suppression at forward rapidity in Pb–Pb collisions at sNN=5.02TeV

Original

Availability:
This version is available at: 11583/2743659 since: 2019-07-26T16:43:48Z

Publisher:
ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Published
DOI:10.1016/j.physletb.2018.11.067

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

(Article begins on next page)
The suppression at forward rapidity in Pb–Pb collisions at √s_{NN} = 5.02 TeV

ALICE Collaboration*

1. Introduction

A detailed study of the properties of the Quark–Gluon Plasma (QGP) [1] is the main goal of heavy-ion experiments at ultrarelativistic energies [2–6]. Quarkonia, i.e. bound states of charm or bottom quark–antiquark pairs, are sensitive probes of color deconfinement, due to the Quantum-Chromo Dynamics Debye screening mechanism [7–9] leading to quarkonium suppression. Moreover, the various quarkonium states have different binding energies and therefore different dissociation temperatures in a QGP, leading to sequential suppression [7,10]. Theory estimates [11] indicate that bottomonium formation may occur before QGP thermalization [12] because of the large bottom quark mass. In this situation, a quantitative description of the influence of the medium on the bound states becomes challenging. While the dissociation temperatures vary significantly between different models [8,9], it is commonly accepted that the widths of the spectral functions of the bottomonium states increase compared to the widths in vacuum, due to the high temperature of the surrounding medium [13]. Finally, taking into account that feed-down processes from higher-mass resonances (around 40% for the Υ(1S) and 30% for the Υ(2S) [9]) are not negligible, the evaluation of the medium temperature via bottomonium measurements remains a complex endeavour.

The first studies of quarkonium production in heavy-ion collisions were devoted to charmonium states, and a suppression of their yields was observed at the SPS [14–16], at RHIC [17,18] and at the LHC [19–22]. The weaker J/ψ suppression observed at LHC energies, where the centre-of-mass energy per nucleon–nucleon pair (√s_{NN}) is one order of magnitude larger than at RHIC, can be explained by means of a competitive (re)generation mechanism, which occurs during the deconfined phase and/or at the hadronization stage [23–26]. This production mechanism strongly depends on the (re)combination probability of deconfined quarks present in the medium and thus on the initial number of produced cc pairs. The effect has been found to be more important at low pt and in the most central collisions [22,20,27].

The high-energy collisions delivered by the LHC allow for a detailed study of bottomonium states. For bottomonium production, perturbative calculations of production rates in elementary nucleon–nucleon collisions are more reliable than for charmonium yields due to the higher mass of the bottom quark with respect to charm. Since the number of produced bb pairs in central heavy-ion collisions amount to a few pairs per event at the LHC, the probability for (re)generation of bottomonia through (re)combination is much smaller than in the case of charmonia.

The Υ(1S) nuclear modification factor R_{AA} is quantified as the ratio of the Υ(1S) yield in nucleus–nucleus collisions to the production cross section measured in pp collisions scaled by the nuclear overlap function (T_{AA}). The latter is obtained via the Glauber model [28,29]. A strong suppression of the Υ(1S) state in Pb–Pb collisions has been observed at √s_{NN} = 2.76 TeV by ALICE [30] and CMS [31,32] in the rapidity ranges 2.5 < y < 4 and |y| < 2.4, respectively. The suppression increases with the centrality of the collision, reaching about 60% and 80% for the most central collisions at mid [32] and forward rapidity [30], respectively. Moreover,
the Υ(2S) suppression reaches about 90% and for Υ(3S) data are compatible with a complete suppression [32]. As a function of p_T the Υ(1S) _R_AA_, measured for p_T < 20 GeV/c by CMS [32], is compatible with a constant value. When considering the y-dependence resulting from the comparison of ALICE and CMS results, there is an indication for a stronger suppression at forward y. Transport models [26,33] as well as an anisotropic hydro-dynamical model [34] fairly reproduce the experimental observations of CMS, while they tend to overestimate the _R_AA_ values measured by ALICE.

The bottomonium suppression due to the QGP should be disentangled from the suppression due to Cold Nuclear Matter (CNM) effects, such as the nuclear modification of the parton distribution functions due to shadowing [35,36], as well as parton energy loss [37]. These effects on the bottomonium production were studied in p–Pb collisions by ALICE [38] and LHCb [39], who reported for the Υ(1S) a nuclear modification factor slightly lower than unity at forward rapidity and compatible with unity at backward rapidity, although with significant uncertainties. Recently, ATLAS results indicate a significant suppression of the Υ(1S) for p_T < 40 GeV/c around mid-rapidity [40]. Additional measurements at forward/backward rapidity with higher statistics, are needed to fully constrain the models and perform a meaningful extrapolation of CNM effects to Pb–Pb collisions.

In this Letter we present the first results on the Υ(1S) and Υ(2S) _R_AA_ measured by the ALICE Collaboration in Pb–Pb collisions at √s_{NN} = 5.02 TeV. The pp reference cross sections used in the _R_AA_ calculations have been determined by an interpolation procedure based on various ALICE [41,42] and LHCb [43,44] results at different energies. The nuclear modification factor for the Υ(1S) is presented as a function of the rapidity of the collision and also differentially in _p_T_ and rapidity. For the Υ(2S), an _R_AA_ value integrated over the rapidity of the collision is quoted. Finally, the results are compared to theoretical calculations.

2. Experimental apparatus and data sample

An extensive description of the ALICE apparatus can be found in [45,46]. The analysis presented in this Letter is based on muons detected at forward rapidity (2.5 < y < 4)\(^\dagger\) with the muon spectrometer [47]. The detectors relevant for Υ measurements in Pb–Pb collisions are described below.

The Silicon Pixel Detector, corresponding to the two innermost layers of the Inner Tracking System [48], is used for the primary vertex determination. The inner and outer layer cover the pseudo-rapidity ranges |η| < 2 and |η| < 1.4, respectively.

The V0 scintillator hodoscopes [49] provide the centrality estimate. They are made of two arrays of scintillators placed in the pseudo-rapidity ranges 2.8 < η < 5.1 and −3.7 < η < −1.7. The logical AND of the signals from the two hodoscopes constitutes the Minimum Bias (MB) trigger. The MB trigger is fully efficient for the studied 0–90% most central collisions.

The Zero Degree Calorimeters (ZDC) are installed at ±112.5 m from the nominal interaction point along the beam line. Each of the two ZDCs is composed of two sampling calorimeters designed for detecting spectator protons, neutrons and nuclear fragments. The evaluation of the signal amplitude of the ZDCs allows for the rejection of events corresponding to an electromagnetic interaction of the colliding Pb nuclei [50].

The muon spectrometer covers the pseudorapidity range −4 < η < −2.5. It is composed of a front absorber, which filters muons upstream of the muon tracker, consisting of five tracking stations with two planes of cathode-pad chambers each, and of a dipole magnet providing a 3 T-m integrated magnetic field. Downstream of the tracking system, a 1.2 m thick iron wall stops efficiently the punch-through hadrons. The muon trigger system is located downstream of the iron wall and consists of two stations, each one equipped with two planes of Resistive Plate Chambers (RPC), with an efficiency higher than 95% [51]. The muon-trigger system is able to deliver single and dimuon triggers selecting muons with _p_T_ larger than a programmable threshold, via an algorithm based on the RPC spatial information [52]. Throughout its entire length, a conical absorber shields the muon spectrometer against secondary particles produced by the interaction of primary particles in the beam pipe.

The trigger condition used for data taking is a dimuon-Minimum Bias (μμ-MB) trigger formed by the logical AND of the MB trigger and an unlike-sign dimuon trigger with a _p_T_ threshold of 1 GeV/c for each of the two muons.

The centrality estimation is performed using a Glauber fit to the sum of the signal amplitudes of the V0 scintillators [53–55]. Centrality ranges are given as percentages of the total hadronic Pb–Pb cross section. In addition to the centrality, the Glauber model allows an estimate of the average number of participant nucleons (_N_{part}_), of the average number of binary collisions (_N_{coll}_) and of the nuclear overlap function (_T_AA_), for each centrality interval [56]. In the present analysis, the data sample corresponds to an integrated luminosity _L_int_ ≈ 225 μb\(^\dagger\) in the centrality interval 0–90% that has been divided into four centrality classes: 0–10%, 10–30%, 30–50% and 50–90%.

3. Data analysis

The evaluation of _R_AA_ is performed through the following expression:

\[
R_{AA} = \frac{BR_{Υ→μ⁺μ⁻} \cdot (A \times ε)_{Υ→μ⁺μ⁻} \cdot N_{μμ-MB} \cdot F_{\text{norm}} \cdot σ_{pp}^\text{X}(Υ_{AA})}{N_{Υ}}
\]

where _N_{Υ} is the number of detected resonance decays to muon pairs, while _BR_{Υ→μ⁺μ⁻} = (2.48 ± 0.05)% and (1.93 ± 0.17)% are the branching ratios for the dimuon decay of Υ(1S) and Υ(2S), respectively [57]. The \((A \times ε)_{Υ→μ⁺μ⁻}\) factor is the product of acceptance and detection efficiency for the Υ state under study. The normalization factor _N_{μμ-MB} \cdot F_{\text{norm}}_ is the product of the number of analyzed μ⁺μ⁻-MB events and the inverse of the probability to obtain an unlike-sign dimuon trigger in a MB-triggered event [22]. A dataset of \(1.5 \cdot 10^9\) minimum bias equivalent events, _N_{μμ-MB} \cdot F_{\text{norm}}_, has been used for bottomonium measurements. Finally, _σ_{pp}^\text{X}(Υ_{AA})_ is the reference pp cross section and _⟨T_AA⟩_ represents the nuclear overlap function [55].

