are still currently available on demand to the authors.

Multi-level vehicle routing problems, such as the Two-Echelon VRP (2E-VRP)
introduced by Perboli, Tadei, and Vigo [188], have also received recent interest in urban
context. In [85], the authors present a real-world case study involving a time-dependent
VRPTW in Zaragoza (Spain), in which customers can be either directly delivered from
the classical depot or by mean of green vehicles by using intermediate urban depots.

Environmental-friendly decision systems in the context of (City) VRPs are
increasingly studied nowadays under various names: Green Vehicle Routing Problem
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(GVRP), Pollution-Routing Problem (PRP), Emissions Vehicle Routing Problem (EVRP),
etc. Alternative fuel vehicles are considered in [84] by means of the GVRP. The objective
is to minimize the total routing cost given limited refueling stations. Numerical
experiments are conducted based on data from a medical textile supply company in
Virginia. These data are still available under demand.

In [19], a realistically generated benchmark is used in order to illustrate the PRP over
a set of cities in United Kingdoms. The benchmark is still available.

A number of similar studies have been conducted on artificially generated benchmarks,
many of them based on Solomon’s instances. More recently, Maggioni, Perboli, and
Tadei [152] provided a realistic benchmark for the Multi-path travelling salesman problem
(TSP) with stochastic travel costs [219] applied to electric and hybrid vehicles in freight
distribution. In particular, Maggioni, Perboli, and Tadei [152] propose a first example
of instance generator. However, it was in a prototype form and strictly dependent on the
application, lacking a global vision.

Our literature review highlights that the City VRP contributions contain very few real-
world based applications and the results are normally based on academic (and unrealistic)
datasets. The instances in the literature are based on the generalization of classical
instances, often not created for urban applications, or on artificial data, i.e., data not
coming from any historical or empirical datasets. The validation of models and methods
becomes more difficult, being the results not directly compared with real or realistic
settings. Up to our knowledge, among those studies that are based on realistic data, the
corresponding benchmarks are still currently available for only 6 papers [19, 84, 134, 152,
163, 244]. Even when real data become available as in these application, some other issues
come from the lack of a global vision, the availability of a finite dataset, the necessity
to anonymize them or to mix real data with empirical distributions. Furthermore, the
different categories of stakeholders playing an important role in urban applications are
rarely considered all together, leading the search to some local optimum [132].

These issues are linked to the following current limitations that make the solutions
generated by the applications, scarcely repeatable in a different context:

1. unavailability of full data: given an urban area, gathering the real data associated
with all four stakeholders usually requires to much time and/or expertise to be
actually implemented;

2. difficulty of combining/reusing existing data: whereas existing studies may provide
realistic data involving one or more stakeholders, there is still no trivial way to
combine such data from different sources.

Thus, in the next section, we introduce the simulation-optimization framework,
proposed to overcome these issues. Recently, the DATA2MOVE initiative started to
collect data from different sources for Logistics and Supply Chain applications, but the
project is still at an early stage [241]. A lack emerging from the literature is the
identification of the main source types, how to mix and how to interface them with one or
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more simulation and optimization module in order to give flexible solutions to the
stakeholders and the users.

4.2 Simulation-optimization framework
The simulation-optimization framework is depicted in Figure 4.1. According to

Crainic, Perboli, and Rosano [46], this framework applies a sequential
simulation-optimization, where the simulations are numerical and based on the Monte
Carlo method. The simulation is implemented in Python, while the optimization modules
can be defined directly in Python by the Pyomo modelling tool, including the PySP
library for Stochastic Programming problems [118, 250] or can be integrated as external
modules. Thus, the framework is composed of the following modules:

1. Data fusion and operational context description. The first phase of the
framework consists in describing both the problem studied and the operational
context, which may consider different types of data sources. We define the
operational context using the following five sources of information: city network
graph, vehicles and travel times, behavioural data (e.g., users choice preferences),
socio-demographical data and city constraints (e.g., limited traffic zones, specific
restrictions for certain vehicles, etc.) and problem objectives and constraints. Some
data may be stochastic, i.e., they can be described by random variables, whenever
some component of the operational context is uncertain (e.g., service or travel
times, customer demand or presence, etc.). The problem is then fully defined by the
problem objectives and constraints data type.

The framework requires as input a problem (or operational context) description
consisting of five types of data:

• City network graph and maps. They are represented by complete directed
graphs over a set of depots and customers. Ideally, vertices should be
associated geographical coordinates so that to be visualized on real maps. The
city network graph is usually obtained using raw data from cartography and
the companies, including maps and empirical distributions of customers and
depots. Amongst the four main stakeholders identified by Kim et al. [132]
(residents, carriers, shippers and local administrators), the city network graph
explains the baseline geographical attributes and means of the residents
(customer locations), the shippers (the location of the depots) and the carriers
(the available road network).

• Vehicle fleet and travel times. They include the specificities of the vehicle
types, as capacity, speed, fuel consumption, etc., as well as their respective
travel times and costs matrices. Vehicle fleet and travel times capture the means
supplied by the shippers. In practice, these are provided by the company and
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possibly combined with data from external sources (such as sensors spread
over the city network). Time dependence and/or uncertainty in the travel
times/costs, if any, may also be described here together with other uncertainties
(e.g., vehicle breakdown probability distributions).

• Behavioural and socio-demographic data. They include information
concerning the density and the purchasing behaviours of final customers for a
specific market. Thus, they clearly describe the residents stakeholders in all of
their possible attributes. In a static context, these capture the customers’
constraints (e.g., time windows, demands, origin-destination matrices, etc.).
In dynamic applications, any stochastic knowledge about the customer habits
can be described here (e.g., demand or service time probability distributions,
etc.).

• City constraints. Regulations imposed by the local administrators, such as
access time windows (e.g., forbidding trucks during rush hours), vehicle
weight restrictions (e.g., no heavy truck in the city centre). City constraints
clearly represent the administrators in all the regulations that could be imposed
on the other stakeholders (e.g., the carriers).

• Problem objectives and constraints. Describe the problem itself in terms of
constraints, preferences, as well as the objective function to be optimized.
They can be defined by declaring the specific optimization module including
its interface with the scenarios or using a MIP solver by the Pyomo modelling
tool.

This partitioning of the data into five distinct types allows to easily study the
impact of modifying a specific aspect of the operational context. Furthermore,
it provides the possibility of combining/reusing data from existing case studies,
hence alleviating the above mentioned issue. For instance, provided a real-world
case study on a classical CVRP, modifying only the last two components (i.e.,
City constraints and Problem objectives and constraints) of the problem allows to
study the impact on the total carbon emissions of restricting the access of the city
centre to green vehicles. Furthermore, filling component Behavioural and socio-
demographic data with customer demand probability distributions permits to study
Stochastic VRPs, whereas updating component Vehicle fleet and travel times could
allow studying the impact of taking travel time variability into account, as well
as to use empirical distributions coming from other studies, letting to anonymize
industrial data.

2. Scenario generation and simulation. Once both the problem and the operational
context are well defined, a broad set of scenarios is generated by using a high-level
scenario generator, which allows the researchers to develop specific scenarios for
different frameworks. Each scenario represents a particular realization of all the
random variables involved in the problem data. In other words, each scenario
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is the description of a particular operational day. If the problem and operational
day description contain no uncertain data, the scenario becomes the description
itself. Otherwise, a set of instances are generated using Monte Carlo sampling. The
framework let the user define deterministic operational scenarios or stochastic ones
with associated a scenario tree to each simulation scenario.

The present version of the simulator implements a Monte Carlo method, a module
for georeferencing the data and a post-optimization software. In more detail, the
method works as follows:

• The Monte Carlo simulation module repeats the following process for a given
number |I | of iterations.

– Given the different data of the operational context as well as eventual
distributions of the data themselves, the simulator generates a series of
city scenarios.

– The chosen optimization module is executed in each scenario.
– A first statistical analysis on the aggregate results of the scenario-based

optimization of a single iteration of the Monte Carlo simulation is
performed. These data are used in order to check if one or more
unrealistic or extreme situations have been introduced in the simulation
itself.

– In order to make a more accurate definition of travel times and cost
matrices, the georeference module is used. The georeference feature
is implemented by means of Google Earth APIs and it is also used to
graphically represent the results of the simulation itself.

• The distribution of the simulation-based optimization solutions is computed
and a series of statistical data are collected.

• A post-optimization software module is devoted to computing additional KPIs
(e.g., CO2 and NOx emissions, stop per working hour, service and travel
times).

3. Optimization. During this phase, each scenario is solved using a dedicated
optimization algorithm that we consider here as a black box. Provided that the
solver outputs the KPIs required by the case study into consideration, the
post-optimization analysis is conducted. In order to cope with different contexts in
urban areas, this simulation-optimization framework is composed of different
building elements addressing the following problems:

• Mathematical model generated by the Pyomo modeling tool;

• VRPTW combined with the load balancing;

• Stochastic TSP;
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• Dynamic Stochastic VRPTW (DS-VRPTW) solved by the optimization
algorithm proposed by Saint-Guillain, Deville, and Solnon [206].

4. Context modification. During this phase, some properties of the description are
modified, leading to a new operational context to be analyzed by reiterating through
phases 2 to 4.

Figure 4.1: The simulation-optimization framework.

4.3 Case study: last-mile delivery in Turin (Italy)
In order to demonstrate the potentialities of the proposed simulation-optimization

framework, we adopt it in the case study of the city of Turin (Italy). Our aim is twofold:

• analyze the impact of multimodal delivery options to face the demand generated by
the e-commerce, extending the study presented in the previous chapter.

• highlight the importance of considering real benchmark data set for DS-VRPTW
coming from different sources and stakeholders.

4.3.1 Operational contexts and benchmark generation
Online shopping is rapidly increasing the freight flows which transit into the urban

areas. According to Cardenas et al. [32], Copenhagen Economics [43], and FTI Consulting
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[99], while the B2C segment of e-commerce represents around 30% of the e-commerce
turnover, they generate 56% of all e-commerce shipments. Moreover, e-commerce
involves individually fragmented and time-sensitive orders of generally small-sized items,
leading to more traffic in urban areas and negative externalities on the environment
[226]. These are challenging factors for urban freight transportation and City Logistics
applications, which are more and more focused on the integration of different delivery
options (e.g., cargo bikes, drones, lockers, etc.). In this direction, the study extends the
previous study in Chapter 3, considering the following four benchmarks:

• Benchmark 1 (B1). Only traditional vehicles (i.e., fossil-fueled vans) are used to
manage the parcel delivery in urban areas.

• Benchmark 2 (B2). We consider that a green subcontractor delivers the parcels up
to 6 kg in the central and semi-central areas of Turin. On the contrary, the traditional
carrier manages all remaining parcels.

• Benchmark 3 (B3). We consider the adoption of delivery lockers. They represent
self-service delivery location, in which the customer can pick up or return its parcel,
according to the best and convenient time for him. In practice, these can be seen
as special “super-customers” that aggregate the daily demands of a subsets of the
actual customers.

• Benchmark 4 (B4). In this benchmark, we consider the integration of the vans
with both cargo bikes and lockers.

These specific benchmarks derive from the combination of three parameters defined
a priori: the size of the traditional vehicles’ fleet, the size of the green vehicles’ fleet
and the number of lockers. These data are provided by an international parcel delivery
companies and an international e-commerce operator, which acting in Turin. Other input
data considered in the DS-VRPTW are:

• City network graph and maps. We consider a 2.805 x 2.447 km area in Turin,
which includes the center of the city and a semi-central area as in Section 3.3.1 (see
Figure 4.2). Moreover, the list of the depots, the locations of lockers and of the
potential customers inside the selected area are considered. Concerning the depots,
we contemplate a distribution center located on the outskirts of the urban zone and
a mobile depot in the city center. The former supplies the traditional carrier, while
the second represents a satellite facility for the green carrier. In addition, the list of
all the roads inside the city area is also required. Such list is arranged as a network
of road-segments, each road-segment is defined as a sequence of two connected
points, i.e., the crossroads. The information concerning the roads was extracted
from the shape-files made available by the local public authority in Turin. For each
road-segment, the average daily speed is measured by speed-sensors. Each element
of the mentioned lists is defined with a unique identification number and its real
GPS coordinates.

94



4.3 – Case study: last-mile delivery in Turin (Italy)

Figure 4.2: Area considered in the case study. Note that in the figure the mobile depot
(square) and a set of offline customers (circles) and lockers (crosses) are represented.

• Vehicle fleet and travel times. As mentioned above, we consider two type of vehicle
fleets: vans and cargo bikes. The parcel delivery company interviewed provides the
characteristics of vehicle fleets (e.g., capacity, service time, speed). The service-
time is a vector containing the information for each type of parcel handled, for the
upload from the depot and for the unload into the locker. We consider the same
three classes of parcels and the expected number of parcels for each class (expressed
as a percentage of the total number of parcels delivered) of the above: mailers (i.e.,
parcel with a weight up to 3 kg) small parcels (i.e., parcel with a weight between 3
and 6 kg) and large deliveries (i.e., parcel with weight over 6 kg).

• Behavioural and socio-demographic data. The horizon size is given here. We
consider an 8-hours working day, from 9:00 to 17:00. The time-unit considered
is 1 minute and the time-horizon is split into four time-buckets with the same
length. For each potential customer, the demand expressed as parcel’s volume is
provided, together with the time-window for the service. The time-windows are
assigned considering the percentage of prime members (i.e., those whose requests
are prioritized restricting the time-window to the first two time-buckets). Then, the
expected behaviour of each potential customer of the DS-VRPTW is described.
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It gives the probability that, for each customer location i and each time-unit t of
the time-horizon, an online request (i.e., picking up a parcel) appears at time t for
location i .

• City constraints. We do not consider any specific city constraint.

• Problem objectives and constraints. The objective is first to maximize the (expected)
number of online requests satisfied by the end of the horizon, and second minimize
the total distance traveled by the vehicles.

The operational context defines the number of potential customers in the city map, the
number of offline customers selected among the potential ones and the percentage of prime
members. In this simulation, we generate three different-sized operational contexts with
respectively 500, 250 and 100 potential customers. Each context contains 70% of offline
customers and 25% of prime members. These potential customers are randomly picked
from the pool of potential customers listed in the input data and then anonymized for
confidentiality matters, by offsetting the Cartesian coordinate system. Once the potential
customers are defined, it is possible to compute the matrix of the mutual distances among
the customers and the depots on the map. Such distances are computed applying the
Dijkstra’s shortest path to the network of road-segments specified in the input data. The
high level of detail in the network, coupled with the haversine formula used to estimate the
distance between each pair of points that compose a road-segment, provide us an outcome,
which is much more accurate than a simple application of the Manhattan distance.

The obtained results are in line with the once provided by the most common web-
mapping service Google Maps. From the distance matrix is then possible to compute the
travel-times between pairs of locations, by using the measured road-segments’ speeds
available in the input data. The set of online requests appearing during the daily time-
horizon is defined by considering three different degrees of dynamism: 15%, 30% and
45%. Three sub-contexts are thus defined for each operational context, according to the
degree of dynamism assignation. For each sub-context, a set of n instances is sampled by
generating n Poisson Random Variates (PRVs) with parameter λ dependent on the degree
of dynamism considered. Each PRV i represents the effective number of online requests
that appear in the Instance i . The accorded set of online customers is finally randomly
selected from the list of potential ones, allowing multiple requests for the same customers,
but provided that they appear at different moments (i.e., time units). Each scenario, which
in the case of DS-VRPTW corresponds to a sequence of revealed online requests along the
day together with their specific reveal times and locations, is then independently solved
by the optimizer.

