
INTRODUCTION 

The observed co-localization of “disturbed” hemodynamics and 

atherosclerotic lesion prevalence has led to the identification of low and 

oscillatory Wall Shear Stress (WSS) as a biomechanical localizing 

factor for vascular dysfunction [1]. However, recent evidences have 

underlined how consideration of only “low and oscillatory” WSS may 

oversimplify the complex hemodynamic milieu to which the 

endothelium is exposed.   

In this context, recent studies have highlighted the relevance of 

WSS fixed points, and the stable and unstable manifolds that connect 

them [2][3]. These WSS topological features have a strong link with 

flow features like flow stagnation, separation, and recirculation, which 

are usually classified as “disturbed” flow. Technically, a fixed point of 

a vector field is a point where the vector field vanishes, while 

unstable/stable vector field manifolds identify contraction/expansion 

regions linking the fixed points. The set of fixed points and their 

connections form the topological skeleton of a vector field. The 

presence of WSS fixed points and of WSS contraction/expansion 

regions, highlighted by WSS manifolds, might induce focal vascular 

responses relevant for, e.g., early atherosclerosis, or, aneurysm rupture 

[3]. For these reasons, the topological skeleton analysis of the WSS 

vector field is of great interest and motivates the study present herein.  

Lagrangian techniques have been recently proposed to identify 

WSS manifolds but have certain practical limitations [2]. An Eulerian 

approach has also been suggested, but only for 2D analytical fields [4]. 

Here we propose and demonstrate the use of a simple Eulerian approach 

for identifying WSS topological skeleton on 3D surfaces. 

 

METHODS  

Ten carotid bifurcation computational hemodynamics models from 

the Vascular Aging-The Link That Bridges Age to Atherosclerosis 

(VALIDATE) study were considered. Details on geometry 

reconstruction, personalized conditions at boundaries and CFD 

simulations are reported elsewhere [5].  

Based on Volume Contraction theory, it can be demonstrated that 

the computation of the divergence of a vector field gives practical 

information about the associated dynamical system, avoiding numerical 

integration for manifolds identification, as required for Lagrangian 

technique, thus significantly reducing the computational effort. In 

particular, the divergence is able to (1) encase the connections between 

attractors and (2) identify the basins of attractions of each attractor. For 

this reason, here we used a divergence-based approach for WSS 

manifolds identification at the luminal surface of carotid bifurcations.  

As WSS divergence depends by construction upon the algebraic 

summation of the magnitude of the single gradients of WSS vector 

components, in some cases it might fail in properly identify WSS 

expansion/contraction regions. In fact, these regions describe specific 

directional arrangements of the vectors, but both variations in 

magnitude and in directions are taken into account in the divergence. 

Consequently, here the divergence of the normalized WSS vector field 

was proposed: 

DIV(𝛕𝐮) = ∇ ⋅ (
𝝉

∥𝝉∥2
),                                   (1) 

where 𝛕𝐮 is the WSS unit vector. Eq. (1), neglecting the vector field 

magnitude variation but taking into account variation of directions of 

the vector field, correctly identifies WSS manifolds and is suitable for 

practical WSS topological analysis at the luminal surface of an arterial 

segment.  

To complete the analysis, we propose a robust method to WSS 

fixed points identification at the luminal surface. The Poincarè index is 

considered here for WSS fixed points identification because of its mesh-

independent and topologically invariant proprieties. Once identified, a 

SB3C2019 
Summer Biomechanics, Bioengineering and Biotransport Conference 

June 25 -28, Seven Springs, PA, USA 

WALL SHEAR STRESS TOPOLOGICAL SKELETON IDENTIFICATION IN 

CARDIOVASCULAR FLOWS: A PRACTICAL APPROACH 

 

 

 

 

 

 

 
 

Valentina Mazzi (1), Diego Gallo (1), Karol Calò (1), Muhammad O. Khan (2), 

David A. Steinman (3), Umberto Morbiducci (1) 

 

 

 

 

 

 

(1) PolitoBIOMed Lab, Department of  

Mechanical and Aerospace Engineering 

Politecnico di Torino  

Turin, Italy 

 

(2) Cardiovascular Biomechanics  

Computation Lab, Department of Pediatrics 

Stanford University  

Stanford, CA, USA 

 
(3) Biomedical Simulation Laboratory, Department of 

Mechanical & Industrial Engineering 

University of Toronto 

Toronto, ON, Canada 

 

 

 

 



Jacobian analysis of WSS fixed points allows then to classify the fixed 

point attractive or repelling nature. The proposed practical approach for 

the WSS topological skeleton identification is applied to both cycle-

average and instantaneous WSS vector fields.  

The cycle-average WSS vector field at the luminal surface �̅�(𝒙) is   

�̅�(𝒙) =
1

𝑇
∫ 𝛕(𝑡, 𝒙)𝑑𝑡

𝑇

0
                                 (2) 

where T is the cardiac cycle duration. It was previously suggested that 

cycle-average WSS vector field �̅� fixed points and their associated 

manifolds influence the near-wall intravascular transport [2]. However, 

the paradoxical observation that a �̅� fixed point would have never been 

a real instantaneous fixed point (i.e., a null vector) along the cardiac 

cycle, calls into question the real physical meaning of fixed points of 

the cycle-average WSS vector field. In fact, from the definition of the 

Time-Average Wall Shear Stress (TAWSS) and from the Integral 

Inequality Absolute Value it follows that: 

|�̅�(𝒙)| = |
1

𝑇
∫ 𝛕(𝑡, 𝒙)𝑑𝑡|

𝑇

0
    ⩽   

1

𝑇
∫ |𝛕(𝑡, 𝒙)|𝑑𝑡

𝑇

0
= TAWSS(𝒙) (3) 

suggesting that a null value for |�̅�| does not necessarily imply the same 

for TAWSS. Moreover, it can be easily demonstrated that a null value 

for TAWSS at a specific location implies the existence there of a fixed 

point along all cardiac cycle. Eq. (3) highlights the need for a practical 

method for an in-depth analysis of the kinematics of instantaneous WSS 

fixed points along the cardiac cycle. Hence, WSS fixed points analysis 

is applied here to instantaneous WSS vector field and a measure to 

quantify the fraction of cardiac cycle spent by instantaneous WSS fixed 

points at a specific location at the luminal surface is proposed: 

𝑅𝑇xfp
(e) =

�̅�

𝐴𝑒

1

T
∫ 𝕀𝑒(𝒙fp, t)

T

0
 dt                           (4)             

where 𝒙𝒇𝒑(𝑡) is the WSS fixed point position at time t ∈ [0, T], e is the 

generic triangular element of the superficial mesh of area 𝐴𝑒, �̅� the 

average surface area of all triangular elements of the superficial mesh 

and 𝕀 is the indicator function.  

 

RESULTS  

An analytical vector field was used for benchmarking purposes. 

The proposed method was compared to the classical vector field 

integration approach [6] and to the recent trajectory-free method [4], 

providing excellent results. Then, the cycle-average WSS vector field at 

the luminal surface of the 10 carotid bifurcation models was analyzed. 

The topological skeleton of the cycle-average WSS vector field of one 

explanatory carotid bifurcation model, including fixed points and 

stable/unstable manifolds is presented in Figure 1.  

 
Figure 1:  Topological skeleton of cycle-average WSS vector field.  

 

The contraction and expansion patterns, identifying unstable and stable 

manifolds, represent the basins of attraction for the stable fixed points 

associated with the manifolds. Notably, all cycle-average WSS fixed 

points identified using the Poincarè index at the luminal surface of the 

10 carotid bifurcation models were located within contraction regions, 

thus confirming the appropriateness of the proposed method. For an in-

depth characterization of the WSS fixed points, the quantity 𝑅𝑇xfp
(𝑒),  

as defined in Eq. (4), was computed on the surface of all the carotid 

bifurcation models and an explanatory example is presented in Figure 

2. For visualization purposes, regions of interest 𝑅𝑓𝑝  were identified at 

the luminal surface around high 𝑅𝑇xfp
(𝑒) areas and including the 

identified cycle-average WSS fixed points locations (labeled from 𝐴𝐶  to 

𝐺𝐶). For the explanatory model presented in Figure 2, the results of the 

WSS fixed points residence times analysis are summarized in Table 1 

and clearly show that: (1) in regions 𝑅𝐸𝐶
 and 𝑅𝐺𝐶

 fixed points residence 

times were up to 30% of the cardiac cycle; (2) instantaneous WSS fixed 

points resided for small fractions of the cardiac cycle (range 0.0-14.5%) 

in cycle-average WSS fixed points identified locations; (3) 

interestingly, in the cycle-average WSS stable focus 𝐵𝐶 location, the 

instantaneous WSS vector presented both saddle point (2%) and stable 

focus (2.9%) configurations along the cardiac cycle; (4) in regions 

𝑅𝐷𝐶
, 𝑅𝐸𝐶

, 𝑅𝐹𝐶
 instantaneous WSS fixed points were always of the same 

type as cycle-average WSS fixed points; (5) paradoxically, it emerged 

that at position 𝐶𝐶 where a cycle-average WSS saddle point was 

identified, the instantaneous WSS vector never presented a fixed point 

along the cardiac cycle (we remind here that a WSS fixed point 

represents a focal point at the luminal surface subject to an atheroprone 

hemodynamic environment). 

 
Figure 2: Map of fixed points residence time 𝑹𝑻𝒙𝒇𝒑

(𝒆).  
 

Table 1: Summary of WSS fixed points kinematics.  

SPs and SFs denote Saddle Points and Stable Foci, respectively.  
 

DISCUSSION  

A practical approach to fixed points and manifolds identification 

was presented and applied to cardiovascular flows. The proposed 

approach requires the vector field and its divergence only and it can be 

easily implemented for 3D vector field defined on complex geometries. 

This practical way to analyze instantaneous WSS fixed points along the 

cardiac cycle allows to evaluate their residence time and how strong is 

local contraction/expansion using WSS divergence (data not shown). 

Our findings on carotid bifurcation models question the physical 

significance of WSS fixed points on cycle-average WSS fields, and 

suggest instead a focus on their dynamics. In conclusion, the practical 

approach proposed here could contribute to speed up studies on the 

physiological significance of fixed points in cardiovascular flows, in the 

context of the increasing interest as expressed by recent literature on this 

still-poorly-explored argument.  
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𝑹𝒇𝒑 

Instantaneous 

WSS fixed points 

nature in 𝑹𝒇𝒑 

Cycle-Average 

WSS fixed point 

nature in 𝑹𝒇𝒑 

Instantaneous WSS fixed points 

residence time at cycle-average 

WSS fixed point location in 𝑹𝒇𝒑 

𝑅𝐴𝐶
 SPs and SFs SP (𝐴𝐶) 3.4% SPs, 0% SFs 

𝑅𝐵𝐶
 SPs and SFs SF (𝐵𝐶) 2% SPs, 2.9% SFs 

𝑅𝐶𝐶
 SPs and SFs SP (𝐶𝐶) 0% SPs, 0% SFs 

𝑅𝐷𝐶
 SPs SP (𝐷𝐶) 1.5% SPs, 0% SFs 

𝑅𝐸𝐶
 SPs SP (𝐸𝐶) 14.5% SPs, 0% SFs 

𝑅𝐹𝐶
 SFs SF (𝐹𝐶) 0% SPs, 12.5% SFs 

𝑅𝐺𝐶
 SPs and SFs SF (𝐺𝐶) 0% SPs, 8.2% SFs 