The signal yields are evaluated by performing fits to the _μ⁺μ⁻_ invariant mass distributions. In order to improve the purity of the dimuon sample a set of selection criteria [30] has been applied on the muon tracks, including the request of the matching between the tracks reconstructed in the trigger and tracking detectors of the muon spectrometer and a cut on the track transverse momentum (|_p_T_| > 2 GeV/c). The latter cut has a small effect (~2%) on the number of detected resonances. The raw Υ yields are extracted using the sum of three extended Crystal Ball (CB) functions [58], one for each of Υ(1S), Υ(2S) and Υ(3S). The extended CB function consists of a Gaussian core with non-Gaussian tails on both sides to take into account the radiative contributions of the Υ production and the absorber effects of muon energy loss in the low mass tail, whereas the high mass tail is attributed to the multiple

\(^\dagger\) In the ALICE reference frame, the muon spectrometer covers a negative η range and consequently a negative y range. We have chosen to present our results with a positive y notation.
Coulomb scattering in the front absorber and the momentum resolution of the tracking chambers. The background is fitted with the sum of two exponential functions (see left panel of Fig. 1). Since the signal-to-background (S/B) ratio is low in the tail regions of the extended CB functions, the tail parameters are fixed to values obtained from the Monte Carlo (MC) simulation. The mass position and the width parameters of the $\Upsilon(1S)$ are left free for the integrated spectrum (i.e. centrality class 0–90%, $p_T < 15$ GeV/c and $2.5 < y < 4$). Whereas for the signal extraction as a function of centrality, the mass position and width (160 ± 15 MeV/c^2) of the $\Upsilon(1S)$ are fixed to the values obtained in the fit to the centrality-integrated (0–90%) mass spectrum. Finally, for studies as a function of p_T and y, the mass position and the width obtained for the centrality-integrated mass spectrum are scaled according to their evolution observed in the MC. Due to the poor S/B ratio for the higher mass states, the values of the mass of the $\Upsilon(2S)$ and $\Upsilon(3S)$ are fixed to the PDG mass differences with respect to the $\Upsilon(1S)$, and the ratio of $\Upsilon(2S)$ ($\Upsilon(3S)$) to $\Upsilon(1S)$ widths is fixed to values from the MC simulation, i.e. 1.03 (1.06). In the fit shown in Fig. 1 only signals corresponding to the $\Upsilon(1S)$ and $\Upsilon(2S)$ are visible, since the $\Upsilon(3S)$ contribution is compatible with zero events. Alternatively, the combinatorial background is modeled with the event-mixing method. In this approach, an invariant mass dimuon spectrum is constructed by pairing muons from different events with similar multiplicities as described in [22]. The combinatorial background is then subtracted from the raw dimuon spectrum (right panel of Fig. 1) and the resulting distribution is fitted with the sum of three extended CB and an exponential function to account for the residual background. Finally, the number of detected Υ resonances, N_Υ, is obtained as the average [58] of the fitting methods described above (and also below in the discussion on signal systematics), leading to $N_{\Upsilon(1S)} = 1126 \pm 53{\rm(stat)} \pm 47{\rm(syst)}$ and $N_{\Upsilon(2S)} = 77 \pm 3{\rm(stat)} \pm 17{\rm(syst)}$.

The measured Υ yields, N_Υ, are corrected for the detector acceptance and efficiency using MC simulations. Since the occupancy of the detector varies with the centrality of the collisions, the generated Υ decays are embedded into real MB events to simulate the various particle multiplicity scenarios as in data. The p_T and y distributions of the generated Υ are obtained from existing pp measurements [59–61] using the interpolation procedure described in [62]. The EKS98 nuclear shadowing parameterization [35] is used to include an estimate of CNM effects. Since available data favor a small or null polarization for $\Upsilon(1S)$ [63–66], an unpolarized production is assumed. The variations of the performance of the tracking and triggering systems throughout the data-taking period as well as the residual misalignment of the tracking chambers are taken into account in the simulation. The $A \times \varepsilon$ values, for the range $p_T < 15$ GeV/c, $2.5 < y < 4$ and the 0–90% centrality class are 0.263 and 0.264 for the $\Upsilon(1S)$ and $\Upsilon(2S)$, respectively, with a negligible statistical uncertainty. A decrease of 2% is observed in $A \times \varepsilon$ for the 0–10% central collisions with respect to the 50–90% sample due to the higher occupancy in the most central events. The $A \times \varepsilon$ is higher by 20% in $3 < y < 3.5$ compared to the values at $2.5 < y < 3$ and $3.5 < y < 4$ mainly due to the geometric acceptance of the detector, whereas it has no variation as a function of p_T. The systematic uncertainty on $A \times \varepsilon$ is discussed below.

The systematic uncertainty on the signal extraction is evaluated using various functions for modelling the background shape, as well as adopting two fitting ranges, i.e. (7–14) GeV/c^2 and (7.5–14.5) GeV/c^2. The tail parameters of the signal functions have been varied using estimates provided by two MC particle transport models: GEANT4 [67] and GEANT3 [68]. In the centrality, p_T or y differential studies, the mass position and width are also varied by amounts, which correspond to the uncertainties on the mass position and the width returned by the fit to the centrality-integrated invariant mass spectrum. The ratio of $\Upsilon(2S)$ ($\Upsilon(3S)$) to $\Upsilon(1S)$ widths is varied from 1 (1) to 1.06 (1.12). The values of N_Υ and their statistical uncertainties are obtained by taking the average of N_Υ and of the corresponding statistical uncertainties from the various fits. This procedure is applied to both fits of the raw and combinatorial-background subtracted spectra. The systematic uncertainties are estimated as the root mean square of the distribution of N_Υ obtained from the various fits. The effect induced by the $p_T > 2$ GeV/c cut on single muons on the $A \times \varepsilon$-corrected Υ yields was estimated by varying that cut by ±0.2 GeV/c in the MC. $A \pm 2\%$ maximum variation on $N_\Upsilon/A \times \varepsilon$ was observed and included in the systematic uncertainties.

Various sources contribute to the systematic uncertainties of $A \times \varepsilon$, such as the p_T and y shapes of the input distributions for the MC simulations, the trigger efficiency, the track reconstruction efficiency and finally the matching efficiency between tracks in the muon tracking and triggering chambers. Various sets of simulations are produced with different Υ input p_T and y distributions, obtained from empirical parameterizations and/or extrapolations of available data sets at different energies. The maximum relative difference of $A \times \varepsilon$ for the various shapes is taken as the systematic uncertainty due to the input MC. In order to calculate the systematic uncertainty on trigger efficiency, the trigger response function
for single muons is evaluated using either MC or data. The two response functions are then separately applied to simulations of an Υ sample and the difference obtained for the Υ reconstruction efficiency is taken as systematic uncertainty. The systematic uncertainty on the tracking efficiency is obtained starting from an evaluation of the single muon tracking efficiency in MC and data. This evaluation is performed via a procedure, detailed in [22], based on the redundancy of the tracking chamber information. The dimuon tracking efficiency is then obtained by combining the single muon efficiencies and the systematic uncertainty is taken as the difference of the values obtained with the procedure based on MC and data. The muon tracks for data analysis are chosen based on a selection on the χ^2 of the matching between a track segment in the trigger system with a track in the tracking chambers. The matching systematics are obtained by varying the χ^2 selection cut in data and MC and comparing the effects on the muon reconstruction efficiency [22].

The systematic uncertainty on the centrality measurement is evaluated by varying the V0 signal amplitude by $\pm 0.5\%$ corresponding to 90% of the hadronic cross section in Pb–Pb collisions, used as anchor point to define the centrality classes. The systematic uncertainty on the evaluation of $\sigma_T^{\mu\mu}$ is detailed in the next section. Finally, the systematic uncertainty evaluation of F_{norm} and $\langle T_{\AA} \rangle$ are described in [22] and [53], respectively. The different systematic uncertainty sources on the R_{AA} calculation are summarized in Table 1. If the above mentioned systematic uncertainty is correlated as a function of centrality, p_T or y, it is quoted as correlated (type I) systematic uncertainty, otherwise it is treated as uncorrelated (type II).

4. Proton–proton reference cross sections

The pp reference cross section for $\Upsilon(1S)$ and $\Upsilon(2S)$ production are computed by means of an interpolation procedure as described for $\Upsilon(1S)$ in [69]. The energy interpolation for the T cross section, as a function of rapidity and for the p_T and y integrated result, uses the measurements of T production cross sections in pp collisions at $\sqrt{s} = 7$ and 8 TeV by ALICE [41,42] and at $\sqrt{s} = 2.76, 7$ and 8 TeV by LHCb [43,44]. The interpolation is performed by using various empirical functions and, in addition, the shape of the energy dependence of the bottomonium cross sections calculated using two theoretical models, i.e., the Leading Order Colour Evaporation Model (LO-CEM) [70] and the Fixed Order Next-to-Leading Logs (FONLL) model [71]. The latter gives cross sections for open beauty, which is here used as a proxy to study the evolution of the bottomonium cross section [69]. The energy interpolation for the $\Upsilon(1S)$ cross section as a function of p_T is based on LHCb measurements only, since the p_T coverage of the results of this analysis ($p_T < 15$ GeV/c) is more extended than that of the corresponding ALICE pp data ($p_T < 12$ GeV/c). The result of the interpolation procedure gives $\text{BR}(\Upsilon(1S) \rightarrow \mu^+\mu^-) \cdot \sigma_{pp}^{\Upsilon(1S)} = 1221 \pm 77$(syst) pb and $\text{BR}(\Upsilon(2S) \rightarrow \mu^+\mu^-) \cdot \sigma_{pp}^{\Upsilon(2S)} = 302 \pm 23$(syst) pb assuming unpolarized quarkonia and integrating over the ranges $2.5 < y < 4$ and $p_T < 15$ GeV/c. The uncertainties correspond to the quadratic sum of two terms. The first term dominates the total uncertainty on the interpolated value and reflects the statistical and systematic uncertainties on the data points used in the interpolation procedure. The second term is related to the spread among the interpolated cross sections obtained by using either the empirical functions or the energy dependence estimated from the theoretical models mentioned above. The numerical values obtained from the interpolation procedure are summarized in Table 2 for the various kinematic ranges used in the analysis.

5. Results

The nuclear modification factors for inclusive $\Upsilon(1S)$ and $\Upsilon(2S)$ production in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV for the ranges $p_T < 15$ GeV/c, $2.5 < y < 4$ and the 0–90% centrality class are $R_{AA}^{\Upsilon(1S)} = 0.37 \pm 0.02$(stat) ± 0.03(syst) and $R_{AA}^{\Upsilon(2S)} = 0.10 \pm 0.04$(stat) ± 0.02(syst), respectively. The ratio $R_{AA}^{\Upsilon(2S)}/R_{AA}^{\Upsilon(1S)} = 0.28 \pm 0.12$(stat) ± 0.06(syst). Since the decay kinematics of the two Υ states is very similar, most of the systematic uncertainty sources entering the ratio cancel out except those on the signal extraction and on the pp cross section, which are the dominant contributions to the total systematic uncertainty. The measurements show a strong suppression for both bottomonium states with the more weakly bound state being significantly more suppressed. The ratio between the $\Upsilon(1S)$ R_{AA} at $\sqrt{s_{NN}} = 5.02$ TeV and 2.76 TeV [30] is 1.23 ± 0.21(stat) ± 0.19(syst). The sources of systematic uncertainties entering the calculation of the ratio are considered uncorrelated, except for the $\langle T_{\AA} \rangle$ component, whose uncertainty cancels out. The ratio is compatible with unity within uncertainties.

The centrality, p_T and y dependences of the $\Upsilon(1S)$ R_{AA} at forward rapidity at $\sqrt{s_{NN}} = 5.02$ TeV are shown in Fig. 2. A decrease of R_{AA} with increasing centrality is observed down to $R_{AA}^{\Upsilon(1S)} = 0.34 \pm 0.03$(stat) ± 0.02(syst) for the 0–10% most central collisions. No significant p_T-dependence is observed up to $p_T = 15$ GeV/c.

Table 1
Summary of the systematic uncertainties for the R_{AA} calculation. Type I (II) refers to correlated (uncorrelated) systematic uncertainties.

<table>
<thead>
<tr>
<th>Sources</th>
<th>Centrality</th>
<th>$\Upsilon(1S)$</th>
<th>p_T Integrated</th>
<th>$\Upsilon(2S)$ Integrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal extraction</td>
<td>4.3–6.1%(II)</td>
<td>4.2–6.8%(II)</td>
<td>5.2–8.7%(II)</td>
<td>4.1%</td>
</tr>
<tr>
<td>Muon p_T cut</td>
<td>0.3–2.4%(II)</td>
<td>0.1–1.2%(II)</td>
<td>0.1–2.4%(II)</td>
<td>0.7%</td>
</tr>
<tr>
<td>Input MC</td>
<td>0.9%(I)</td>
<td>0.6–2.6%(II)</td>
<td>1–1.4%(II)</td>
<td>0.9%</td>
</tr>
<tr>
<td>Tracker efficiency</td>
<td>3%(I) and 0–1%(II)</td>
<td>1%(I) and 3%(II)</td>
<td>1%(I) and 3%(II)</td>
<td>3%</td>
</tr>
<tr>
<td>Matching efficiency</td>
<td>1%(I)</td>
<td>1%(II)</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Centrality</td>
<td>0.2–2.4%(II)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>F_{norm}</td>
<td>0.5%(I)</td>
<td>0.5%(I)</td>
<td>0.5%(I)</td>
<td>0.5%</td>
</tr>
<tr>
<td>$\langle T_{\AA} \rangle$</td>
<td>3.1–5.3%(II)</td>
<td>3.2%(I)</td>
<td>3.2%(I)</td>
<td>3.2%</td>
</tr>
<tr>
<td>BR$^{\Upsilon(1S) - \mu^+\mu^-} \cdot \sigma_{pp}^{\Upsilon(1S)}$</td>
<td>6.3%(I)</td>
<td>6.6–11.3%(II)</td>
<td>5.5–11.5%(II)</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

Table 2
The interpolated branching ratio times cross section of $\Upsilon(1S)$ for the p_T and y bins under study. The quoted uncertainties are systematic.

<table>
<thead>
<tr>
<th>p_T (GeV/c)</th>
<th>y</th>
<th>BR$^{\Upsilon(1S) - \mu^+\mu^-} \cdot \sigma_{pp}^{\Upsilon(1S)}$ (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0–2]</td>
<td>226 \pm 26</td>
<td></td>
</tr>
<tr>
<td>[2–4]</td>
<td>361 \pm 20</td>
<td></td>
</tr>
<tr>
<td>[4–6]</td>
<td>288 \pm 24</td>
<td></td>
</tr>
<tr>
<td>[6–15]</td>
<td>311 \pm 23</td>
<td></td>
</tr>
<tr>
<td>[10–15]</td>
<td>506 \pm 57</td>
<td></td>
</tr>
<tr>
<td>[3–5]</td>
<td>415 \pm 28</td>
<td></td>
</tr>
<tr>
<td>[3.5–4]</td>
<td>288 \pm 24</td>
<td></td>
</tr>
</tbody>
</table>
within uncertainties. The nuclear modification factor shows no significant dependence on rapidity. The $\Upsilon(1S)$ R_{AA} as a function of centrality and rapidity measured by ALICE at $\sqrt{s_{NN}} = 2.76$ TeV [30] are also shown in Fig. 2. Similar trends can be observed at both collision energies.

The inclusive $\Upsilon(1S)$ R_{AA} measurements are compared in Fig. 2 to several calculations: two transport models (TM) [33,72] and one hydro-dynamical model [34]. To describe the quarkonium motion in the medium, both transport codes use a rate-equation approach which accounts for both suppression and (re)generation mechanisms in the QGP. In the TM1 model [33] the evolution of the thermal medium is based on a thermal-fireball expansion while the TM2 model [72] uses a 2+1 dimensional version of the ideal hydrodynamic equations. The two models use different rate equations and both models include a feed-down contribution from higher-mass bottomonia to the $\Upsilon(1S)$. In TM2, two sets of feed-down fractions are assumed. Finally, the $\Upsilon(1S)$ production cross section in pp collisions at $\sqrt{s} = 5.02$ TeV in the rapidity range $2.5 < y < 4$ is taken as $d\sigma^{\Upsilon(1S)}_{pp}/dy = 28.8$ nb in TM1 and $d\sigma^{\Upsilon(1S)}_{pp}/dy = 30$ nb in TM2. Those values deviate by about 2σ (TM1) and 1.4σ (TM2) from the result obtained using the pp interpolation method reported in the previous section. TM1 predictions are shown as bands accounting for shadowing effects as calculated in [36]. The upper limit shown in Fig. 2 corresponds to the extreme case of the absence of shadowing while the lower limit reflects a reduction of 30% due to shadowing. The TM1 model implements the feed-down fractions reported in [9]. In the TM2 model, the shadowing parameterization is based on EKS98 [35] and the band edges correspond to two different sets of feed-down fractions (27% from X_0; 11% from $Y(2S+3S)$ and 37% from X_0; 12% from $Y(2S+3S)$) adopted by the authors. In the third model [34], a thermal suppression of the bottomonium states is calculated using a complex-valued heavy-quark potential parametrized by means of lattice QCD and embedded in a medium evolving according to $3+1d$ anisotropic hydrodynamics. In this recent study, the R_{AA} shows no sensitivity to the plasma shear viscosity-to-entropy density ratio $(4\pi\eta/s)$ parameter of the hydro evolution, which is therefore set to $4\pi\eta/s = 2$ consistent with particle spectra fits. The band of the model quantifies the heavy-quark potential uncertainty, which has been estimated by including a $\pm 15\%$ variation of the Debye mass of the QCD medium that is tuned by a fit to the real-part of the lattice in-medium heavy-quark potential. Furthermore, the predictions shown are referring to the initial momentum-space anisotropy parameter $\xi_0 = 0$, which corresponds to a perfectly isotropic QGP at the starting point of the hydrodynamical evolution at $t_0 = 0.3$ fm/c. Finally, this model accounts for feed-down contributions but it includes neither a (re)generation mechanism nor CNM effects. The centrality dependence of the $\Upsilon(1S)$ R_{AA} is fairly reproduced by the model calculations in the top panel of Fig. 2. The data are best described by TM1 when (re)generation is included and by TM2 when (re)generation is not taken.
into account. The hydro-dynamical model describes the trend of
the data, the fact that the data lie on the upper edge of the un-
certainty band for \(N_{\text{part}} > 70 \) could indicate a smaller Debye mass
and thus a stronger heavy-quark potential. The data as a function of \(p_T \) (bottom left panel of Fig. 2) can be described with or with-
out the (re)generation scenario of the TM1 model while showing
agreement with the hydro-dynamical model for the upper edge of
the uncertainty band. Finally, the \(\gamma \)-dependence of the \(\Upsilon(1S) \) \(R_{\Lambda\Lambda} \)

The low \(\Upsilon(1S) \) \(R_{\Lambda\Lambda} \) reported in this Letter raises the important
question whether direct \(\Upsilon(1S) \) are suppressed at LHC energies or
only the feed-down contribution from higher mass states. How-
ever, the large uncertainties of the current measurements of CNM
effects [38–40] prevent a firm conclusion.

6. Summary

The nuclear modification factors of inclusive \(\Upsilon(1S) \) and \(\Upsilon(2S) \)
production at forward rapidity (2.5 < \(y \) < 4) and \(p_T < 15 \) GeV/c
in Pb–Pb collisions at \(\sqrt{s_{\text{NN}}} = 5.02 \) TeV have been measured using
the ALICE detector. The observed \(\Upsilon(1S) \) suppression increases with
the centrality of the collision and no significant variation is ob-
served as a function of transverse momentum or rapidity. A larger
suppression of the \(\Upsilon(2S) \) bound state compared to the ground
state is also reported. Transport and dynamical model calculations
reproduce qualitatively the centrality and kinematic dependence of
the \(\Upsilon(1S) \) nuclear modification factor.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers
and technicians for their invaluable contributions to the construc-
tion of the experiment and the CERN accelerator teams for the out-
standing performance of the LHC complex. The ALICE Collaboration
gratefully acknowledges the resources and support provided by
all Grid centres and the Worldwide LHC Computing Grid (WLCG)
collaboration. The ALICE Collaboration acknowledges the follow-
ing funding agencies for their support in building and running
the ALICE detector: A. I. Alikhanyan National Science Laboratory
(Yerevan Physics Institute) Foundation (ANSL), State Committee
of Science and World Federation of Scientists (WFS), Armenia; Aus-
trian Academy of Sciences and Österreichische Nationalstiftung
für Forschung, Technologie und Entwicklung, Austria; Ministry of
Communications and High Technologies, National Nuclear Research
Center, Azerbaijan; Conselho National de Desenvolvimento Cientí-
fico e Tecnológico (CNPq), Universidade Federal do Rio Grande
do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fun-
dação de Amapá à Pesquisa do Estado de São Paulo (FAPESP),
Brazil; Ministry of Science & Technology of China (MSTC), Na-
tional Natural Science Foundation of China (NSFC) and Ministry of
Education of China (MOEC), China; Ministry of Science and Educa-
tion, Croatia; Ministry of Education, Youth and Sports of the Czech
Republic, Czech Republic; The Danish Council for Independent Re-
search — Natural Sciences, the Carlsberg Foundation and Danish
National Research Foundation (DNRF), Denmark; Helsinki Institute
of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA)
and Institut National de Physique Nucléaire et de Physique des Par-
ticules (IN2P3) and Centre National de la Recherche Scientifique
(CNRS), France; Bundesministerium für Bildung, Wissenschaft,
Forschung und Technologie (BMBF) and GSI Helmholtzzentrum
für Schwerionenforschung GmbH, Germany; General Secretariat
for Research and Technology, Ministry of Education, Research and
Religions, Greece; National Research Development and Innova-
tion Office, Hungary; Department of Atomic Energy, Government
of India (DAE), Department of Science and Technology, Govern-
ment of India (DST), University Grants Commission, Government
of India (UGC) and Council of Scientific and Industrial Research
(CSIR), India; Indonesian Institute of Sciences, Indonesia; Centro
Fermi - Museo Storico della Fisica e Centro Studi e Ricerche En-
rico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy;
Institute for Innovative Science and Technology, Nagasaki Institute
of Applied Science (IIST), Japan Society for the Promotion of Sci-
cence (JSPS) KAKENHI and Japanese Ministry of Education, Culture,
Sports, Science and Technology (MEXT), Japan; Consejo Nacional
de Ciencia (CONACyT) y Tecnología, through Fondo de Cooperación
Internacional en Ciencia y Tecnología (FONCyT) and Dirección
General de Asuntos del Personal Académico (DGAPA), Mexico;
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO),
Netherlands; The Research Council of Norway, Norway; Commis-
sion on Science and Technology for Sustainable Development in the
South (COMSATS), Pakistan; Pontificia Universidad Católica del
Perú, Peru; Ministry of Science and Higher Education and National
Science Centre, Poland; Korea Institute of Science and Technol-
ogy Information and National Research Foundation of Korea (NRF),
Republic of Korea; Ministry of Education and Scientific Research,
Institute of Atomic Physics and Romanian National Agency for
Science, Technology and Innovation, Romania; Joint Institute for
Nuclear Research (JINR), Ministry of Education and Science of the
Russian Federation and National Research Centre Kurchatov Insti-
tute, Russia; Ministry of Education, Science, Research and Sport of
the Slovak Republic, Slovakia; National Research Foundation of
South Africa, South Africa; Centro de Aplicaciones Tecnológicas
y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba and Centro
de Investigaciones Energéticas, Medioambientales y Tecnológicas
(CIEMAT), Spain; Swedish Research Council (VR) and Knut & Alice
Wallenberg Foundation (KAW), Sweden; European Organization for
Nuclear Research, Switzerland; National Science and Technology
Development Agency (NSDTA), Suranaree University of Technol-
ogy (SUT) and Office of the Higher Education Commission under
NRU project of Thailand, Thailand; Turkish Atomic Energy Agency
(TAEG), Turkey; National Academy of Sciences of Ukraine, Ukraine;
Science and Technology Facilities Council (STFC), United King-
dom; National Science Foundation of the United States of America
(NSF) and United States Department of Energy, Office of Nuclear Physics
(DOE NP), United States of America.

References

[1] E.V. Shuryak, Quark–gluon plasma and hadronic production of leptons, photons

condensate at RHIC? The Perspective from the BRAHMS experiment, Nucl. Phys.

the search for the quark gluon plasma: the STAR Collaboration’s critical assess-
ment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102–183,

in relativistic nucleus–nucleus collisions at RHIC: experimental evaluation by the
[nucl-ex].

[6] B. Muller, J. Schukraft, B. Wyslouch, First results from Pb+Pb collisions at the

[8] N. Brambilla, et al., Heavy quarkonium: progress, puzzles, and opportunities,

[9] A. Andronic, et al., Heavy-flavour and quarkonium production in the LHC era:
from proton–proton to heavy-ion collisions, Eur. Phys. J. C 76 (3) (2016), arXiv:
1506.03981 [nucl-ex].

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
3 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
4 Budker Institute for Nuclear Physics, Novosibirsk, Russia
5 California Polytechnic State University, San Luis Obispo, CA, United States
6 Central China Normal University, Wuhan, China
7 Centre de Calcul de l'IN2P3, Villeurbanne, Lyon, France
8 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
9 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
10 Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche ‘Enrico Fermi’, Rome, Italy
11 Chicago State University, Chicago, IL, United States
12 China Institute of Atomic Energy, Beijing, China
13 Chonbuk National University, Jeonju, Republic of Korea
14 Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
15 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
16 Creighton University, Omaha, NE, United States
17 Department of Physics, Aligarh Muslim University, Aligarh, India
18 Department of Physics, Pusan National University, Pusan, Republic of Korea
19 Department of Physics, Seoul National University, Seoul, Republic of Korea
20 Department of Physics, University of California, Berkeley, CA, United States
21 Department of Physics, University of Oslo, Oslo, Norway
22 Department of Physics and Technology, University of Bergen, Bergen, Norway
23 Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
25 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
26 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
28 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
29 Dipartimento di Fisica ‘E.R. Caianiello’ of the University and Gruppo Collegato INFN, Salerno, Italy
30 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
31 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
32 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
33 European Organization for Nuclear Research (CERN), Geneva, Switzerland
34 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
35 Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
36 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
37 Faculty of Science, P.J. Šafářik University, Olomouc, Slovakia
38 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
39 Gansu Normal University, Gansu, Republik of China
40 Gauhati University, Department of Physics, Guwahati, India
41 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
42 Helsinki Institute of Physics (HIP), Helsinki, Finland
43 High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
44 Hiroshima University, Hiroshima, Japan
45 Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany
46 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
47 Indian Institute of Technology Bombay (IIT), Mumbai, India
48 Indian Institute of Technology Indore, Indore, India
49 Indonesian Institute of Sciences, Jakarta, Indonesia
50 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
51 INFN, Sezione di Bari, Bari, Italy
52 INFN, Sezione di Bologna, Bologna, Italy
53 INFN, Sezione di Catania, Catania, Italy
54 INFN, Sezione di Padova, Padova, Italy
55 INFN, Sezione di Roma, Rome, Italy
56 INFN, Sezione di Torino, Turin, Italy
57 INFN, Sezione di Trieste, Trieste, Italy
58 Inha University, Incheon, Republic of Korea
59 Institut de Physique Nucléaire d’Orsay (IPNO), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS), Université de Paris–Sud, Université Paris-Saclay, Orsay, France
60 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
61 Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
62 Institute for Theoretical and Experimental Physics, Moscow, Russia
63 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
64 Institute of Physics, Homi Bhabha National Institute, Buhaneswar, India
65 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
66 Institute of Space Science (ISS), Bucharest, Romania
86 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
87 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
88 Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
89 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
90 IThemba LABS, National Research Foundation, Somerset West, South Africa
91 Johann-Wolfgang-Goethe-Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
92 Joint Institute for Nuclear Research (JINR), Dubna, Russia
93 Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
94 KTO Kuratay University, Ronya, Turkey
95 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
96 Lawrence Berkeley National Laboratory, Berkeley, CA, United States
97 Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
98 Nagasaki Institute of Applied Science, Nagasaki, Japan
99 Nara Women’s University (NWU), Nara, Japan
100 National and Kapodistrian University of Athens, School of Physics, Athens, Greece
101 National Centre for Nuclear Research, Warsaw, Poland
102 National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
103 National Institute for Nuclear Research Center, Baku, Azerbaijan
104 National Research Centre Kurchatov Institute, Moscow, Russia
105 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
106 Nikhef, National Institute for subatomic physics, Amsterdam, Netherlands
107 NRC Kurchatov Institute IHEP, Protvino, Russia
108 NRNU Moscow Engineering Physics Institute, Moscow, Russia
109 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
110 Nuclear Physics Institute of the Czech Academy of Sciences, Řež u Prahy, Czech Republic
111 Oak Ridge National Laboratory, Oak Ridge, TN, United States
112 Ohio State University, Columbus, OH, United States
113 Petersburg Nuclear Physics Institute, Gatchina, Russia
114 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
115 Physics Department, Punjab University, Chandigarh, India
116 Physics Department, University of Jammu, Jammu, India
117 Physics Department, University of Rajasthan, Jaipur, India
118 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
119 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
120 Physik Department, Technische Universität München, Munich, Germany
121 Research Division and Extrême Matière Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
122 Rudjer Bošković Institute, Zagreb, Croatia
123 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
124 Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
125 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
126 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
127 Shanghai Institute of Applied Physics, Shanghai, China
128 St. Petersburg State University, St. Petersburg, Russia
129 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
130 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
131 Suranaree University of Technology, Nakhon Ratchasima, Thailand
132 Technical University of Košice, Košice, Slovakia
133 Technische Universität München, Excellence Cluster ‘Universum’, Munich, Germany
134 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
135 The University of Texas at Austin, Austin, TX, United States
136 Universidad Autónoma de Sinaloa, Culiacán, Mexico
137 Universidade de São Paulo (USP), São Paulo, Brazil
138 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
139 Universidade Federal do ABC, Santo Andre, Brazil
140 University College of Southeast Norway, Tonsberg, Norway
141 University of Cape Town, Cape Town, South Africa
142 University of Houston, Houston, TX, United States
143 University of Joensuu, Joensuu, Finland
144 University of Liverpool, Liverpool, United Kingdom
145 University of Tennessee, Knoxville, TN, United States
146 University of the Witwatersrand, Johannesburg, South Africa
147 University of Tokyo, Tokyo, Japan
148 University of Tsukuba, Tsukuba, Japan
149 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
150 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
151 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
152 Université Paris-Saclay, Centre d'études de Saclay (CEA), BRFU, Département de Physique Nucléaire (DPhN), Saclay, France
153 Université degli Studi di Foggia, Foggia, Italy
154 Università degli Studi di Pavia, Pavia, Italy
155 Università di Brescia, Brescia, Italy
156 Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
157 Warsaw University of Technology, Warsaw, Poland
158 Wayne State University, Detroit, MI, United States
159 Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
160 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
161 Yale University, New Haven, CT, United States
162 Yonsei University, Seoul, Republic of Korea
i Deceased.
ii Dipartimento DET del Politecnico di Torino, Turin, Italy.
iii M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia.
iv Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
v Institute of Theoretical Physics, University of Wroclaw, Poland.