All the instances are generated and classified in classes (i.e., the benchmarks presented
above), depending on the operational context, as described in Section 4.2.

The benchmarks are available on the git repository available at the address https:
//bitbucket.org/orogroup/city-logistics.git.
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Table 4.1: Input data.

Classes of parcel
Class Weight range % on total parcels
Mailer 0-3 kg 57%

Small delivery 3-6 kg 13%
Large delivery > 6 kg 30%

Capacity
Vehicle Parcel size max Capacity Coverage
Locker 6 kg 20∗par cel s 1 km

Van 70 kg 700 kg NA
Cargo bike 6 kg 70 kg NA

Speed in urban area Setup time
Vehicle Speed Load locker 15 min

Van 40 km/h Load bikes at 15 min
mobile depot

Cargo bike 20 km/h

Service time to deliver each class of parcels
Vehicle Mailer Small Large

delivery delivery
Van 4 min 4 min 5 min

Cargo bike 2 min 2 min NA
∗ max number of parcel per day. Note that part of the locker is
actually filled with the parcels of the previous three days

Table 4.1 resumes the values of the input data considered in our analysis. This
information derive from interviews with CEO, COO and logistic director of an
international parcel delivery company and of an e-commerce company operating in Turin.
For further information about these data, the interested reader could refer to the Chapter 3.
Moreover, the tests are conducted using real data concerning the customer distribution
and daily volumes of deliveries in Turin between 2014 and 2015, provided by the
international parcel delivery company that operates in Italy and is involved in the
URBeLOG project [240].

4.3.2 Specific optimization problem definition
In this section, we define the DS-VRPTW problem that we address using the proposed

simulation-optimization framework. Given a discrete horizon of length h, a depot location
and a set of n customer locations, we define the set R = {1, . . . ,n}× {1, . . . ,h} of potential
requests, that is, one potential request at each time unit for each customer location. We
assume the probability of each potential request to appear to be known, together with
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its own demand, service time and time window in case it actually appears. Whenever it
happens and by the end of the current time unit, the request must be either accepted or
rejected. In case it is accepted, the request must be guaranteed to be satisfied according
to its time window and the vehicles capacity constraints. A function c : R →R+ defines
the penalty cost inquired whenever a request r ∈ R is rejected. Provided a finite set of
capacitated vehicles, the asymmetric travel times matrix between all pairs of locations and
the set of potential requests, the goal (at each time unit) is to operate the fleet of vehicles
such that the expected total penalty cost is minimized by the end of the horizon.

Generally speaking, VRPs aims at modelling and solving a real-life common
operational problem, in which a known set of geographically distributed customer
(pickup) demands must be satisfied using a fleet of capacitated vehicles. The VRPTW
introduces a time dimension by restricting each customer visit in a predefined interval.
The objective is to find an optimal feasible solution, where optimality is classically
defined in terms of travel costs. In urban applications, some additional characteristics
must be taken into account: the dynamic of the customers, i.e., the customer requests are
not known in advance, but are instead revealed as the operations go, and the stochastic
nature of some parameters, i.e., some attributes are random variables. For the
aforementioned reasons, we incorporate as optimization model the Dynamic Stochastic
VRP with Time windows (DS-VRPTW) solved by the algorithm described in the work by
Saint-Guillain, Deville, and Solnon [206]. Based on Monte Carlo sampling, the main idea
of the Global Stochastic Assessment (GSA) algorithm aims at maintaining a unique
feasible current solution being continuously optimized with respect to a restricted pool of
sampled scenarios, while preserving nonanticipativity constraints in the evaluation
function. A classical local search approach is used, exploiting well-known VRP
neighbourhood operators such as relocate, swap, inverted 2-opt and cross-exchange to
construct neighbouring solutions. A diversification mechanism is provided by regularly
renewing the scenario pool, hence modifying the shape of the evaluation function,
making needless the use of any other meta-heuristic. Note that the algorithm implements
a relocation strategy, allowing the vehicles to anticipatively travel and possibly wait at
promising strategical (customer) locations, even when these do not require a service (yet,
if any).

4.3.3 Numerical analysis
In this section, we discuss the computational tests of the simulation-optimization

framework on the DS-VRPTW. The experimental plan is composed of a set of randomly
generated test problems. For each benchmark and each operational context, we perform
10 independent runs, obtaining totally 360 instances, which are independently solved by
the optimizer.

To evaluate the results we measured the KPIs defined in Chapter 3 that reflect the
sustainability according to the following standpoints:

98



4.3 – Case study: last-mile delivery in Turin (Italy)

• Economic Sustainability. As mentioned above, the carrier incurs in operating costs
related to fleet management and maintenance, and personnel costs. These costs
are increased by a margin equal to 15% when the fleet is managed by an external
firm subcontractor [185]. Moreover, typical contract scheme in the parcel delivery
industry imposes the conversion from a cost per kilometre to a cost per stops. Thus,
the KPIs measured are:

– Cost per stop (internal fleet), in the case in which the fleet of vehicles is owned
by the carrier (CpsI).

– Cost per stop (external fleet) in the case in which the fleet of vehicles is owned
by the subcontractor (CpsE).

• Environmental Sustainability. In order to evaluate the impact of the adoption of
green delivery means on the environment, we computed the CO2 savings
(CO2EMsav) as the kilograms of CO2 not emitted in the B2, B3, and B4.
Moreover, as the externalities have a social cost that impacts on the economic
efficiency of the logistics operator, we express the emissions saved (compared with
the B1) in monetary terms by applying the carbon tax, based on the average price
paid for CO2 emissions [185]. This KPI is the environmental costs saving
(CO2CSsav). Note that according to the regulation ISO/TS 14067:2013 we
consider the total amount and costs of GHG emitted directly or indirectly by the
overall parcel delivery chain, as in the Chapter 3.

• Operational Sustainability. It is referred to the operational performance and
efficiency of each operator involved in the urban parcel distribution. Generally, it is
expressed in terms of number of parcels delivered per hour (nD/h)

• Social Sustainability. It is strictly related to the operational sustainability, as the
fulfillment of the increasing demand of time-sensitive and online deliveries and the
high service quality required by the final customers affect the working conditions
of the drivers.

To provide the reader an easier understanding of the results, we computed the percentage
of each KPI compared with the reference benchmark B1, as shown in Figure 4.3. Thus,
Figure 4.3 depicts the performance of the traditional courier in the B2, B3, and B4. The
values are computed as percentage variation of each KPI with respect to the value of the
same KPI in the Benchmark B1. In particular, the ∆Operating costs and ∆Environmental
costs show the percentages of costs savings, both operating and environmental, that the
traditional carrier obtains when the parcels up to 6 kg are outsourced to the green carrier
or delivered by means of the lockers. While, the item ∆Efficiency represents the loss of
efficiency that affects the traditional carrier due to the reduced number of deliveries and
the high saturation of vans, particularly in B2.

Figure 4.3 highlights improvement of both economic and environmental sustainability
when green delivery options (cargo bikes and lockers) are introduced. In particular, in
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B2 the adoption of cargo bikes and the optimization of routes lead to a reduction of
the vans used of about 32% and of the kilometers traveled, with consequent benefits in
terms of reduction of operating costs (-37%). At the same time a reduction of the CO2
emission on average of 303 kg, is registered, which correspond to a decrease of 40% in
the environmental costs.

Figure 4.4 reports the number of deliveries per hour of traditional vans and green
vehicles in the different operational contexts, segmenting the results according to the
number of customers in the scenarios and the degree of dynamism. For the operational
context B1 the green carrier has no bar because it is not present in it. Thus, the number of
deliveries per hour (nD/h) are given for the traditional vans only. They are reported in
order to provide a reference value while comparing the results in the operational contexts
B2 and B4. The values of B3 are not given because no green vehicle is usable in this
operation context. As figured out in Chapter 3, the outsourcing of the small parcels
(mailers and small deliveries) to the green carrier, the traditional one incurs in a reduction
of efficiency of 80% at maximum. This means, for example, a reduction of the number
of deliveries per hour from 126 to 25 in 10 working days when there are 100 customers
locations and 30% of dynamism. Figure 4.4 shows how the green carrier reaches the
highest number of parcels delivered when the degree of dynamism is equal to 45%.
Similarly, when the deliveries are managed by means of lockers, there is an improvement
of the economic and environmental sustainability. However, here the reduction of the
costs, both operative (-25%) and environmental (-21%), is lower than B2. The reason
is that, although there is a reduction in the kilometers traveled by the vans to serve the
home deliveries directly to the customers, these vehicles are still adopted to reach and
supply the lockers. When the number of customers to serve and the degree of dynamism
are both to a low level, the adoption of lockers leads the highest decrease of the number
of deliveries managed by the traditional carrier (-38%). This impact on the efficiency
corresponds to costs savings of the same order. On the contrary, although the presence of
the lockers, when the degree of dynamism is high and, i.e., the online requests increase,
they are served by the traditional carrier. In fact, when the class of customers locations
and the degree of dynamism are of respectively 500 and 45%, the loss of efficiency for
the traditional carrier reaches the minimum value (-12%). A significant finding is that,
combining all the delivery options (B4), the highest reduction of emissions and operating
costs is reached. In particular, this reduction becomes more evident when there is a low
number of customers. Thus, they are served by environmental-friendly delivery modes,
while a very few number of parcels is delivered by the traditional carrier. On the contrary,
when we consider 500 customers, the performance of the traditional and the green carriers
in terms of efficiency are similar to those achieved in the B2. This means that in case of
high demand the lockers saturate quickly. Thus, bikes and vans (particularly) are used to
cope the most considerable part of the deliveries, as more flexible.

The results obtained figured out that we can minimize the number of rejected requests
by adopting the optimization solver. In fact, only 1, 2 and 9 requests are rejected
respectively in B2, B3, and B4. This rejection happens when the classes of customer
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locations and/or the degree of dynamism are medium-high. On the contrary, in the other
instances all the online requests are fulfilled.

As mentioned above, the operational sustainability is strictly related to the social
sustainability. The integration of traditional delivery mode with the two new options
(i.e., bikes and lockers) could have a positive impact on the social sustainability. In
fact, at present, the drivers are hard-pressed to face the high demand of home-deliveries,
respecting the time windows. Moreover, their working conditions are affected by a broad
range of issues, as traffic and congestion, unavailability of loading/unloading zone, as well
as second-time deliveries because the customer is not at home. All these problems make
difficult in a regular working shift the achievement of the 80 deliveries per day imposed
by the common practice in the industry [185]. Thus, considering the revenues based
on the number of deliveries and the penalties in case of not fulfillment, these problems
impose pressure on the drivers of the traditional carrier company. On the contrary, the
reduction of the number of parcels that the traditional carrier have to deliver, combined
with the optimization of the routes and the reduction of vehicles on road, lead to a less
and more balanced workload and the improvement of the working conditions. However,
a necessary fundamental condition is that this integration must be made in a reasonable
manner. In fact, as stated above, the loss of efficiency for the traditional carrier must be
contained and balanced by an increase in service quality led by the bikes and lockers and
by a continuous process of optimization and monitoring of the activities in the overall
last-mile chain [185].

Figure 4.3: Performance of the traditional carrier, when cargo bikes and lockers are
adopted.

The integration of different transportation modes and new delivery options, the
outsourcing between shippers and carriers, combined with issues of the urban freight
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Figure 4.4: Performance of the green carrier. B3 is not reported, not involving any green
vehicle for the delivery.

transportation, bring to a multi-disciplinary challenge in modeling, optimizing and
monitoring the overall system. Thus, new complex and effective planning models and
methods become essential to deal with the different decisional levels along different axes:
time horizon of the decisions (i.e., strategic, real tactical and short-term tactical,
operational), data flows, size of the area under study, and governance [189].

In particular, in Chapter 5, we present one of the most critical decisions in the supply
chain management, due to its huge impact on the distribution and operating costs of the
companies [49]. It concerns the tactical capacity planning problem faced by a shipper, of
securing transportation and warehousing capacity of multiple types (e.g., containers, space
in vans or in cargo bikes, space in the warehouse) of different sizes and characteristics
(i.e., costs) from a carrier under uncertainty. This uncertainty could regard the demand of
loads to be transported or stored, the cost and the availability of future additional capacity,
when needed, and the availability of contracted capacity.
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Chapter 5

Capacity planning problem under
uncertainty

According to Crainic, Ricciardi, and Storchi [56], similarly to any complex
transportation system, urban freight transportation and logistics systems require planning
decisions at strategic, tactical and operational levels. In this chapter, we focus on a
tactical decision that has a huge relevance in supply chain management, concerning the
capacity planning problem. Generally, manufacturing and distribution firms do business
with logistics service provider, bypassing the direct negotiation with carriers.
Consequently, for the sake of simplicity of exposition, but without loss of generality, we
refer to the shipper as a retail firm, a producer or a supplier of goods that requires
capacity (e.g., containers, ship or train slots, vans, motor carrier tractors, warehousing
space) for its raw material, intermediate or final products to meet customer demand. We
identify as carrier a service provider (it may also be a third-party logistics company) that
provides transportation and warehousing services. Due to the regularity of operations in
the supply chain and their cost-efficiency orientation, shippers negotiate in advance a
tactical plan to use the needed capacity repeatedly in each period (i.e., one month) of a
certain planning horizon (i.e., one year).

The tactical planning assumes a certain level of look-ahead capability and the inclusion
of an evaluation of future events, incorporating the uncertainty in the decisions. The
uncertainty relates to the demand of loads (e.g., number, weight, volume), the cost and the
availability of future additional capacity when needed, and the availability of contracted
capacity. In particular, we consider that the contracted capacity could not be (entirely or
partially) available at the shipping day for different unfavorable situations (e.g., different
characteristics of demand from the estimations, failure or damage of capacity resources).

This tactical capacity planning problem we address is not relevant only in the urban
distribution, but also in the long-haul transportation. In fact, before reaching the customers
located in the final leg of the supply chain, goods are stored in different warehouses,
satellites or UDCs and moved using various transportation modes along the network.
Thus, it is clear the influence that decisions on the long-haul transportation have on the
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urban level, and in the interests of completeness of the information, we give the overall
argumentation of the problem in both the contexts.

Looking at the literature, we observe that very few studies have addressed tactical
planning problems in logistics. Although various studies in the literature discuss the
logistics capacity planning problem between shipper and carrier (e.g., [49, 48]), most of
them are devoted to operational decisions, while few contributions deal with strategic and
tactical planning applications.

Moreover, to the best of our knowledge, there are no studies that address all the
above-presented issues in a single model, including the different sources of uncertainty,
which are relevant to both the long-haul transportation and urban distribution contexts. In
particular, the case where there is uncertainty on the availability of the contracted capacity
at the moment when operations are to be conducted is completely novel. This chapter is a
first attempt to contribute to filling this gap by:

• presenting an integrated model that considers different stochastic issues that affect
the capacity planning. In particular, we model the described problem as an
extended Stochastic Variable Cost and Size Bin Packing Problem [49] by including
the possibility that capacity that is planned turns out to be lower. The proposed
model thus explicitly represents the uncertainty affecting the actual volume of the
contracted capacity resources.

• Applying a progressive hedging-based heuristic to solve the developed stochastic
optimization model.

• Conducting an extensive set of computational experiments, using data that reflects
the main issues involved in the problem for both the urban distribution and the
long-haul transportation contexts, to assess how various sources of uncertainty
affect capacity planning (especially the random variability related to contracted
capacity).

