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Abstract

A large number of studies published in the last years shows how a population of cells
is characterised by a high cell-to-cell variability. Even by considering monoclonal
and identically prepared single bacteria, these give rise to highly diverse dynamics:
some of them may be able to form colonies, while others do not. Such strong
heterogeneity finds its roots in the stochasticity of gene expression, that leads single
cell to express given genes into proteins at given levels at a certain time. However,
classical experimental techniques typically analyse large population of cells and are
not suitable to highlight heterogeneity at the individual level. It is only in the last
decade, thanks to the development of innovative experimental techniques (e.g. single
cell sequencing, FACS, etc.), that we can quantify and thus model this heterogeneity.
Thus, such effects call the development of stochastic models able to both describe
and make predictions of the system at a macroscopic scale by taking into account
the microscopic diversity.

In this thesis we aim at investigating such heterogeneity of a population of cells
under different points of view. On one side we analyse how cell-to-cell variability
influences the growth of the entire population, by studying the main aspects that
characterise the macroscopic growth. On the other side, we focus on a molecular level
and investigate a mechanism of gene regulation that may lead to bimodal phenotypes.
In both cases, we adopt an approach of investigation that can be summarised in the
following loop: we begin by developing simple minimal mathematical models, then
we experimentally test its prediction through quantitative, systematic measurements
of variables representative of the system, and finally we modify the initial model
hypothesis in light of the empirical results.

The dynamics of growth of a population of cells is the topic of the first part
of this thesis. Here, we investigate the dependence on the initial conditions of
different phases of growth firstly by developing two mathematical models, one for
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each interesting growth phase (i.e. adaptive phase and exponential growth phase). By
defining a robust experimental protocol for cell growth, we then test the predictions
of the models on a widely studied cancer cell line (Jurkat). Following this approach,
we suppose a possible mechanism of communication among cells on which the
entire population dynamics may lye. We then investigate a second aspect of cell
growth, namely its relation with gene expression. Recent works performed on
growing bacterial colonies, by starting from simple empirical relations between the
physiological state of a population and its gene expression, have developed an entire
theory of bacterial growth. This is a model that assumes proteome partitioning and is
able to be predictive even in absence of a complete knowledge of molecular details.
Indeed, it has been used for predicting a wide spectrum of bacterial behaviours that
range from antibiotic resistance to unnecessary protein production. Given the lack of
similar studies for mammalian cells, and based on a large range of analogies between
bacteria and cancer cells, we transfer the same approach to cancer cells.

The second part of the thesis is devoted to the study of the heterogeneity of
a population of cells under a molecular point of view. In particular, we focus on
the role of cell-to-cell variability on a peculiar mechanism of post-transcriptional
gene regulation mediated by microRNAs (miRNAs). miRNAs are small non coding
RNA molecules able to bind to other messenger RNAs (mRNAs) and downregulate
their expression. It has been found that such regulation may lead the system to
bimodal distributions in the expression of the target mRNA, usually fingerprint of the
presence of two distinct phenotypes. Moreover, the nature of the interaction between
miRNAs and their targets gives rise to a complex network of miRNAs interacting
with several mRNA targets. Such targets may then cross-regulate each other in
an indirect miRNA-mediated manner. This effect, called “competing endogenous
RNA (ceRNA) effect”, has remarkable properties even in presence of extrinsic
noise, i.e. fluctuations that affect all the components of the system. While miRNA-
mediated interactions have been widely characterised from a theoretical point of
view in the past years, quantitative experiments on the ceRNA effects are much
more recent. Here, we first review the stochastic models developed to describe
the miRNA-mediated gene expression, pointing out the predictions that may be
experimentally investigated. Second, we present the experimental setup we used
to test such predictions. Last, we focus on the experiments performed to test the
influence of extrinsic noise on miRNA-target interaction.



Contents

List of Figures x

List of Tables xxiv

1 Introduction and thesis outline
Quantitative biology: where physics meets biology 1

I Stochasticity and emergent behaviours in cell growth 8

2 Initial density dependence in cell growth 14

2.1 The growth of a population of cells: modelling and experiments . . 15

2.1.1 Initial cell density dependence . . . . . . . . . . . . . . . . 17

2.1.2 Phases of growth . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Mathematical models for cell growth . . . . . . . . . . . . . . . . 20

2.2.1 The carrying capacity . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Population and single cell lag times . . . . . . . . . . . . . 21

2.2.3 Logistic growth model . . . . . . . . . . . . . . . . . . . . 25

2.3 Experimental testing of theoretical predictions . . . . . . . . . . . 29

2.3.1 Approaches inspired by experimental physics . . . . . . . . 30

2.3.2 A systematic experimental approach revealed robust growth
curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



Contents vii

2.3.3 The determination of the growth phases . . . . . . . . . . . 40

2.3.4 The independence of the carrying capacity on the initial
condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.5 Population lag time and the extreme values statistics . . . . 45

2.3.6 Exponential growth rate and initial conditions . . . . . . . 52

2.3.7 Cell-to-cell communication . . . . . . . . . . . . . . . . . 63

2.3.8 New insights on the experimental design . . . . . . . . . . 67

2.3.9 Qualitative identical features are shown by a further cancer
cell line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3 Cell growth laws 75

3.1 The Ohm’s laws for bacterial growth . . . . . . . . . . . . . . . . 76

3.1.1 Analogy with an electric circuit . . . . . . . . . . . . . . . 81

3.2 Project outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 A systematic experimental approach . . . . . . . . . . . . . . . . . 84

3.3.1 Cell growth experiments . . . . . . . . . . . . . . . . . . . 84

3.3.2 Three sets of experiments . . . . . . . . . . . . . . . . . . 87

3.3.3 RNA and Protein extraction . . . . . . . . . . . . . . . . . 89

3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4.2 Optimal sugar concentrations . . . . . . . . . . . . . . . . 93

3.4.3 Towards the growth laws . . . . . . . . . . . . . . . . . . . 95

3.5 Conclusions and perspectives on growth laws . . . . . . . . . . . . 99



viii Contents

II Modelling and experimental test of miRNA-target interac-
tion 102

4 Overview of microRNA-mediated gene regulation 107

4.1 Overview on microRNAs . . . . . . . . . . . . . . . . . . . . . . 107

4.2 MiRNA-target interaction is titrative . . . . . . . . . . . . . . . . . 109

4.3 The role of intrinsic and extrinsic noise . . . . . . . . . . . . . . . 111

4.4 Competing Endogenous RNAs (ceRNAs) . . . . . . . . . . . . . . 112

5 Modelling the role of noise in miRNA-target interaction 114

5.1 Stochastic model for miRNA-target interaction with extrinsic noise . 114

5.2 Bimodality as a population-level effect . . . . . . . . . . . . . . . 117

6 Experimental investigation of the model predictions 121

6.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.1.1 One miRNA and one target mRNA . . . . . . . . . . . . . 122

6.1.2 One miRNA and two ceRNAs . . . . . . . . . . . . . . . . 124

6.2 The role of extrinsic noise in miRNA-target interaction . . . . . . . 125

6.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 127

6.2.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . 128

6.2.3 Future perspectives . . . . . . . . . . . . . . . . . . . . . . 135

Appendix A The role of sodium acetate on cell growth 136

A.1 Bioproduction and aim of the work . . . . . . . . . . . . . . . . . 136

A.2 Summary of the experimental methodology . . . . . . . . . . . . . 139

A.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.3.1 Image segmentation and growth parameters . . . . . . . . . 141

A.4 Toxic activity of sodium acetate . . . . . . . . . . . . . . . . . . . 144

A.4.1 Robust growth curves . . . . . . . . . . . . . . . . . . . . 144



Contents ix

A.4.2 The tuning of the parameters of growth . . . . . . . . . . . 145

A.5 Criticalities and improvements . . . . . . . . . . . . . . . . . . . . 150

A.5.1 New image segmentation algorithm to recognise single cells
and clusters . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.5.2 Testing of the algorithm on a second set of experiments . . 153

A.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Appendix B The role of STIM1 in endothelial cell endosomes trafficking 159

B.1 Overview on endosome trafficking and project outline . . . . . . . 160

B.2 Methods for endosome tracking . . . . . . . . . . . . . . . . . . . 161

B.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 165

References 171



List of Figures

2.1 Figures adapted from [1]. (a) Time-lapse images of Salmonella Ty-
phimurium individual cells over time. A. Cell able to form a colony;
B. cell filamentation; C. cell lysis precedes cell division. (b) Rep-
resentative growth curves of individual cell colonies of Salmonella
Typhimurium. (c) Probability distributions of the number of cells in
microcolonies originated from different initial N0s after 8 hours of
growth obtained from Monte Carlo simulations. . . . . . . . . . . 16

2.2 Phases of growth. Bottom plot represents the log2 of bacteria density,
the top one the growth rate (a.u.) both as function of time. Dashed
vertical lines divide the growth phases. Growth phases identified by
numbers: lag phase (1), acceleration phase (2), exponential growth
phase (3), deceleration phase (4), stationary phase (5) and death
phase(6). Figure adapted from [2]. . . . . . . . . . . . . . . . . . . 20

2.3 (a) Growth curves of a small initial density population of bacteria
seeded in growth medium with all nutrients in excess except one
which is limiting. Each shade of blue represents different concen-
tration of such growth-limiting nutrient. The population is left free
to grow by exhausting nutrients and the total growth (i.e. carrying
capacity) is emphasised by vertical arrows. (b) The total growth
is plotted as function of the concentration of the growth-limiting
nutrient. Both (a) and (b) are adapted from [3]. . . . . . . . . . . . 21



List of Figures xi

2.4 Schematics for the lag time model. (a) Cartoon summarising the
model. At the population level, a population of N0 cells (light blue
dots in the top-left circle) needs a time tlag before starting to grow
exponentially over time (N(t)) according to 2.2. The same dynamics
is valid at the single-cell level, where each single cell i starts after a
time τi to give birth to sub-colonies whose sizes grow exponentially
over time ni(t). Each colour of the dots in the bottom circles repre-
sents a single cell (on the left) and its corresponding sub-colony (on
the right). (b) Schematic representation of the two possible scenarios
for the population lag time tlag derived from eq. 2.5. The Gaussian
statistic scenario (in blue) and the extreme-values one (in red). This
second case has been obtained considering a uniform distribution
for the τis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Cartoons representative for the analysis of the logistic growth model.
(a) The solution of eq. 2.8 plotted as the logarithm of the population
size as a function of time. The initial condition is given by the initial
population size N0. (b) Mapping of the punctual growth rate (dN/dt)
vs population size (N). (c) Maximum growth rate (λmax) calculated
as the derivative in time t = 0 of growth curves obtained by the
model with different initial conditions plotted as function of N0. In
all the three plots the carrying capacity level (k) is emphasised by a
dashed black line. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Figure adapted from Bio-Rad protocol for cell counting [4]. Example
of a counting grid called Neubauer counting grid. It is composed of
nine sections of 1mm2 each indicated by a red number. . . . . . . . 32

2.7 Cartoon of the experimental procedure. From left to right, from
a flask with cells growing exponentially in their standard growth
medium, at time t = 0 h, samples of N0 cells have been taken and
moved into 6-well dishes supplied with the very same nutrient quality
present in the flask. From time t=0 on the growth was monitored
through automatic cell counting and growth curves similar to the one
on the very right have been obtained. . . . . . . . . . . . . . . . . 36



xii List of Figures

2.8 (a) Micrograph of a representative sample of cell population. (b)
Result of the image segmentation algorithm applied on image (a).
Colours do not have a specific meaning, are simply used to distin-
guish single objects that are represented with a progressive number. 39

2.9 Examples of experimental growth curves expressed as the logarithm
of the number of cells in time. In (a) single replicates at differ-
ent inoculi (N0) are plotted. Each colour is relative to a different
inoculum. Solid lines represent the fit of the corresponding data.
N.B. Cyan and blue curves are two examples of the same inoculum.
Since their inflection point coincide, a difference in the slope of
the curves can be easily noted. In (b) three technical replicates are
considered separately and identified by a shade of blue. Error bars
are the propagation f the error over the counting. . . . . . . . . . . 40

2.10 Example of growth curve (blue dots) with the corresponding logistic
fit (blue line) with lag time tlag, maximum growth rate λmax and
saturation level A. The horizontal and tilted red lines emphasise
the parameters A and λmax respectively. The two vertical red lines
represent the edges of the exponential phase, that correspond to
times in tlag and tlog. tlog is given by the intersection between the
tangent at the inflection point and the level of saturation. The error
bar on the data are obtained by the error propagation over ln N

N0
by

assuming
√

N as error for the concentration N. . . . . . . . . . . . 42

2.11 z-score distributions for the comparisons among corresponding fit-
ting values obtained through the modified logistic and the modified
Gompertz functions. Distributions of the z-scores of (a) saturation
level parameters A, (b) maximum growth rates λmax and (c) lag
times tlag. Vertical lines represent the upper value for accepting a
compatibility with significativity of 5%, zcrit = 1.96. . . . . . . . . 43



List of Figures xiii

2.12 (a) Parameter A vs ln(N0). Orange dots are experimental data, the
solid black lines represents their linear fit. The dashed vertical line
is located at the averaged carrying capacity k. (b) Distribution of
the carrying capacities for each experiments, obtained by converting
the parameter A through the exponential form of eq. 2.18. The solid
black line emphasises k = (8± 2) · 106cell/ml, the average of the
distribution for values smaller than 1.5 ·107cell/ml. . . . . . . . . . 45

2.13 (a) Experimental lag times as function of the initial seeding (N0).

Lighter colour dots are experimental data obtained through the fit.
Their error bars are the error on the fit. The darkest red dots are the
average of the smaller dots binned over N0. (b) Standard deviation
of the averaged values (dark red dots) of plot (a). In both plots the
vertical dashed lines are located in correspondence of the carrying
capacity value k. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.14 (a) Schematic representation of the microfluidic device used to fol-
low single cells. Adapted from User guide of CellASIC® ONIX
M04L-03 Microfluidic Plate. Red numbers represent: 1. The wells
where the solution of cells+growth medium is loaded; 2. the ef-
fective growth chambers; 3. the outflux chambers. (b) Bright field
micrograph at time t = 0. Red circles emphazie single cells. . . . . 52

2.15 (a) and (c) Exponential growth rates (λmax and λ respectively) as
a function of the initial cell density (N0). Brightest dots represent
all the experiments. Error bars are the error of the fits performed
to calculate λ and λmax. The darkest dots are the average of the
brightest ones binned over N0. (b) and (d) Standard deviations of
the data of (a) and (c) for the growth rates by binning over N0. The
dashed black line present in all the plots is located at the value of N0

corresponding to the carrying capacity k. . . . . . . . . . . . . . . 54

2.16 (a) and (b) Three bins on N0. For each bin, the exponential growth
rates λmax in (a) and λ in (b) are plotted as a function of NA/2 and
N∗ respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



xiv List of Figures

2.17 Same plot as Figure 2.15. The bright dots represent the experimental
data for λmax as a function of N0 with the error bars representing the
error of the fit. The darkest dots are the average of the brightest ones
binned over N0. Continuous blue line represents the theoretical λmax

according to the logistic growth model. Dashed horizontal blue line
emphasises the offset value r. Dashed vertical black line is set at the
level of the carrying capacity k. . . . . . . . . . . . . . . . . . . . 56

2.18 Representations of the growth rate (dN/dt) of a population of size
N as function of its size. (a) Trends for logistic growth (blue solid
line), weak (green) and strong (yellow) Allee effect. The value k
corresponds to the carrying capacity. (b) Examples of weak Allee
effects with different values of parameter α that increases according
to the arrow. The blue curve is the logistic case with α = 0. The
dashed black line represents the carrying capacity k. . . . . . . . . 58

2.19 (a) Example of mapping of the punctual growth rate (dN
dt ) vs the size

of the population (N). Cyan dots are experimental data. A sub-set
of growth curves is here considered. The red line is their fit with a
weak Allee effect function; blue line represents a logistic growth.
(b) Distribution of the positive values of α obtained by fitting the
experimental growth curves with a weak Allee effect function, eq.
2.30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.20 Scheme of the procedure through which tlag and tlog are defined
starting from the growth curves obtained through the weak Allee
effect dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.21 Exponential growth rate λ vs initial population density N0. Light
small dots are the experimental data, the error bars represent the
error on the fit parameter. Darkest red dots are λ s evaluated from
the theoretical growth curves. Dashed vertical line is represents the
carrying capacity k. . . . . . . . . . . . . . . . . . . . . . . . . . . 62



List of Figures xv

2.22 (a-c) Example of growth curves with three different pipetting times:
three times a day (a), once every two days (b) and once every five
days (c). Blue data represent the control, i.e. counting every day.
The legend shown in (a) refers to (a), (b) and (c). (d) Bar chart of
the values of the growth rates of the pipetting experiments (orange
bars) and the control (blue bars). The values have been obtained
by averaging the growth rates of each single replicates. The error
bar is the error over such average value. The three groups of data
correspond to the three experiments: pipetting three times a day
(3/dd), once every two days (1/(2dd)) and once every five days
(1/(5dd)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.23 (a-b) Standard deviations of the maximum growth rate λmax (a) and
the lag time tlag (b) within bins over N0. (c) Same standard deviations
(σ ) shown in (a) and (b) normalised to their maximum values (σmax)
as a function of the inoculum density (N0). In red is the exponential
growth rate and in blue the lag time. The solid lines represent the fits
of the two series of data. The black dot at the intersection of the two
lines represents the "optimal" experimental condition. The dashed
vertical line is located in correspondence of the carrying capacity. . 68



xvi List of Figures

2.24 (a) Cartoon of the experimental procedure. K562 cells were pre-
cultured in a flask supplied with the standard growth medium. At
time t = 0 h populations of N0 cells were transferred into a new
culture dish (a new flask) supplied with a fixed volume of the same
standard growth medium. The growth of the populations was daily
monitored through the NucleoCounter. The last plot shows three
representative growth curves obtained through this procedure at
the end of each experiment. Each colour represents an inoculum
size (N0), the dots are the experimental data and the solid lines
are the sigmoidal shape functions fitting the data. (b) Trend of
the fitting parameter A as a function of the inoculum density N0.
The data are compatible with a line with slope -1 as a function
of ln(N0), as emphasised by the black solid line that fits the data.
(c) Distribution of the values of the carrying capacities converted
from the parameter A through the relation 2.18. The solid blue
line represents the normal distribution best fitting the data. The
solid black line is the average of the distribution, corresponding to
k = (7.5±1.8) ·105cell/ml. Such value is emphasised by a dashed
vertical line in Figures (b,d,e). (d) Lag time (tlag) trend as a function
of N0. Each bright dot corresponds to a single growth curve, the
darkest ones are the average by binning on N0. The error bars
are given by the error of the fit. (e) Exponential growth rate (λ )
as a function of N0. As in (b) the bright dots correspond to all
the experimental data, while the darkest ones are their average by
binning on N0. The error bars are the error of the fit. . . . . . . . . 71

3.1 Growth rate of Escherichia Coli as function of glucose concentration.
The solid line is obtained with the Monod relation (eq. 3.1). Figure
adapted from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



List of Figures xvii

3.2 Three figures showing the results obtained by Scott et al. in [5]. (a)
Sketches of the empirical growth laws. Figure adapted from [6].
(b) Summarising sketches of the theory of proteome partitioning.
Figure adapted from [5]. (c) Analogy with Ohm’s laws for electrical
circuits. The three resistors correspond (also in colours) to the three
proteome sectors of panel (b). Figure adapted from Supplementary
Materials of [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Example of A (blue) and B (red) growth curves expressed as the
logarithm of the cell concentration (N) normalised to the initial cell
concentration (N0) as a function of time. For each colour there are 3
shades representative of 3 different replicates of the same condition. 85

3.4 An example of K562 growth curve in glucose at 37°C. (a) shows the
raw measurements performed by the Tecan: absorbance at 430 nm
in red and 560 nm in green. (b) shows the ratio of absorbance 430
nm over 560 nm vs time after background subtraction. . . . . . . . 87

3.5 The left panel relates to Jurkat and the right one to K562. Plots of
the row (a) represent the logarithm of the number of cells per ml (N).
Plots (b) show measurements of the same wells in (a) performed with
the Tecan. Plots (c) reveal the relation between cell concentration
and absorbance ratio. Here two sets of data have been joined to
determine the conversion law. The darkest dots corresponds to the
growth curves in (a) and (b), the brightest ones are the second set of
data whose growth curves are not shown. . . . . . . . . . . . . . . 91

3.6 Sugar saturation results for Jurkat (left) and K562 (right) cell lines.
Each raw and each colour correspond to a different sugar. Data
represented as dark filled circles are the average values of different
replicates (brightest circles). The error bars show replicates disper-
sion. The growth rates are expressed as referred to the reference
value for Tecan’s measurements λb. . . . . . . . . . . . . . . . . . 94



xviii List of Figures

3.7 (a) Jurkat (on the left) and K562 (on the right) growth rates (λ/λa)
as a function of the inoculum size. The brightest dots are all the
experimental data and their error bars are the errors obtained by
the fitting procedure. The darkest circles represent average values
obtained by binning over N0. The data correspond to the experiments
at 37°C with glucose (coloured in red, according to the legend of
(b)). (b) Growth rates (λ/λb) as a function of temperature for Jurkat
on the left and K562 on the right. Each colour corresponds to a
different sugar. Black solid lines emphasise the trend of the data. . 96

3.8 Contents of RNA per cell, protein per cell and ribosomal fraction
(RNA/protein) as function of the growth rate. (a) shows results of
Jurkat cell line and (b) of K562, both at 37°C. Black solid lines
represent the linear fits of the data. (c) RNA/protein data of Jurkat
cells shown in (a) joint with the results obtained in Torino’s lab from
manual counting experiments shown as red open circles. The x-axis
represents the growth rates normalised to the reference ones: λb

for filled dots (Tecan’s measurements), λa for open circles (man-
ual counting data). Each colour corresponds to a single sugar, as
explicited by the legend that refers to all the shown plots. . . . . . . 98

4.1 MiRNA biogenesis and target binding. Adapted from [7]. . . . . . . 109

4.2 (a) Network of interaction between microRNA (S) and its target
mRNA (R). kR and kS are the transcription rates of target mRNA
and miRNA respectively and gR and gS their degradation rates. kP

and gP are respectively the transcription and the degradation rates
of the protein (P). g is the interaction strength between the miRNA
and the target and α is the fraction of not-recycled miRNA after the
binding. Adapted from [8]. (b) Cartoon of threshold-like behaviour
describing miRNA and target mRNA interaction. The amount of
free mRNA is shown as a function of its transcription rate. Below
the threshold the amount of free mRNA molecules is smaller than
that of miRNA (repressed state); the two quantities are roughly equal
around the threshold and above the threshold the free amount of
mRNA is higher than that of miRNA (expressed state). Adapted
from [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



List of Figures xix

5.1 (a) Phase diagram of the bimodality in the distribution of free
molecules of target mRNA. The extrinsic noise on the miRNA tran-
scription rate (CV) is plotted as a function of the target transcription
rate (kR). The colour map shows the presence of bimodality for
different values of the miRNA-target interaction strength g (see the
legend). Adapted from [8]. (b) Distribution of free mRNA in the
case of: pure intrinsic noise and small miRNA-target interaction
strength g (solid black line); pure intrinsic noise and high miRNA-
target interaction strength g (blue histogram) and extrinsic noise and
small interaction strength g (orange histogram). Adapted from [8]. . 119

6.1 (a) Two colour fluorescent reporter system used in [9]. Bidirectional
plasmid engineered to code for eYFP and mCherry genes. The
3’UTR region of the latter gene contains a number N of binding
sites for the miR-20a. Adapted from [9]. (c) Relation between
fluorescence intensity of the mCherry gene (proxy for the amount
of free molecules of target mRNA) as a function of that of eYFP
(proxy for the transcription rate of the target). The two series of data
represent the case of 0 (black data) and 1 (blue data) binding sites
for the miR-20a. Adapted from [9]. . . . . . . . . . . . . . . . . . . 123

6.2 (a) Fluorescent reporter system used in [10]. The upper construct
is the same birectional plasmide used by [9] and described in Fig-
ure 6.1(a). The lower one is the bidirectional plasmid coding for
mCerulean and mKOrange. The 3’UTR sequence of the former gene
is engineered to contain a fixed number of N binding sites for the
miR-20a. Adapted from [10]. (b) Sketch of the minimal model of
miRNA-ceRNA interactions studied in [10]. Adapted from [10]. . . 124

6.3 (a) DNA marker (Hoechst DNA stain) distribution. The cell cycle
phases (G0/G1, S and G2) are emphasised by arrows. (b) Distribu-
tions of the Hoechst DNA stain for big (in green) and small (in red)
cells. The inset shows the determnation of the two groups of cells
by constraining on cell granularity and dimension. Both (a) and (b)
are adapted from [11]. . . . . . . . . . . . . . . . . . . . . . . . . 129



xx List of Figures

6.4 Zero miRNA binding sites. Scatter plots (each dot is a cell) of the
fluorescence intensity of the mCherry as a function of that of eYFP.
The cells are sorted according to the phase of the cycle: from left to
right, G0/G1, S and G2 phase. Adapted from [11]. . . . . . . . . . 130

6.5 Scatter plots of the fluorescence intensity of mCherry as a function
of that of eYFP. Each dot represents a cell. Each raw corresponds
to a different number of binding sites, from up to down 1, 4 and 7
respectively. Each column corresponds to a sorting according to the
cell cycle phase, from left to right: G0/G1, S and G2. Adapted from
[11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.6 (a) Phase diagram for the bimodality in the distribution of the free
molecule of mRNA target of a miRNA. The x-axis represents the
transcription rate of the target mRNA (kR); the y-axis shows levels
of the extrinsic noise; and the colours are relative to different values
of interaction strengths (parameter g). The white arrows parallel
to the x- and y- axis represent the direction of variation of the cor-
responding experimental parameters, i.e. the cell cycle phase as a
proxy of the extrinsic noise and the eYFP intensity for kR. Adapted
from [8]. (b) Similar phase diagram of plot of (a) obtained with
the experimental data corresponding to the case of strong interac-
tion strength (7 binding sites for the miRNA). The extrinsic noise
is shown as a function of the level of eYFP fluorescence intensity.
The distributions are relative to the mCherry expression level for
cells sorted according to the cell cycle phase and eYFP levels. From
high to low noise (i.e. from top to bottom), the cell cycle phases are:
unsorted, G0/G1, S and G2. . . . . . . . . . . . . . . . . . . . . . 134

A.1 Two examples of micrographs (a) and (c) and their respective image
segmentation results (b) and (d), where each RGB colour represents
a different detected element. (a) and (b) are an example of lower con-
centration while (c) and (d) set of images refers to a high inoculum
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



List of Figures xxi

A.2 Example of size distribution of object detected by the algorithm.
The highest value of area is not visible in the plot and corresponds
to a size of 34750 px2. The red line represents the mean of the
distribution, the black line the mode. The mode has been chosen as
representative of single cell areas. . . . . . . . . . . . . . . . . . . 143

A.3 Examples of growth curves obtained for two different concentrations
of sodium acetate: 0 mM in blue, 20 mM in red. Dots are experi-
mental data expressed as the mean value of 3 replicates. Error bars
are given by the replicates semidispersion. (a). Results of low inocu-
lum experiment (N0 ∼ 3 ·105cell/ml). Solid lines are the sigmoidal
shape fit of the experimental data. (b). Growth curves from high
inoculum experiment (N0 ∼ 3 ·106cell/ml). Solid intersected lines
represent the trend of the exponential and saturation phases of the
experimental data. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.4 Growth parameters analysis. (a) shows the exponential growth rate
(λ ) as function of sodium acetate concentration. Blue dots are
relative to the lower inoculum experiment (N0 ∼ 3 · 105 cell/ml),
orange dots refer to higher inoculum (N0 ∼ 3 · 106 cell/ml). Each
point is a single experiment. Error bars are obtained through the
fitting procedures that estimates the parameters. The lines represent
the trend of the data. (b) represents the carrying capacity vs sodium
acetate concentration. Again here the error bars are given by the
fits. In this case, the general trends of the data are relative to sodium
acetate concentrations bigger than 0. In (c) the lag time vs sodium
acetate concentration only relative to the experiment at low inoculum.
Error bars are the errors of the fit to obtain the lag time. The line is
the linear fit of the data. . . . . . . . . . . . . . . . . . . . . . . . 147

A.5 Examples of inputs (a,c) and corresponding outputs (b,d) of the new
counting algorithm. The darkest spots in (a) and (b) are dead cells.
In (b,d) the single cells are coloured in red and clusters in blue. . . 153



xxii List of Figures

A.6 Results obtained through the use of the new algorithm and the new
sample preparation protocol on the second set of experiments. (a)
and (b) are representative growth curves at low and high inoculum
density respectively. Red stands for a concentration of 0 mM of
sodium acetate while blue is 20mM. Dots are experimental data, the
lines show their trends. Each curve corresponds to a single replicate.
The error bars are the propagation of the error on the counting. (c)
Growth rate trend as a function of the sodium acetate concentration.
Each dot corresponds to a single replicate, the error bars are the
error of the fit. The lines represent the trend of the data (linear fits).
Low density data are shown in blue, while high density ones are in
orange. (d) Carrying capacity as a function of the sodium acetate
concentration. Dots are experimental data and their error bars are
the error of the fit. When not visible is because they have the same
size than the dots. The lines represent linear fits of the experimental
data. It is valid the same colour legend of plot in (d). . . . . . . . . 154

B.1 Example of the size trend in time of an early endosome detected
with the image segmentation and tracking code. The three colours
represent the three endosomes in which the first detected one (#174)
is split. For further analysis only the green one will be considered,
since it appears continuously for more than 21 frames. . . . . . . . 164

B.2 Comparisons between features of early (EE, left column) and late
endosomes (LE, right). Blue data represent siSTIM1 condition,
red/orange ones the control. (a) Shows the average number of en-
dosomes per cell vs time for EE and number distribution for LE.
In(b) again temporal average trend for EE and distribution at a fixed
time for LE of endosome sizes. Line (c) is dedicated to distance
to nucleus distributions. For EE the plot of cumulative distribution
functions showing the difference between the two populations is
shown. Last line (d) represents the persistence versus minimal path
of early endosomes, not available for LE. Blue and red lines here
represent general trend of correspective data. . . . . . . . . . . . . 169



List of Figures xxiii

B.3 Schematic representation of the main results of the project. Each
square represents a portion of a cell, where the empty circle is the nu-
cleus and the black line the membrane. Early and late endosomes are
represented respectively as green and red filled circles whose sizes
give an idea of the differences in endosomes size. From top to bottom
the control (siCTL) situation is shown together with the following
conditions: (a) STIM1 silencing (siSTIM1); (b) dyneine silencing
(siDyn); (c) KIFC1 silencing (siKIFC1) and (d) the combination of
silencing of KIFC1 and dynein together. . . . . . . . . . . . . . . . 170



List of Tables

2.1 Logistic and Gompertz modified equations [12] that explicitly ex-
press the growth parameters (A, λmax and tlag). . . . . . . . . . . . 41

2.2 z-scores resulting from normal tests performed to compare fit param-
eters of the experiments (a) and (b) with their control. Each column
is relative to the comparison between specific parameters: lag times
(ztlag), maximum growth rates (zλmax) and saturation level (zA). The
critical value for a two-tails test with significancy of 5% is zcrit = 1.96. 67

3.1 Values of growth rates (λ ) and relative doubling times (d.t.) of
manual counts (first two columns) and Tecan’s (3rd −4th columns)
measurements. Lines correspond to cell lines. . . . . . . . . . . . . 92

3.2 Summary of optimal sugar concentration chosen for each cell line
(rows) and each sugar (columns). . . . . . . . . . . . . . . . . . . 95



Chapter 1

Introduction and thesis outline
Quantitative biology: where physics
meets biology

The discovery of the double-helix structure of DNA is the first striking instance of
meeting between physics and biology. Indeed, the Nobel Prize laureates Watson
and Crick proposed the nowadays well-known structure of DNA basing on the ex-
perimental evidences of Franklin and Wilkins, who applied the then relatively new
technique of X-ray crystallography to DNA [13]. Similarly to X-ray diffraction,
several techniques built on physical principles have been developed for decades
by physicists and engineers and found a fertile field of application in biology and
medicine. Such technical advances resulted as the easiest and more natural way
for a physicist to enter biology. One can think for example of nuclear magnetic
resonance (NMR) or computer assial tomography (CAT) scan as familiar techniques
that allowed to improve diagnostics. Furthermore, from a more basic research point
of view, there are advanced tools such as scanning electron mycroscopy (SEM)
or confocal microscopy - techniques nowadays widely used for investigating cell
functions - that are the result of studies on lenses, optics, image analysis algorithms.
Thus, the first intersection between the two disciplines saw physics providing ex-
perimental techniques to biology, maintaining the two sciences focused on different
subjects of investigation. This has been clearly evidenced by the British physicist
Donald in [14], where she states that physicists typically tend to simplify the system
under exam as much as possible in order to model it. Given this, for a long time
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biology has been seen too complex and disordered to be modeled and thus it has
not been considered as a subject of interest for physicists. However, in the last
decades, the two sciences have undergone changes that made them approaching
from both experimental and theoretical points of view. Indeed, on one hand, the
developed modern techniques have recently allowed to sequence the human genome,
make microfluidic experiments, investigate single cell functions with high accuracy,
just to give some examples. Such new tools give the possibility to biologists to
both explore new fields and expecially to acquire an always increasing amount of
quantitative data. This, in turn, calls for new quantitative methods to deal with
such an increasing amount of data [15]. On the other hand, a new interest towards
complex and disordered systems rised among physicists. The peculiar feature of
a complex system is the emergence of a collective behaviour from the individual
activity of its large number of components. Such emergent behaviour is different
than the simple sum of single individuals and presents its own characteristics, that
could not be predicted by investigating the dynamics of isolated single components.
Furthermore, in such systems, the disorder and the heterogeneity play a fundamental
role becoming themselves new and interesting topics in modern physics. Consider
for example a flock of birds. This is an out-of-equilibrium system composed by
a large number of single birds moving autonomously, each one following its own
motion and interacting through each other and with the environment. However,
when we zoom out and look at the flock as a whole, we can say that there is a flight
direction in which it moves with a coherent amorphous shape, out of the network of
single components interactions [16]. Similar examples can be found in biology also
at different length scales, such as the molecular motors within cells [17], collective
motion of cells in developing embrios, the crawling cells [18] or swarming bacteria.
These last ones can swim in association with other cells in a thin film of liquid over
a moist surface [19]: such process is called swarming and can produce macroscopic
motions that involve millions of cells, reminiscent of birds flocking.

The issue of conciling macroscopic laws (e.g. flock behaviour) with microscopic
variability (e.g. single bird motion) is a classical task of statistical physics. Here,
starting by the knowledge of (i) the presence of high number of single individuals
and (ii) the laws driving the motion of such single components, it is possible to derive
several macroscopical features by addressing the system through a probabilistic point
of view and avoiding to solve each equation of motion of the single components [20].
A known example of the application of statistical physics to link macroscopic and
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microscopic behaviours, is given by the statistical thermodynamics. Let’s consider
a gas. It is known from classical thermodynamics that the state of the system is
given by macroscopical variables like temperature, pressure and volume and thanks
to the classical thermodynamical laws it is possible to predict the behaviour of the
system when holding all variables fixed but one. However, the gas is composed by
a large number of small particles (molecules) that are known to follow Newton’s
and quantum mechanics. Statistical mechanics enters exactly here, since it aims at
deriving classical macroscopical laws by applying probability theory to the mechanic
equation of motion for systems composed by large ensemble of particles [21].

Systems like flocks of birds or molecular motors are referred to as “active
matter” systems [22] and its features and collective emergent behaviours have been
investigated since recent times through the use of statistical physics tools.

Thus, going back to the relation between physics and biology, the merging of
(i) the use of advanced technologies in parallel to consolidated biological ones, (ii)
the increasing interest of physicists towards complex systems together with (iii) the
improvements in computational power, arised the opportunity to develop always
more deep mathematical analysis on the experimental results and thus mathematical
modelling of biological systems. Such models then do not aim at simply fitting
the empirical data, but they point towards the ability of being predictive. This is
the framework that goes under the name of “quantitative biology”, a recently born
interdisciplinary research field characterised by a continuous interplay between
physics and biology, not only on the methodology and techniques used but also
on the kind of questions arised. As reported by Shekhar and collaborators in [15],
quantitative biology adopts accurate measurements in order to refine hypothesis and
aims at comparing experimental results with predictions of theoretical models. One
of the ambitious challenges of the modern science has been clearly stated by Bialek
in [23] and it is the “development of a theoretical physics of biological systems that
reaches the level of predictive power that has become the standard in other areas of
physics”.

This thesis adopts such quantitative biology framework and investigates two
different biological issues through a both theoretical and experimental approach that
can be summarized in the following way - by rephrasing again what Bialek said
in [23]. First, we identify the principles that describe a given question at a system
level; second, we express such principles through a mathematical formalism and
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finally, we test the quantitative predictions of the mathematical theories by defining
the experimentally accessible phenomena and the right methodologies that allow to
make the needed measurements. For this last purpose of testing mathematical models,
two are the main issues: first, the need of highly controlled experiments, second,
the necessity of accurate and innovative statistical methods. To do so, we borrow
methodologies and approaches by experimental physics: we fix all the representative
variables of the system but one and tune this “free variable” to perturb the system.
Its response is then studied by making measurements of different observables char-
acteristics of the system and corresponding to the theoretical variables. Empirical
results and theoretical predictions are then compared in order to test the model and
relax or modify the eventual falling hypotheses.

The thesis is focused on the study of the heterogeneity of population of cells
under two very different points of view. On one hand, we study how such variability
impacts on the growth of the population by analysing different aspects of cell
population growth. On the other hand, we focus on a molecular level and investigate
a mechanism of gene regulation that may lead to bimodal phenotypes. Due to the
high diversity of these two topics, the thesis is divided into two main parts.

In Part I, we investigate the growth of population of cells as the emergent
behaviour of an ensemble of individual proliferating cells. In particular, we focus on
two different aspects of such growth: its dependence on the initial conditions on one
side (Chapter 2) and its relation with gene expression, on the other side (Chapter 3).

The former work, presented in Chapter 2, has been driven by the presence in
literature of many evidences stating the relevance of the following two elements on
the dynamics of the growth of a population of cells: first, the high heterogeneity
among single cells within a population of genetically identical cells (see for e.g. [1])
and second, the initial density of the population [24–30].

We develop mathematical models that aim at bridging the gap between macro-
scopic (population level) and microscopic (single-cell level) behaviours and sub-
sequently test such theoretical predictions on an in vitro system composed by a
population of cancer cells. To this purpose, we developed a highly controlled and
accurate wet-lab experimental protocol through which we measure population-level
growth variables. In light of the experimental results we modify then the mathemati-
cal models to better interpret and support empirical observations.
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Chapter 3, instead, focuses on the study of the same populations of cancer cells
and aims at identifying the relation between population growth and gene expression.
Such study has been inspired by recent quantitative works carried out in microbiology
where the physiological state of cells has been related with their gene expression.
From simple quantitative empirical relations called the bacterial Ohm’s laws, it
has been developed a phenomenological model for proteome partitioning able to
be predictive even in absence of a complete knowledge of molecular details [5].
Such theoretical model has been used for predicting a wide spectrum of bacterial
behaviours that ranges from antibiotic resistance to unnecessary protein production
[31]. Since similar studies are lacking for mammalian cells and based on the presence
in literature of many analogies between bacteria and cancer cells [32, 33], we transfer
to the above-cited population of cancer cells, the same systematic approach used for
bacteria. The work is part of a collaboration with researchers at Imperial College in
London.

In Part II of the thesis, we investigate the heterogeneity of a population of cells
from a biochemical point of view. In particular, we focus on the role of cell-to-
cell variability on a peculiar mechanism of post-transcriptional gene regulation
mediated by microRNAs. MicroRNAs (miRNAs) are small molecules of non-coding
RNAs that can recognize and bind other molecules of messenger RNA (mRNA).
Every miRNA is predicted to regulate many targets and, viceversa, every mRNA
targets may be regulated by a combination of different miRNAs. Once the two
species are bound, the eventual translation of the mRNA into protein is inhibited. In
particular stoichiometric conditions, when the pool of miRNA is limiting, different
targets may crosstalk to each other (an effect called “competing endogenous RNA
(ceRNA) effect”) in an indirect miRNA-mediated manner. This mechanism of
indirect interaction has been widely analysed from a theoretical point of view [34–
36]. The interaction between miRNAs and targets is titrative [9, 10, 34] and it
depends on the relative abundance of the two species. If miRNAs are more abundant
than targets, all target mRNAs are expected to be bound to miRNAs and the system is
said to be in its repressed regime. In the opposite situation, when mRNA abundance
exceedes that of miRNA, then some molecules of mRNA will be not bound to
miRNA and thus free to be translated. In this second case, the system is said to
be in its unrepressed (or expressed) regime. The regime between the two states,
close to the equimolarity point of the two molecular species, is highly sensible
to small fluctuations in the amount of both the molecular species: depending on
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which prevails, the system can jump either in one state or in the other. Such feature
suggests the possibility to observe bimodal distributions in the amount of free target
molecules simply due to stochastic fluctuations. Bimodality is of particular relevance
in biology since it is usually related to the presence of phenotypic variation: each
mode of the distribution is linked to a physiological state [8]. MiRNA-target systems
are of peculiar interest in this sense, because aberrant miRNA expression is often
related to cancer or other diseases. Thus, the modes of the bimodal distributions may
represent different desease states or cancer subtypes. Moreover, the biochemical
reactions involved are probabilistic and take place in a noisy environment. These
two sources of noise are usually referred to as intrinsic and extrinsic noise [37].
Several stochastic models have been developed in order to investigate miRNA-target
interactions in the presence of noise. In particular, it has been found that the extrinsic
noise plays a pivotal role in regulating the rising of bimodal distributions even in case
of weak interaction strength between miRNAs and targets [8]. Given the biological
importance of bimodal distributions, the fact that through the presence of noise the
system can be driven in one state or the other is not trivial.

As mentioned, the miRNA-target systems have been widely investigated from
a mathematical point of view through both analytical and numerical approaches
[10, 34–36]. However, a similar broad experimental characterisation and testing of
the model predictions is still lacking. Thus, in Part II, we first give an overview on
the existing models able to describe the main features of miRNA-target interactions
and ceRNA effect (Chapter 5). Afterwards, by focusing on the interaction between
one miRNA and one target, we experimentally test the predictions about the rising
of bimodality in presence of extrinsic noise (Chapter 6).

The end of the thesis is devoted to two appendices, Appendix A and B, where we
discus two further projects I carried out during the PhD. In both cases, we adopted
a systematic approach mainly on experimental development, data acquisition and
analysis, similar to those described in Part I and II.

Appendix A, is mostly related to Chapter 2 and has been performed at Centro de
Inmunología Molecular (La Habana, Cuba) in collaboration with researchers both
of the research institute and the Physics Faculty of the Universidad de La Habana.
The project fits in the context of bioproduction, namely the employment of cells as
producers of chemicals useful for therapeutical purposes. On this topic, we refer also
to the commentary [38] I had the opportunity to work on recently. It is known that the
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adding of sub-lethal doses of external chemicals to the growth medium may enhance
the bioproductivity of the growing cells [39–41]. In light of this, we investigate the
response of a peculiar cell line known for its bioproductivity features, when exposed
to different doses of an external chemical, i.e. the sodium acetate. In particular, by
taking advantage of the knowledges on cell growth optimization through initial cell
density acquired in Part I, we finally aim at optimizing the growth in order to make
cell both growing fast and enhancing their productivity.

Appendix B refers to intra-cellular trafficking carried out by endosomes, vesicles
responsible for the transport of the extra-cellular molecules within the cells. The
project is part of a collaboration with researchers of the Institute for Cancer Research
and Treatments (Candiolo, Italy) and concerns the effect of a specific protein on the
regulation of endosome trafficking based on molecular motors. Our contribution
focused on the data analysis, in particular on the development of an image segmen-
tation and particle tracking algorithm able to extract quantitative information on
endosome morphology and dynamics from fluorescent time-lapse videos. In the
dedicated appendix B we discuss the main results of the entire work that is object of
a pubblication in preparation entitled “STIM1 regulates the dynein/dynactin com-
plex formation contributing to the transport of early and late endosomal traffic on
microtubules”.



Part I

Stochasticity and emergent
behaviours in cell growth





Cell growth: from single cell
dynamics to population behaviour

From everyday experience, it is known that a favourable environment may induce a
population of bacteria to grow faster [2]. Such simple observation gives evidence
on the feature of cell growth in encoding information on cellular fitness, making
the growth a remarkable process of cell physiology. For this reason, since Monod’s
first quantitative work on bacterial populations [2], an always increasing number of
studies have been carried out to investigate microbial proliferation. When considering
the typical growth of a population of cells in an environment with finite-nutrients,
after a phase of adaptation (called lag phase), the size of the population grows
exponentially (linearly in semi-log scale) in time as long as nutrients are available
[2]. Of great relevance are the quantification of the two variables representative
for such growth phases, called the lag time and the exponential growth rate. The
former gives information on the time needed for the population to adapt to the new
environment, while the latter represents a measurement of the proliferation. The
growth rate is referred to as an asymptotic behaviour since, in an environment with
infinite nutrients, the population would keep on growing constantly at such rate.
Thanks to its feature of being constant during the entire exponential growth [42],
the exponential growth rate is usually considered as the representative observable
for defining the physiological steady state of the culture. To further support the
pivotal role of the growth rate in encoding information of cellular fitness, several
works have recently investigated quantitative laws relating such variable with further
cellular features such as population size, macromolecular composition and ribosome
functions [5, 43, 44].

The growth described so far concerns the proliferation of the entire population
considered as a whole. However, such macroscopic behaviour is the result of the
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growth of each single cell that composes the system. Thanks to improvements of
modern technologies like single-cell techniques, microfluidics and high resolution
microscopy [45], it is nowadays possible to perform quantitative measurements of
single cells growth. The parameters that have been typically studied to characterise
the growth are division time intervals and single cell sizes. An always increasing
number of works has been performed in this direction and revealed the presence
of an high heterogeneity even in populations composed by genetically identical
cells [46, 47]. An interesting example is given by the work of Koutsoumanis and
coworkers [1] who investigated the dynamics of microcolonies originating from
identically prepared single bacteria. Through a systematical experimental approach,
they found that some cells were able to form microcolonies while others did not.
Moreover, the dynamics of the grown microcolonies showed different behaviours
both in the time needed by the single cell to replicate the first time and in the
effective growth rate of the subsequent colony. Such high heterogeneity is observed
also within cells belonging to the same growing colony, as observed for instance by
Wang and colleagues in [42]. Here, the authors developed the “mother machine”, a
high-throughput microfluidic device that allowed to follow cells for a large number
of generations and thus quantify such heterogeneity.

The cited evidences shed light on the seemingly paradoxical behaviour of a
population of cells: the strong heterogeneity at single-cell level results in a constant
behaviour when the whole population is considered. Moreover, the population
features are not simply the average of the single cell features: the heterogeneity
combines in a more complex way. The population growth rate, for instance, is
smaller than the mean single cell division times [46, 48], suggesting then that the
population grows faster than the average single cell. Thus, the challenge has become
the understanding of how the strong single-cell heterogeneity combines in order to
give rise to a macroscopical emergent behaviour with its own features.

This part of the thesis fits exactly here. We consider the growth of a popula-
tion as the emergent behaviour of an ensemble of single cells growing in a certain
environment. Thus, by adopting approaches inspired by both statistical and exper-
imental physics we aim at characterising the different phases of growth of such
system. Firstly, we focus on a theoretical point of view and develop mathematical
models able to make predictions on the growth of the population by taking into
account single cell dynamics. Secondly, we test such predictions on in vitro systems
consisting of populations of two widely studied cancer cell lines (Jurkat and K562).
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To this purpose, we need to perform highly controlled experiments that allow us
to have statistically significant data to compare to the theoretical scenario. For
this reason, we develop a robust protocol of cell growth inspired by methodologies
usually adopted in experimental physics that allows to obtain an high statistics of
measurements at the population level. Such measurements need to be representative
of the response of the system when all variables are fixed but one. In our case we
consider the initial size of the population as the only tuning knob and investigate the
dependence on it of the different phases of growth. Finally, we modify the initial
models in light of the empirical results. The main body of such topic is discussed in
Chapter 2. The Chapter ends with considerations on how the experimental results
may be useful for the design of experiments for populations of growing cells. The
work is object of a publication in preparation which integrates the topics discussed
in [49].

Chapter 3 focuses on evidences on the cell fitness that emerge from quantifica-
tions of the growth rate. Robust bacterial growth theory recently emerged by linking
the growth rate of the population with the macromolecular composition of the cell
[5]. The growth of cells requires (i) the conversion of environmental nutrients into
amino acids and (ii) the subsequent synthesis of proteins by the ribosomes that
polymerise such amino acids into polypeptide chains [31]. By studying bacteria
growing exponentially in different conditions (and with different growth rates) sim-
ple empirical relations known as “growth laws” have been found. By combining
such relations with a coarse grained partition of the protein expression profile (the
proteome) a general theory for bacterial growth raised [5]. Due to an analogy with
electrical circuit behaviour, such theory has been known also as bacterial Ohm’s
laws [5]. Ohm’s laws simplified the design of electrical circuits way before the
microscopical understanding of the electricity and thus they did not required any
detailed atomic-level description. Similarly, the correlations described in [5] are
considered as microbial growth laws that can help the understanding and design of
complex biological systems with the ability of being predictive without the need
of a complete knowledge of molecular-scale details [5, 6]. Such bacterial theory
indeed, revealed to be very useful for predicting different aspects of cell behaviours.
It has been used, for instance, in investigating the burden of hetherologous protein
expression: in agreement with experimental results, the model is able to predict the
decrease of the population growth rate when unnecessary proteins are expressed [5].
Moreover, it has been adopted to reveal feedback effects that govern the interaction
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between drug and drug resistance [50] and to predict the way biosynthetic pathways
balance enzyme cost with product demand [51].

Given its pivotal relevance in microbiology and the lack of similar studies for
more complex organisms, in Chapter 3 we intend to extend bacterial growth laws
to other systems by investigating the relation between population growth rate and
macromolecular cell composition in a different cell type. Since in Chapter I we
showed that the initial population size influences the growth rate of the population,
in Chapter 3 we consider the same cell types and the same macroscopic observable
to tune the growth rate. Moreover, we identified other two additional measurable
quantities, sugar quality and temperature, and studied the response of the growth
while perturbing one observable at a time. Even though eukaryotic cells are more
complex systems than bacteria, we aim at transferring the very same systemic
approach used for deriving bacterial growth laws, thanks to a wide range of analogies
in the behaviours of bacteria and cancer cells.

Chapter 3 begins with a detailed overview on the bacterial growth theory and
on the methodologies adopted in that case. Then, it follows a description of the
systematic experimental protocols used for our purposes and the analytical tools for
the identification of the interesting observables. Finally, we present the results. The
work presented here is part of a collaboration with researchers at Imperial College
(London) and is the subject of a publication in preparation.



Chapter 2

Initial density dependence in cell
growth

In this Chapter we investigate models of population growth. In particular, we are
interested in studying the dependence of growth on the initial condition, mainly the
initial density of the population.

For this purpose, we first overview different stochastic models based on single-
cell dynamics recently developed for bacterial growth (Section 2.1) pointing out
the relevance of the initial concentration of cells on the population dynamics. In
Section 2.2, we focus on different growth phases and discuss the models that can be
used to predict their trends. Then, in Section 2.3 we test these models on a real in
vitro system consisting in a population of a widely studied cancer cell line. The cell
line is called Jurkat clone E6.1 and is composed of human leukemic T-lymphocites.
We describe the experimental methods adopted and discuss the reasons that drove
us to develop systematic experimental protocols. We then present the analytical
tools applied to analyse the data. In light of the results, we subsequently modify
the previously presented models in order to better interpret the experimental results
(from Section 2.3.4 to Section 2.3.7). Section 2.3.8 is devoted to the discussion on
how the obtained experimental results could drive choices for the design of new
experiments of cell growth. At the end of the chapter, in Section 2.3.9 we discuss
how the same qualitative features shown by Jurkat cells are reproduced also by a
second cancer cell type that we investigated, the K562 cell line.
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2.1 The growth of a population of cells: modelling
and experiments

The intrinsic heterogeneity of single cells within a population plays a pivotal role in
the development of the dynamics of the population as a whole. To better understand
this, we discuss here (see Figure 2.1) some of the results of the interesting work on
the dynamics of bacterial microcolonies performed by Koutsoumanis and coworkers
[1] and mentioned in Chapter I.
Figure 2.1(a) depicts three examples of different dynamics due to single cell hetero-
geneity: cells in Figure 2.1(a)A were able to form a growing colony, while other
ones did not and exhibited filamentations (Figure 2.1(a) B) or lysis before division
(Figure 2.1(a) C). Figure 2.1(b) shows that, focusing on the single cells able to form
microcolonies, even the dynamics of such colonies showed different behaviours. For
instance Cell 1 (diamonds) and Cell 3 (triangles) in the plot show that within the
same time range (6 hours), the latter colony reaches higher densities than the former
(ln(cell number)∼ 4.5 vs 2.5). Furthermore, the number of cells in microcolony born
from Cell 3 increases after a shorter time than that related to Cell 1, that did not
replicate (ln(cell number) = 0) for more than 3 hours. Such time, called lag time, is
the time the cells need to adapt to a new environment before being able to replicate
exponentially.

Classical deterministic models adopted to describe cell population growth fail
when small initial populations are considered, because heterogeneity among cells
becomes relevant when dealing with small numbers. For this reason, models for
population dynamics have been developed based on stochasticity of the single cells
[1, 52–55]. Let’s consider again the work of Koutsomanis and colleagues [1], which
represents an interesting example for our purposes. Based on the experimental results,
the authors developed a stochastic model of growth that takes into account single
cell heterogeneity. Through Monte Carlo simulations, they investigated the effect
of the initial population size (N0) on population dynamics. From the simulations
they found two main features. Firstly, the variability in population growth decreases
with the increasing of N0, as shown by Figure 2.1(c). As a consequence, in case
of large N0 (N0 > 100 cells) - a usual condition of laboratory growth experiments
- the variability becomes negligible and the system has a deterministic behaviour.
This supports the use of deterministic models for describing high initial population
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sizes, but also the need for stochastic models when interested in smaller N0s. The
second result concerns the lag time. In agreement with findings on Escherichia Coli
obtained by Pin and Baranyi [55], Koutsoumanis and colleagues showed a decrease
in the lag times when N0 increases.

(a) Time (h)

(c)(b)

Fig. 2.1 Figures adapted from [1]. (a) Time-lapse images of Salmonella Typhimurium individ-
ual cells over time. A. Cell able to form a colony; B. cell filamentation; C. cell lysis precedes
cell division. (b) Representative growth curves of individual cell colonies of Salmonella
Typhimurium. (c) Probability distributions of the number of cells in microcolonies originated
from different initial N0s after 8 hours of growth obtained from Monte Carlo simulations.

Such results call the attention to two main intertwined arguments. On one hand,
the importance of the employment of stochastic models for the interpretation of cell
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population dynamics; on the other hand, the dependence on the initial conditions of
such dynamics.

2.1.1 Initial cell density dependence

The initial cell density (N0, inoculum) has been found to influence the growth
of the population in a wide range of organisms, from bacteria [56, 57] to plants
[24, 26, 27], insects [28], mammalian and cancer cells [25, 29, 30]. Across the
different studies, initial population size showed relevant effects on both metabolic
signatures and the physiology of the organism. Metabolic signatures refer to the
ability to secrete specific compounds. Ozturk and colleagues [30] for instance,
found that the efficiency to produce monoclonal antibodies - example of bioproducts
used for therapeutical purposes - in a murine cancer cell line depends on the initial
concentration of the cells. The physiological aspects that may reveal an inoculum-
density dependence concern instead the different phases of growth of the population,
namely the maximum attainable cell density [30] (also called carrying capacity),
the adaptation time and the doubling time (for details see next Section 2.1.2). In
particular, the growth rate of the population, which is inversely related to the doubling
time, can increase [28, 24] or decrease [27, 25] with the initial density depending on
the organism and on the environment. In case it remains constant, its fluctuations
can drastically change when modulating the initial seeding [57, 26].

Because of the plethora of results, a direct comparison among different organ-
isms and conditions is difficult. However, the very fact that effects of inoculum
dependence are evident in such a wide spectrum, suggests the presence of peculiar
mechanisms intrinsic of the initial condition whose effects are preserved during the
subsequent history of the population. Such initial condition dependencies in cell
growth may be due to many different causes. For instance, in the bacterial growth
model defined by Baranyi [58], the initial density dependence of the growth rate is
imposed by the growth medium through a finite carrying capacity. As quantified in
[59], the growth rate is expected to decline when the inoculum density approaches
the carrying capacity, since a strong competition among cells occurs in order to
overcome starvation.

Evidences of initial condition dependence are also present when considering the
lag time, as found for example in Escherichia Coli by Pin and Baranyi [55]. As
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mentioned in Section 2.1, many population models based on stochasticity of single
cells have been used also to predict the growth of a population given different initial
number of cells [1, 52].

In light of these observations, we are interested in modelling the population
growth and in discussing the growth phase dependencies on the initial population
size, N0. Before going into details, we present a brief introduction on the phases of
growth of a population of cells. Afterwards, for each parameter that represents the
growth phases, we discuss a mathematical model whose predictions are subsequently
tested.

2.1.2 Phases of growth

One of the most used methods for growing cells in wet-laboratories is the so-called
batch-cell culture. The method consists in seeding the cells in a new environment
with a limited amount of nutrients and leaving them free to grow by consuming the
growth medium. The dynamics of a population of cells growing in such condition
has been widely studied in microbiology. Of great relevance is the work of Monod
[2], where he identified mainly three distinct phases representative of the growth: the
lag, the exponential and the stationary (or saturation) phases. Figure 2.2 shows such
phases in terms of both the logarithm of bacteria density (bottom) and the growth
rate (top) of the population. During the lag phase (represented by the number 1 in
Figure 2.2) the population adapts to the new environment and the density of cells
is constant in time: the growth rate is equal to zero. This phase is followed by the
exponential phase (number 3 in Figure 2.2) in which the number of cells increases
exponentially (linearly in the semi-logarithmic scale in the plot) and thus the growth
rate is again constant but with a non-zero value. So, the population density is able
to grow until it reaches a saturation phase (stationary phase, number 5 in Figure
2.2) and it is not able to increase anymore. The growth rate in this phase is again
constant and equal to zero. This regime is followed by the death phase (number 6 in
Figure 2.2) where the population decreases as well as the growth rate. Furthermore,
Monod identified two more phases (numbers 2 and 4 in Figure 2.2) that relate to
the transitions from the three main ones and present a non-constant growth rate. In
phase (2) the number of cells increases slightly until it enters the exponential phase.
This phase is often considered as an acceleration phase (Monod) or second lag phase
[60], and differs from the first one because both the growth rate and the cell density
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are not null. Phase (4) links instead the exponential and the stationary phases and is
called a deceleration phase, due to the decreasing of the growth rate in time.
For each of the three main growth phases (1, 3 and 5), Monod identified a repre-
sentative variable: the lag time, that represents the duration of the lag phase; the
exponential growth rate, namely the rate of growth during the exponential phase;
and the carrying capacity, the maximum achievable cell density in a given growth
medium, also known as total growth.

The lag phase is the most debated one. It is in general considered an adaptation
phase and its total duration may include both the first two phases identified by Monod.
For our purposes we will include in the lag time also the acceleration phase.

The growth rate instead is often considered a constant regime, due to the fact
that every cell component doubles at a constant rate [2]. Due to this observation,
the exponential growth rate (λ ) is usually related to the doubling time (d.t.), an
experimentally widely used variable, according to:

d.t.=
ln(2)

λ
(2.1)

This equation is obtained by considering that the doubling time represents the
time a population in the exponential phase needs to double its size.

The total growth, i.e. the carrying capacity level, is a property of the medium
and is controlled by the quantity of nutrients in the medium.



20 Initial density dependence in cell growth

Fig. 2.2 Phases of growth. Bottom plot represents the log2 of bacteria density, the top one the
growth rate (a.u.) both as function of time. Dashed vertical lines divide the growth phases.
Growth phases identified by numbers: lag phase (1), acceleration phase (2), exponential
growth phase (3), deceleration phase (4), stationary phase (5) and death phase(6). Figure
adapted from [2].

2.2 Mathematical models for cell growth

Consider a theoretical batch cell culture experiment. A sample of N0 cells, belonging
to a population growing at a constant rate, is transferred in a new environment
with fixed amount of nutrients. In this new condition, cells are left free to grow
by consuming nutrients. After an adaptation (lag) phase, the population grows
exponentially at a constant rate up to the maximum attainable level where the growth
stops and the concentration of cells saturates. In such scenario, we are interested in
the following parameters representative for each growth phases: the lag time (tlag),
the maximum growth rate in the exponential phase (λmax) and the carrying capacity
(k).

This section is organised into three parts. Section 2.2.1 discusses our expectations
on the carrying capacity. Section 2.2.2 presents a null model we developed to describe
the population lag time by taking into account the single cell variability. Finally, in
Section 2.2.3, we present a deterministic model for population growth through which
we make expectations on the exponential growth rate of the population.

The theoretical predictions here discussed are then tested in Section 2.3.2.
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2.2.1 The carrying capacity

As mentioned in Section 2.1.2, in batch cell cultures the density of the population
saturates at a level defined by the amount of nutrients present in the growth medium.
Such saturation level can be then adjusted by changing the quantity of a particular
nutrient in the medium, as depicted in Figure 2.3(a). In this case, all nutrients but
one are left constant and it is possible to see that the level of saturation changes
accordingly to the concentration of the growth-limiting substrate (Figure 2.3 (b)).

(a) (b)

Fig. 2.3 (a) Growth curves of a small initial density population of bacteria seeded in growth
medium with all nutrients in excess except one which is limiting. Each shade of blue
represents different concentration of such growth-limiting nutrient. The population is left free
to grow by exhausting nutrients and the total growth (i.e. carrying capacity) is emphasised
by vertical arrows. (b) The total growth is plotted as function of the concentration of the
growth-limiting nutrient. Both (a) and (b) are adapted from [3].

For our purposes, we are interested in fixing the environment, thus the quality
and quantity of nutrients, and consider the initial concentration of cells as the only
variable to tune. For this reason, we expect that the maximum reachable level of
concentration is constant with respect to the initial cell density, indeed it represents
the maximum amount of cells that a given environment can carry (thus the name
“carrying capacity”).

2.2.2 Population and single cell lag times

To better understand the importance of the lag time models that take into account cell-
to-cell variability, we briefly overview the main principles underlying the existing
models.
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An overview on bacterial lag time models

When cells are transferred in a new environment, they need a certain time to adapt to
the new condition before starting to exponentially proliferate. A clarifying example
can be found in [54], where a widely known bacterial metabolic process is described:
the growth of Escherichia Coli in glucose and lactose. These two represent two
sources of carbon that allow cell growth. When bacteria growing exponentially
in a medium supplied with glucose, are moved to a new environment with lactose
instead of glucose, the population shows a lag phase before the beginning of a new
exponential growth. Within this period, cells adapt to the new condition by inducing
the production of the specific enzyme (lactase) needed to process the lactose. In
particular, the absence of glucose and the presence of lactose induce transcription
and translation of a set of three genes (lac operon) coordinately regulated within E.
Coli. In this way, the cells become able to metabolize the new carbon source and can
thus replicate. According to this phenomenon, if the carbon source is not changed,
in principle any lag time is expected during the population growth.

The interest in developing mathematical models to predict bacterial lag phase
duration has recently enhanced [61]. One of the main reasons lies in an increasing
attention of the modern societies for food safety and thus in having an always deeper
knowledge of the growth of microorganisms in food. Thus, a broad literature on
mathematical models for the prediction of population lag times is available. Methods
we are interested in are those able to give predictions on the population lag times,
based on the stochasticity of single cell dynamics [53, 62]. In such models, the
biological variability of the population is represented by the model parameters which
are random variables distributed over the entire population [61]. In such models two
different lag times are distinguished and connected: the population and the single
cell lag times. The former is sometimes considered as the average of the latter [54].
However, as stated also in Chapter I, this is not always true when careful analysis on
the single-cell stochasticity is considered.

Such topic is the core of the next section, where we present our model for lag
time that relates population and single cell variables.
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Mathematical model for population lag time

Consider a population of N0 cells moved to a new environment at time t = 0. After
the adaptation time t = tlag the population grows exponentially according to (by
neglecting the carrying capacity)

N(t) = N0eΛ(t−tlag), (2.2)

where Λ is the exponential growth rate of the population. The very same dynam-
ics is valid also for every single cell i belonging to the initial population N0, with
i = 1,2,N0. Indeed, each single cell needs a time τi to adapt to the new environment.
In agreement with the existing models (e.g. [62]), we assume that the single cells are
independent and do not have any information on the size of the colony they belong
to. Thus, after τi, each sub-colony derived from cell i grows exponentially with a
constant rate Λi. We assume that the growth rates of the sub-colonies are equal to the
growth rate of the macroscopical population Λ and that τi are identical independent
random variables. So, the size of each sub-colony (ni) evolves in time - again by
neglecting the carrying capacity - according to:

ni(t) = eΛ(t−τi). (2.3)

The size of the entire population of cells (N) is then a combination of the ni

single colonies and grows as follows:

N(t) =
N0

∑
i=1

ni(t) =
N0

∑
i=1

eΛ(t−τi). (2.4)

Therefore, from eq. 2.2 and 2.4 it follows that the population lag time tlag can be
written in terms of the single cell adaptation time τi as:

tlag =− 1
Λ

ln(
1

N0

N0

∑
i=1

e−Λτi). (2.5)

Notice how the population lag time encodes information on both the initial cell
density N0, the single cell lag times τi and the population growth rate Λ. Depending
on the value of Λ, in eq 2.5, two different regimes can be identified.
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If Λ assumes “small” values, Λ ≪ 1
τi

, the population lag time is equal to the average
of the single cell first division times. Indeed, through asymptotic expansions of eq.
2.5 it follows:

tlag ⋍
1

N0

N0

∑
i=1

τi. (2.6)

In this case, by increasing N0, tlag is driven by a Gaussian statistics and thus the
value of tlag is better defined, while its fluctuations decrease.

If we now consider Λ assuming “large” values ( Λ ≫ 1
τmin

), the term ∑
N0
i=1 e−Λτi

is dominated by the minimum of τi for the saddle point method, leading to the
following expression for tlag:

tlag ⋍ τmin ≡ min{τ1, ...τN0}. (2.7)

In other words, in this second case, the population lag time is described by the
extreme value statistics. Thus, by increasing the sampling, namely increasing N0,
τmin decreases resulting in a consequent monotonic decrease of both tlag and its
fluctuations. The way tlag decreases with N0 depends on the distribution of the τis.

Figure 2.4 summarises the above described model and the two possible scenarios
for the population lag time derived from it.
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Fig. 2.4 Schematics for the lag time model. (a) Cartoon summarising the model. At the
population level, a population of N0 cells (light blue dots in the top-left circle) needs a
time tlag before starting to grow exponentially over time (N(t)) according to 2.2. The same
dynamics is valid at the single-cell level, where each single cell i starts after a time τi to
give birth to sub-colonies whose sizes grow exponentially over time ni(t). Each colour of
the dots in the bottom circles represents a single cell (on the left) and its corresponding
sub-colony (on the right). (b) Schematic representation of the two possible scenarios for the
population lag time tlag derived from eq. 2.5. The Gaussian statistic scenario (in blue) and
the extreme-values one (in red). This second case has been obtained considering a uniform
distribution for the τis.

In conclusion, the behaviour of the population lag time depends on the initial
concentration of cells N0, the population growth rate Λ and the distribution of single
cell lag times τi, that can be considered as the first division time of each single
cell. As stated above, the main distinction concerning the statistics driving the
behaviour of tlag vs N0 is given by the value of Λ with respect to the single cell lag
times. In Section 2.3 we test such model on populations of cancer cells, in order to
understand which is the statistics that better interprets the data and is able to predict
their behaviour.

2.2.3 Logistic growth model

If a population of cells in batch conditions does not undergo a change in the envi-
ronment, it is expected to have zero-lag time and to grow exponentially up to the
saturation level determined by the limited food availability. The simplest determin-
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istic model able to describe such growth is the logistic growth introduced by P. F.
Vehrulst [63], with the following differential equation :

Ṅ
N

= r(1− N
k
), (2.8)

where N is the size of the population, r the intrinsic growth rate and k the carrying
capacity.

Eq. 2.8 can be understood with the following simple heuristic argument [64].
Population size N at time t can be seen as a balance between births and deaths at that
specific N. Being b(N) and d(N) the birth and death rates as function of N, we can
write:

N = b(N)−d(N). (2.9)

Then the population size changes over time according to:

Ṅ =
dN
dt

= (b(N)−d(N))N. (2.10)

The difference in parenthesis, (b(N)−d(N)), is the net increasing rate per unit
time. By taking into account that the growth occurs in an environment with fixed
carrying capacity k, the parenthesis of eq. 2.10 can be expressed as the following
linear decreasing function of N:

b(N)−d(N) = r(1− N
k
), (2.11)

where r > 0 is the intrinsic growth rate. By plugging such equation in eq. 2.10,
the expression of eq. 2.8 is obtained. To better understand the meaning of the
intrinsic growth rate, let’s consider eq. 2.8 in the limit for small population sizes, i.e.
N → 0. In this case, equation 2.8 can be approximated to the first order and thus

Ṅ = rN, (2.12)

which represents an exponential growth. The growth rate r is thus the individual
growth rate in an ideal situation of infinite nutrient availability.
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Equation 2.8 can be analytically solved. By plugging N0 as initial condition, the
following solution is obtained:

N(t) =
N0kert

k+N0(ert −1)
. (2.13)

A representative cartoon of eq. 2.13, namely the logistic growth curve, expressed
as the logarithm of N as a function of time is shown by Figure 2.5(a). Here, it
is possible to notice that the population, starting from the initial size N0 (initial
condition), grows exponentially (linearly in the semi-logarithmic scale) up to the
level of saturation given by the carrying capacity k.

The map of the punctual growth rate expressed as the derivative of the population
size N over time (dN/dt) as a function of N is depicted in Figure 2.5 (b). The
growth rate increases when N is far from the carrying capacity, then it reaches a
maximum and finally decreases as the population size approaches k. When the
size of the population increases, because of the overcrowding of the environment
and the consequent shortage of nutrients, also the competition for nutrients among
individuals increases. The net effect is a decrease of the overall population growth
rate [58].

We are now interested in analysing how the exponential growth rate of such
logistic dynamics may depend on N0.
To this purpose, we firstly need to analytically define the exponential growth rate.
Since there is not a standard definition, and assuming that the exponential phase is the
regime of maximum speed of growth of a population, we consider as representative
growth rate, the maximum slope of the curve. We consider the growth curves in the
following form: y = ln(N(t)

N0
) and calculate the slope of the curve as λ = ẏ = dy

dt . By
analysing λ , it follows that:

(i) From eq. 2.8 and 2.13 the time derivative of y in t = 0 is

ẏ|t=0 = r(1− N0

k
) (2.14)

(ii) For t → ∞, N(t)→ k and thus ẏ|t=∞
= 0
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(iii) From eq. 2.8 and 2.13 the second order time derivative of y is

ÿ =−r2N
k

(1− N
k
) (2.15)

and it is always negative.

These three observations lead to the conclusion that, since the slope λ decreases
when t > 0, its maximum value must be in t = 0. Thus, the maximum growth rate
λmax assumes the form expressed in eq 2.14. By calculating it for different values
of N0, the trend as function of the initial condition N0 shown by Figure 2.5(c) is
obtained. By assuming a logistic dynamics, the maximum growth rate does not
depend on N0 if the initial population size is sufficiently smaller than the carrying
capacity k. However, when it assumes values closer to k, the growth rate decreases
asymptotically to it (dashed vertical line in Figure 2.5(c)). The latter trend can be
understood as discussed above: the more the overcrowding, the more the competition
for the limited nutrients and the slower the population grows [58].

time

ln
(N
)

ln(N0)

λ m
ax

(a) (c)(b)

Fig. 2.5 Cartoons representative for the analysis of the logistic growth model. (a) The solution
of eq. 2.8 plotted as the logarithm of the population size as a function of time. The initial
condition is given by the initial population size N0. (b) Mapping of the punctual growth rate
(dN/dt) vs population size (N). (c) Maximum growth rate (λmax) calculated as the derivative
in time t = 0 of growth curves obtained by the model with different initial conditions plotted
as function of N0. In all the three plots the carrying capacity level (k) is emphasised by a
dashed black line.

In summary, by considering a population of independent cells growing in a fixed
amount of nutrients, we predict the following features. (To be noted: when talking
about initial condition, we always refer to initial cell density, i.e. the initial size of
the population.)

(i) Due to the limited availability of food, the maximum attainable cell concen-
tration (carrying capacity) is constant independently on the initial condition;
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(ii) The population undergoes a period of adaptation (lag time) when the quality
of nutrients is changed;

(iii) Through a stochastic model based on single cell dynamics we can predict
that such population lag time can be related to the single-cell first division times
either through a Gaussian or an extreme values statistics. This statistics can in turn
predict the population lag time dependence on the initial condition.

(iv) The simplest deterministic null-model for describing the dynamics of the
population discarding the lag time, is a logistic growth where an exponential phase
is followed by a saturation regime. In the latter, the population size reaches the
carrying capacity. In this scenario, the exponential growth rate is not influenced by
the initial condition for a wide range of N0, namely as long as the initial size of the
population is far from the carrying capacity. When the population size approaches
the carrying capacity, the growth rate decreases.

Our purpose is now to test such hypothesis by measuring the population growth
variables on an in vitro system consisting of populations of widely studied cancer
cells. The next Section 2.3 is dedicated to this topic.

2.3 Experimental testing of theoretical predictions

In the previous section, we developed and discussed models for the dynamics and
the initial condition dependence of a population of cells, beginning with simple
assumptions inspired by microbiology and population dynamics. In this section
we aim at testing such hypothesis on a real sistem, consisting of a population of
widely studied cancer cells, called Jurkat clone E6.1, a human leukaemic cell line.
In particular, we will experimentally investigate the macroscopical features of the
population, i.e. how the three phases of growth of the population depend on its initial
size. At the end of this section we will repeat the very same investigation on a further
leukaemic cell line, i.e. K562, and we will compare the results.

To our purposes, we need highly controlled and statistically relevant experiments.
With the first requirement, we intend to maintain growing conditions as much
controlled as possible and only vary the initial population size among experiments.
The quantification of the growth phases and their relation with the initial cell density
would give us information on the macroscopical response of the system when
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changing the initial state. Concerning the second requirement, we need statistically
relevant data of cell growth in order to make comparisons with theoretical predictions.
To address such issues, we developed an experimental protocol for cell growth
inspired by techniques usually adopted in experimental physics, as discussed in the
following Section.

2.3.1 Approaches inspired by experimental physics

The very first step in performing quantitative and systematic experiments relies in
the definition of the right measurable observables that allow to answer a specific
question. Once determined, the experimental design follows with the selection of
the best methodology to adopt in order to extract the desired information from the
system under exam. An essential (and obvious) point is that the measured quantities
must vary according to the sample itself and not to the way measurements have been
performed.

In our case, we are interested in testing the predictions of mathematical models
on the behaviour of a population of cells. To achieve this, we intend to relate
the representative variables of the three distinct growth phases of the population
to its initial size. Thus, from an experimental point of view, our main scope is
the generation of a robust set of growth curves with different initial conditions.
It is important to highlight that our aim is to investigate the influence of a single
variable (N0) on the system, thus, we point towards the design of highly controlled
experiments in which we fix all variables and change only N0. This point is not trivial
when performing wet-lab experiments, given the high sample-to-sample variability
discussed at the beginning of this chapter. To overcome such issue, we followed
the standard procedure in biology. It requires that, a part from the definition of
experimental boundary conditions constant in each experiment (i.e. fixed growing
conditions), for each initial condition one sets up three identical parallel growth
cultures, often referred to as “technical replicates”. The very same set of experiments
is then repeated in a different day, with a different aliquote of cells. In this way
independent measurements are available and the biological variability is taken into
account.

The relevant measurable observables we intend to study are related to the growth
of the population by ignoring single-cell features and are the initial size of the
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population (N0), the lag time (tlag), the maximum exponential growth rate (λmax) and
the carrying capacity (k).

Population growth curves are usually expressed as the variation in time of the
number of cells. Thus, for our purposes a precise and accurate determination of the
number of cells becomes necessary as well as a sufficient time resolution among the
measurements. In this way an accurate estimate of the growth parameters can be
obtained, as discussed also in [61]. To achieve this, we need a method that allows us
to (i) repeat several times the measurement of the same sample in order to increase
the precision; (ii) make a high amount of measurements in a reasonable amount of
time; (iii) obtain reproducible and unbiased results; (iv) be confident on the fact that
the differences observed among samples are due to samples themselves and not to
measuring procedures.

The most popular standard methods used in biology for counting cells are the
estimation of the concentration through successive dilutions [65] and the direct man-
ual cell counting of viable cells, usually performed through either an hemocytometer
or an automated cell counter. Both methodologies present high criticalities for our
scopes. Indeed, we need precise values of cell concentrations. However, with the
first method, such information is lost since it estimates the number indirectly and
does not measure it. The second method seems to better suit our requirements. The
hemocytometer is a counting device firstly introduced for counting blood cells and
then became popular for counting other cell types. Different versions of hemocy-
tometers are available nowadays. The most known one consists of a thick glass
microscope slide with a chamber formed by an indentation. Such chamber presents
a grid of perpendicular lines: the area bounded by the lines and the depth of the
chamber are known. By injecting a sample of cells in the chamber, it is then possible
to count, by eyes under a microscope, the number of cells within the grid and to
calculate their concentration (see Figure 2.6 for an example). However, such method
presents many shortcomings such as (i) the lack of statistical robustness especially
at low sample concentrations, (ii) the subjectivity of counts among users, (iii) the
characteristic of being labour-intense and time consuming, especially in presence
of high number of samples and high number of cells per sample. To overcome
such issues, automatic cell counters has been introduced in biological labs. Such
devices allow to automatically have unbiased and reproducible information on the
number of viable cells. However, the most of them require the adding of chemical
buffers to the samples in order to detect cells. Such feature causes the method to be



32 Initial density dependence in cell growth

rather expensive if a high number of measurements of the same sample is required, a
necessary issue for having a reliable statistics.

Fig. 2.6 Figure adapted from Bio-Rad protocol for cell counting [4]. Example of a counting
grid called Neubauer counting grid. It is composed of nine sections of 1mm2 each indicated
by a red number.

Driven by these reasons, we developed the following systematic method for
counting cells. Note that all details are described in the following Section. We inject
in a single-use counting chamber composed by a grid of 5 counting fields, a sample
representative of the population to be measured. Phase-contrast micrographs of the
5 fields are taken under a common inverted microscope. The number of cells is
then given by the application to the images of a custom-made image segmentation
algorithm. The measurement is repeated several times in order to reduce the error
on the measurement, which is then within ∼ 10− 15% of the measurement itself.
Indeed, for each sample we count the number of cells within the 5 fields for at least
3 chambers, for a total of 15 measurement. By knowing the area of each square
and the height of the chamber we can calculate the concentration of the population
of cells by averaging such 15 measurements. In case of very low concentrations,
the number of repeats is increased. This method allows to increase the number of
measurements and thus its statistical relevance in a reasonable amount of time.

Such protocol results thus less time consuming than hemocytometer counting and
allows to improve the automation by reducing the user bias. In this way, statistically
relevant and highly reproducible direct measurements of the concentration of cells
are obtained with acceptable relative experimental errors. Moreover, the use of an
image segmentation algorithm allows us to have information not only on the number,
but also on the size of the single cells, giving the possibility to investigate further
morphological features and relate them to growth.
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2.3.2 A systematic experimental approach revealed robust growth
curves

We discuss here the details of the main steps of the experimental protocol we adopted
for growing cells.

Each experiment began at time t = 0 h by taking a concentration N0 of cells from
a population growing exponentially in its standard growth medium. The N0 cells
were then transferred in a new plate containing a fixed amount of fresh standard
growth medium and left free to grow by consuming nutrients. Notice that the quality
of the growth medium before and after the seeding was the same. Such information
will be relevant for the analysis of the lag times.

The entire growth - from time t = 0 h until the saturation phase - was mon-
itored every 24 hours by following the cell counting protocol introduced in the
previous section. Briefly, the concentration was calculated by taking micrographs
of a representative sample of the population and by segmenting each image with a
custom-made image processing algorithm able to extract number and size of alive
cells.

In this way, 215 growth curves were obtained (Section 2.3.2) and analysed
through fitting tools to extract the growth parameters, as discussed in Section 2.3.3.

The details on the cell line, the cell culturing method and the image segmentation
algorithm are discussed in the following paragraphs.

Jurkat cell line

In this paragraph, we report a brief summary of the main features of the cell line
we studied, together with an introduction on what a cell line is and which are its
advantages with respect to primary cells.

Normal human cells have a limited ability to proliferate in culture, because
they undergo senescence. This means that after many proliferations, the entire
population is not able to grow anymore despite the availability of space and nutrients
in the medium [66]. A cell line is instead a population of monoclonal immortalised
cells, that is, identical cells that do not undergo senescence [67]. If in presence of
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optimal medium and space, they are able to proliferate indefinitely giving an ideal
homogeneous pool of identical cells useful for biochemical and genetic investigation.

The cells we investigate are Jurkat cells, clone E6.1. Jurkat cells are a leukaemic
immortalised line of T lymphocytes. The original cell line (called JM) was derived
in 1970s from a 14 years old boy with T cell acute lymphoblastic leukaemia. The
subclone Jurkat E6.1 was developed in the 1980s [68] and became one of the most
used Jurkat cell line, often considered as the standard one [69].

Jurkat cells live in suspension and tend to form clusters when growing in healthy
conditions. The clusters are easily dissolvable by pipetting, so there is no need to
add any chemical to the medium to dissolve them. In this way the population does
not undergo a strong stress, keeps on growing and form clusters again after their
disaggregation.

Jurkat cells have a great scientific interest due to their strong resemblance to the
primary T lymphocytes [69]. For this reason they are widely used as a model cell for
investigating T-cell expansion [70], T-cell leukaemia, T-cell signalling as well as the
expression of receptors that can be susceptible to viral entry, like HIV [68]. A very
relevant feature of Jurkat is their ability to produce large quantities of interleukin-2
[69], a growth factor that maintains the T-cell in vitro proliferation [71, 72].

Since we are interested in analysing the dependence of the growth on the initial
density of the population, it is worth to mention that in literature there are some
evidences showing the importance of cell density for maintaining certain kinds of
T-cells in vitro [73] as well as some kinds of leukaemic ones [74].

As anticipated, we performed the very same kind of investigation on a further
leukaemic cell line, the K562. We remind to the dedicated Section 2.3.9 for all the
details.

Cell cultures

Growth experiments were performed by culturing Jurkat cells clone E6-1 in their
optimal growth medium: RPMI-1640 supplied with 10% of fetal bovine serum, 5%
of Penicillin/Streptomycin.

The growth medium contains a pH indicator, the phenol red, that lets the medium
change colour according to its pH. (The medium turns from pink (basic) to yellow
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(acid)). Its presence in the medium is considered very convenient by biologists
because it helps checking quickly whether a culture is contaminated or not. In case
of contamination indeed the environment becomes quickly very acid.

To begin each experiment, an initial concentration of cells (N0) was extracted
from a population growing exponentially in the above mentioned optimal growth
medium and seeded in 6-well plates with a fixed volume (5 ml) of fresh optimal
growth medium. For each initial concentration at least 3 wells were prepared.
Cells were then incubated at 37 °C with 5% of CO2 and left free to grow without
adding any new medium for the entire duration of the experiment. The growth
of the population was monitored by counting cells every 24 hours. To count cells
two main features were necessary: firstly having a homogeneous sample, secondly
distinguishing alive from dead cells. To address the first issue, since the tendence to
form clusters, the volume with medium and cells was gently pipetted each time a
counting measurement had to be performed. At this point, in order to count only alive
cells, 30 µl of homogenised cells and medium were mixed with an equal volume
of methylen blue (diluted 1% in Phosphate-Buffered Saline). The methylene blue
only enters dead cells because of their permeable membranes. Dead cells are thus
stained blue while alive ones remain colourless. At this point the homogenised
mixture was transferred in 3 single-use hemocytometer chambers. The choice of
repeating the measurement of the concentration of cells over three chambers pointed
towards a better sampling of the population. In this way, possible irregularities
due to sampling are averaged. For each chamber (corresponding to a volume of
10 µl), 5 phase contrast photos were taken by using an inverted microscope (Axiovert
Zeiss) supplied with a 10x objective. In this way, at a given time, 15 micrographs
of representative samples for each well were taken. Thanks to the methylen blue,
the alive cells could be distinguished, as they appear as round-shaped bright spots
(see Figure 2.8 (a) in the next paragraph for an example). Given a counting-chamber,
the fact of counting over five fields allows to reduce the effects of eventual non-
homogeneous distribution of the sample within the chamber.

Micrographs were then analysed through a Matlab-based custom made algorithm
that implemented built-in functions in order to have information on the number and
sizes of alive cells. Details of the algorithm are described in the next paragraph.

The procedure of counting was applied every 24 hours from the seeding time
until the population reached the saturation phase.
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Figure 2.7 summarises the experimental protocol used to obtain the growth
curves.

cells
growing

Exp.
N0 N0 N0

N0N0N0

Time < 0 Time = 0

- Seeding -

Time > 0

- Automatic cell counting -

Growth curve

time [h]

ln
(N

)

Fig. 2.7 Cartoon of the experimental procedure. From left to right, from a flask with cells
growing exponentially in their standard growth medium, at time t = 0 h, samples of N0 cells
have been taken and moved into 6-well dishes supplied with the very same nutrient quality
present in the flask. From time t=0 on the growth was monitored through automatic cell
counting and growth curves similar to the one on the very right have been obtained.

Cell counting algorithm

In order to have information on cell number, we developed the Matlab code described
in this paragraph. The code consists in two parts: the first one for the number
detection, the second one for the size determination.

Our code uses Matlab built-in functions of image segmentation. Image segmenta-
tion is a general procedure that divides an image into its regions or objects of interest
(cells in our case). The number of detected objects in our code is the result of a
first thresholding on the pixel intensity (this allows a first detection of the objects in
the image), followed by a watershed to distinguish touching objects and finally the
selection of only round shaped cells.

The code requires as input the phase contrast micrographs taken through the
procedure explained in the previous paragraph, see Figure 2.8 (a) for an example.

After a first contrast adjustment of the original image, a Gaussian filter is applied.
This is an operator that blurs the image reducing the intensity of structures and it
is useful especially for having a first reduction of noise without introducing any
artefacts [75]. Afterwards the image is converted in gray scale first and then into a
binary image by using the thresholding method. This method requires the definition
of a threshold, empirically chosen in our case by analysing the intensity of both the
background and of interesting objects. All pixels that have a value lower than the
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threshold are labelled 0 in the output image, while those higher than the threshold are
labelled 1. In this way the binary image is obtained. At this point we are interested
in labelling the objects by using the Matlab function bwlabel. This is a function
that returns a label matrix containing labels for the 8-connected objects found in the
binary image. To be sure that through the binarization of the image, the structures we
are interested in remained detectable, we apply three different image manipulation
functions before the labelling. Firstly we fill holes by using imfill function. A
hole is defined as a set of background pixels that cannot be reached by filling in
the background from the edge of the image. Secondly we open and finally close
the image with a disk as structuring element. The opening smoothes the contour
of objects and eliminates thin protrusions while the closing smooths sections of
contours, eliminates holes and fills eventual gaps in the edge. By applying them
subsequently, a better refinement of single objects can be obtained [76]. At this point
the function bwlabel is applied, therefore every detected object has a number as
label (see Figure 2.8(b)). We put then a threshold on the size: all objects with less
then 10 pixels are eliminated. The value 10 pixels was chosen by measuring the size
of detected objects that cannot be considered as cells when looking at the original
image. Despite we pipetted cells before counting to avoid clusters, some cells can
eventually be close one to the other. In this case the procedure adopted up to now is
not always able to separate two attached cells. For this reason, at this point of the
code we apply the morphological watershed to the last labelled generated image.
Morphological watershed transform takes the idea (and name) from the geographical
concepts of watershed and catchment basin. In geography, in fact, a watershed is
a ridge that divides adjacent drainage basins, while the catchment basin is the area
draining into a reservoir [76]. The watershed transform applies these principles to the
image it operates by treating it like a topographic map, with spatial coordinates and
intensity as highness: dark pixels are low elevations, bright pixels are high elevations.
The watershed transform aims at finding the lines that correspond to the ridges.

After applying the watershed and re-labelling the image, new objects are defined
and the last part of the algorithm is performed in order to select only the round
shaped elements.

To do this, we compute the circularity of cells. The circularity c is defined as

c =
p2

4πA
, (2.16)
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where p is the perimeter and A is the area, calculated for each labelled object with
the regionprops function of Matlab. The area is computed as the actual number of
white pixels of the object. The perimeter instead is the distance around the boundary
of the region of interest, namely the distance between each adjoining pair of pixels
around the border of the object.

According to equation 2.16, an object is circular if c = 1. Among all detected
objects we selected only those with a circularity 0.51 < c < 1.6. We select this
range after some analysis (not shown) on the circularities of objects corresponding
to real cells in the original image. By discarding the objects that did not satisfied the
circularity condition and re-labelling the resulted image, the algorithm is finally able
to give the total number of cells present in the image. By knowing the volume of one
analysed area, we are then able to calculate the cell density.

Figure 2.8(b) shows an original micrograph and the final result of the segmenta-
tion, where each cell is labelled with a progressive number. The maximum gives the
total number of cells.

Concerning the detection of the sizes of cells, the algorithm follows similar
steps. Some differences are present because the interest in this case is to have an
information on the size of the object as much reliable as possible. For this purpose,
slightly different operations were applied to the original image. The most relevant is
the absence of the watershed step. The main drawback of the watershed is indeed to
reduce the areas of the objects by defining confining edges. To overcome this issue
we avoided the watershed and changed thresholds on minimal accepted size and
circularity range. In this way a reliable information on the size of cells is obtained.
However the size analysis of cells is not presented here.

To conclude, we would like to underline that the performance of the algorithm
decreases when the population size is at the carrying capacity level. In this case,
indeed, many cells are dead and the environment contains several residuals. Often,
these cannot be easily distinguished from the cells even though the presence of
the methylen blue and the application of a threshold on the size of single cells in
the segmentation. For this reason, the absolute concentration of cells obtained in
such regime fluctuates more than in the regimes with lower concentrations. Such
information will be taken into account during the analysis of the growth parameters.
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(a) (b)

25 um

Fig. 2.8 (a) Micrograph of a representative sample of cell population. (b) Result of the image
segmentation algorithm applied on image (a). Colours do not have a specific meaning, are
simply used to distinguish single objects that are represented with a progressive number.

Robust growth curves

Through the systematic cell counting adopted in the experiments, highly repro-
ducible growth curves have been obtained for each experiment at different initial
concentrations (over four orders of magnitude of N0), for a total of 215 experiments.

Figure 2.9 shows some examples of growth curves plotted as the logarithm of
the concentration of cells versus time.

The first noteworthy observation concerns the measurement errors. In both
plots, the error bars are given by the propagation of the semidispersion (i.e. the
semidifference between the maximum and the minimum value) of the counts per-
formed through the automatic counting. On average, experimental errors obtained
through such procedures were about the 15−20% of the measurement. However,
two different cases must be distinguished concerning counting dispersion. First,
when the concentration of cells is low - in general N < 104cell/ml - each field of
the counting chamber may contain a very low number of cells (i.e. 0 or 1 cell).
Thus, even though the counting has been repeated an higher number of times, the
error bar often resulted exceeding the 15%. The second case instead focuses at the
saturation. As discussed at the end of the previous paragraph, the population in this
phase contains an high number of residuals (dead cells), that makes the performance
of the algorithm decreasing. As a consequence, the average values on counting show
bigger error bars.
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By focusing now on Figure 2.9(a), the solid lines are the fit of the corresponding
experimental data through the procedure described in Section 2.3.3. From this plot, it
is already possible to notice differences among growth curves at different inoculum
sizes. For instance, the curves seem to present variable lag times and growth rates
(even at fixed inoculum, note the different slope of blue and cyan curves) and a
constant level of saturation. Quantitative analysis of each variable will be discussed
in the next sections. For an example of growth curve with emphasised parameters,
see Figure 2.10.

The reproducibility of the experiments can instead be noted in Figure 2.9(b),
where the three shades of blue are representative of identical replicates of the same
condition, namely three wells identically prepared at the same time. For each fixed
time, the semidispersion among the replicates resulted within the 10% of their mean
value and a compatibility test gave a positive answer. Thus, it is possible to conclude
that, for the time scales we are investigating, there is an high reproducibility among
replicates identically prepared at the same time.
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Fig. 2.9 Examples of experimental growth curves expressed as the logarithm of the number
of cells in time. In (a) single replicates at different inoculi (N0) are plotted. Each colour is
relative to a different inoculum. Solid lines represent the fit of the corresponding data. N.B.
Cyan and blue curves are two examples of the same inoculum. Since their inflection point
coincide, a difference in the slope of the curves can be easily noted. In (b) three technical
replicates are considered separately and identified by a shade of blue. Error bars are the
propagation f the error over the counting.

2.3.3 The determination of the growth phases

Once the growth curves have been obtained, it is necessary to define an analytical tool
to quantify the parameters representing the different phases of growth [2], namely
the adaptation, the exponential and the saturation phases.



2.3 Experimental testing of theoretical predictions 41

To our purpose we use curve fitting tools. We would like to stress that, inspired
by a discussion raised by Baranyi and Roberts in [77], the functions we use here
to fit the curves are mere tools adopted for quantifying the macroscopical variables
interesting for our studies. They do not have any modelling purpose, namely they do
not underlie any mechanistic hypothesis. In support of this claim, in Section 2.3.3
we show that the growth parameters obtained through different fitting curves are
compatible among each other.

Typically, when considering growth curves, the logarithm of the number (or
concentration) of cells normalised to their initial value N0 is expressed as a function
of time. The typical shape of such curves is sigmoidal, as it can be noticed in Figure
2.9. Several sigmoidal functions have been studied for describing bacterial growth
which present features similar to those we are observing for Jurkat cells. Some of
these curves are known as the logistic, Gompertz, Richards, Schnute [12, 54] or
three-phase linear functions. Even though most of them underlie a model, we are here
considering them simply for their mathematical form. Since these are usually not
expressed in terms of biological interesting variables, Zwietering and coworkers [12],
modified the equations of some of the mentioned sigmoidal functions to explicitly
express the desired parameters. We observed that some of the above mentioned
functions present either more than three parameters (Richards function, for example)
or require further knowledges for the definition of the different phases (three-phase
linear function). Since our aim is to simplify the procedure as much as possible,
we discard all those functions that present at least one of such criticalities. Driven
by these reasons, we fit the data with the modified logistic and Gompertz functions
presented in [12] and reported in Table 2.1.

Modified logistic function ln(N/N0) =
A

1+exp
h

4λmax
A (tlag−t)+2

i
Modified Gompertz function ln(N/N0) = Aexp{−exp[λmaxe

A (tlag − t)+]}
Table 2.1 Logistic and Gompertz modified equations [12] that explicitly express the growth
parameters (A, λmax and tlag).

We considered then as fitting parameters: tlag, λmax and A representative for the
lag, the exponential and the saturation phase respectively. They are emphasised in
Figure 2.10, where the modified logistic curve (solid blue line) is used to fit the data
(blue dots). tlag is the intersection between the x-axis and the tangent to the sigmoidal
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curve at the inflection point; λmax is the slope of such tangent; A is given by the limit
of N towards infinity.

λmax

tlag

A

tlog

Fig. 2.10 Example of growth curve (blue dots) with the corresponding logistic fit (blue line)
with lag time tlag, maximum growth rate λmax and saturation level A. The horizontal and
tilted red lines emphasise the parameters A and λmax respectively. The two vertical red lines
represent the edges of the exponential phase, that correspond to times in tlag and tlog. tlog is
given by the intersection between the tangent at the inflection point and the level of saturation.
The error bar on the data are obtained by the error propagation over ln N

N0
by assuming

√
N

as error for the concentration N.

We tested the compatibility between the fitting parameters obtained by the two
curves through a normal test - see Section 2.3.3 for details. Since the result of the
test suggested a compatibility among the two fitting functions, we conclude that the
values of the parameters are independent on the function used. We chose to fit the
data with the modified logistic function. Its equation is here reported:

ln(N/N0) =
A

1+ exp
h

4λmax
A (tlag − t)+2

i (2.17)

In Figure 2.10, a fourth parameter, tlog, is emphasised. We introduced it in order
to define the entire exponential window. tlog has been obtained as the intersection
between the tangent at the inflection point and the horizontal line with value A. The
exponential phase may be relatively large, as in Figure 2.10 for instance, where it
lasts almost half of the entire experiment. For this reason, we define here a second
growth rate for quantifying the exponential phase. We call it λ and it is the slope
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of the linear fit of the empirical data within the exponential window. Such value is,
for construction, always smaller than λmax and it may be interpreted as the average
growth rate of the exponential phase.

In conclusion, for each growth curve, we calculated four parameters: tlag, λmax,
A and λ . We fitted each growth curve with a modified logistic function to extract
the first three parameters and to determine the exponential window to estimate the
fourth. Concerning λ , we finally highlight that, in presence of narrow exponential
windows, we manually extended its edges in order to calculate λ by fitting at least
three data points.

Fitting parameters compatibility

For each growth curve, we performed a non-linear fit with both the modified logistic
and the Gompertz functions (eq. Table 2.1) to extract tlag, λmax and A. The values
of the corresponding parameters obtained with the two fit functions have then been
compared through a z-test. Figure 2.11 depicts the distributions of the z-scores of
each parameter. Vertical black lines represent the critical value for compatibility
with a significance of 5% (two tails test, zcrit = 1.96). It is worth highlighting how,
in all the three cases, the z-scores are mainly distributed towards values lower than
the threshold. This allows then to conclude that the parameters obtained through the
two fit functions are compatible and thus the use of either one function or the other
does not affect the further investigation.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

zA

PD
F

(a)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

zλmax

PD
F

(b)

0.0 0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

zt lag

PD
F

(c)

Fig. 2.11 z-score distributions for the comparisons among corresponding fitting values
obtained through the modified logistic and the modified Gompertz functions. Distributions
of the z-scores of (a) saturation level parameters A, (b) maximum growth rates λmax and (c)
lag times tlag. Vertical lines represent the upper value for accepting a compatibility with
significativity of 5%, zcrit = 1.96.

Normal test A normal test is performed by calculating the following score:
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z =
|var1 − var2|q

σ2
var1

+σ2
var2

where var1 and var2 are the two variables to be compared, namely the fit pa-
rameters and σvar1 and σvar2 their error, i.e. the error obtained through the fit. If a
two tail test is considered with a significancy of 5%, two variables can be assumed
compatible if z < zcritical = 1.96 [78].

2.3.4 The independence of the carrying capacity on the initial
condition

The saturation phase is characterised by the parameter A described by equation 2.17.
From an analytical point of view, A is related to the concentration of cells achieved
at an infinite time (carrying capacity, k) in the following way (from eq. 2.17):

ln(k) = A+ ln(N0) (2.18)

Figure 2.12(a) shows the experimental results of A plotted as function of the
logarithm of the initial concentration N0. It is evident that the two variables are
negatively correlated, as emphasised by the black line, with a slope compatible with
−1. This, together with eq. 2.18, suggests that the carrying capacity is constant
across the experiments and that it does not depend on the initial density of the
population.

To support this hypothesis, we converted the values of A into the concentration
of cells k by taking the exponential form of eq 2.18. The distribution of all the ks is
plotted in Figure 2.12(b). A symmetrical distribution is shown for values smaller
than 1.5 ·107cell/ml. The values in the right tail, i.e. k > 1.5 ·107cell/ml, correspond
to growth curves with a few data in the saturation phase. This led to a less precise
estimation of the carrying capacity by the fit function and they can be discarded. The
remaining data are compatible with a normal distribution (solid blue line in Figure
2.12(b)). A reduced χ2 = 0.34 is obtained from the fitting with a normal distribution.
χ2 < 1 suggests that the data are normally distributed.
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Thus, the mean and standard deviation of such distribution represent the value of
the carrying capacity of our system together with its error: k = (8±2) ·106cell/ml
(Dashed line in figure 2.12(a) and solid black line in Figure 2.12(b)).

We can conclude that the experiments have been carried out in controlled con-
ditions since, in agreement with our expectations, the carrying capacity is constant.
This confirms that the carrying capacity is a feature of the growth medium.
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Fig. 2.12 (a) Parameter A vs ln(N0). Orange dots are experimental data, the solid black
lines represents their linear fit. The dashed vertical line is located at the averaged carrying
capacity k. (b) Distribution of the carrying capacities for each experiments, obtained by
converting the parameter A through the exponential form of eq. 2.18. The solid black line
emphasises k = (8±2) ·106cell/ml, the average of the distribution for values smaller than
1.5 ·107cell/ml.

2.3.5 Population lag time and the extreme values statistics

In this Section we focus on the expectations on the lag time. We firstly remind the
main theoretical results obtained in Section 2.2.2, secondly we present the empirical
trend of lag times as function of the initial concentration for all the analysed growth
curves and finally we suggest the mathematical model developed.

Model results for the lag time dependence on N0

We report here a brief summary of the conclusions obtained in Section 2.2.2. By
neglecting the carrying capacity, we assumed an initial population of N0 independent
cells. After a period of adaptation τi in which each single cell (i) does not repli-
cate, cells start to exponentially proliferate, thus giving birth to new colonies. We
developed a model for the population growth that takes into account the single cell
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variability and relates the population lag time (tlag) to the single cell first division
times through the following expression (eq. 2.5):

tlag =− 1
Λ

ln(
1

N0

N0

∑
i=1

e−Λτi) . (2.19)

Λ is the population growth rate, N0 the initial population size and τi the single cell
lag time. Depending on the value of Λ two different scenarios for tlag are possible:

tlag ⋍

 1
N0

∑
N0
i=1 τi f or Λ”small”,Λ ≪ 1

τi

τmin ≡ min{τ1, ...τN0} f or Λ”large”,Λ ≫ 1
τmin

(2.20)

Thus, the statistics of the population lag time may be driven either by a Gaussian
(Λ “small”) or an extreme value (Λ “large”) statistics. In the first case, by increasing
N0, tlag is expected to not change its mean value, while its fluctuations are expected
to decrease according to the Central Limit Theorem. In the second case instead,
through an increasing of the number of samplings (N0), the minimum value of τi is
expected to decrease as well as its fluctuations.

We are now interested in defining which is the right statistics able to describe our
empirical data. To this purpose in the next section, we relate the experimental lag
time to the initial condition N0.

Experimental testing of the model

Figure 2.13(a) shows the lag time (for details on its estimation, see section 2.10)
as function of the initial density N0. The darkest red dots are mean values of
the experimental data (lighter orange dots) within bins on N0. Two noteworthy
observations emerge from the plot: firstly the lag time is non-zero for a large range
of N0 and secondly, it decreases when increasing N0.

The former is a non-trivial result since, as highlighted in Section 2.2.2, the
composition of the growth medium used for growing cells before and after the
seeding was the very same (see Section 2.3.2 for details). If the growing environment
does not change, cells do not need to adapt and zero lag time is expected. Since
this is not the case, we should suppose a difference between the two growth media,
namely before and after the seeding. Thus, such difference must be only attributed
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to cells themselves which may secrete chemicals during growth. If this is true, cells
growing exponentially before the seeding are adapted to grow in an environment full
of such secreted chemicals. When they are seeded in the new fresh growth medium,
although the basal composition is the same, there is lack of cell products, thus cells
need a certain time to adapt before beginning again to exponentially proliferate.

Let’s focus now on the behaviour of the lag time. As can be noted by the darkest
data in Figure 2.13(a), the mean lag time value decreases when increasing the initial
concentration of cells, as well as its fluctuations, which are shown in Figure 2.13(b).
Such observations suggest a dependence on the initial condition of the duration of
the adaptation time.
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Fig. 2.13 (a) Experimental lag times as function of the initial seeding (N0). Lighter colour
dots are experimental data obtained through the fit. Their error bars are the error on the
fit. The darkest red dots are the average of the smaller dots binned over N0. (b) Standard
deviation of the averaged values (dark red dots) of plot (a). In both plots the vertical dashed
lines are located in correspondence of the carrying capacity value k.

The simplest trend that describes our experimental data is a linear negative
correlation between the population lag time tlag and the initial cell density N0.

Considering now, the two possible theoretical scenarios summarised in the
previous section, we can reasonably say to be in the regime of Λ “large”, with
the growth rate of the population Λ ≫ 1

τmin
. Thus, the extreme values statistics

predicts a decreasing trend of the lag time when increasing N0, which is exactly what
our experimental data show.

The decreasing trend of the lag time is driven by the distribution of the single
cell lag times. In absence of further information it is not-trivial to estimate such
distributions. In the following paragraphs we suggest two different approaches to
address such issue. The former is a computational approach through which possible
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τi distributions are assumed and the trend for the average value of tlag is derived.
However, in order to choose the best distribution that fits our data, further information
is necessary. The second approach is instead experimental and it implies the direct
measurement of the τis: we present here the methodology we intend to use in the
future in this direction.

Possible single cell first division time distributions

By following the Section 2.2.2 focusing on the derivation of the population lag time
through a stochastic model, it is worth noticing that:

• if τis are independent and identical distributed random variables with probabil-
ity density p(τ)

• if the argument of the logarithm in eq. 2.5, x≡ 1
N0

∑
N0
i=1 e−Λτi , can be considered

a Gaussian random variable with mean µ =
R

p(τ)e−Λτdτ and variance σ2/N0

then, the lag time of the population presents the following distribution:

p(tlag) =
Λe−Λtlagp
2πσ2/N0

e
− (e

−Λtlag−µ
)2

2σ2/N0 (tlag≥0) (2.21)

We discuss here some cases in the “large” Λ limit by assuming different distribu-
tion for τis and deriving the expected trends for tlag as a function of N0.

Exponential distribution
If τi are identical distributed random variables taken from an exponential distribu-

tion

p(τ) = re−rτ (2.22)

it follows that

Prob(tlag ≥ x) =
N0

∏
=1

Prob(τi ≥ x) =
N0

∏
=1

e−xτi = e−N0xr (2.23)

So, the probability of having tlag smaller than x is Prob(tlag ≤ x) = 1− eN0xr
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and the distribution of tlag is:

q(tlag) = N0re−N0rtlag (2.24)

This implies that both the fluctuations and the average of tlag decrease as 1/N0,
resulting in a constant CV.

Uniform distribution
If p(τ) is uniform on [0,T ], then:

Prob(tlag ≤ x) = 1− (1− x
T
)N0 (2.25)

q(tlag) =
N0

T
(1− x

T
)N0−1 (2.26)

and

< tlag >= T
N0+1 and CV =

q
N0

N0+2 ≃ const.

If the carrying capacity is included in the system, then:

e−Λtlag ≃− 1
Λ

ln < e−Λτ >≡
Z

∞

0
e−Λτ p(τ)dτ (N0 ≫ 1) (2.27)

i.e., as N0 increases towards large values, the lag time should converge to

t∞
lag ≃− 1

Λ
ln < e−Λτ > (2.28)

For example, if p(τ) = re−rτ , then:

t∞
lag ≃

1
Λ

ln
r−Λ

r
(2.29)

In order to compare the analytical results here derived with the empirical scenario,
further information on the decreasing trend of the lag time with respect to N0 would
be necessary. Since the actual lack of such information, we suggest in the following
paragraph an experimental and direct way to derive the τi distributions.
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Future perspective: measurements of single cells first division times

In this paragraph we present an experimental setup useful for measuring the distribu-
tions of single cell first division times. In particular, we aim at directly measuring
the single cell lag times, considered as the time that each cell needs to replicate the
first time. To this purpose we apply the very same experimental conditions of the
cell growth experiments, but in a setup that allows us to follow single cells over time.
Indeed, instead of seeding cells in 6-well plates, we use microfluidic devices and
take micrographs of desired fields of the micro-wells through bright field time-lapse
microscopy.

We began setting up the experiments at Imperial College in London together with
Dr. Francesca Ceroni. We present here the methodology and the measurements we
intend to carry out in the future.

Time-lapse microscopy can be considered as one of the best techniques for
measuring single cell variables since it allows to avoid experimental errors arised
by traditional microbiology methods adopted to indirectly monitor cell growth [79].
Through time-lapse microscopy it is possible to follow and count in time the cells
originating from each initial seeded single cell [1].

Since Jurkat cells live in suspension, we use microfluidic devices (Onix Plates)
with low ceiling in order to trap single cells and avoid on one hand the formation
of 3D clusters, on the other hand the lost of the focus during the experiment. Fur-
thermore, the microscope is supplied with a programmable motorised stage that
allows to take micrographs over time of different areas of the plate, not necessarily
continuous in space. Thanks to this feature we are able to sample an high number of
initial single cells, even in conditions of low N0s.

As mentioned above, we intend to replicate the very same experiment of cell
growth, but in a different plate. Thus, the only difference from the standard experi-
mental protocol we described in Section 2.3.2, is the quantity of medium injected in
the growing well. In the present case, we inject in the microfluidic device 0.1 µl of
medium with the desired concentration of cells. Figure 2.14(a) shows the schematic
of the microfluidic device. Once loaded the mixture composed of cells and medium
in the loading chambers (emphasised by the red number 1 in Figure 2.14(a)), the
fluid moves for capillarity to the monitored chamber (number 2) until the pressure of
the connected empty well (number 3) and the loading channel is balanced. Once the
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flux stops the measurements can be performed. To this purpose, the plate is inserted
on the motorised stage of the microscope which is supplied with an incubator: in
this way cells may live in their optimal condition at 37◦C for the entire duration of
the experiment.

Since the value of the single cell first division time is unknown, we take measure-
ments each 15 minutes for 3 consecutive days: at each time, a micrograph of the
selected field of the plate is taken. In this way the cells are followed in time. Figure
2.14(b) shows an example of micrograph: the red circles emphasise the single cells.
By adapting to such images the segmentation algorithm described in Section 2.3.2
supplied with a further section for tracking single cell, it would be then possible to
follow the cells and monitor the time needed before the first division.

By performing such experiments with different N0s we point towards the determi-
nation of the distribution of the single cell first division times that lead the observed
trend for the population lag time.

Before reaching the final result, we still need to (i) optimise the experimental
protocol for obtaining the best images over time, (ii) adapt the existing image
segmentation algorithm to this new purpose. Once these issues will be optimised,
we will be able to obtain the τi distributions.
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1
2

3

25 um

(a)

(b)

Fig. 2.14 (a) Schematic representation of the microfluidic device used to follow single cells.
Adapted from User guide of CellASIC® ONIX M04L-03 Microfluidic Plate. Red numbers
represent: 1. The wells where the solution of cells+growth medium is loaded; 2. the effective
growth chambers; 3. the outflux chambers. (b) Bright field micrograph at time t = 0. Red
circles emphazie single cells.

2.3.6 Exponential growth rate and initial conditions

In this paragraph we move the attention towards the exponential phase of growth,
in which the population of cells grows with a constant rate. Our aim is to test the
logistic growth hypothesis by investigating the dependence on the initial conditions
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of the exponential growth rate. Part of the data here reported are an integration of
those presented in [38].

The experimental growth rate depends on N0

Figure 2.15(a-d) show the experimental results. Two sets of data are plotted as
function of the initial population density N0: the maximum growth rate λmax (Figure
2.15(a)) and the average exponential growth rate λ (2.15(c)). Firstly it is important
to notice that, as expected, the latter set of data is systematically shifted towards
lower values with respect to the former. Secondly, the two growth rates follow the
same trend when related to N0. This suggests that, independently on the definition
of the growth rate we consider, a dependence on N0 rises. Such behaviour can be
divided into three different parts: the growth rate remains roughly constant with
small fluctuations for values of N0 sufficiently far from the carrying capacity, it
increases together with its fluctuations for intermediate N0 (roughly between 104

and 105 cell/ml) and finally decreases when the initial density reaches the carrying
capacity (dashed vertical line). The last decrease is expected and it is due to the
presence of a fixed amount of nutrients. Here, since the population is seeded at
a concentration close to the carrying capacity, cells compete for nutrients and the
population fitness decreases.

By binning the data over N0, we calculated the fluctuations of the growth rates and
plot their values in Figure 2.15(b) and (d). It is worth noticing that the fluctuations
increase when increasing the population size.
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Fig. 2.15 (a) and (c) Exponential growth rates (λmax and λ respectively) as a function of
the initial cell density (N0). Brightest dots represent all the experiments. Error bars are the
error of the fits performed to calculate λ and λmax. The darkest dots are the average of the
brightest ones binned over N0. (b) and (d) Standard deviations of the data of (a) and (c) for
the growth rates by binning over N0. The dashed black line present in all the plots is located
at the value of N0 corresponding to the carrying capacity k.

The trend shown for intermediate values of N0 is not trivial if one thinks that
usually at the time the exponential growth rate is evaluated, the population has
already undergone several replications and thus, in principle, no dependence on the
initial condition is expected. The parameter that most likely may be expected to be
related to the growth rate is the size of the population at the time the growth rate
is considered (N∗ = N(t)). By ignoring the growth curves with inoculi close to the
carrying capacity (N0 > 106), we verified that the dependence we noticed is on N0

and not on N∗ by fixing one of such variables at a time. To this purpose, we consider
for both growth rates, the relative N∗ and N0 and investigated the relation between
the growth rate and N∗ when fixing N0. N∗ has been calculated in the following
way. When considering λmax, N∗ is the value of the fit function at the inflection point
converted in terms of cell concentration, that is NA/2 = N0 · eA/2. When considering
λ , instead, we evaluated N∗ for each experimental growth curve as the average
density of the population (N(t)) within the entire exponential phase, namely for
tlag < t < tlog. It has been computed by exploiting the line fitting the data within
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the exponential phase. N∗ has been obtained as the average of N(tlag) and N(tlog)

belonging to such line.

Figure 2.16(a) shows the results for the case of λmax vs NA/2 and Figure 2.16(b)
depicts λ vs N∗: each plot represents a bin on N0. The binning on N0 corresponds to
the removal of a dependence on it. Except for some data in the last N0 bin (at the
border of the regime where the growth rate λ decreases with N0), each set of data
results compatible with a straight line with zero angular coefficient suggesting thus
the absence of a dependence of λ on N∗ and of λmax on NA/2. While concerning
the case of λmax such result should have been expected given the constancy of the
carrying capacity k, it was not trivial for the case of λ . However, the obtained result
suggests that N0 is the only variable to resolve the growth rate.
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Fig. 2.16 (a) and (b) Three bins on N0. For each bin, the exponential growth rates λmax in (a)
and λ in (b) are plotted as a function of NA/2 and N∗ respectively.

Disagreement with the logistic model

In order to compare the experimental data with the null logistic model, we evaluated
the theoretical λmax as described in Section 2.2.3, namely as the tangent to the logistic
growth curve N(t) (eq. 2.13, reported here below) at time t = 0.

N(t) =
N0kert

k+N0(ert −1)
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The parameters r (the specific growth rate) and k (the carrying capacity) have
been chosen in the following way: r equal to the mean of the growth rates for
N0 < 3 ·103cell/ml, i.e. the values corresponding to the constant regime; k equal to
the experimental k (see Section 2.3.4). We only compare to the experimental data the
predictions over λmax and not over λ . This is because, to evaluate the exponential
rate λ , it is necessary to identify the exponential time window through the use of the
tangent to the curve at the inflection point. However, since the second derivative of
the logistic curve is always positive, no inflection point is present and then λ cannot
be calculated.

The comparison between the experimental data (reddish dots) and theoretical
prediction (blue line) is shown in Figure 2.17. The data suggest that the logistic
dynamics is sufficient to describe only the regimes at low and high inoculum sizes,
when the population is in conditions of infinite (λmax constant with N0) and limiting
(λmax decreasing with increasing N0) nutrient quantity respectively. On the other
hand, the logistic dynamics does not describe the λmax increasing for intermediate
seedings. In this case, a small increase in the density of the initial population, gives
benefits to the overall population during the subsequent exponential phase, thus
enabling it to grow faster.
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Fig. 2.17 Same plot as Figure 2.15. The bright dots represent the experimental data for
λmax as a function of N0 with the error bars representing the error of the fit. The darkest
dots are the average of the brightest ones binned over N0. Continuous blue line represents
the theoretical λmax according to the logistic growth model. Dashed horizontal blue line
emphasises the offset value r. Dashed vertical black line is set at the level of the carrying
capacity k.
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To better understand such scenario, a density dependent growth may occur within
the populations under exam. We discuss such topic in the next paragraph.

Density dependent growth

The easiest correction that may be made to the logistic equation in order to take into
account a density dependence in the growth, is the adding of a further term (N

k )
α .

This leads to the following equation:

Ṅ
N

= r(1− N
k
)(

N
k
)α (2.30)

where, as in Section 2.2.3, N is the size of the population, r the intrinsic
growth rate and k the carrying capacity. The parameter α ≥ 0 refers to the density-
dependence strength. Note that the case α = 0 corresponds to the standard logistic
growth with fixed carrying capacity (eq. 2.8). α > 0, instead, causes a decreasing
of the fitness for low population sizes. Such density dependence effect is known as
weak Allee effect [80].

Allee effect has been firstly introduced in 1932 by Allee [81], and it is nowadays
widely suggested in ecology to explain deviations from a simple logistic growth
for populations of small size. A comparison a simple logistic growth (blue line)
and the Allee effects (green and yellow lines) is shown in Figure 2.18(a), where the
instantaneous growth rate is plotted as function of the population size (N). We can
notice that for the Allee effect, high values of growth rate are only present after the
overcoming of a threshold for the population size. On the other hand, the logistic
growth shows positive growth rate already for small values of N. Two kinds of Allee
effect are known: strong and weak. The former, represented by the yellow line in
Figure 2.18(a), is described by the following equation [82]:

Ṅ
N

= r(1− N
k
)(

N
Nc

) (2.31)

Where N, r and k have the same meaning of eq. 2.30, and Nc is the Allee
threshold, i.e. the minimum size of the population necessary to have a positive
growth. Once such thresholds is overpassed, the colony is able to grow.
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The weak Allee effect, whose differential equation is eq. 2.30, shows positive
growth rates even at low population sizes, but with smaller values before the threshold.
In Figure 2.18(a), the elbow in the green curve is related to the parameter α of eq.
2.30. The stronger the density effect is, the higher is the value of α and thus the elbow
is shifted towards higher values. Figure 2.18(b) shows the instantaneous growth rate
as a function of the size of the population, where the parameter α increases in the
direction of the arrow.

k

α

k

(a) (b)

Fig. 2.18 Representations of the growth rate (dN/dt) of a population of size N as function of
its size. (a) Trends for logistic growth (blue solid line), weak (green) and strong (yellow)
Allee effect. The value k corresponds to the carrying capacity. (b) Examples of weak Allee
effects with different values of parameter α that increases according to the arrow. The blue
curve is the logistic case with α = 0. The dashed black line represents the carrying capacity
k.

Data are in agreement with a weak Allee effect dynamics
We tested the hypothesis of the presence of a weak Allee effect within the ex-

perimental data. To this purpose, we fit each growth curve with eq. 2.30 whose
free parameters are r, k and α and investigated the values of α . The fit has been
performed over the following quantities:

dN
dt

=
N(t +1)−N(t)

(t +1)− t
(2.32)

N =
N(t +1)+N(t)

2
(2.33)

where N(t) and N(t +1) are the concentration of cells at two subsequent times, t
and t +1 respectively.

Figure 2.19(a) shows an example of a sub-set of the experimental growth data
(cyan dots) together with their fit function (red) and the logistic case (blue). Figure
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2.19(b) depicts instead the distribution of positive α obtained through fitting each
single curve. The plots suggest that a weak Allee dynamics is reasonable to describe
the data.
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Fig. 2.19 (a) Example of mapping of the punctual growth rate ( dN
dt ) vs the size of the popula-

tion (N). Cyan dots are experimental data. A sub-set of growth curves is here considered.
The red line is their fit with a weak Allee effect function; blue line represents a logistic
growth. (b) Distribution of the positive values of α obtained by fitting the experimental
growth curves with a weak Allee effect function, eq. 2.30.

The derivation of theoretical growth rates
In light of the previous paragraph, we aim now to compare the trends of the

exponential growth rates obtained through the experiments and those of the “theoret-
ical” growth rates evaluated from the growth curves that follow a density-dependent
dynamics. To this purpose, we numerically integrate eq. 2.30 in order to obtain the
growth curves N(t) with initial condition N0 at t = 0.

The parameters have been chosen as follows. r = 1, to match the theoretical with
the experimental ones; k is a random number picked from the normal distribution
that fits the empirical k (see section 2.3.4 for details) and α is taken from a lognor-
mal distribution that fits the experimental values of α > 0 described above. Such
distribution is centred in α = 0.1 with a constant variance of 30%.

The growth curve so obtained has been then considered in the following form:

y = ln(
N(t)
N0

) (2.34)

We are interested in comparing the two experimental growth rates, λ and λmax.

Since no analytical expression can be derived for N(t), λ has been numerically
evaluated. We defined it analogously to its experimental definition (see Section
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2.3.3), that is the slope of the straight line connecting the edges of the exponential
phase, described by eq. 2.35. Once identified the inflection point, the tangent to the
growth curve at this point is used to obtain the edges of the exponential phase (tlag

and tlog). Figure 2.20 summarises the procedure.

λ =
ln(Nlog

N0
)− ln(Nlag

N0
)

tlog − tlag
(2.35)

Fig. 2.20 Scheme of the procedure through which tlag and tlog are defined starting from the
growth curves obtained through the weak Allee effect dynamics.

However, such definition of λ (eq. 2.35) holds until an inflexion point exists,
i.e. when N0 <

α

α+1k (see the end of the paragraph for mathematical details on this
topic). When N0 >

α

α+1k, a new definition of λ is required. To this purpose, we
observe that Nlog does not change when increasing N0, even though tlog does. So we
defined the exponential growth rate as

λ =
1

tlog
ln(

Nlog

N0
) (2.36)
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If N0 > Nlog the growth rate is assumed to be null.

To summarise:
λ =

ln(
Nlog
N0

)−ln(
Nlag
N0

)

tlog−tlag
f or N0 <

α

α+1k

λ = 1
tlog

ln(Nlog
N0

) f or α

α+1k < N0 < Nlog

λ = 0 otherwise

(2.37)

Inflection point of y
Consider y as in eq. 2.34. Its first and second time derivatives are:

ẏ =
Ṅ
N

= r(1− N
k
)(

N
k
)α (2.38)

ÿ =
r2N

k
(1− N

k
)(

N
k
)α [α(1− N

k
)(

N
k
)α−1 − (

N
k
)α ] (2.39)

respectively. From eq. 2.39 it follows that y admits an inflection point in

N f =
kα

α +1
. (2.40)

Such point corresponds to the point of maximum slope, so that:

λmax = ẏ(N f ) = r(1− α

1+α
)(

α

1+α
)α . (2.41)

Thus, concerning the maximum growth rate λmax, we obtained the following
expressions:

λmax =

r(1− α

1+α
)( α

1+α
)α f or N0 <

α

α+1k (∃ in f lection point)

r(1− N0
k )(N0

k )α f or N0 >
α

α+1k (noin f lection point)
(2.42)

Aaccording to the derivations above, if α → 1 (our case), then λmax → r
4 , thus

it remains constant if N0 is changed. Driven by this, we will not compare the
experimental and theoretical maximum growth rate but we will only focus on the
exponential growth rate λ .
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Comparison of model prediction and experimental data
The procedure described above has been applied to growth curves within the same

range of N0 as for the experiments.
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Fig. 2.21 Exponential growth rate λ vs initial population density N0. Light small dots are the
experimental data, the error bars represent the error on the fit parameter. Darkest red dots
are λ s evaluated from the theoretical growth curves. Dashed vertical line is represents the
carrying capacity k.

Figure 2.21 shows the exponential growth rates λ plotted as function of the
initial condition for both the experimental data (orange small dots) and the model
(red bigger dots). As it can be noticed, a qualitative agreement between the two
series of data rises. Even though the maximum of the two data sets are shifted,
the increasing trend of the exponential growth rate together with the increasing of
initial cell density is reproduced. The result suggests the presence of a mechanism
of density dependence that drives the growth of population of cells under study.

Moreover, such results suggest the existence of a cooperative behaviour among
the cells. If a population is seeded at the optimal concentration, the result of the
cooperation among the single cells increases the fitness of the entire population once
they are in the exponential regime of proliferation. In the next Section we discuss
this topic by considering two possible ways through which such cooperation may
occur.
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2.3.7 Cell-to-cell communication

In the previous Section 2.3.6 we have shown how the hypothesis of a logistic model
fails in predicting the dependence of the growth rate on the initial condition of a
widely studied population of cancer cells. This raised the hypothesis - later on
experimentally tested - that the populations of cells under exam may grow in a
density dependent manner. Indeed, it has been found that if cells are seeded within a
specific range of concentration, their fitness during the asymptotic regime of growth
- i.e. the exponential phase - is higher than for different initial concentrations. Such
behaviour suggests the presence of a cooperativity among single cells that may start
with the beginning of the growth of the population and is maintained up to the total
consuming of the available nutrients.

With regards to this, a first observation concerning the lag times is necessary.
The first assumption of the stochastic model derived in Section 2.2.2, considers
each single cell at time t = 0 as independent, namely the fate of the single cells
does not depend at all on the presence of the other ones. We found that an extreme
values statistics, that takes into account single cell stochasticity, is able to predict the
measured empirical trend of the adaptation time of the population while increasing
the number of initial cells. In light of the hypothesis of cooperative effects among
cells, the assumption of independence falls. However, according to Majumdar and
coworkers [83], if weak correlations are considered, the extreme values statistics
should hold in general, by providing a rather general renormalisation group type
argument (see the next paragraph in this section). Thanks to this, we may still
consider valid the model developed to predict the population lag times even though
single cells communicate.

There are two ways such cell-to-cell interaction may occur: either mechanical,
namely through physical contacts, or chemical, namely by secreting products.

Taking advantage of the feature of Jurkat cells to form clusters (see section 2.3.2),
we experimentally tested the first kind of communication by disrupting such clusters
with different time frequencies. As described in details in the last paragraph of this
section, we found that such mechanical perturbation does not affect the growth curves
in the time scales we are interested. In general, it is likely to influence the growth
curves but probably on a smaller time-scale. This suggests that the cooperativity
among cells that we observe is not due to mechanical interactions.
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The most likely mechanism may then be mediated by chemicals. This seems
to be reasonable by considering different aspects. First, the fact that most of the
measured lag times are not zero (by excluding cases with high inoculum sizes).
As already mentioned in Section 2.3.2, when seeding cells at the beginning of the
experiments, the only difference between the old and the new growth environment is
given by the presence of cells. Before the seeding, cells were growing exponentially,
thus they were living in a crowded environment full of secreted chemicals. When
seeding them in the new fresh medium, such chemicals are lacking and thus cells
may need a certain time to adapt.

A second argument lies in the specific cell line under exam. Indeed, Jurkat
cells are widely known for their ability, once activated (namely after an external
stimulation), to produce the growth factor Interleukin 2, which is known to maintain
T-cell proliferation in vitro. However, some variants of Jurkat (JMN and JHAN
Jurkat cells) have been found to produce it constitutively without needing any
activation process [71]. Even though it is not know whether this may happen for the
clone E6 (the one under study) or not, we may consider it as a possibility. Further
investigations in this sense would be interesting and, in a positive case, would support
the hypothesis of a possible chemical communication among the cells.

Our results thus suggest that a chemical communication among Jurkat cells may
occur. Since the dynamics of the entire population is driven by its initial density, it is
possible that such chemofactors are produced by the very first cells inoculated and
that the subsequent history of the population may be influenced by them.

Extreme values statistics of weakly correlated variables

We summarise here the arguments concerning the extreme value statistics of weakly
correlated variables discussed in [83].

Consider a system of N weakly correlated random variables xi. The weak
correlation may be thought as a correlation function with a connected part (Ci, j)
decaying fast (i.e. exponentially) over a finite correlation length l according to:

Ci, j =< xix j >−< xi >< x j >∼ e−|i− j|/l (2.43)
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where xi and x j are the two variables considered. When |i− j| >> l, namely
when they are separated by a length scale larger than l, they get uncorrelated. Since
the correlation is weak, in a sample of size N we may assume that l << N. The
following simple heuristic argument is used to understand the validity of the extreme
values statistics in this case. Consider N′ = l << N and divide the entire population
of size N in identical groups of size N′. The total number of groups will be then
g = N

l : within each group k the random variables are strongly correlated, but each
group is approximately independent from each other.

Let’s consider the local minimum yk, namely the minimum of all the x-variables
belonging to the group k, where k = 1,2, ...,N′. Given the approximation made, yks
are uncorrelated and

m = min{x1,x2, ...,xN}= min{y1,y2, ...,yN′}. (2.44)

Thus, by knowing the PDF of y, the calculation of the minimum of the N weakly
correlated variables reduces to the calculation of the minimum of the N′ uncorrelated
random variables.

In our specific case, if we assume that cells are correlated only with their closest
neighbours, we may still consider valid the extreme values statistics for predicting
the decreasing of the lag time with the increasing of the initial cell density N0.

Mechanical way of interaction is unlikely

To investigate the mechanical communication, we take advantage of the necessary
disruption of clusters during cell counting (see Section 2.3.2) and quantify whether
such perturbation may influence the growth or not.

If we assume that Jurkat cells communicate in a mechanical way, we expect a
change in the growth dynamics when the population undergoes a mechanical stress
as, for instance, the disruption of clusters.

To test this, we performed three experiments with the same initial concentration
corresponding to the regime where we expect the cooperation to occur (N0 = 6 ·104

cell/ml). Cells were then pipetted with different time frequencies: (a) three times
per day (but counted only once), (b) once every two days and (c) once every five
days. In parallel to each condition, a control experiment was run, with cells pipetted
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(and counted) once day. The resulting growth curves are shown in Figure 2.22(a),
(b) and (c), where the data are the mean over technical replicates and the error bars
represent their dispersion. For each condition, it is possible to notice a superposition
of the “experiment” and its control curve. In order to compare the growth parameters
of the three experiments, a fit of the averaged curves has been performed. Normal
tests used to compare the fit parameters of each curve (see details in Section 2.3.3),
gave scores lower than the critical value for a significancy of 5%, supporting thus
the compatibility among the curves. We performed the test by comparing the fit
parameters of the two sets of data for cases (a) and (b). The obtained z-scores are
shown in Table 2.2. In experiment (c), due to the lack of data, the usual fitting
procedure was not converging. In this case we only estimated the growth rate as
the slope of the line between the first two data points. A possible incompatibility
may be observed in the level of saturation, but we can attribute such difference more
to experimental - decreasing of the counting algorithm performances in saturation
phase (Section 2.3.2) - than to biological reasons.

In Figure 2.22(d) instead a finer analysis on the growth rate values is shown.
In this case, we considered each replicate separately and calculated its growth rate
λ . The plot shows the average of such growth rates over the replicates for each
experiment. The error bars associated to the mean values are the dispersion of the
single growth rates. For experiments (a)(1/dd) and (b)(1/2dd) it is possible to notice
a compatibility among the growth rates of the experiments with their control. Only
in the case (c) (i.e. the third group, pipetting time once every five days (1/(5dd))) the
growth rates do not seem to be compatible. Again, as for the saturation level, this
can be due to analytical reason given by the inaccuracy of the fitting rather than to
a biological issue. Moreover, small fluctuations of the growth rates are present if
comparing the data across all the experiments and the controls.

Such results suggest that the mechanical perturbation does not influence the
growth in the time scale we are interested. This suggests us two main observations.
First, the sample-to-sample variations we observed in the growth curves may be
attributed to the samples themselves and not to the frequency of the measurements
we performed. Second, we may exclude a mechanical communication mechanism
and suggest a chemical one.
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(a)

Fig. 2.22 (a-c) Example of growth curves with three different pipetting times: three times a
day (a), once every two days (b) and once every five days (c). Blue data represent the control,
i.e. counting every day. The legend shown in (a) refers to (a), (b) and (c). (d) Bar chart of the
values of the growth rates of the pipetting experiments (orange bars) and the control (blue
bars). The values have been obtained by averaging the growth rates of each single replicates.
The error bar is the error over such average value. The three groups of data correspond to
the three experiments: pipetting three times a day (3/dd), once every two days (1/(2dd)) and
once every five days (1/(5dd)).

Exp ztlag zλmax zA

(a) 0.07 0.27 0.26
(b) 0.66 0.50 0.25

Table 2.2 z-scores resulting from normal tests performed to compare fit parameters of the
experiments (a) and (b) with their control. Each column is relative to the comparison between
specific parameters: lag times (ztlag), maximum growth rates (zλmax) and saturation level (zA).
The critical value for a two-tails test with significancy of 5% is zcrit = 1.96.

2.3.8 New insights on the experimental design

In the previous sections we analysed the inoculum dependence of carrying capacity,
lag time and exponential growth rate of the population. In this section we focus on
the fluctuations of the last two variables investigated, shown in Figure 2.23(a) and
(b).

According to our results, the fluctuations of the two variables show an opposite
behaviour: by increasing the size of the initial population, the lag time fluctuations
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linearly decrease, while the growth rate fluctuations increase. In other words, in
order to have a sample-to-sample low variability in the growth rate one needs to
seed cells at low concentrations. However, in such condition, the precision over
the lag times would be lost and the very duration of the adaptation phase would be
long-lasting (more than 3 days).

These observations allow to give new insights on the experimental design. First of
all, such scenario can give the experimentalists a quantitative argument to design the
experiment by choosing the desired initial cell concentration, according to their main
purposes of investigation. Second, since the two trends are opposite, an “optimal”
initial concentration of cells may be found in correspondence of a trade-off between
the two variables. It leads a trade-off between the behaviours of the two variables
and it is emphasised by a black dot in Figure 2.23(c). We derived such condition
as follows. For both variables, we considered their standard deviation within the
same N0 bin (values shown in 2.23(a) and 2.23(b)) and normalised each of them to
its maximum value. In this way we obtain two adimensional comparable variables,
as shown in Figure 2.23(c). The “optimal” point is given by the intersection of
the two lines (black dot in the plot). Interestingly, N0 at the intersection point is
N0 ≃ 2 · 104cell/ml, corresponding to the cooperative phase shown by the growth
rate behaviour vs N0 (see Figure 2.15).

Thus, by seeding cells at the “optimal” density, a compromise between the growth
rate and the lag time variations is encountered, the lag time has reasonable values
and the cells are in the cooperative regime.
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Fig. 2.23 (a-b) Standard deviations of the maximum growth rate λmax (a) and the lag time tlag
(b) within bins over N0. (c) Same standard deviations (σ ) shown in (a) and (b) normalised
to their maximum values (σmax) as a function of the inoculum density (N0). In red is the
exponential growth rate and in blue the lag time. The solid lines represent the fits of the two
series of data. The black dot at the intersection of the two lines represents the "optimal"
experimental condition. The dashed vertical line is located in correspondence of the carrying
capacity.
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2.3.9 Qualitative identical features are shown by a further can-
cer cell line

In order to investigate whether our findings were specific of Jurkat cells or not, we
investigated a second human leukaemia, the K562 cell line, by following the very
same approach adopted for Jurkat cells. The experiments have been performed in
collaboration with Dr. F. Ceroni at Imperial College (London).

K562 cells, are suspension cells related to a human chronic myelogenous leukaemia.
They are slightly bigger than Jurkat (17 µm vs 12 µm) and do not tend to form clus-
ters while growing. They are widely used in research as highly sensitive in vitro
targets for the assays to study natural killer cells, immune system cells that once
activated can modulate immune responses [84].

We performed 68 experiments (i.e. 68 growth curves) by spanning roughly 3
orders of magnitude of initial cell density. The experimental procedure to obtain
the growth curves is analogous to the one adopted for Jurkat experiments and it is
summarised in Figure 2.24(a). As for Jurkat cells, at time t=0 h we took a sample
of N0 cells from the original flask where the cells were growing exponentially in
their standard growth medium. Such sub-population was then transferred into a new
culture dish (75 ml flasks) supplied with a fixed amount of the same standard growth
medium of the pre-culture. Differently from Jurkat experiments, K562 were cultured
in flasks with 10 ml of growth medium and their growth have been monitored through
an automatic cell counter, the NucleoCounter.

The NucleoCounter is a fluorescent microscope equipped with 3 light sources
and a low magnification (∼ 1.75x). It allows to automatically analyse a high number
of individual cell properties as for example viability and dimension. Among all, we
were interested in the concentration of alive cells in the sample. In order to count
with the NucleoCounter, the sample had to be prepared by adding to the desired
cell+medium a supplied reagent that allows cells to become fluorescent. In this way
the instrument is able to detect them and automatically give information on alive
and dead cells viability and alive cells size. So, to perform the measurement, the
population of cells was firstly pipetted in order to dissolve eventual clusters, then a
sample of 100 µl was collected and mixed with 10 µl of the supplied reagent. 5 µl
of the mixture was then analysed by the NucleoCounter.
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By daily monitoring the cell growth, the growth curves have been obtained.
Three examples of so-obtained experimental growth curves (with three different N0s)
expressed as the concentration off cells (N) as a function of time are shown in the
plot in Figure 2.24(a), where the dots are the experimental data and the lines their
fits.

To estimate the growth parameters, we fit the growth curves with the sigmoidal
shape function described in Section 2.3.3 whose parameters are related to the ones of
interest, namely the lag time tlag, the exponential growth rate λmax and the parameter
A, related to the carrying capacity k. By adopting the analytical approach described in
Section 2.3.3, for each growth curve we calculated also the value of the exponential
growth rate λ .

Figure 2.24(b-e) show the results of the quantification of the interesting parame-
ters for K562 cells, in analogy to what have been done for Jurkat cells. By comparing
the absolute values of K562 parameters with those of Jurkat, it is interesting noticing
that the carrying capacity of K562 is smaller than that of Jurkat; the lag time spans
smaller values while the growth rate reaches higher values.

However, the trends of such variables as function of N0 are qualitatively in
agreement with those of Jurkat cell line. First of all, the parameter A follows the
same relation expressed in eq. 2.18 obtained for Jurkat cells (Figure 2.24(b)). The
solid black line that fits the data has a slope compatible with −1. As evidenced
by Figure 2.24(c), the distribution of the converted carrying capacity is compatible
with a normal distribution (the solid blue line) centred in k = (7.5±1.8) ·105cell/ml
(solid black line). This suggests then that the carrying capacity is expectedly constant
with respect to the initial cell density and thus the experiments have been performed
in controlled conditions. Secondly, the lag time shows a decreasing trend together
with the increasing of N0 (Figure 2.24(c)). Finally, the exponential growth rate λ as
a function of N0 decreases when approaching the carrying capacity (dashed black
line).

The presence of such qualitative agreement suggests that the discovered features
may not be specific to a single cell line, but they can be more generic. Thus, it would
be important to enrich the set of experimental evidences by analysing the same issues
on other different cell types.
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Fig. 2.24 (a) Cartoon of the experimental procedure. K562 cells were pre-cultured in a flask
supplied with the standard growth medium. At time t = 0 h populations of N0 cells were
transferred into a new culture dish (a new flask) supplied with a fixed volume of the same
standard growth medium. The growth of the populations was daily monitored through the
NucleoCounter. The last plot shows three representative growth curves obtained through this
procedure at the end of each experiment. Each colour represents an inoculum size (N0), the
dots are the experimental data and the solid lines are the sigmoidal shape functions fitting
the data. (b) Trend of the fitting parameter A as a function of the inoculum density N0. The
data are compatible with a line with slope -1 as a function of ln(N0), as emphasised by the
black solid line that fits the data. (c) Distribution of the values of the carrying capacities
converted from the parameter A through the relation 2.18. The solid blue line represents
the normal distribution best fitting the data. The solid black line is the average of the
distribution, corresponding to k = (7.5±1.8) ·105cell/ml. Such value is emphasised by a
dashed vertical line in Figures (b,d,e). (d) Lag time (tlag) trend as a function of N0. Each
bright dot corresponds to a single growth curve, the darkest ones are the average by binning
on N0. The error bars are given by the error of the fit. (e) Exponential growth rate (λ ) as a
function of N0. As in (b) the bright dots correspond to all the experimental data, while the
darkest ones are their average by binning on N0. The error bars are the error of the fit.
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2.4 Conclusions

In this Chapter we investigated how the growth dynamics of a population of cells is
influenced by its initial density. Beginning with minimal mathematical models based
on very simple theoretical assumptions, we tested then their predictions on a in vitro
system consisting of populations of widely studied cancer cells, the Jurkat clone
E6.1. Finally, we modified those hypothesis that were not confirmed by the empirical
proof and suggest new phenomenological mathematical models. The results obtained
were qualitatively confirmed by the analysis of a second cancer cell line (K562).
To the experimental purpose, we designed a systematic experimental protocol that
allowed us to obtain robust growth curves. Through these, we defined the different
phases of growth (i.e. adaptation, exponential and saturation) of a population of cells
living in an environment with fixed amount of nutrients and analytically quantified
the parameters representative of such phases. These prameters were then compared
with the corresponding model. Indeed, we studied each growth parameter separately
and by unifying the results of each one we drew new hypothesis for a further detailed
investigation.

As a first result, we quantitatively proved that the experiments have been carried
out in a controlled environment since, as expected, the saturation level of the growth
curves (carrying capacity) is independent on the initial condition. The carrying
capacity represents the maximum amount of cells that can live in a given environ-
ment, thus only depending on the quality of the environment and not on the initial
concentration of cells. No matter how many cells give rise to the population, the
maximum density they can reach is always the same if the concentration of the
nutrients does not change.

The second result concerns the lag time, namely the time a population of cells
needs to adapt when moved to a new environment. By taking into account the high
heterogeneity of single cells within a population, we developed a stochastic model
able to link single cells adaptation times with the lag time of the population. Through
simple measurements of the last macroscopical variable on the in vitro system, we
have been able to conclude that an extreme values statistics may predict the time the
population needs to adapt before growing exponentially. Moreover, this depends on
the initial size of the population itself. In particular, we found that the fastest single
cell to divide after the seeding is the one that prevails over the others and drives
the dynamics of the entire population. From such result it is worth highlighting
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the complexity of the system we studied here. Indeed, it arises how the behaviour
of a population of single growing cells is not given simply by the average of their
microscopical behaviours. These are combining in a more complex way in order to
give rise to the emergent and robust behaviour at the macroscopic level. Such aspect
is of pivotal relevance and allows to consider a population of cells as a complex
system whose emergent behaviour has characteristics that differ from those of each
single component. Furthermore, in our case, each single component of the system
is able to move, reproduce, interact and grow. Thus, by merging all such features,
it is evident how the system we have studied fits under the framework of active
matter, being it complex, out-of-equilibrium and composed by single individuals
able consume energy while and for growing [85, 86].

The last variable we investigated is the exponential growth rate, namely the
asymptotic regime at which cells proliferate in a constant rate. To describe the expo-
nential phase of growth in presence of a fixed carrying capacity, we considered the
logistic model as the simplest deterministic and population-level mathematical model.
In light of the experimental validation, we found that the cells under exam does not
follow such dynamics. Indeed, through considerations concerning the exponential
growth rate as a function of the initial size of the population, we found the existence
of a range of initial population densities in which a cooperative behaviour among
cells arises. Such finding has been qualitatively reproduced by a widely known
mathematical model for density dependent growth, known as Allee effect. This is not
trivial if one thinks that at the time the exponential regime of growth usually occurs,
the population has undergone several doublings, so every information of the initial
state should be lost. Since this is not the case, we may understand such behaviour
in terms of chemical communication among cells. If so, cells secrete chemofactors
while growing and this may give rise to possible feedback loops on their own growth.
Further investigations would be necessary in order to support this, but it is known
that Jurkat cells secrete growth factors while growing. The most known one is
Interleukin 2, that has been found to play a pivotal role in in vitro T-cell proliferation.
Interestingly, in [87], Matera and coworkers show the existence of a further chemical
product secreted by Jurkat cells, the prolactin. In their study, they conclude that it
plays a central role in influencing Jurkat own growth. Thus, further experimental
investigations in this sense would be interesting in order to verify our hypothesis of
feedback loops on population growth caused by the production of chemofactors. If
this will be the case, then it would be interesting the development of a mathematical
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model able to explain such mechanism of communication. This would help to make
predictions on the development of the system and on the dynamics of such leukaemic
cells. Furthermore, it has been found that some clones of Jurkat cells, are able to ex-
press Interleukin-2 even in absence of an external activation. It would be interesting
a precise quantification of Interleukin-2 production for the clone we characterised
in order to relate it to cell proliferation. Since, as mentioned above, such protein
plays a remarkable role in the in vitro proliferation of T-cells, it would be interesting
defining methods to enhance their productivity by Jurkat cells. The use of cells as
factories to produce desired chemicals, goes under the name of bioproduction. Since
most of such secreted chemicals, once isolated, are useful for therapeutics purposes,
several investigations have been performed aiming at enhancing bioproduction and
producer cells growth [38–41]. On this topic, we refer to Appendix A. There, we
take advantage of the experimental protocol for cell growth and data analysis that
we developed in this Chapter. Through these, we investigate a method for optimising
the growth of a population of cells known for its bioproduction features.

Finally, we repeated the very same kind of investigation on a different leukaemic
cell line, the K562 cell line. We found that the dependencies of the growth parameters
on the inoculum density are qualitatively in agreement with those obtained with
Jurkat cells. This suggests the possibility that such qualitative patterns may not be
specific of a single cell line. In order to deeply investigate such complex role of
the initial condition in mammalian cell population growth, it would be important to
expand the analysis discussed here also to further different cell types and identify the
mechanisms underlying such features more clearly. In light of this, a more thorough
modelling approach would go beyond the presented minimal framework.



Chapter 3

Cell growth laws

In this chapter we present and discuss the second part of the work, which focuses
on a collaboration with Dr. Francesca Ceroni at Imperial College in London. The
project is still in progress, we therefore discuss here only the preliminary results
obtained so far.

The work is closely intertwined with the previous part of this thesis, since it
begins from the definition of cell growth and uses such parameter as the tuning
variable for investigating mammalian growth physiology. Our main focus is in fact
the characterisation of the impact of mammalian cell growth on gene expression.
Quantitative studies in this sense have been widely developed in microbiology in
the recent years [6]. In particular, a top-down quantitative approach was used in
order to determine a phenomenological description of the relation between bacterial
growth and gene expression [5]. Since similar studies are lacking for mammalian
cells, our aim is to start bridging this gap by transferring the same methodology
used for bacteria to cancer cells. Then, from cancer cells we intend to extend it to
healthy mammalian cells in order to have a broad characterisation of mammalian
growth physiology. With a constant interplay between mathematical modelling,
wet-lab experiments and data analysis performed in parallel both in Torino and in
London, we point towards a phenomenological large scale description of mammalian
cell physiology able to be predictive even in absence of a complete knowledge of
molecular details.
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In order to better introduce our work, in the following section we discuss the
mentioned studies that inspired the project, together with the reasons why we began
our investigation from cancer cells.

3.1 The Ohm’s laws for bacterial growth

Quantitative physiology plays nowadays a pivotal role in synthetic biology [88]
and bioingeneering. Its studies lie at the bottom of the development of artificial
genetic circuits by giving the knowledge on how integrating artificial with biological
systems. Cellular quantitative physiology has been widely developed in recent years,
especially in microbiology [6].

When dealing with the study of biological systems, two different kinds of ap-
proach can be followed: bottom-up and top-down. A bottom-up approach usually
focuses on microscopic details, like a small regulatory system, and progressively
scales up to the more complex regulatory network. This kind of approach becomes
difficult to apply when dealing with large complex systems due to the “explosion”
of the number of parameters. Therefore a top-down approach seems to be a better
strategy. This focuses on global emergent variables and determines the relations
among them with simple but quantitative rules, by discarding small scale details.
By following this second approach, quantitative empirical relations have recently
emerged in microbiology [5]. Starting from the fact that constitutive gene expression
is strongly coupled to the growth state of the culture [89], these empirical laws
determine a link between the growth rate and the cell composition of exponentially
growing bacteria. The exponential phase has been considered, since it is the situation
in which every cell and its components double at a constant rate [2]. In [5], the
growth rate has been taken as the representative variable for the physiological state
of the culture and was adjusted by the quality of the medium the bacteria were
growing in. The quality of the medium was defined by the presence of sugars or
other components. To give an example on how the medium quality can affect the
growth rate, it has been seen that Escherichia Coli grows faster in glucose than in
glycerol. In order to set the growth conditions, nutrient concentration was properly
chosen according to the Monod equation (eq. 3.1) that relates the doubling rate (R)
to the concentration of the growth-limiting substrate (C) [2]:
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R = Rk
C

C1 +C
, (3.1)

where Rk stands for the maximum growth rate attainable with the increasing of
C, and C1 is the substrate concentration in correspondence of a growth rate Rk/2.
According to Monod relation, the growth rate increases with the growth-limiting
concentration until it reaches a saturation level. In other words, there is a value of
growth-limiting substrate concentration from which the growth rate will not increase
anymore. Figure 3.1 shows an example of the Monod equation adapted from [2]:
experimental data (dots) follow the solid line drawn from the equation 3.1.

The concentration of nutrients in [5] was then chosen in order to be not-limiting
for the growth rate.

Fig. 3.1 Growth rate of Escherichia Coli as function of glucose concentration. The solid line
is obtained with the Monod relation (eq. 3.1). Figure adapted from [2].

Going back to the main aim of the work of interest [5], the physiological state
(described by the growth rate) was related to the gene expression. Cell composition,
i.e. RNA and protein content, was considered as the representative variable for gene
expression. The reason is the following. Since ∼ 85% of total RNA is ribosomal
RNA [90], the ratio between RNA and proteins is a proxy for the ribosomal content
of the cell. Since ribosomes are required for protein synthesis, their number and rate-
of-function determine the rate of protein synthesis, and therefore gene expression.

The authors found very simple empirical relations linking the exponential growth
rate and cell composition. This was the starting point for the development of the
bacterial growth theory, a phenomenological theory that assumes the partitioning
of the proteome (i.e. cellular repertoir of proteins) [5]. These findings are briefly
described in the following and sketched in Figure 3.2.
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Figure 3.2(a) shows a sketch of the mentioned empirical relations. It was found
that in E. Coli, by changing the growth rate through the nutrient quality, RNA/protein
(r) linearly increases with the growth rate (λ ) by following the relation:

r = r0 +
λ

κt
(3.2)

where r0 is the offset and κt is related to the translation rate and it is called
translational capacity. This is represented by the solid line of the left plot in Figure
3.2(a). By tuning the growth rate inhibiting the translation, instead, an inverse linear
trend is obtained (dashed lines in the left plot of Figure 3.2(a)). The relation found
is:

r = rmax −
λ

κn
, (3.3)

where rmax is the maximum allocation fraction for the ribosomes in the limit of
total translational inhibition, i.e. λ → 0; κn is called nutritional capacity and it is
related to the nutrient quality of the medium. If instead of the ribosomal content, the
mass fraction of constitutive proteins is considered (see plot on the right in Figure
3.2(a)), symmetric linear relations are observed. This implies then the presence of
a linear constraint between ribosome-affiliated and constitutive proteins within the
cell. Starting from these relations and constraints, the authors defined a minimal-
model for proteome partitioning. See Figure 3.2(b) for a scheme of the main results
of the model. In the simplest case, the bacterial proteome can be partitioned into
three components: a core sector (Q, of fraction ΦQ), a ribosome-related sector
(R, ΦR) and a third one (P, ΦP) that includes constitutive proteins. While the first
sector is expressed in every growing condition (i.e. growth rate), the other two are
coordinately reshaping depending on the growth rate.

If ΦP → 0 then ΦR → Φmax
R . Given that

ΦP +ΦQ +ΦR = 1 , (3.4)

it follows: Φmax
R = 1−ΦQ with

ΦP = Φ
max
R −ΦR = ρ(rmax − r) , (3.5)
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where ρ is a conversion factor between r and Φ. