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Abstract—This work presents an automatic methodology able
to improve machine-generated signatures for Android Malware
detection. The technique relies on a population-less evolutionary
algorithm and uses an unorthodox fitness function that incor-
porates unsystematic human experts knowledge in the form of
a set of rules of thumb. The proposed optimization algorithm
does not require to rank the individuals, as exploiting experts
knowledge, the resulting population of candidate solutions is not
a totally ordered set any more. Experimental results show that
the resulting signatures are of good quality and more accurate
than the original ones, lowering both false positives and negatives.

Index Terms—Android Malware, Automatic Signature Opti-
mization, Estimation of Probability Evolutionary Algorithms

I. INTRODUCTION

The Android ecosystem offers an open market model, where
millions of applications are downloaded by users every day.
However, such popularity comes with a price: new malware
are developed and spread every day by malicious actors. The
prompt identification of new malicious applications is a critical
issue and still an open problem. Although the official Google
Play store applies a strict review process on new applications
to confirm their compliance with Google policies [1], the same
procedure is not applied on other third-party app-stores, which
accidentally offer a channel for malware propagation.

One of the longest running practice for Android malware de-
velopers is to repack popular applications from Google Play by
adding malicious features and then redistribute them to third-
party app-stores [2]. Indeed, by exploiting the original app
popularity, the malware gains a fast propagation. Moreover,
the repackaging process is is simplified by the availability of
specific tools [3] [4].

In this scenario, antivirus (AV) software are struggling to
keep their signature database up-to-date and AV scanners are
suffering from several false negatives detection [5]. It is a chal-
lenging task to create high quality signatures able to generalize
the matching of new malware variants while avoiding false
positives detection. Furthermore this generalization requires a
big effort in terms of human experts’ time.

Given the industrial interest in the automatic generation of
new Android Malware Signatures (AMS), new tools are con-
stantly proposed. One of the latest presented work is YaYaGen
(Yet Another Yara Rule Generator) [6], an automated approach
to generate YARA signatures to detect Android malware. It
combines several heuristic measures with a dynamic greedy

optimization algorithm specifically designed to solve a variant
of the set covering problem.

One of the limitation that commonly affect automatic signa-
ture generation approaches, is that signatures are too specific to
the reference malware samples, that is they hardly detect other
malware variants too. In other words, automatically generated
signatures produce a very low number of false positives, but
a considerably higher number of false negatives.

The aim of this work is to optimize automatically-generated
AMS by mean of an estimation off probability evolutionary
algorithm (EDA), able to include the human experts knowl-
edge in the optimization process. The efficacy of the proposed
method has been proved by extensive experimental results,
showing the ability of the proposed EDA of generating more
generic rules, that lower the false negatives without affecting
the global accuracy.

The main contributions presented in this paper are the
following:

• The design of an optimization procedure for AMS which
combines heuristics and evolutionary algorithms.

• The usage of expert knowledge as a set of generic hints
that do not need to be globally coherent.

• The implementation of the proposed methodology as an
extension of the original YaYaGen software.

The rest of the paper is organized as follows. Section II
surveys the signature generation background, while Section III
introduces the proposed workflow to generate and optimize
a signature. Section IV presents the proposed methodology,
and Section V presents the experimental setup and the results.
Finally, Section VI concludes the paper.

II. RELATED WORK

A. Automatic Anti-virus Rule Generation
In the early days of AV technology, a simple hash value

of an application was enough to detect a malicious soft-
ware. However, every modification, as tiny as one byte, was
enough to escape the detection. Today’s signatures are pattern-
matching rules commonly defined on static or dynamic proper-
ties of the applications and still represent the most reliable (i.e.,
with the lowest rate of false positives) antivirus technology.

The automatic generation of network signatures has been
explored in various previous work [7]–[11] where most of
these studies focus mainly on worm fingerprinting.

Perdisci et al. [12] tackles the problem of automatically
generate network signatures for cluster centroids, with the aim



of deploying them into an IDS at the edge of a network in
order to detect malicious HTTP traffic. In order to avoid false
positives detections, generated signatures are checked with a
large dump of benign network traffic, discarding those that
produce unwanted matches.

AndroSimilar [13] and DroidAnalytics [14] tackle the prob-
lem of generating malware signatures specifically for Android
malware. The former uses a statistical approach to generate
variable length signatures, while the latter relies on a opcode
level analysis to extract the API call tracing information.
However, detailed experiments show that both approaches are
affected by a high false positives rate.

A part from the academic research, a series of tools have
been proposed during the years from the industry too. The
majority of them address the signature generation for the
Windows malware, however the approaches are mostly gen-
eral, and can be easily extended to the generation of AMS
too. Among the others, yarGen [15], YaraGenerator [16],
Yabin [17] and BASS [18] are the most well known.

yarGen generates signatures by extracting opcodes and
strings, and after a white-list filtering, it uses an heuristic
mechanism to select the most effective ones. On the other
hand, YaraGenerator simply looks for common strings among
the provided samples to generate a YARA rule. Differently,
Yabin extracts opcodes from rare functions in the binary,
and its effectiveness relies on a comprehensive dataset of
goodware functions. Finally, BASS applies a more complex
approach where samples are initially clustered according to
their similarity, then it produces a ClamAV signature using
the Longest-Common-Subsequences (LCS) algorithm.

B. Estimation of Distribution Evolutionary Algorithm

In canonical evolutionary algorithms (EAs) [19], an individ-
ual encodes a candidate solution and the set of all individuals
that have a role in the evolutionary process is called popu-
lation. In estimation of distribution algorithms (EDAs) [20],
on the contrary, candidate solutions are not explicitly stored,
but the population contains the distributions, and possibly the
relationships, of the variables.

The selfish gene algorithm (SG) is an EDA proposed
more than two decades ago [21], it was inspired by a
tough experiment suggested by Richard Dawkins in his cele-
brated book [22]. It exploits a univariate discrete probabilistic
model—a vector that stores the marginal probabilities of allele
values for each gene position, independently of other gene
positiions—and is akin to other algorithms, such as the equi-
librium genetic algorithm (EGA) [23], the population-based
incremental learning (PBIL) [24], the univariate marginal
distribution algorithm (UMDA) [25], and remarkably similar
to the compact genetic algorithm (cGA) published the same
year [26].

Like the cGA, the SG algorithm iteratively samples two
solutions at a time and conducts a competition between them.
It then updates the probabilistic model by rewarding the allele
values contained in the winner and penalizing the allele values
contained in the loser of the competition. The strength of the

reward/penalty for each gene position i is determined by a
parameter εi, which usually depends on the number of different
alleles that can occupy the i-th locus.

The original SG was quite simple to implement and efficient
in finding optima, yet far more robust than pure hill climbing.
It was exploited by practitioners in some real-world applica-
tions, such as CAD problems [27], by scholars for various test
benches [28], and few new approaches derived from it [29].
In 1999 it was enhanced to tackle highly deceptive functions
at the expense of a significant loss in performance [30].

III. SIGNATURE GENERATION WORKFLOW

YaYaGen is a tool for the automatic generation of malware
signatures. It relies on the use of report files obtained from
the analysis of the APK (Android PaKage). Given the set of
reports generated by malwares belonging to a same family the
tool is able to automatically create a signature of the whole
malware family. The signature generation process makes the
intersection of all the report, so the created signature contains
all the common features of the malware family members. The
drawback is that the resulting signature could be over-specific
and unable to match new malwares of the same family. For
this reason it is essential to add an optimization phase that
avoids the creation of such over-specific signatures.

The signature generation workflow used in this paper is a
common strategy used in an industrial setting; it is composed
by the following phases (Figure 1):

1) Data Analysis: a set of Android application is analyzed
to extract common characteristics relevant to the clus-
tering process.

2) Clustering: the applications are grouped to facilitate
subsequent steps. This phase is optional and depends
on the applications number and on how they have been
collected. Moreover it may be either guided by a human
expert or completely unsupervised.

3) Signature Generation: the information extracted from
the Android applications is converted in a working
signature.

4) Signature Optimization: once generated the signature
gets a score. If the score of the signature is beyond
a fixed threshold, the signature is optimized using the
methodology of the proposed framework.

5) Testing: the effectiveness of the final optimized signature
is then evaluated on a large Android applications dataset.

The original framework, without the new evolutionary opti-
mization phase that is presented here, is described in [6] and
is in use on Koodous1, the mobile AV platform from Hispasec,
since January 2018.

A. Score of the generated signatures

High quality signatures require an optimal balance between
generality and specificity. To find this balance is one of the
main challenges in automatic signature generation. When a
signature is too general, it can generate many false positives.

1https://koodous.com/

https://koodous.com/


Fig. 1. Workflow of signatures generation.

On the other hand, a very specific one is unable to detect
elements with small differences inside the same family.

To rank the discriminating power of a signatures we intro-
duce a signature score. Since a signature is composed of one
or more attributes, we can assign a score to each attribute.
The score is given by a proportional rule: the greater the
attribute discriminating power, the highest the score. Its value
is computed by an empirical approach combined with the
Simplex Algorithm [31].

A signature detection score is given by the type and the
number of its attributes; this score is computed according to
the following formula:

Sσ =

n∑
i=0

Aσi

where

Sσ = the score of the signature S
n = the number of attributes inside S
Ai = the i-th attribute of the signature, that is

S = {A0, A1, ..., An}
Aσi = the score of the i-th attribute of the signature.

B. Signature Representation in the Disjunctive Normal Form

The attribute set of a malware family is the intersection
of the attributes of its members, so it possible to express the
signature of the family in a disjunctive normal form.

The disjunctive normal form (DNF) is a standardization of a
logical formula which is a disjunction of conjunctive clauses;
it is simply called “OR of ANDs”. A DNF formula is made
up of clauses which, in turn, contain one or more literals.

Aided by the fact that every signature is composed of one or
more attributes extracted from an application analysis report
(e.g., the access permission to a specific resource, the name
of an activity, a URL accessed at execution time, etc. . . ), it is
quite easy to associate an attribute to a literal and an AMS to
a clause. The final signature is then the disjunction of several
AMS.

Based on the above, a signature (S) can be expressed as:

S =

n∨
i=1

(

mi∧
k=1

Ai,k)

where

S = the final signature generated, a disjunction of
several AMS

Ai,k = the k-th attribute belonging to the i-th AMS
n = the number of generated AMS
mi = the number of attributes inside the i-th AMS.

The score of the resulting signature can be easily calculated
starting from the score of single attributes:

Sσ =
n

min
i=1

(

mi∑
k=1

Aσi,k)

IV. PROPOSED FRAMEWORK

Malware signatures can be naively defined by the strings
that only appear in the malware samples not in the legitimate
program. Quite differently, signatures defined in the proposed
approach are accurate, descriptive and based on structural
properties derived from static and dynamic analyses.

After the identification of a good set of clauses that matches
all the target applications, the goal of this framework is to
optimize every generated signature. To do this, it is necessary
to select the proper literals that make up each clause. The aim
is achieved using specific heuristic strategies based both on
rules referable to expert knowledge and on the introduction of
a population-less EA.

A. Double Threshold mechanism

The score of a signature is defined as the sum of the weight
of its literals (Section III-A) and is inversely related to the
signature generality. The lower the score, the more a signature
is able to generalize, but also the more is prone to unwanted
detections. On the other hand, a high score means a more
specific signature and a lower number of false positives results.

In order to find a good balance and to build effective
and well optimized signatures, we make use of two fixed
thresholds (Tmin, Tmax). Tmin represent the value below
which a signature is considered too generic, Tmax the limit
for overly-specific signatures.

In the generation phase, a signature with a score smaller
than Tmin is considered invalid (i.e., too generic). In the
extreme case where it’s not possible to generate any “valid
signature” (i.e., a signature with a score greater than the
thresholds) the problem is proposed to the analyst.

In the optimization phase, a generated signature with a score
greater than the upper threshold (Tmax) is considered too



specific and it is managed by the optimization process that
tries to reduce the score.

Experts’ knowledge helped in establishing that Tmin = 400
and Tmax = 650.

A Basic Optimizer (BO) implemented this double thresh-
old mechanism. The BO pseudo-randomly removes AMS
attributes until the signature score is lower than Tmax. At the
same time it’s continuously checked that the target signature
still has a score grater than the lower threshold (Tmin), so as
to avoid the creation of a too generic signature.

B. The Evolutionary Optimization Phase

We developed a more efficient optimization phase that
overcomes the BO performances based on the SG. Moreover
the algorithm can be fully automated and can substitute a
human expert.

The technique relies on an population-less estimation of
probability evolutionary algorithm, with an unorthodox fitness
function given by unsystematic human experts’ knowledge
coded as a set of rules. In the current application, the genome
is the signature to optimize and loci are the attributes of the
AMS. Each locus may contain two alleles (true and false)
specifying whether the attribute is used in the final signature
or not.

In more details, to compare two candidate solutions the
following metrics are considered, in order of priority:

1) the number of Android application reports correctly
detected by the candidate solution among the ones used
to generate the candidate AMS. The main aim is to
achieve 100% coverage;

2) a set of manually-defined heuristic rules, gathered from
human experts;

3) the score of the candidate optimized AMS;
4) the number of attributes contained inside the candidate

AMS.
The first value is to be maximized while the third and forth

minimized.
The algorithm starts comparing the number of matches of

two candidates. If a signature matches more reports than the
other one (and so, probably even more than the AMS it was
generated by) it will be considered as the most powerful one.
Otherwise, if the number of matches is equal the algorithm
continues using the heuristic rules. If the number of reports
and the heuristic rules are still not sufficient to establish which
signature is better the algotihm evluate the score and the
number of attributes choosing the candidate signature with the
lower values.

The score of the signatures are also constrained between two
thresholds (Tmin < Sσ < Tmax). A candidate solution receives
a huge penalty if the signature becomes too general going
under Tmin, and a smaller penalty if the signature becomes too
specific going beyond Tmax. Penalties are different because, in
the malware detection environment, it is preferable to have too
specific signatures and miss some samples rather than detect
false positives.

Human experts have been interviewed, providing a set of
rules of thumb that can be used to determine if a signature is
better than another one:

• having URL is better than not having it;
• not having SSL is better than having it;
• more categories the better;
• more functionalities the better;
To make empirical rules even more similar to the human

decision-making process we introduce a tolerance in the
comparisons implemented by the last two rules. For example,
signature A is assumed better than signature B if A is greater
than B increased by 10%.

While the set of heuristic rules gathered from human
experts, has been demonstrated able to simulate human way-
of-thinking, such set of rules does not specify a totally ordered
set of individuals. That is, if a signature ia is preferable to
ib, and ib is preferable to ic, this doesn’t imply that ia is
preferable to ic:

(ia ≥ ib) ∧ (ib ≥ ic) 6⇒ ia ≥ ic

For example: Let’s assume that the threshold on the func-
tionalities rule is 3 and the threshold on the categories rule is
10. If

S1 = 5categories;

S2 = SSL+ 10categories+ 2functionalities;

S3 = SSL+ 15categories+ 4functionalities;

We obtain

S1 > S2; S2 = S3; S1 < S3.

If two candidate solutions are both composed only by URL or
both have the SSL functionality, it is not possible to establish
which AMS is better.

C. Archive

In traditional EDA, when two candidate solutions are gen-
erated and compared, they have to compete with a set of
solutions that are considered equally good. This pool of
individuals is called archive [32]. All the individuals contained
inside the archive are candidates to be returned as the final
solution. If the fitness value of a candidate is greater or equal to
all the solutions included in the archive, that candidate solution
becomes part of the archive. To make this mechanism work it
is necessary to have an absolute order among the solutions.

By contrast, in the proposed framework the transitive prop-
erty is lost, so is the absolute order. This is due to the
introduction of the heuristic rules described in Section II-A. It
is therefore necessary to change the way the optimizer selects
the individuals to be kept in the archive.

We propose a tournament-based approach. After every com-
parison, each individual inside the archive receives:

• 3 points, if it is better than the other one;



• 0 points, if it is worst than the other one;
• 1 point, if it is not possible to establish which individual

is better.
This mechanism is executed in a round-trip way, so that

each pair of individuals is compared twice. At the end, the
individual that is stored in the archive is the one with the
highest score. If there is more than one individual with the
highest score, then they are all kept in the archive.

V. CASE OF STUDY

A. Experimental Setup

As a case study we used a dataset of 1.5 million Android
applications collected over the year 2016. The dataset is
up-to-date and heterogeneous in the set of attack vectors it
represents: in order to have the same ratio between detected
and undetected applications as in Koodous, we sampled a
subset of 1 million apps. As a result, the dataset under analysis
is composed by 65% undetected applications, 31% detected by
signatures, and 4% detected through triage only.

Note, all the tests performed during this research activity
were executed on a server equipped with a 4-core Intel i5
processor (i5-2500 CPU @3.30 GHz), 8GB of RAM, and
running Ubuntu 16.04.3 LTS.

B. Experimental Results

Experimental results show that the new version of YaYaGen
gains the ability to generate more accurate rules, lowering both
false positives and negatives. The following table compares the
score of same signatures generated by the original version of
YaYaGen (Not Optimized column) with the score of signatures
generated by the optimized versions (Basic Optimizer and SGX
Optimizer columns). Since the score of a rule is directly related
to the accuracy of the malware detection, the results show that
both the optimizers succeed in reducing the score within the
rage (Tmin = 400, Tmax = 650) that was defined as optimal.
Moreover, it is noted that the SGX-RO reaches the best results
using a combination of sub-optimal literals defined through
heuristic rules2.

After several experiments we observed that the steady state
mechanism is able to substantially improve the execution speed
unless the initial configuration was to much distant from an
optimal solution.

VI. CONCLUSIONS AND FUTURE WORKS

The main idea behind this paper is to improve the capabili-
ties of generating effective Android Malware Signature using
heuristic and evolutionary techniques.

A heuristic mechanisms was introduced to establish the
goodness of the generated signatures: a value was assigned
to each possible literal and, thanks to this, it was possible
to estimate the goodness of each generated signature. Two
thresholds (Tmin and Tmax) were defined to establish if a
signature has to be regarded as to much generic or to much
specific.

2Results are computed on the average of 10 independent tests

To improve the generated rules, an optimization phase was
developed inside an already developed tool (YaYaGen). Ex-
perimental results show that the signature optimization phase
gives to YaYaGen the ability to generate more accurate rules,
lowering both false positives and negatives.

Our proposed approach has gained great interest within the
malware research team of Koodous, for this reason and after a
deep testing phase, it will be integrated inside Koodous Brain.
Koodous Brain is an artificial intelligence platform developed
to assist Android malware detection in the Koodous project,
an open community antivirus from Hispasec Sistemas.

Even if this research activity has reached several satisfactory
results, it is far from being considered concluded. YaYaGen
has already gained new instruments and potentialities but has
to be expanded and empowered in the following months to give
the malware analysts a powerful tool to assist their research
activities.

Possible improvements on this research can be focused
on: make a distinction between IP and URL, improve the
Automatic Initial Probability Computation, develop a new
heuristic optimizer.

The first improvement was proposed during the testing
phase. In this period it was observed that several URLs are
sometimes matched on the same IP address. Implement a
mechanism that takes advantage of this peculiarity could be
helpful and very useful.

It was also noticed that the initial probability of 0 is a
key element for the execution time and for the quality of the
experimental results. Finding a precise mathematical function
able to take advantage of this characteristic could further
improve the computational time and the achieved results .

Finally, heuristic strategies allows to create rules similar
to those that a human expert will write. Developing a third
optimizer, entirely based on heuristic strategies, could give to
YaYaGen a new powerful tool to optimize its signatures.
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[28] R. Tavares, A. Teófilo, P. Silva, and A. C. Rosa, “Infected genes
evolutionary algorithm,” in Proceedings of the 1999 ACM symposium
on Applied computing. ACM, 1999, pp. 333–338.

[29] N. E. A. Khalid, N. M. Ariff, S. Yahya, and N. M. Noor, “A review
of bio-inspired algorithms as image processing techniques,” in Inter-
national Conference on Software Engineering and Computer Systems.
Springer, 2011, pp. 660–673.

[30] F. Corno, M. Sonza Reorda, and G. Squillero, “Optimizing deceptive
functions with the SG-clans algorithm,” in Congress on Evolutionary
Computation. IEEE, 1999, pp. 2190–2195.

[31] A. L. Brearley, G. Mitra, and H. P. Williams, “Analysis of mathematical
programming problems prior to applying the simplex algorithm,”
Mathematical Programming, vol. 8, no. 1, pp. 54–83, Dec 1975.
[Online]. Available: https://doi.org/10.1007/BF01580428

[32] L. Wang, C. Fang, C.-D. Mu, and M. Liu, “A pareto-archived estimation-
of-distribution algorithm for multiobjective resource-constrained project
scheduling problem,” IEEE Transactions on Engineering Management,
vol. 60, no. 3, pp. 617–626, 2013.

https://github.com/Neo23x0/yarGen
https://github.com/Xen0ph0n/YaraGenerator
https://github.com/AlienVault-OTX/yabin
https://github.com/Cisco-Talos/BASS
https://github.com/Cisco-Talos/BASS
http://dx.doi.org/10.1007/978-3-662-44874-8
http://dx.doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/BF01580428

	Introduction
	Related Work
	Automatic Anti-virus Rule Generation
	Estimation of Distribution Evolutionary Algorithm

	Signature Generation Workflow
	Score of the generated signatures
	Signature Representation in the Disjunctive Normal Form

	Proposed Framework
	Double Threshold mechanism
	The Evolutionary Optimization Phase
	Archive

	Case of Study
	Experimental Setup
	Experimental Results

	Conclusions and Future Works
	References