This chapter is organized as follows. In Section 5.1, we present the logistics capacity-
planning problem we address. Then, in Sections 5.2 and 5.3, we discuss the stochastic
two-stage formulation of the problem and the solution approach based on the PH algorithm.
Section 5.4 presents the experimental plan, with emphasis on the instance sets and analyzes
the computational results, providing some relevant managerial insights.

5.1 Tactical planning to secure capacity of multiple types
under uncertainty

In this section, we detail the logistics capacity planning problem we address in this
chapter. In the first two subsections, we present the problem setting and how this problem
appears in two different contexts: the urban distribution and the long-haul transportation.
In the third section, we provide a compact description of the general issue.
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5.1.1 Urban distribution
In the urban distribution, we observe a continuous growth of the e-commerce

importance and of the customers’ obsession of fast and cheap deliveries. To answer them,
enterprises and particularly the e-commerce giant platforms (e.g., Alibaba and Amazon)
are moving from a push cost-driven supply to time and cost pull-driven approach (i.e.,
demand-driven logistics). Part of that answer is to create distribution centers close to
urban areas and to distribute from there through private or, more often, contracted
capacity. The latter option requires to negotiate and secure the needed distribution
capacity to perform recurring activities over the planning horizon. The freight
consolidated into containers for long-distance coming from regional, national and
international hubs are collected and consolidated before the distribution, in UCCs located
in a strategic node on the outskirts of the urban zone. Then, freight coming from the
UCCs and, eventually, other external points, are transferred to satellite facilities and
consolidated into vehicles adapted for their usage in dense city zones. On the one hand,
the two-tier system minimizes the truck movements within the city and allows to obtain
benefits regarding the congestion and externalities, as well as the costs savings due to the
economy of scale. On the other hand, it requires a more complex decisional process to
make more efficient this system with many interacting goals, players and activities, and to
manage repetitive operations and scarce resources.

In particular, wholesalers and retailers negotiate with a carrier to secure capacity to
support their procurement and sales processes and thus, to meet the demand coming
from retailers or final customers located in the city, in the next cycle of activities. The
depots can be grouped in multiple types (e.g., the warehouse or the satellites), and
distribution capacity in term of type and size of the fleet of vehicles. The vehicles used
to perform the required distribution activities within the city have generally a relatively
small capacity (e.g., small vans) to travel along any street in the city-center area and
avoid underutilization of the vans’ capacity [56]. As discussed in the previous Chapters
3 and 4, they could also be environmental-friendly vehicles according to the emerging
business models in the urban distribution, as cargo-bikes. Moreover, these vehicles can
be of different types regarding the functionality (e.g., refrigerated or not), box design,
loading/unloading technology, capacity and so on. However, efficient operations require a
certain standardization, so the number of different types considered is thus assumed to be
small [56].

In this context, the characteristics of urban goods distribution, and the limited capacity
of urban vehicles and space for storing goods in satellites could affect the availability of
booked capacity. For example, situations particularly common in the urban context are
the unavailability of vehicles due to mechanical failure or damage, and the insufficient
booked capacity due to the presence of parcels not delivered at the end of the day. These
parcels cannot be unloaded from the vehicles, which become partially unavailable to load
new goods. The latter is particularly common in parcel delivery urban setting, where
12% of parcels require a second-time delivery [246]. This problem is also common in
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warehousing, where it is mainly due to delays in the collection of the products currently
stored. It is particularly important to take this issue into account because it involves the
loss of a considerable percentage of capacity.

5.1.2 Long-haul transportation
Concerning the long-haul transportation, globalization, and the opening of broad

free-trade economic zones changed the logistics chain dramatically. On the one hand, it
has been reorganized around bigger warehouses, and the movement of goods is operated
over longer distances, with different modes. On the other hand, the liberalization of
the economies increases the competition between firms, and thus the attention paid to
controlling costs (especially to the transportation costs). For example, a large Canadian
retail chain buys its products from many places, including many suppliers in China. The
movement of those commodities from China to Canada is often concentrated in a few ports,
where goods are consolidated and shipped by major container-ship of different carriers
and then by train to the distribution center near to stores. Due to the long distances and the
consolidation of goods in the long-haul transportation, it emerges the need for contracting
and securing both transportation and eventually, warehousing capacity from different
carriers. In particular, we consider a shipper (i.e., manufacturing firms or wholesalers and
retailers) that acquires resources or consumer goods from suppliers located in faraway
regions, according to their global procurement policies. Thus, the shipper negotiates to
secure in advance capacity, as containers loaded onto long-haul transportation modes
(e.g., deep-sea container ship, train, truck) from a long-haul consolidation-based carrier to
support their procurement and sales processes. Containers used to move the freight could
be of different types defined by their dimensions, the particular environment they offer
(e.g., regular, thermal or refrigerated), their form and type of loading [59].

We consider the case of a Canadian wholesale-retail chain that procures and stocks
a large variety of products imported from China, to serve a set of customers, through a
network of different sized stores. This long-distance procurement process is justified by
the global sourcing strategy deployed by the retail chain, to be competitive in the North
American market [59]. The imported products are thus moved in containers, consolidated
and shipped by the carrier on a vessel from a port of origin in South-East Asia to the port
of destination located in Canada. For the retail chain it is important to negotiate with the
carrier a tactical plan to secure in advance the needed capacity for regular shipments over
the planning horizon (e.g., the vessel leaves the port each week on the same day).

In this context, the characteristics of the transportation mode and the service type
and level determine capacity restrictions. Indeed, according to Crainic et al. [59], in
the long-haul road transportation, capacity is usually less restricted given that vehicles
are more readily available. On the contrary, in maritime and rail modes, the number of
available container spaces on ships and trains is limited.

106



5.1 – Tactical planning to secure capacity of multiple types under uncertainty

5.1.3 Problem description
In general terms, the logistics capacity planning problem we address, concerns a

shipper that need to secure capacity of different types from a carrier, to meet its demand.
The capacity types could be transportation modes (e.g., ship or train slots, containers,
space in cargo bikes or vans) and carriers or warehousing space, and each type has different
characteristics, as the cost, size and functionalities (e.g., refrigerated containers). The
shipper negotiates this capacity of multiple types in advance, and it will use it to perform
repeatedly the activities (e.g., every week, every month), over a certain planning horizon
(e.g., one year, one semester). The output of this negotiation is a medium-term contract
that includes the quantity of capacity and the clauses concerning additional logistics
services. Given the time lag that usually exists between the signing of the contract and
logistics operations, the uncertainty affects the contract negotiation [49].

The first source of uncertainty is the demand. In fact, at each application of the plan,
demand fluctuation or characteristics of the goods to be delivered different from the
expected, can violate the booked capacity, compromising contract fulfillment. On the
contrary, in this analysis we assume that, if the demand is lower than the estimated, it is
not allowed to deploy re-selling strategies of the overcapacity on the market.

Another source of uncertainty regards the availability (e.g., number and precise
characteristics as the size) and the actual cost of the contracted capacity each time the
contract is applied. In fact, due to unfavorable situations (e.g., mechanical failures of
vehicles or damage), the capacity may be entirely or partially unavailable at the shipping
day and thus lower than that planned. These situations require the negotiation of additional
future capacity in the spot market, and an adjustment of the plan (e.g., rearrange and
relocate loads). However, additional capacity may not be available when required as well,
and thus must be considered stochastic. In case of unavailability of the booked capacity,
additional costs are incurred to rearrange loads and store goods. These costs depend on
the goods to relocate and can thus be considered proportional to the total lost capacity.
Therefore, due to its impact on the operational and economic performance of a company,
the problem of losses in planned capacity cannot be ignored, and the actual volume of the
capacity resource must be considered stochastic.

Most of the research deals only partially with the requirements of capacity planning,
indeed a few papers focus on stochastic capacity planning and the different sources of
uncertainty involved. The papers by Crainic et al. [49, 48] propose first attempts to
address capacity planning problem settings found in strategic and tactical applications.
In particular, the authors present two version of the Stochastic Variable Cost and Size
Bin Packing Problem (SVCSBPP) in a long-haul transportation context, through the
explicit representation of the uncertainty on future needs in terms of demand for loads and
also on the availability (existence and number) of the capacity of various characteristics,
respectively. Thus, to our knowledge, the uncertainty on the availability of booked
capacity is not considered in the literature. Moreover, there are no studies addressing
all the above-presented issues in a single model, which can be applied and validated
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in both the long haul transportation and urban distribution applications. To contribute
to filling this gap, we model the capacity planning problem described in this section,
by proposing a new modeling framework. It takes the form of a stochastic bin packing
problem, called the Stochastic Variable Cost and Size Bin Packing Problem with Loss
Capacity (SVCSBPPL), which generalizes prior work on the SVCSBPP proposed by [49].
Although the SVCSBPP model considers different sources of uncertainty, it supposes that
all the booked capacity is available at the shipping or storage date. However, following
the discussion above, such a hypothesis is unlikely to be observed in the urban distribution
and the long-haul transportation. Our model enhances the current literature, taking into
account the actual volumes of the contracted resource as a stochastic parameter.

5.2 Model formulation
This section is devoted to the presentation of the mathematical formulation of the

SVCSBPPL model, which is based on a two-stage stochastic programming formulation
with recourse [24]. The first stage concerns the tactical planning decision as the selection
a priori of the capacity to be made available to move or store the estimated demand of
loads, called items. This capacity is expressed in terms of bins characterized by a specific
type, volume, and fixed cost defined by the contract (e.g., containers, boxes, vans, etc.).
This latter represents a specific price offered by the carrier, and its value is affected by
different factors such as bin size and type (e.g., refrigerated bin), additional services, and
the time period. The second stage refers to the operational decisions, i.e., the recourse
actions that concern the adjustments and thus the acquisition of additional capacity (extra
bins) when the actual demand information is revealed. These actions are carried out
repeatedly over the planning horizon to cope with unfavorable situations, here defined as
random events, which affect the result of the first stage (i.e., booked capacity not sufficient
or not available). The extra bins must be purchased at spot-market value, i.e., a higher
cost than the fare negotiated initially [49].

Let T be the set of bin types, which are defined according to the volume and fixed
cost associated with the bins that are available at the first stage. For t ∈ T , let V t and f t

be respectively the volume and fixed cost associated with bins of type t . We define J t to
be the set of available bins of type t and J =⋃

t J t to be the set of available bins at the
first stage.

Let set Ω be the sample space of the random event, where ω ∈Ω defines a particular
realization. The vector ξ contains the stochastic parameters defined in the model, and
ξ(ω) represents a given realization of this random vector. Let y t

j be the first-stage variable,
which is equal to 1 if bin j ∈J t is selected and 0 otherwise.

We define c t as the extra cost to pay for the loss of a unit of capacity in the first-stage
bin of type t ∈ T . This cost is the additional cost required to react to the reduction of the
available volume of first-stage bins, rearranging the loads or the storage of goods.

Moreover, let T be the set of bin types available at the second stage, and V τ be the
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volume of bins of type τ ∈T .
We consider the following stochastic parameters in ξ(ω): V t

j (ω), the actual volume of
first-stage bin j ∈J t of type t , where 0 ≤ V t

j (ω) ≤V t ; K τ(ω), the set of available bins
of type τ at the second stage; K (ω) =⋃

τK τ(ω), the set of available bins at the second
stage; g τ(ω), the cost associated with bins of type τ ∈ T ; I (ω), the set of items to be
packed; and vi (ω), i ∈I (ω), the item volumes.

The second-stage variables are defined as follows: zτk (ω) = 1 if bin k ∈ K τ(ω) is
selected, 0 otherwise; xi j (ω) = 1 if item i ∈ I (ω) is packed in bin j ∈ J , 0 otherwise;
xi k (ω) = 1 if item i ∈I (ω) is packed in bin k ∈K (ω), 0 otherwise.

The two-stage model of the SVCSBPPL may then be formulated as:

min
y

∑
t∈T

∑
j∈J t

f t y t
j +Eξ

[
Q

(
y,ξ(ω)

)]
(5.1)

s.t. y t
j ≥ y t

j+1, ∀t ∈ T, j = 1, . . . , |J t |−1, (5.2)

y t
j ∈ {0,1}, ∀t ∈ T, j ∈J t . (5.3)

where

Q(y,ξ(ω)) = min
z(ω),x(ω)

∑
τ∈T

∑
k∈K τ(ω)

g τ(ω)zτk (ω)+ ∑
t∈T

∑
j∈J t

c t (V t −V t
j (ω))y t

j (5.4)

s.t.
∑

j∈J

xi j (ω)+ ∑
k∈K (ω)

xi k (ω) = 1, ∀i ∈I (ω), (5.5)∑
i∈I (ω)

vi (ω)xi j (ω) ≤ V t
j (ω)y t

j , ∀ t ∈ T, j ∈J t , (5.6)∑
i∈I (ω)

vi (ω)xi k (ω) ≤V τzτk (ω), ∀τ ∈T ,k ∈K τ(ω), (5.7)

xi j (ω) ∈ {0,1}, ∀ i ∈I (ω), j ∈J , (5.8)
xi k (ω) ∈ {0,1}, ∀ i ∈I (ω),k ∈K (ω), (5.9)
zτk (ω) ∈ {0,1}, ∀τ ∈T ,k ∈K τ(ω). (5.10)

The objective function (5.1) minimizes the sum of the total fixed cost of the tactical
capacity plan and the expected cost associated with the extra capacity added during the
operation.

Usually, packing problems present a strong symmetry in the solution space, and
two solutions are considered symmetric (and equivalent) if they involve the same set of
first-stage bins in different orders. However, when we consider the available capacity of
first-stage bins as a source of uncertainty, this is no longer true. In effect, each bin of type
t ∈ T may have a different actual volume, and we need to characterize it properly. We thus
introduce constraint (5.2) to break the symmetry and ensure order in the selection of bins
of type t ∈ T , i.e., bin j ∈J t can be selected at the first stage only if bin j −1 ∈J t has
already been selected. Finally, constraint (5.3) imposes the integrality requirements on y .
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In the second stage, the term Q
(
y,ξ(ω)

)
represents the extra cost paid for the capacity

that is added at the second stage, given the tactical capacity plan y and the vector ξ(ω).
Thus, the objective function (5.4) minimizes the sum of the cost associated with the extra
bins selected at the second stage and the additional cost paid because of the overall lost
capacity. Constraint (5.5) ensures that each item is packed in a single bin. Constraints
(5.6) and (5.7) ensure that the total volume of items packed in each bin does not exceed
the actual volume of the first and second-stage bins. Finally, constraints (5.8) to (5.10)
impose the integrality requirements on all second-stage variables.

5.3 Progressive hedging-based heuristic
In this section, we present the adopted solving strategy implemented through an

accurate and effective heuristic based on the PH method [199, 49]. Algorithm 1 presents
the proposed heuristic for the SVCSBPPL . The original algorithm structure is known and
is fully described in [49].

As summarized in the Algorithm 1, the heuristic applies first a horizontal
decomposition technique named Scenario Decomposition (SD). This method, based on
augmented Lagrangian relaxation, separates the stochastic problem by scenario. This
decomposition reduces the computational efforts of solving scenario subproblems and
thus, it can be particularly helpful in large-scale problem instances. Furthermore,
Lagrangian multipliers are used here to penalize a lack of implementability due to
differences in the first-stage variable values among scenario subproblems.

In particular, following the decomposition scheme proposed by [199] our model is
decomposed into deterministic VCSBPP subproblems with modified fixed costs f τs

b and
an additional constraint (5.12) that ensures an order in the selection of bins of a certain
type τ ∈T .

In the following, we retrieve a brief description of the notation and formulation of the
scenario subproblems, while the interested reader may refer to the Appendix A for an
in-depth discussion of the complete procedure for scenario decomposition and the PH
heuristic.

A set S of representative scenarios s ∈S is obtained by sampling. For each scenario
s, let Bτs = J τ ∪K τs be the set of available bins of type τ in the subproblem and
Bs =⋃

τBτs be the whole set of bins available in the subproblem. For b ∈Bτs , let V τs
b

be the actual volume of bin b (for b ∈K τs , V τs
b = V τ) and let f τs

b define the fixed cost
associated with bin b. The related decision variable becomes yτs

b = 1 if bin b ∈ Bτs of
type τ ∈T is selected, 0 otherwise. Moreover, if an item i ∈I s is packed in the bin b, xs

i b
is equal to 1, 0 otherwise. Thus, the scenario subproblems can be expressed as follows:
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Algorithm 1 PH-based meta-heuristic for the SVCSBPPL

Scenario decomposition
Generate a set of scenarios S ;
Decompose the resulting deterministic model (A.1)–(A.10) by scenario using
augmented Lagrangian relaxation;

Phase 1
ν← 0; λτsν

b ← 0; ρτνb ← f τ/10;
while Termination criteria not met do

For all s ∈S , solve the corresponding VCSBPP subproblem → yτsν
b ;

Compute temporary global solution
ȳτνb ← ∑

s∈S
ps yτsν

b

δ̄τν← ∑
s∈S

psδ
τsν

Penalty adjustment
λτsν

b =λτs(ν−1)
b +ρτ(ν−1)

b (yτsν
b − ȳτνb )

ρτνb ←αρτ(ν−1)
b

if consensus is at least σ% then
Adjust the fixed costs f τsν according to (A.37);

end if
Bundle fixing

δ̄τνm ← min
s∈S

δτsν

δ̄τνM ← max
s∈S

δτsν

Apply variable fixing;
ν← ν+1

end while

Phase 2
if consensus not met for a single bin type τ′ (δ̄τ

′
m < δ̄τ′M ) then

Identify the consensus number of bins δ of type τ′ by enumerating δ ∈
[
δ̄τ

′
m , δ̄τ

′
M

]
(and variable fixing)

else
Fix consensus variables in model (A.1)–(A.10);
Solve restricted (A.1)–(A.10) model using a MIP solver.

end if

111



5 – Capacity planning problem under uncertainty

min
y,x

∑
τ∈T

∑
b∈Bτs

f τs
b yτs

b (5.11)

s.t. yτs
b ≥ yτs

b+1, ∀τ ∈T ,b = 1, . . . , |Bτs |−1, (5.12)∑
b∈Bs

xs
i b = 1, ∀ i ∈I s , (5.13)∑

i∈I s
v s

i xs
i b ≤ V τs

b yτs
b , ∀τ ∈T ,b ∈Bτs , (5.14)

yτs
b ∈ {0,1}, ∀τ ∈T ,b ∈Bτs , (5.15)

xs
i b ∈ {0,1}, ∀ i ∈I s ,b ∈Bs , (5.16)

As already stated by [44, 49] it is time-consuming to solve a large VCSBPP to
optimality using a commercial MIP solver. Moreover, due to the specific characteristics
of the bin packing problem addressed (e.g., constraint 5.12 that imposes an order in the
selection of bins of a certain type) and because there are multiple equivalent solutions, we
cannot use the standard PH algorithm to solve subproblems as [50, 57]. For this reason,
we adopted a version of the PH heuristic, proposed by [49] that includes a procedure to
reach the consensus among subproblems based on a variable-bundle fixing strategy.

After the SD, the first phase of the PH aims to induce consensus relative to the
first-stage decision variables among the scenario subproblems ((i.e., consensus is defined
as scenario solutions being similar with regard to the first-stage decisions with the overall
capacity plan and thus, being similar among themselves). At each iteration, the
subproblems are first solved separately. Their solutions are then aggregated into a
temporary overall solution. The search process is gradually guided toward scenario
consensus. To induce consensus among the scenario subproblems we adjust the penalties
in the objective function at each iteration. In doing so, we propose two strategy. The first
is based on the Lagrangian multipliers, which are used to penalize the lack of
implementability due to the differences/dissimilarity in the first-stage variables values
among scenario subproblems (between local scenario solutions and the overall solution).
The second penalty adjustment strategy is a heuristic which directly tunes the fixed costs
of bins of the same type. The goal is to accelerate the search process when the overall
solution is close to consensus. Then, we introduce a variable bundle-fixing strategy to
guide the search process, restricting the number of bins of each type that can be used,
through lower and upper bounds.

Finally, the second phase computes the final solution solving a restricted SVCSBPPL

obtained by fixing the first-stage variables for which consensus has been reached (i.e.,
the bins used in all the scenario subproblems). The range of first-stage variables for
which consensus is not reached within certain prescribed computational conditions (i.e.,
termination criteria), is reduced through bundle fixing, and the resulting MIP is solved
exactly.

112



5.4 – Experimental plan

5.4 Experimental plan
This section describes the extensive set of experiments. First, it begins by presenting

the instance sets used to qualify our model and the solution procedure (Section 5.4.1).
Then, in the remaining part of the section, we discuss the main computational results.

We performed an extensive set of experiments with a threefold aim:

• analyze the new logistics capacity planning problem in the urban distribution and
long-haul transportation, and how the different sources of stochasticity we address,
are relevant in both contexts;

• measure the impact of uncertainty and analyzing the usefulness of building a
stochastic programming model;

• study the relationship between the problem characteristics and parameters, and the
structure of the capacity plan, with the aim of drawing managerial insights.

5.4.1 Instance set
Since, to the best of our knowledge, there is no prior study of the capacity planning

problem with uncertainty on the actual volume of contracted capacity, we generated the
new test instance set T, starting from a basic instance set named B. The set B represents
the cases without reduction of the available first-stage capacity. It has been created by
selecting, from the vast literature on bin packing problems [164, 50, 61, 49, 109], the
characteristics that better suit our problem settings. To describe our specific capacity-
planning problem, taking as a reference the instances of the set B, we have generated
different instances in the set T, including additional characteristics related to the actual
volume of first-stage bins, and the introduction of extra cost to compensate for the loss of
capacity in first-stage bins. Table 5.1 presents the details of the instances sets T and B.
For further information about the characteristics the interested reader may refer to Crainic
et al. [49].

An extensive computational campaign supports the claim of validity and quality
for the proposed model in both the long-haul transportation and urban distribution. In
particular, in the set T, the instances related to the long-haul transportation have been
differentiated from those in the urban distribution, considering the parameters that better
characterize each context (e.g., the type of capacity loss). As highlighted in Table 5.1, the
sets of problem instances are similar in the long-haul transportation and urban distribution
contexts. In particular, the characteristics related to the basic instances (i.e., the volume
and number of items, number of bins, availability in the first-stage, and related costs) and
our specific problem (i.e., the availability and cost of bins at the second stage, the actual
volume of first-stage bins, and the extra cost resulting from a loss of capacity) are common
to the two contexts. The most significant difference is the type of capacity loss. Indeed, in
the set T, we considered different entities of volume reduction according to the contexts.
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In the case of long-haul transportation, the loss of capacity is evenly distributed among all
the bins belonging to the set. It means that every first-stage bin loses a percentage of its
volume. Uniform capacity losses are generally due to the limited availability of historical
information about the partners and processes involved (e.g., the shipper negotiates with a
new carrier in the market) typical of the long-haul transportation. In the case of urban
distribution, the loss of volume is localized. It means that only few first-stage bins lose
their entire capacity and become unusable, while the others are unaffected. The overall
reduction of capacity among all the bins of a certain type is equal to a percentage of the
total volume. In particular, when the reduction of capacity is uniformly distributed, every
first-stage bins loses a percentage of its volume equal to the parameter BL defined in Table
5.1. Localized capacity losses are caused by mechanical failure of vehicles or other issues
(e.g., undelivered parcels in the previous operational day). These events make the capacity
of the vehicle totally or partially unavailable. The more accurate information flow in the
urban context allows to better identify the unavailable vehicles. Thus, localized capacity
losses are typical of the urban distribution.

For each combination of the parameters of set B, defined in Table 5.1, we generated
10 instances yielding a total of 180 instances. A total of s = 1, . . . ,100 scenarios is used in
the experiments. According to [131], this scenario tree dimension satisfies the stability
conditions and thus, ensures the reliability of the solutions when a different set of scenarios
is considered.

As mentioned above, set B represents standard cases, without reduction of the available
capacity booked at the first stage. These instances are characterized by the availability
and cost of the bins, the number and volume of the items, and the number of bin types.
Concerning this last characteristic, in [49] the authors consider a higher number of types
(up to ten types). On the contrary, we decided to focus only on two sets of bin types, T3
and T5, with three and five bin types, respectively (see Table 5.1). This choice reflects the
current practice in the industry (both in long-haul transportation and urban distribution),
where few types and modular capacity resources are usually adopted.

For each of the 180 basic instances, we developed 288 test instances originated by
the combinations of parameters that characterize the set T. This gives us a total of 51840
instances composing the set T. These new instances differ from the corresponding basic
instance for the actual volume of first-stage bins and the introduction of extra cost to
compensate for the loss of capacity in first-stage bins. Indeed, in addition to the previous
parameters, set T is also characterized by the percentage of scenarios affected by capacity
losses (SL), bin types affected by losses of capacity (T L), the entity and the type of
volume reduction for each bin affected by a loss of volume (BL), and the extra cost to
compensate for the loss.

This two-step instance generation is justified by our aim to explore the structure of
capacity planning solutions for a wide range of configurations [49], as described in depth
in the next section.
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Characteristic Set Value
Long-haul transportation Urban distribution

Number of items B,T Uniformly distributed in the range [100,500] Uniformly distributed in the range [100,500]
Volume of items B,T Small (S): [5,10] Small (S): [5,10]

Medium (M): [15,25] Medium (M): [15,25]
Big (B): [20,40] Big (B): [20,40]

Number of bins B,T 3 bin types (T3) with volumes equal to [50,100,150] 3 bin types (T3) with volumes equal to [50,100,150]
5 bin type (T5) with volumes equal to
[50,80,100,120,150]

5 bin type (T5) with volumes equal to
[50,80,100,120,150]

set T is equal set T set T is equal set T
Availability of first-stage bins B,T ∥J t∥ equal to

⌈ 1
V t maxs∈S

∑
i∈I s v s

i

⌉ ∥J t∥ equal to
⌈ 1

V t maxs∈S
∑

i∈I s v s
i

⌉
Availability of second-stage
bins

B, T Availability class 1 (AV1): ∥K t s∥ uniformly
distributed in the range [0,∥J t∥]

Availability class 1 (AV1): ∥K t s∥ uniformly
distributed in the range [0,∥J t∥]

Availability class 2 (AV2): ∥K t s∥ uniformly
distributed in the range [

∥J t∥
2 ,∥J t∥]

Availability class 2 (AV2): ∥K t s∥ uniformly
distributed in the range [

∥J t∥
2 ,∥J t∥]

Availability class 3 (AV3): ∥K t s∥ equal to ∥J t∥
Cost of first-stage bins B,T f t =V t (1+γt where γt is uniformly distributed in the

range [−0.3,0.3] [44]
f t =V t (1+γt where γt is uniformly distributed in the
range [−0.3,0.3] [44]

Cost of second-stage bins B,T g τ = f t (1+α) where α belongs to the set {0.3,0.5,0.7} g τ = f t (1+α) where α belongs to the set {0.3,0.5,0.7}
Actual volume of first-stage
bins

T SL - Percentage of scenarios affected by capacity
losses: [20%,40%,60%,80%]

SL - Percentage of scenarios affected by capacity
losses: [20%,40%,60%,80%]

TL - Probability that a bin type is affected by a capacity
reduction: [50%,75%,100%]

TL - Probability that a bin type is affected by a capacity
reduction: [50%,75%,100%]

BL - Percentage of the overall loss of capacity
among all the first-stage bins of a certain type:
[20%,30%,40%,50%,60%,70%]

BL - Percentage of the overall loss of capacity
among all the first-stage bins of a certain type:
[20%,30%,40%,50%,60%,70%]

Type of capacity loss: Uniform (U) Type of capacity loss: Localized (L)
Extra cost due to the reduction
of a unit of capacity

T c t = f t

V t (αt ) where αt is the constant used to compute
the cost of extra bins of type t ∈ T

c t = f t

V t (αt ) where αt is the constant used to compute
the cost of extra bins of type t ∈ T

Table 5.1: Characteristics of sets B and T.

5.4.2 Assessment of the model
As stated in Section 5.1, much of the literature does not consider uncertainty in

capacity planning problems. In contrast, our aim in this section is to evaluate and show
the benefits of modeling uncertainty using the two-stage formulation with recourse for the
SVCSBPPL model. We treat this topic by considering the two most relevant stochastic
programming measures in the literature:

• Expected Value of Perfect Information (EV PI ). This measure represents the
decision maker’s willingness to pay for complete information about the future;

• Value of the Stochastic Solution (V SS). This measure is the difference between the
result of using an expected value solution (EEV ) and the recourse problem solution
(RP) [23].

In the first two subsections, we evaluate how the values of the EV PI and V SS change
in long-haul transportation and urban distribution, depending on the different parameters
characterizing the set T in these contexts, such as the availability of second-stage bins, the
extra cost due to loss of capacity, and the entity of actual volume reduction of first-stage
bins. In the third subsection, we analyze the value of considering the actual availability of
the planned capacity as stochastic.
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Expected value of perfect information

In this section, we present the values of the EV PI . Table 5.2 shows the average
and maximum EV PI percentages for the two sets of instances T3 and T5 (Column 1),
computed as EV PI /RP ·100, where RP is the value of an optimal solution of the 2-stage
with recursion model. These percentages are grouped by availability class of second-stage
bins (Column 2), value of alpha (Column 3), and the application type (Columns 4 and 5
for the urban distribution and Columns 6 and 7 for the long-haul transportation).

The average percentage EV PI is always greater than 8.09%, highlighting the benefit
of having information about the future in advance. It is particularly significant when the
availability of extra bins is limited (AV1), and the costs of second-stage bins are high. In
fact, in the long-haul transportation, where the losses are uniform, we obtain the highest
values of average and maximum EV PI when the availability class is A1 and alpha is
equal to 0.7. In this situation, the maximum percentage of EV PI reaches 74.27%. This
means that it would be particularly important to have complete information about the
future when numerous first-stage bins are likely to lose part of their available capacity
and, at the same time, second-stage bins are rather expensive and may not be available in
sufficient numbers to load all items for delivery.

Set Availability Alpha Urban distribution Long-haul transportation
EV PI [%] EV PImax[%] EV PI [%] EV PImax[%]

T3

AV1
0.3 13.98 60.76 22.20 77.35
0.5 18.65 48.07 25.47 75.24
0.7 21.97 36.69 26.80 74.27

AV2
0.3 9.05 13.85 10.19 20.23
0.5 15.26 19.12 16.14 29.96
0.7 19.34 23.71 19.82 35.28

AV3
0.3 9.47 14.52 10.11 20.30
0.5 15.79 20.38 16.18 29.43
0.7 19.90 24.61 19.91 35.95

T5

AV1
0.3 12.13 15.71 13.28 54.26
0.5 17.73 21.24 19.16 50.83
0.7 21.44 25.11 22.74 47.86

AV2
0.3 8.09 13.62 9.61 19.27
0.5 15.23 21.60 16.45 31.17
0.7 19.59 25.32 20.40 36.60

AV3
0.3 8.97 13.66 9.48 20.72
0.5 15.84 19.88 16.57 30.17
0.7 20.20 25.57 21.07 37.25

Table 5.2: EV PI for different availability classes, values of alpha, and types of losses.
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Tables from 5.3 to 5.5 report the average and maximum percentages EV PI , showing
how different parameters such as the level of the volume reduction, the percentage of
scenarios affected by capacity losses and the probability that a bins type has a capacity
reduction, affect the EV PI . In the urban distribution, where the losses are localized
among the bins, the average percentage EV PI decreases with an increase of SL and
TL. In this case, having information about the future is valuable, particularly when the
reduction of actual volume is less likely. For example, Table 5.3 highlights that when SL
and TL are respectively equal to 20% and 50%, and BL is between 60% and 70%, the
average and maximum percentages of EV PI are 16.90% and 31.99% for instances with
three bin types (set T3), and 16.15% and 24.90% for instance with five bin types (set T5).

The results obtained considering the instances in T5 are not affected by the availability
of the second-stage bins, regardless of the context (long-haul transportation or urban
distribution) (see Tables 5.3 and 5.5). On the contrary, Table 5.4 shows that in the long-
haul transportation, when there we consider three types of bins (set T3) the impacts of
the number of scenarios affected by the uncertainty and the probability that a bin types
has a capacity reduction depend on the availability of second-stage bins. The knowledge
of the future becomes particularly important if all the parameters determining the actual
volumes of first-stage bins are high because of the considerable risk of not being able to
pack all items. For example, the average percentage of EV PI reaches 46.16% when SL,
TL, and BL are equal to 80%, 100%, and 70%, respectively (see Table 5.4).

We now examine to what extent the first-stage decisions of the recourse problem
and the EV formulation differ. As already highlighted by Crainic et al. [49], the EV
problem generally overestimates the future demand to be loaded (i.e., the total volume of
the items is larger than the actual volume) and the availability of extra bins (i.e., a larger
set of bins is assumed available for the recourse action). Moreover, when SL and TL
are low, the EV formulation underestimates the reduction of available capacity (i.e., the
total volume of first-stage bins available to load items is larger than the actual available
volume). This behavior can lead to two situations. First, EV may plan for a set of bins
that are not required for the set of scenarios considered. Thus, the capacity plan is more
expensive even if the solution is feasible and implementable. Second, EV may plan for an
insufficient capacity for a subset of scenarios in which the actual availability of bins is
limited. In this case, the capacity plan is infeasible for these scenarios. While, for the basic
problem the percentage of infeasible instances is equal to 10% for set T3 and availability
AV1, and 0% for the other groups introducing the losses of volume, infeasibility may
change according to the values of the different instances parameters.

Table 5.6 shows that when we consider uniform losses and availability class A1, the
number of infeasible instances grows considerably for both sets T3 and T5 as SL, TL,
and BL increase. Indeed, when all the parameters that determine the actual volumes of
first-stage bins are at their maximum values (i.e., SL, TL, and BL are 60-80%, 100%, and
60-70%, respectively), the percentage of infeasible instances reaches 30%.

Adding a further level of investigation, when we consider the additional cost of second-
stage bins at its maximum value (i.e., alpha is equal to 0.7) and a loss of capacity that
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concerns a low percentage of scenarios but of a considerable entity (i.e., SL, TL, and BL
are 20%-40%, 75%-100%, and 60%-70%, respectively), all the instances are infeasible
(see Table 5.6). These outcomes highlight the need for considering uncertainty in capacity
planning when the availability of second-stage bins may be limited.

Value of the stochastic solution

In this section, we focus on the V SS. Table 5.7 shows the average and maximum
V SS percentages for the two sets of instances T3 and T5 (Column 1), computed as
V SS/RP ·100 and grouped by availability class (Column 2), value of alpha (Column 3),
and the application type (Columns 4 and 5 for the urban distribution and Columns 6 and 7
for the long-haul transportation).

The average V SS percentage is always greater than 4.93% and reaches its maximum
value at 17.96%. These percentages highlight that the gap between the expected-value
solution and the stochastic solution is always significant.

Similarly to the EV PI analysis, we will discuss the impact on V SS of the parameters
that determine the actual volume of the first-stage bins. In particular, Tables from 5.8 to
5.10 report the average and maximum percentages V SS, showing how different parameters
such as the level of the volume reduction, the percentage of scenarios affected by capacity
losses and the probability that a bins type has a capacity reduction, affect the V SS.

Starting with a focus on the urban distribution, Table 5.8 shows that the average
V SS decreases as SL increases for both sets T3 and T5. The maximum values of V SS
are reached when SL is equal to 20% and BL is 70%. In this case, the average and
maximum percentages of V SS are 15.49% and 44.49% for T3 and 13.82% and 45.00%
for T5. Concerning the urban distribution, where the losses are localized, the stochastic
approach is more valuable when there is a low probability of losing a large number of
entire bins, which is the case of unavailability of vans. In the case of the long-haul
transportation (Table 5.9), when we consider instance set T3, the experimental tests
revealed that when SL and TL are low, V SS increases as BL increases. On the contrary,
when all the parameters have high values, V SS drops sharply. In particular, when we
consider the availability class AV1 and SL, TL and BL are respectively equal to 80%,
75%, and 70%, and the average V SS percentage falls to 0%. This behavior might suggest
that when the availability of second-stage bins is limited and a considerable amount of
capacity is likely to be lost in first-stage bins, the stochastic problem is not worth solving
from a pure cost point of view, while the eventual infeasibility may be the real issue.

As in instance set T3, and even in instance set T5 (see Table 5.10), when SL and TL
are low, the value of V SS increases as BL increases. In particular, the average percentage
of V SS reaches 21.95% when SL, TL, and BL are respectively equal to 20%, 100%,
and 70%, while the maximum percentage of V SS reaches 88.36%, with SL, TL, and BL
respectively equaling 40%, 100%, and 70%. On the contrary, when SL and TL are high,
the value of V SS decreases as BL increases and falls to 1.88% when SL, TL, and BL are
respectively equal to 80%, 75%, and 70%.
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SL[%] TL[%] BL[%] Set T3 Set T5
EV PI [%] EV PImax[%] EV PI [%] EV PImax[%]

20

50
20-30 16.26 26.62 15.77 23.91
40-50 16.24 28.09 16.00 23.63
60-70 16.90 31.99 16.15 24.90

75
20-30 16.30 26.65 15.94 23.90
40-50 16.33 28.47 15.95 23.31
60-70 17.06 33.43 16.08 25.32

100
20-30 16.45 26.13 15.93 23.84
40-50 16.22 28.67 15.80 23.30
60-70 17.00 33.75 16.00 24.48

40

50
20-30 16.33 26.54 15.98 23.97
40-50 16.10 29.08 15.79 23.23
60-70 17.05 33.93 16.16 25.57

75
20-30 16.32 26.66 15.91 23.94
40-50 15.99 29.99 15.61 23.16
60-70 16.66 34.84 15.91 24.34

100
20-30 16.25 26.35 15.92 23.60
40-50 15.68 30.20 15.20 22.81
60-70 16.03 35.49 15.40 23.29

60

50
20-30 16.23 26.70 16.07 23.75
40-50 15.92 30.10 15.47 23.38
60-70 16.52 48.07 15.99 24.46

75
20-30 16.22 26.46 15.88 23.85
40-50 15.47 28.95 15.06 22.81
60-70 15.75 60.76 15.23 23.27

100
20-30 16.11 26.50 15.79 23.56
40-50 15.08 28.00 14.54 22.73
60-70 14.59 50.01 14.21 21.93

80

50
20-30 16.23 26.55 15.95 23.79
40-50 15.48 29.18 15.20 23.10
60-70 15.84 36.60 15.47 23.81

75
20-30 16.05 26.47 15.73 23.83
40-50 15.04 30.29 14.46 22.61
60-70 14.76 51.06 14.20 23.17

100
20-30 15.87 25.68 15.48 23.50
40-50 14.28 26.51 13.90 22.61
60-70 12.99 28.73 12.81 21.73

Table 5.3: The impact of SL, TL and BL on EV PI in the urban distribution setting.
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SL[%] TL[%] BL [%] AV1 AV2-AV3
EV PI [%] EV PImax[%] EV PI [%] EV PImax[%]

20

50
20-30 18.12 25.59 15.61 24.23
40-50 20.27 34.30 17.28 27.36
60-70 25.21 63.69 19.79 29.42

75
20-30 17.73 24.95 14.93 23.54
40-50 20.67 38.63 16.66 24.65
60-70 26.03 63.14 19.80 29.13

100
20-30 16.58 24.60 13.68 22.41
40-50 19.01 37.97 15.02 21.84
60-70 27.83 61.04 18.59 25.83

40

50
20-30 18.30 25.66 15.67 26.48
40-50 23.20 40.98 18.45 29.05
60-70 30.92 63.53 22.30 32.52

75
20-30 17.01 24.10 14.31 22.53
40-50 22.16 40.79 17.31 26.21
60-70 32.49 64.40 21.30 31.79

100
20-30 14.75 22.89 11.56 21.09
40-50 19.43 38.07 13.42 20.23
60-70 35.60 65.67 16.50 25.29

60

50
20-30 18.29 29.49 15.44 26.84
40-50 25.35 50.96 19.16 31.13
60-70 34.46 74.27 23.01 35.04

75
20-30 17.09 35.24 13.29 22.41
40-50 24.91 52.88 16.71 27.18
60-70 40.30 76.84 19.65 30.42

100
20-30 13.85 33.34 8.91 19.27
40-50 22.10 57.15 9.56 16.96
60-70 43.53 77.34 10.39 18.53

80

50
20-30 18.54 34.95 15.02 27.57
40-50 27.77 56.97 19.09 32.17
60-70 37.34 75.52 22.34 35.95

75
20-30 16.58 34.37 12.09 22.42
40-50 25.22 53.94 14.95 25.70
60-70 42.52 75.24 16.00 28.90

100
20-30 12.09 31.38 6.27 16.55
40-50 22.20 56.19 3.97 9.24
60-70 46.16 77.35 4.14 8.15

Table 5.4: The impact of SL, TL and BL on EV PI for instance set T3 in the long-haul
transportation setting. 120
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SL[%] TL[%] BL [%] EV PI [%] EV PImax[%]

20

50
20-30 16.05 24.71
40-50 17.93 27.18
60-70 20.51 31.33

75
20-30 15.39 23.33
40-50 17.65 27.78
60-70 20.70 30.36

100
20-30 13.87 22.11
40-50 15.19 21.97
60-70 18.51 27.49

40

50
20-30 16.28 25.73
40-50 19.47 30.75
60-70 23.47 35.77

75
20-30 15.03 25.03
40-50 18.53 28.08
60-70 22.84 33.54

100
20-30 11.83 19.62
40-50 13.75 20.66
60-70 17.41 26.68

60

50
20-30 16.31 27.08
40-50 20.49 32.35
60-70 24.92 36.79

75
20-30 14.29 24.45
40-50 18.46 31.79
60-70 22.14 34.89

100
20-30 9.42 18.44
40-50 10.34 17.39
60-70 12.04 30.31

80

50
20-30 16.14 28.30
40-50 21.23 34.39
60-70 25.04 43.02

75
20-30 13.32 26.15
40-50 17.44 32.46
60-70 19.51 50.83

100
20-30 7.07 16.82
40-50 5.33 27.16
60-70 6.61 54.26

Table 5.5: The impact of SL, TL and BL on EV PI for instance set T5 in the long-haul
transportation setting.
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Alpha SL[%] TL[%]
Set T3 Set T5
BL[%] BL[%]

20-30 40-50 60-70 20-30 40-50 60-70

0.3

20
50 12.50 10.00 25.00 0.00 0.00 0.00
75 10.00 20.00 47.50 0.00 0.00 0.00
100 8.75 43.75 82.50 0.00 0.00 0.00

40
50 12.50 12.50 32.50 0.00 0.00 0.00
75 10.00 15.00 40.00 0.00 2.50 10.00
100 6.25 25.00 77.50 0.00 5.00 22.50

60-80
50 12.50 15.00 30.00 0.00 3.75 12.50
75 10.00 17.50 12.50 1.25 16.25 28.75
100 8.75 15.00 53.75 6.25 27.5 30.00

0.5

20
50 12.50 20.00 32.50 0.00 0.00 0.00
75 10.00 22.50 70.00 0.00 0.00 0.00
100 15.00 75.00 98.75 0.00 0.00 0.00

40
50 15.00 20.00 32.50 0.00 0.00 0.00
75 10.00 12.50 50.00 0.00 0.00 2.50
100 8.75 52.50 98.75 0.00 0.00 25.00

60-80
50 12.50 17.50 25.00 0.00 0.00 15.00
75 10.00 12.50 35.00 0.00 13.75 26.25
100 8.75 30.00 85.00 0.00 25.00 30.00

0.7

20
50 10.00 20.00 40.00 0.00 0.00 0.00
75 5.00 35.00 100.00 0.00 0.00 0.00
100 35.00 92.50 98.75 0.00 0.00 0.00

40
50 10.00 20.00 30.00 0.00 0.00 0.00
75 5.00 15.00 100.00 0.00 0.00 0.00
100 10.00 77.50 100.00 0.00 0.00 5.00

60-80
50 10.00 20.00 30.00 0.00 0.00 3.75
75 5.00 15.00 55.00 0.00 2.50 23.75
100 10.00 65.00 97.50 0.00 12.50 30.00

Table 5.6: Percentage of infeasible instances when the availability class is AV1 in the
long-haul transportation setting.
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Set Availability Alpha Urban distribution Long-haul transportation
V SS[%] V SSmax[%] V SS[%] V SSmax[%]

T3

AV1
0.3 11.29 23.53 13.79 33.85
0.5 8.37 20.04 10.58 31.47
0.7 5.63 15.49 8.47 56.65

AV2
0.3 15.75 44.49 17.57 55.13
0.5 12.20 30.92 13.95 55.03
0.7 9.41 38.24 12.59 80.40

AV3
0.3 15.67 43.82 17.02 62.07
0.5 10.34 35.99 13.52 50.98
0.7 8.08 29.52 11.90 80.83

T5

AV1
0.3 12.00 29.73 14.50 38.40
0.5 7.79 22.61 12.02 49.84
0.7 4.93 16.35 9.88 74.71

AV2
0.3 14.12 45.00 16.17 58.54
0.5 9.95 31.21 12.93 63.77
0.7 6.70 22.28 11.40 88.36

AV3
0.3 14.54 33.51 17.96 57.93
0.5 9.07 34.95 14.67 48.97
0.7 5.34 27.67 11.48 63.08

Table 5.7: V SS for different availability classes, values of alpha, and types of losses.
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SL[%] BL[%] Set T3 Set T5
V SS[%] V SSmax[%] V SS[%] V SSmax[%]

20

20 9.31 23.61 8.24 22.61
30 9.21 24.83 7.98 23.48
40 9.83 28.23 8.25 27.30
50 12.24 32.97 10.26 32.69
60 14.03 38.92 12.74 38.68
70 15.49 44.49 13.82 45.00

40

20 9.24 23.61 7.88 22.61
30 8.86 24.80 7.78 23.15
40 9.31 29.54 7.95 27.27
50 11.65 36.34 9.84 34.15
60 13.11 40.16 11.20 39.31
70 13.02 42.68 11.28 40.68

60

20 9.14 23.61 7.71 22.61
30 8.71 23.27 7.68 22.44
40 8.93 22.39 8.04 22.74
50 11.12 25.71 9.55 23.97
60 12.49 31.96 10.61 30.59
70 12.08 38.24 10.42 27.85

80

20 9.09 23.61 7.75 22.61
30 8.70 22.63 7.74 22.44
40 9.03 22.36 8.09 22.83
50 11.10 25.71 9.61 24.03
60 12.39 32.66 10.45 31.22
70 11.80 30.58 10.29 27.41

Table 5.8: The impact of SL, TL and BL on V SS in the urban distribution setting.
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SL[%] TL[%] BL[%] AV1 AV2-AV3
V SS[%] V SSmax[%] V SS[%] V SSmax[%]

20

50
20-30 6.41 21.52 10.42 25.14
40-50 8.32 23.05 13.19 29.33
60-70 11.65 26.89 17.51 35.35

75
20-30 6.19 19.88 10.41 27.02
40-50 11.16 23.43 15.84 30.57
60-70 12.00 25.33 19.47 41.04

100
20-30 8.10 23.15 12.01 26.96
40-50 12.08 22.68 17.08 32.72
60-70 13.15 27.41 22.58 43.59

40

50
20-30 8.31 21.81 11.98 27.75
40-50 12.02 27.09 17.47 36.46
60-70 13.14 33.15 22.21 43.40

75
20-30 10.28 22.39 13.57 27.58
40-50 12.27 25.54 18.86 39.70
60-70 14.24 31.47 21.90 57.95

100
20-30 10.24 23.03 14.58 32.92
40-50 11.75 23.87 20.65 47.63
60-70 15.74 32.00 15.03 62.07

60

50
20-30 9.92 27.21 14.00 33.47
40-50 12.41 24.71 19.64 40.68
60-70 16.17 36.68 19.85 80.83

75
20-30 10.52 24.11 14.74 32.86
40-50 12.32 26.85 18.68 53.22
60-70 23.70 31.38 8.00 78.57

100
20-30 10.67 24.83 15.64 36.01
40-50 11.27 26.44 14.18 62.05
60-70 0.25 0.75 3.33 8.33

80

50
20-30 10.18 23.70 15.01 32.25
40-50 12.44 28.37 19.10 56.13
60-70 28.13 37.55 8.22 80.40

75
20-30 10.36 23.92 14.96 35.19
40-50 16.85 56.65 13.11 74.73
60-70 0.00 0.00 1.95 30.88

100
20-30 9.46 23.52 14.78 44.59
40-50 8.45 20.00 6.46 52.34

Table 5.9: The impact of SL, TL and BL on V SS for instance set T3 in the long-haul
transportation setting.
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SL[%] TL[%] BL [%] V SS[%] V SSmax[%]

20

50
20-30 8.03 24.23
40-50 10.12 35.71
60-70 15.79 41.69

75
20-30 7.94 24.87
40-50 14.92 37.66
60-70 19.66 43.39

100
20-30 11.16 35.40
40-50 17.18 39.62
60-70 21.95 43.35

40

50
20-30 10.16 33.00
40-50 16.80 38.14
60-70 19.90 43.09

75
20-30 13.56 35.41
40-50 17.88 37.49
60-70 20.48 58.54

100
20-30 14.40 35.04
40-50 18.47 45.31
60-70 10.66 88.36

60

50
20-30 13.39 34.73
40-50 18.10 38.91
60-70 19.28 57.73

75
20-30 14.51 35.28
40-50 18.04 78.50
60-70 7.17 84.46

100
20-30 14.30 34.40
40-50 11.27 64.27
60-70 3.11 23.86

80

50
20-30 14.66 35.38
40-50 17.49 74.47
60-70 10.46 85.88

75
20-30 14.41 35.69
40-50 11.61 63.08
60-70 1.88 19.62

100
20-30 13.71 55.57
40-50 4.46 51.44
60-70 2.68 6.56

Table 5.10: The impact of SL, TL and BL on V SS for instance set T5 in the long-haul
transportation setting.
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Considering stochasticity on the availability of planned capacity

As stated, the uncertainty on the availability of contracted capacity at the operational
time is not addressed in the literature. Thus, this subsection is devoted to studying how
considering the actual availability of the planned capacity as a stochastic parameter is
valuable. In doing so, in the Figures 5.1 to 5.3 , we compare our results concerning EV PI
and V SS, with those obtained in [49], that considered two sources of uncertainty (i.e.,
numbers and volumes of items, and the availability and cost of extra bins), disregarding
the stochasticity related to the actual volumes of first-stage bins.

In particular, the bar charts depict for each bin type (T3 and T5), the average and
maximum EV PI and V SS percentages in the cases of disregarding uncertainty on actual
availability of booked capacity (Figure 5.1), considering this source of uncertainty in
the urban distribution (Figure 5.2), and in the long-haul transportation (Figure 5.3),
respectively.

Given the same characterization of the set T, both studies emphasize the usefulness of
the stochastic formulation approach. Furthermore, in our case, taking into account the
actual volumes of bins as a stochastic parameter leads to a significant improvement of both
average and maximum values of EV PI and V SS for all sets considered. For example, the
average percentage V SS obtained without considering the additional uncertainty regarding
actual volumes is about 6% and increases to 10% and 14% for localized and uniform
losses, respectively. This range is sufficiently broad to justify considering the actual
volumes of first-stage bins as stochastic rather than deterministic.

Figure 5.1: EV PI and V SS comparison without uncertainty on actual availability of
booked capacity.
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Figure 5.2: EV PI and V SS comparison with uncertainty on actual availability of booked
capacity in the urban distribution setting.

Figure 5.3: EV PI and V SS comparison with uncertainty on actual availability of booked
capacity in the the long-haul transportation setting.

5.4.3 Capacity-planning solution analysis
In this section, we present the capacity-planning solutions and analyze their

relationship with the characteristics of the problem. In particular, we study how solutions
vary depending on the attributes of the urban distribution and long-haul transportation
problem settings, with emphasis on the actual volumes of first-stage bins.

As stated, the purpose is to determine whether the basic structure of the capacity
planning exists and to investigate the dependence of the plan on the attributes.
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For each combination of instance sets, availability classes, and other characteristics of
the sets, we computed the following measures:

• average number of bin types used in the capacity plan Nt ;

• average percentage of the capacity booked at the first stage C apF S ;

• average percentage of the objective function value achieved at the first stage Ob jF S ;

• average percentage of the fill level of the bins at the first stage fF S .

In more details, we compare the model presented in this chapter with the results of the
model in [49], where the loss of capacity was not considered.

Table 5.11 summarizes the ranges in which the measures vary for each capacity-
planning solution according to the set of bin types (Column1), the combinations of the
availability of extra bins on the spot market (Column 2). Columns from 3 to 6 show the
values of these measures obtained in the long-haul transportation, while Columns from 7
to 10 refer to the urban distribution.

No loss of volume [49]
Set Avai l abi l i t y C apF S Ob jF S fF S Nt

T3 AV1 72%-84% 63%-73% 83%-89% 1.10-1.20
AV2(AV3) 61%-82% 53%-71% 85%-93% 1.00-1.10

T5 AV1 67%-84% 59%-73% 85%-92% 1.33-1.44
AV2(AV3) 64%-83% 57%-73% 84%-92% 1.00-1.20

With losses of available volume
Long-haul transportation Urban distribution

Set Avai l abi l i t y C apF S Ob jF S fF S Nt C apF S Ob jF S fF S Nt

T3 AV1 60%-83% 48%-73% 71%-95% 1.20-3 66%-84% 59%-75% 80%-93% 1.40-2.80
AV2(AV3) 0%-79% 0%-61% >79% 0-1.60

T5 AV1 6%-81% 5%-71% 84%-98% 0.30-3 55%-81%. 83%-95%. 48%-72% 1.70-3.90
AV2(AV3) 0%-81% 0%-72% 87%-99% 0-1.80

Table 5.11: Capacity-planning solutions.

When all the parameters that determine the actual volume of first-stage bins are equal,
the resulting structures of the capacity-planning solutions are the same for availability
classes AV2 and AV3. For this reason, we present the results of instances with availability
class AV2 and AV3 together. For further details and the complete tables concerning the
figures and results reported in this section, the interested reader could refer to the work by
Lerma [139].

In the following paragraphs, we first present the structure of the capacity-planning
solutions of the problem by Crainic et al. [49] and then we discuss to what extent the
structure of the solution changes in the long haul transportation and urban distribution
when we take into account the actual volume of first-stage bins.
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Solution analysis of the basic problem When the availability of second-stage bins
is limited, Nt increases (1.20 for set T3 and 1.44 for set T5). The percentages of
instances that book more than one bin type at the first stage in instance sets T3 and
T5 are respectively equal to 15% and 25%. However, the bins included in the capacity
plan are of the same type, and only one or two bins are of different types. This relates
to the cost-orientation of firms, which aim to avoid the higher loading/unloading costs
generated by non-standardized loading schemes.

The percentages of C apF S and Ob jF S are respectively around 75% and 65%,
indicating that when there is no loss of volume in first-stage bins, a capacity sufficient to
limit the adjustment (when the actual demand becomes known) is booked a priori.

Impact of losses of available volume Considering the actual volume of first-stage
bins, the structure of the capacity plan varies in the long-haul transportation and urban
distribution. In particular, the different types of capacity reductions in the two contexts
affect the capacity plan, as well as the availability of extra bins on the spot market, and
the percentage of lost capacity. This confirms the need to take into account the reductions
of available planned capacity in the capacity-planning applications. Table 5.12 examines,
for each set of bin types (Column 1) and availability class (Column 2), the sensitivity of
the average percentage of booked capacity (Columns 4 and 5) to the different values of
the parameter alpha (Column 3).

The results show that the extra cost paid in the second stage for the recourse action
affects the managerial decisions concerning how much capacity to contract, particularly
in the long haul transportation. In this context, as freight demand rises and the supply
falls due to the reduced availability of data and information, the spot market rates rise
and the shipper will suffer from the higher second-stage costs. Thus, due to the limited
alternatives in terms of recourse action, the shipper books in advance more capacity. In
fact, in this case, the booked capacity is doubled when alpha reaches the highest value, 0.7,
in almost all the sets and availability classes. On the contrary, in the urban distribution,
the shipper should book almost the same capacity (more than 60%) in advance without
significant variations, depending on the value of alpha.

Long-haul transportation. As discussed in the Section 5.4.1, in the long-haul
transportation losses are uniformly distributed among the bins. In this context, when there
are only three types of bins and the availability of second-stage bins is limited (AV1), the
structure of the capacity-planning solution is always the same, regardless of the likelihood
of losses and the percentage of lost capacity. The number of bins available at the second
stage may be limited because the shipper cannot switch to another carrier. The shipper is
therefore forced to buy a large portion of capacity at the first stage, although it is quite
likely that this capacity will not be fully available.

Figures 5.4 to 5.7 depicts the average values of the measures C apF S and Nt when the
losses are uniformed distributed, the sets are T3 and T5, and availability class AV1 and
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Long-haul transportation Urban distribution
Set Avai l abi l i t y α C apF S C apF S

T3

AV1 0.3 35.44% 70.09%
AV1 0.5 53.36% 78.44%
AV1 0.7 69.03% 86.78%

AV2(AV3) 0.3 26.49% 61.24%
AV2(AV3) 0.5 42.01% 69.30%
AV2(AV3) 0.7 53.50% 75.01%

T5

AV1 0.3 30.32% 61.96%
AV1 0.5 45.71% 70.43%
AV1 0.7 57.01% 75.64%

AV2(AV3) 0.3 26.99% 62.98%
AV2(AV3) 0.5 42.91% 69.99%
AV2(AV3) 0.7 53.66% 76.16%

Table 5.12: Sensitivity of booked capacity to α.

AV2. For further details concerning the results, the interested reader could refer to [139].
As shown in the Table 5.11, C apF S is always between 60% and 83%. While, Figure

5.4 and 5.5 highlight as the value of C apF S depends on the percentage of lost volume
in all BL bins. Thus, the risk of having a limited availability of extra bins and the need
to load all items lead to booking much of the capacity in advance, although the actual
available capacity will most likely be lower than planned.

On the one hand, when the percentage of lost volume is low, the percentage of capacity
booked at the first stage depends on the value of Alpha. In particular, the capacity booked
in advance is greater when the premium cost of extra bins is high. On the other hand,
when the values of BL, SL, and TL are high, the percentage of first-stage capacity is
always the same, whatever the cost of second-stage bins.

The impact on the objective function of the first-stage (Ob jF S) is quite different,
ranging from 48% to 73%. Actually, this is mainly due to the different impact of the cost
of extra bins and not to a real change of the solution structure.

The average Nt used in the capacity plan is always greater than 1.2, and its maximum
value is equal to 3, obtained when the probability TL is equal to 75%. In particular, when
SL, TL, and BL are respectively equal to 60%, 75%, and 60-70%, the number of bin
types included in the plan is always greater than 2.7. This means that when numerous
scenarios are affected by large reductions of volume, which nevertheless do not affect all
types of vehicles, nearly all bin types are included in the capacity plan. The downside of
this capacity plan is that loading/unloading costs increase because it becomes impossible
to use standardized loading schemes.

The availability class AV2 indeed implies that the number of bins of a certain type
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available at the second stage is, in the worst case scenario, equal to half the number of
bins of that type available in advance. The structure of the capacity-planning solution,
for instance set T3 with availability class AV2 and uniform losses, varies considerably
depending on the values assumed by the parameters SL, TL, and BL. The percentage of
capacity booked at the first stage is greater when alpha is high and thus when the premium
cost of extra bins is high.

When we consider instance set T5 with availability class AV2, the percentage of
capacity booked at the first stage varies between 0% and 81%. The percentage of C apF S

increases with the premium cost of extra bins and decreases as the parameters SL, TL,
and BL increase. When the percentage of scenarios affected by capacity losses is equal to
20%, the average percentage C apF S is always greater than 29%; when at least one SL
and TL is high, the percentage C apF S reaches 0% for high levels of loss. In particular,
when SL and TL are set at their maximum values, no capacity is booked at the first stage
if the percentage of lost volume is greater than or equal to 50%, whatever the cost of
second-stage bins.

The average number of first-stage bin types used in the plan increases with alpha.
Moreover, the average number of bin types Nt is always below 1.8. It means that in
this case, in the long-haul transportation there is a higher level of standardization and
thus, almost all the bins included in the capacity plan are the same type, whatever the
probability and entity of the volume losses.

Figure 5.4: Average values of C apF S in the long-haul transportation setting, when the
instance set is T3, and availability classes are AV1 (dark grey) and AV2 (light grey).
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Figure 5.5: Average values of C apF S in the long-haul transportation setting, when the
instance set is T5, and availability classes are AV1 (dark grey) and AV2 (light grey).

Figure 5.6: Average values of Nt in the long-haul transportation setting, when the instance
set is T3, and availability classes are AV1 (dark grey) and AV2 (light grey).

Urban distribution. Regarding the urban distribution, where the losses of volume
are localized, the structures of the capacity plan, when all the parameters that determine
the actual volume of first-stage bins are equal, are nearly the same for all the availability
classes.

Figure 5.8 to 5.11 depicts the average values of the measures C apF S and Nt when
the losses are localized, the sets are T3 and T5, and availability class AV1 and AV2. For
further details concerning the results, the interested reader could refer to the work by
Lerma [139].

In general, the results highlight as in the urban distribution, the number of bin types
used Nt is greater than 2 and reaches 3, compared in the long-haul transportation. This
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Figure 5.7: Average values of Nt in the long-haul transportation setting, when the instance
set is T5, and availability classes are AV1 (dark grey) and AV2 (light grey).

trend is justified by the availability of new transportation modes (e.g. cargo-bikes) to
overcome the complexities of urban centers.

In instance set T3 and availability class AV1, the percentage C apF S is between
66% and 84% (Table 5.11). Its value varies with the premium cost of extra bins in the
spot market and decreases as the level of loss increases (as shown in Figures 5.8 and
5.9), while it remains the same whatever the parameter SL and TL. Thud, the capacity
booked at the first stage does not depend on the probability of being affected by losses.
Even if the percentage of lost volume in each bin is equal to 70%, at least 66% of the
capacity is booked in advance. This aspect is also confirmed by the measure Ob jF S . This
percentage varies between 59% and 75%. The average number of bin types Nt used in
the capacity plan is 2.10 and reaches 3, varying according to the level of loss, showing
how the flexibility of having a larger set of bin sizes is a good choice when a precise
information about the capacity loss distribution is available (as normally in urban and
last-mile distribution). The average percentage fill level related to the actual volume of
first-stage bins is always between 80% and 93%. In particular, when the percentage of
lost volume is greater than or equal to 50%, the average percentage fill level is greater
than 84%. When the probability of loss volume is higher, the fill rate decreases, due to a
massive usage of the largest bins. For example, considering vehicles with relatively small
capacity adopted in urban areas, as the cargo-bikes, when there is a high probability of
loss volume, they most likely will be unavailable. Thus, the shipper will prefer and book
in advance larger vehicles as the vans to be used as a recovery option.

When we consider instances with availability classes AV2 or AV3, instead of AV1,
the structure of the capacity plan remains the same but the capacity booked at the first
stage is slightly lower. This gap grows with the percentage of lost volume.

Similarly to the instances of set T3, also for set T5, the structures of the capacity plan
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are almost the same for all the availability classes.
The average Nt is greater than 2 when the level of loss is lower than 40%, while

when the level of loss is higher, it increases with BL and reaches 3.9. Thus, when the
percentage of lost capacity is high, several types of bins are included in the capacity plan.
The average percentage fF S related to the actual volume of first-stage bins varies between
83% and 95% and does not depend on the parameters SL, TL, and BL, but decreases with
the value of alpha. Given that the fF S ranges between two high values and that the average
percentage fill level of second-stage bins is always around 85%, the capacity plan results
are effective, requiring only targeted adjustments at the second stage. This effectiveness
is confirmed by the low level of capacity lost in the first-stage, which is almost always
zero (0.3%).

Finally, when we consider instances with availability classes AV2 or AV3, instead of
AV1, the structure of the capacity plan remains the same, but the capacity booked at the
first stage is slightly lower.

Figure 5.8: Average values of C apF S in the urban distribution setting, when the instance
set is T3, and availability classes are AV1 (dark grey) and AV2 (light grey).

5.4.4 Managerial insights
We complete our analysis by summarizing the main outcomes of our experimental

design, and providing some managerial insights useful to the supply-chain partners
involved in the logistics segment:

• numerical results show the need to consider uncertainty in capacity-planning
applications explicitly. The benefits of using this type of model compared to the
complete information problem, i.e., the wait-and-see approach, and the expected
value problem, are significant. Indeed, from the numerical analysis, it emerges that
the stochastic formulation results in improved operations management (prediction
of the capacity needed) and economic benefits in terms of lower operating costs.
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Figure 5.9: Average values of C apF S in the urban distribution setting, when the instance
set is T5, and availability classes are AV1 (dark grey) and AV2 (light grey).

Figure 5.10: Average values of Nt in the urban distribution setting, when the instance set
is T3, and availability classes are AV1 (dark grey) and AV2 (light grey).

Moreover, when the availability of bins at the shipping day is limited and there is a
low probability of losing a large amount of planned capacity, the expected-value
solutions lead to infeasible capacity plans.

• The structure of the capacity plan is affected by the probability of incurring a
reduction of available capacity and by the type and entity of the losses, which is
different in the urban distribution and the long haul transportation settings.

In particular, in the long-haul transportation where the losses of available volume
are usually uniformly distributed among the bins, if only a few types of bins are
available on the spot market, and if the availability of extra bins at the shipping
day is limited, the shipper should book almost all the capacity it will need for the
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Figure 5.11: Average values of Nt in the urban distribution setting, when the instance set
is T5, and availability classes are AV1 (dark grey) and AV2 (light grey).

planning horizon in advance. In particular, if there is a high probability of losing a
large amount of capacity, the shipper should book more capacity than needed.

This situation could also impact on the urban distribution, in particular when logistic
operations require customized treatments and carrier who has specialized equipment
(e.g., refrigerated bins) provides the capacity. The shipper should book thus a large
portion of capacity because at the operational day it cannot turn quickly to another
carrier.

On the contrary, if there is a high probability of losing a large amount of capacity but
the availability of extra bins is not limited, no capacity should be booked in advance.
In this situation, the shipper, instead of making a capacity plan, should wait until
the shipping date to purchase the necessary capacity at a premium price. Finally, if
the reductions of capacity are highly localized as in the urban distribution context
(i.e., the losses concern only a few bins or vans that become entirely unusable), the
shipper should book, in advance, the same capacity that it would buy if there were
no losses of capacity but using different types of bins.
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Chapter 6

Conclusions

In this thesis, we have introduced a new multi-disciplinary approach to urban freight
transportation and logistics problems arising in the City Logistics and Smart Cities fields.

Nowadays, a competitive and well-functioning urban freight transportation and
logistics system requires the commitment and cooperation of public and private
stakeholders and actors, as well as the integration of different business and operational
models. This requirement calls for a holistic representation of the urban area as a MACS
that acts as a “system of systems”. It means that this system becomes an integrator, in a
modular manner, on the one hand of existing single logistics subsystems, including single
and multi-echelon structures, multimodal and intermodal delivery options and
low-emission vehicles (e.g., cargo bikes, lockers), and future disruptive innovation (e.g.,
drones, autonomous vehicles). On the other hand, the system has to integrate a
macro-level of interconnections among actors, stakeholders, and subsystems.

This integration will harness the value of behavioral, technological and optimization
components to provide a solid basis of cooperation, reliable data to design policies for
sustainable logistics. In particular, it brings to a multi-disciplinary challenge in modeling
the overall system, in which mixing qualitative and quantitative methods and models from
the different research communities are key pillars to cope with the various issues in urban
areas and decisional levels.

Prior work has documented the effectiveness of this multi-disciplinary approach
in dealing with emerging critical problems arising in urban freight transportation and
logistics applications. These problems are the integration of traditional transportation
modes (i.e., vans) and, vehicles with low-environmental impact (i.e., cargo bikes) and
new delivery options (i.e., lockers), and the multiple-types capacity planning problem in
the form of stochastic variable cost and size bin packing problem with uncertainty on the
available capacity.

We have addressed these new applications to overcome a noteworthy portion of a gap in
the literature concerning the combination of different logistics and transportation business
and operational models, and the mixing of managerial and technical perspectives to design
public and private policies, and jointly optimize the freight transportation process. This
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gap in the literature has emerged relevant in both the City Logistics and intermodal system.
In fact, analyzing the rich research on intermodal transportation, we found that there
is the need for new models, methods and software tools able to represent the complete
transportation system, including public governance, individuals and freight movement.
This holistic vision, thought the behavioral analysis and the incorporation of a managerial
perspective into simulation and optimization tools, represents a significant element in
designing sustainable policies appropriate for freight transportation. In this sense, the
study has highlighted that policy-making processes receive little attention in the literature.
Even when DSSs are available, some other gaps come from the difficult validation of
models and methods. Indeed, the results generated by the generalization of classical
instances are often not created for urban applications, or on artificial data (i.e., data not
coming from any historical or empirical datasets), and thus, not directly compared with
real or realistic settings associated to the real urban context and stakeholders. Moreover,
there is no standard way of combining data gathered from different sources and, from
them, generate new instances for urban applications.

To demonstrate the valuable contribution of this multi-disciplinary approach to the
research in urban transportation and logistics, we applied it to deal with the recent trend in
the CEP market, related to substitution of traditional single-echelon routing structures with
two-echelon ones that include satellites centers and the use of environmentally-friendly
vehicles. Indeed, nowadays, there is the practice of outsourcing of the last-mile activities
to operators that base their businesses on the adoption of low-emission vehicles and new
delivery options.

First, we analyzed the main actors involved in the urban freight transportation system
from both business and operational perspectives, to identify synergies, conflicts, and the
operational and economic consequences of adopting green vehicles. Most notably, this
is the first study to our knowledge that has explicitly investigated the behaviors, costs
and revenues structures of these actors, as well as the operational performance of the
traditional and green delivery options, based on the main variables that affect the last-mile
logistics in urban areas (e.g., distance, delivery time, etc.). This managerial analysis
has supported a quantitative analysis of strategic actions and their implementation in
operations.

Second, we proposed a new standard optimization–simulation framework for urban
freight transportation and logistics that generalizes to many types of problems encountered
in urban areas. This tool is able to combine data gathered from different sources and
requirements from different stakeholders (e.g., city administrations, companies, city
technology infrastructures), building new realistic instance sets.

We have conducted this study through case studies that aimed to evaluate the
integration of transportation modes and delivery options to face the demand from
e-commerce, in an urban context as the City of Turin (Italy).

Our results provide compelling evidence that the switch to vehicles with a low
environmental impact and lockers does not generate benefits in absolute terms, but it
needs to be calibrated and assessed, due to the loss of efficiency for traditional
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subcontractors, that this type of integration could cause. On the one hand, the outsourcing
of deliveries to green subcontractors could determine the reduction of CO2 emissions,
economic efficiency for traditional business models, better working condition for drivers,
and improvement of quality level required by time-sensitive services. This last benefit is a
consequence of the reduction of delivery times and the overcoming of regulatory and
infrastructure restrictions in the city (e.g., low-emission zones, traffic, and congestion) by
cargo bikes. Moreover, the bikes represent the most suitable vehicles to face online
requests for deliveries, due to their high flexibility. On the other hand, the loss of
efficiency for traditional subcontractors has to be contained and balanced by an increase
in service quality provided by green subcontractors, to maintain an equilibrium in the
system. Mitigating this issue and achieving a reasonable level of efficiency in the overall
system, require a continuous process of optimization and planning activities implemented
by a DSS that considers the requirements of all stakeholders and the evolution of society.

Concerning new planning problems, we addressed the Stochastic Variable Cost and
Size Bin Packing Problem with Loss of Available Capacity (SVCSBPPL), which explicitly
takes into account the presence of uncertainty on parameters that characterize the system
of urban areas and strongly affect the tactical decisions related to the outsourcing process.
This analysis has overcome the gap in the literature of comprehensive study of the sources
of uncertainty that affect the capacity planning, and particularly, the explicit representation
of the uncertainty on the actual volume of contracted capacity resources. The results
provided by extensive computational tests shown the usefulness of building a stochastic
programming model and explicitly considering the uncertainty on the actual volume
of booked capacity. Some managerial insights have been drawn out of the results. In
particular, it emerged that the capacity plan depends on the probability of suffering from
reductions of available capacity and on the type and the entity of these losses.

Two future directions need to be further investigated. First, concerning this emerging
bi-vehicular model, future research should analyze how the dynamics in urban freight
transportation systems change after introducing vehicles with a low environmental impact,
such as electric and the hybrid vehicles, as well as additional traditional vehicles owned
by unprofessional users. This last practice is known as “Crowdsourcing”, and according
to the work by Giret et al. [107], it has the aim of reducing the need of dedicated logistic
moves (by vans, and/or trucks), by exploiting the citizens’ movements that become
temporal deliverers, while increasing the service level with respect to the strict time
windows imposed by the demand-driven logistics.

Second, the SVCSBPPL is based on the hypothesis that a company contracts capacity
with only one carrier. In reality, this hypothesis may be not always correct, and it entails
the selection of the carriers to activate businesses and the contracting with them to book the
necessary capacity before operations start. One can generalize the SVCSBPPL explicitly
introducing the problem of choosing multiple carriers and of determining the quantity of
capacity of different types to purchase from each selected carrier.

In this direction, we modeled the new capacity planning problem by proposing a
new modeling framework. It takes the form of a stochastic bin packing problem, called
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the Stochastic Variable Cost and Size Bin Packing Problem with Supplier Selection
(SVCSBPPL), which generalizes prior work on the SVCSBPPL proposed in this thesis,
introducing the supplier selection problem. The extended model is based on two-stage
stochastic programming with recourse formulation.

Currently, we are developing an innovative solution method for this problem based
on a constructive heuristic for selecting carriers and determining the quantity of capacity
units of different types to book for the next period of activity, and a metaheuristic inspired
by the PH idea. An extensive computational campaign is required to analyze the impact
of the new problem settings on capacity planning.
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Appendix A

PH-based meta-heuristic

A.1 Scenario decomposition
We first reformulate the SVCSBPPL stochastic (5.1)-(5.10) model using scenario

decomposition. Sampling is applied to obtain a set of representative scenarios, namely
the set S , and these are used to approximate the expected cost associated with the second
stage. For the first stage, let y t s

j = 1 if bin j ∈J t of type t ∈ T is selected under scenario
s ∈ S and 0 otherwise. For the second stage, define K s = ⋃

τK τs , where K τs is the
set of extra bins of type τ ∈T in scenario s ∈S , and let I s be the set of items to pack
under scenario s ∈S . Let g τs be the cost associated with bins of type τ ∈T in scenario
s ∈S , V t s

j be the actual volume of first-stage bin j ∈J t under scenario s ∈S , and v s
i

be the volume of item i ∈I s in scenario s ∈S . Then, variable zτs
k is equal to 1 if and

only if extra bin k ∈K τs of type τ ∈T is selected in scenario s ∈S , and xs
i j and xs

i k are
item-to-bin assignment variable for scenario s ∈S .

Given the probability ps of each scenario s ∈S , the SVCSBPPL problem (5.1)-(5.10)
can be approximated by the following equivalent deterministic model:

min
y,z,x

∑
s∈S

ps

[∑
t∈T

∑
j∈J t

f t y t s
j + ∑

τ∈T

∑
k∈K τs

g τs zτs
k + ∑

t∈T

∑
j∈J t

c t (V t −V t s
j )y t s

j

]
(A.1)
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s.t. y t s
j ≥ y t s

j+1, ∀ t ∈ T, j = 1, . . . , |J t |−1, s ∈S , (A.2)∑
j∈J

xs
i j +

∑
k∈K s

xs
i k = 1, ∀ i ∈I s , s ∈S , (A.3)∑

i∈I s
v s

i xs
i j ≤ V t s

j y t s
j , ∀ t ∈ T, j ∈J t , s ∈S , (A.4)∑

i∈I s
v s

i xs
i k ≤V τzτs

k , ∀τ ∈T ,k ∈K τs , s ∈S , (A.5)

y t s
j = y t s′

j , ∀ t ∈ T, j ∈J t , s, s′ ∈S , (A.6)

y t s
j ∈ {0,1}, ∀ t ∈ T, j ∈J t , s ∈S , (A.7)

zτs
k ∈ {0,1}, ∀τ ∈T ,k ∈K τs , s ∈S , (A.8)

xs
i j ∈ {0,1}, ∀ i ∈I s , j ∈J , s ∈S , (A.9)

xs
i k ∈ {0,1}, ∀ i ∈I s ,k ∈K s , s ∈S . (A.10)

Constraints (A.6) are referred as the non-anticipativity constraints. They ensure that
the first-stage decisions are not tailored to the scenarios considered in S . Indeed, all
the scenario solutions must be equal to produce a single implementable plan. Thus, the
non-anticipativity constraints link the first-stage variables to the second-stage variables,
so the model is not separable.

To apply Lagrangean relaxation and make the model separable, we need a different
expression of the non-anticipativity constraints. Let ȳ t

j ∈ {0,1},∀ t ∈ T, j ∈ J t , be the
global capacity plan, i.e., the set of bins selected at the first stage. The following
constraints are equivalent to (A.6):

ȳ t
j = y t s

j , ∀ t ∈ T, j ∈J t , s ∈S , (A.11)

ȳ t
j ∈ {0,1}, ∀ t ∈ T, j ∈J t . (A.12)

Constraints (A.11) force the first-stage solution of each scenario to be equal to the global
capacity plan. Constraints (A.12) are simply the integrality conditions on the selection
of the bins. With this formulation of the non-anticipativity constraints, when we apply
Lagrangean relaxation to (A.11), we can penalize individually the difference between the
scenario solution and the global solution of each bin in the plan.

Following the decomposition scheme proposed by [199], we relax constraints (A.11)
using an augmented Lagrangean strategy. We thus obtain the following objective function
for the overall problem:

min
y,z,x

∑
s∈S

ps

[∑
t∈T

∑
j∈J t

f t y t s
j + ∑

τ∈T

∑
k∈K τs

g τs zτs
k + ∑

t∈T

∑
j∈J t

c t (V t −V t s
j )y t s

j +

+ ∑
t∈T

∑
j∈J t

λt s
j (y t s

j − ȳ t
j )+ 1

2

∑
t∈T

∑
j∈J t

ρt
j (y t s

j − ȳ t
j )

2

] (A.13)

where λt s
j ,∀ j ∈J t ,∀t ∈ T , and ∀s ∈S , define the Lagrangean multipliers for the relaxed

constraints and ρt
j is a penalty ratio associated with bin j ∈ J t of type t ∈ T . Within
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function A.13, let us consider the quadratic term. Given the binary requirements of y t s
j

and ȳ t
j , the term becomes:

∑
t∈T

∑
j∈J t

ρt
j

(
y t s

j − ȳ t
j

)2 = ∑
t∈T

∑
j∈J t

(
ρt

j (y t s
j )2 −2ρt

j y t s
j ȳ t

j +ρt
j (ȳ t

j )2
)
= (A.14)

= ∑
t∈T

∑
j∈J t

(
ρt

j y t s
j −2ρt

j y t s
j ȳ t

j +ρt
j ȳ t

j

)
. (A.15)

Therefore, the objective function can be formulated as follows:

min
y,z,x

∑
s∈S

ps

[∑
t∈T

∑
j∈J t

(
f t + c t s(V t −V t s

j )+λt s
j −ρt

j ȳ t
j +

ρt
j

2

)
y t s

j +

+ ∑
τ∈T

∑
k∈K τs

g τs zτs
k − ∑

t∈T

∑
j∈J t

λt s
j ȳ t

j +
1

2

∑
t∈T

∑
j∈J t

ρt
j ȳ t

j

]
.

(A.16)

Given constraints (A.2)-(A.10) and the objective function (A.16), the relaxed problem
is not separable by scenario. However, if the overall plan ȳ t

j ,∀t ∈ T and ∀ j ∈ J t , is
fixed to a given value vector (i.e., the expected value of the scenario solutions), then the
model decomposes according to the scenarios in S and the scenario subproblems can be
expressed as follows:

min
y,z,x

∑
t∈T

∑
j∈J t

(
f t + c t s(V t −V t s

j )+λt s
j −ρt

j ȳ t
j +

ρt
j

2

)
y t s

j + ∑
τ∈T

∑
k∈K τs

g τs zτs
k (A.17)

s.t. y t s
j ≥ y t s

j+1, ∀ t ∈ T, j = 1, . . . , |J t |−1, s ∈S , (A.18)∑
j∈J

xs
i j +

∑
k∈K s

xs
i k = 1, ∀ i ∈I s , s ∈S , (A.19)∑

i∈I s
v s

i xs
i j ≤ V t s

j y t s
j , ∀ t ∈ T, j ∈J t , s ∈S , (A.20)∑

i∈I s
v s

i xs
i k ≤V τzτs

k , ∀τ ∈T ,k ∈K τs , s ∈S , (A.21)

y t s
j ∈ {0,1}, ∀ t ∈ T, j ∈J t , s ∈S , (A.22)

zτs
k ∈ {0,1}, ∀τ ∈T ,k ∈K τs , s ∈S , (A.23)

xs
i j ∈ {0,1}, ∀ i ∈I s , j ∈J , s ∈S , (A.24)

xs
i k ∈ {0,1}, ∀ i ∈I s ,k ∈K s , s ∈S . (A.25)

Furthermore, by noting that λt s
j and ρt

j are exogenous constants for the model (A.17)-

(A.25), we can reformulate each scenario subproblem as follows. We define T = T ∪T

to be the overall set of bin types. For each scenario s, let Bτs = J τ∪K τs be the set
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of available bins of type τ in the subproblem and Bs =⋃
τBτs be the whole set of bins

available in the subproblem. For b ∈ Bτs , let V τs
b be the actual volume of bin b (for

b ∈K τs , V τs
b =V τ) and let f τs

b define the fixed cost associated with bin b. The value of
f τs

b is given by

f τs
b =

⎧⎨⎩ f τ+ cτs(V τ−V τs
b )+λτs

b −ρτb ȳτb +
ρτb
2 τ ∈T ,b ∈J τ

g τs τ ∈T ,b ∈K τs .
(A.26)

Thus, each scenario subproblem can be reduced to a deterministic VCSBPP with
modified fixed costs and an additional constraint that ensures an order in the selection of
bins of type τ ∈T :

min
y,x

∑
τ∈T

∑
b∈Bτs

f τs
b yτs

b (A.27)

s.t. yτs
b ≥ yτs

b+1, ∀τ ∈T ,b = 1, . . . , |Bτs |−1, (A.28)∑
b∈Bs

xs
i b = 1, ∀ i ∈I s , (A.29)∑

i∈I s
v s

i xs
i b ≤ V τs

b yτs
b , ∀τ ∈T ,b ∈Bτs , (A.30)

yτs
b ∈ {0,1}, ∀τ ∈T ,b ∈Bτs , (A.31)

xs
i b ∈ {0,1}, ∀ i ∈I s ,b ∈Bs , (A.32)

where yτs
b = 1 if bin b ∈Bτs of type τ ∈T is selected, 0 otherwise.

A.2 Phase 1 of the meta-heuristic

A.2.1 Obtaining consensus among subproblems
At each iteration of the meta-heuristic, the solutions of the scenario subproblems

are used to build a temporary global solution (the overall capacity plan). Consensus is
then defined as scenario solutions being similar with regard to the first-stage decisions
with the overall capacity plan and, thus, being similar among themselves. This section
describes how the overall plan is computed. Moreover, we introduce strategies for the
penalty adjustment when nonconsensus is observed and techniques to guide the search
process by bounding the number of bins that can be selected at the first stage.

A.2.2 Defining the overall capacity plan
Let ν be the iteration counter in the PH algorithm. At each iteration, the algorithm

solves subproblems (A.27)–(A.32), obtaining local solutions yτsν
b yτsν

j , ∀s ∈S , ∀τ ∈T ,

and ∀b ∈Bτs . The subproblem solutions are then combined in the overall capacity plan

146



A.2 – Phase 1 of the meta-heuristic

ȳτνb by using the expected value operator, as shown in Equation (A.33). The weight used
for each component is the probability ps associated with the corresponding scenario.

ȳτνb = ∑
s∈S

ps yτsν
b , ∀τ ∈T ,∀b ∈Bτ. (A.33)

Moreover, we define an overall solution based on the number of bins in the capacity
plan. Let δτsν =∑

b∈Bτ yτsν
b be the total number of bins of type τ ∈T in the capacity plan

for scenario subproblem s ∈S at iteration ν. Equivalently to (A.33), using the expected
value operator on δτsν ∀s ∈S , we can define the overall capacity plan for each bin type
τ ∈T as

δ̄τν = ∑
s∈S

psδ
τsν = ∑

s∈S

ps
∑

b∈Bτ

yτsν
b = ∑

b∈J τ

∑
s∈S

ps yτsν
b = ∑

b∈Bτ

ȳτνb . (A.34)

Equation (A.34) can be used to define the stopping criterion. Thus, we consider consensus
to be achieved when the values of δτsν, ∀s ∈S , are equal to δ̄τν.

It is important to note that (A.33) and (A.34) do not necessarily produce a feasible
capacity plan. When consensus is not achieved, the overall solution may not satisfy the
integrality constraints on the first-stage decision variables. For nonconvex problems such
as the SVCSBPPL using the expected value as an aggregation operator does not guarantee
that the algorithm converges to the optimal solution. Moreover, it cannot ensure that a
good (feasible) solution will be obtained for the stochastic problem. Therefore, (A.33)
and (A.34) are used as reference solutions with the goal of helping the search process of
the PH algorithm to identify bins for which consensus is possible. Both are used in the
penalty adjustment, while (A.34) is also used in the bounding strategy.

A.2.3 Penalty adjustment strategies
To induce consensus among the scenario subproblems, we adjust the penalties in the

objective function at each iteration to penalize a lack of implementability and dissimilarity
between local solutions and the overall solution. We propose two different strategies
for these adjustments, both working at the local level in the sense that they affect every
scenario subproblem separately.

The first strategy was originally proposed by [199]. Using information on the bin
selection (i.e., variable yτsν

b ), it operates on the fixed costs by changing the Lagrangean
multipliers. For a given iteration ν, let λτsν

b be the Lagrangean multiplier associated with
bin b ∈ Bτs for scenario s ∈ S , and let ρτνb be the penalty deriving from the quadratic
term. Note that the value of ρτνb is variable-specific. At each iteration, we update the
values λτsν

b and ρτνb , ∀b ∈Bτs and ∀s ∈S , as follows:

λτsν
b =λτs(ν−1)

b +ρτ(ν−1)
b (yτsν

b − ȳτνb ) (A.35)

ρτνb ←αρτ(ν−1)
b , (A.36)
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where α> 1 is a given constant and ρτ0
b is fixed to a positive value to ensure that ρτνb →∞

as the number of iterations ν increases.
We initialize λs0

b = 0 for each scenario s ∈ S . Equation (A.35) can then reduce,
increase, or maintain this contribution according to the difference between the value of
the bin-selection variables in the subproblem solutions and the overall capacity plan. The
initial choice of ρτ0

b is important. An inaccurate choice may cause premature convergence
to a solution that is far from optimal or cause slow convergence of the search process.
To avoid this, we set ρτ0

b proportional to the fixed cost associated with the bin-selection
variable: ρτ0

b = max(1, f τ/10), ∀b ∈ Bτs and ∀τ ∈ T . The value of ρτ0
b increases

according to (A.36) as the number of iteration grows.
The second penalty adjustment is a heuristic strategy, which directly tunes the fixed

costs of bins of the same type. The goal of this strategy is to accelerate the search process
when the overall solution is close to consensus. When consensus is close, the difference
between the subproblem solution and the overall solution may be small, and adjustments
(A.35) and (A.36) lose their effectiveness, requiring several iterations to reach consensus.

Let f τsν be the fixed cost of bin b ∈Bτs of type over l i neτ ∈T for scenario s ∈S

at iteration ν. At the beginning of the algorithm (ν = 0), we impose f τs0 = f τ. Then,
when at least σ% of the variables have reached consensus, we perturb every subproblem
by changing f τsν as follows:

f τsν =

⎧⎪⎪⎨⎪⎪⎩
f τs(ν−1) ·M if δτs(ν−1) > δ̄τ(ν−1)

f τs(ν−1) · 1
M if δτs(ν−1) < δ̄τ(ν−1)

f τs(ν−1) other wi se.

(A.37)

Here M is a constant greater than 1, while σ% is a constant such that 0.5 ≤ σ% ≤ 1.
The current implementation of this heuristic strategy uses σ% = 0.75 and M = 1.1. The
rationale for (A.37) is the following: if δτs(ν−1) > δ̄τ(ν−1), this means that in the previous
iteration the number of bins of a given bin type τ in scenario s was larger than the number
of bins in the reference solution δ̄τ(ν−1). Thus, the use of bins of type τ is penalized by
increasing the fixed cost by M . On the other hand, if δτs(ν−1) < δ̄τ(ν−1), we promote bins
of type τ by reducing the fixed cost by 1/M .

A.2.4 Bundle fixing
To guide the search process, we introduce a variable-fixing strategy called bundle

fixing.
We restrict the number of bins of each type that can be used, specifying lower and

upper bounds. It should be noticed that it is equivalent to fix single bin-selection variables,
since all bins of a certain type τ are ordered and constraint A.28 ensures that the selection
of bins follows this order.

Let δ̄τνm and δ̄τνM be the minimum and maximum number of bins of type τ involved in
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the overall solution at iteration ν:

δ̄τνm ← min
s∈S

δτsν, (A.38)

δ̄τνM ← max
s∈S

δτsν. (A.39)

At each iteration, the bundle strategy applies two bounds as follows. The lower
bound δ̄τνm determines a set of compulsory bins that must be used in each subproblem; to
implement this we set the decision variables yτs(ν+1)

b to one for b = 1, ..., δ̄τνm . The upper
bound δ̄τνM is an estimate of the maximum number of bins of type τ available in the next
iteration; this reduces the number of decision variables in the subproblems. To implement
this we remove decision variables yτs(ν+1)

b for b = δ̄τνM +1, ...,∥Bτ∥.

A.2.5 Termination criteria
There are to date no theoretical results on the convergence of the PH algorithm for

integer problems. Thus, we implement three stopping criteria for the search phase of
the proposed meta-heuristic, based on the level of consensus reached and the number of
iterations.

The level of consensus is measured through equations A.38 and A.39, as consensus is
reached when δ̄τνm = δ̄τνM , ∀τ ∈T . To speed up the algorithm, we actually stop the search,
and proceed to Phase 2, as soon as consensus has been reached for all the bin types except
one, type τ′, for which δ̄τ

′
m < δ̄τ′M .

When neither of the preceding conditions has been reached within a maximum number
of iterations (200 in our experiments), the search is stopped and the meta-heuristic
proceeds to the Phase 2.

A.3 Phase 2 of the meta-heuristic
Phase 2 is thus invoked either when consensus is not achieved within a given maximum

number of iterations, or the search was stopped when all but one bin type were in
consensus.

In the first case, there is only one bin type τ′ with δ̄τ
′

m < δ̄τ′M , that is, not in consensus.
Given the efficiency of the item-to-bin heuristic, Phase 2 computes the final solution by
iteratively examining the possible number of bins for τ′ (a consensus solution is always
possible because δ̄τ

′
M is feasible in all scenarios):

• For all δ ∈
[
δ̄τ

′
m , δ̄τ

′
M

]
do

– Set the number of bins of type τ′ to δ;

– Solve all the scenario subproblems with the heuristic;
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– Check the feasibility of the solutions;

– Update the overall solution if a better solution has been found;

Produce the consensus solution.

When the maximum number of iterations is reached, consensus is less close. Phase
2 of the meta-heuristic then builds a restricted version of the formulation (A.1)–(A.10)
by fixing the bin-selection first-stage variables for which consensus has been achieved,
together with the associated item-to-bin assignment variables. The range of the bin types
not in consensus is reduced through bundle fixing, and the resulting MIP is solved exactly.
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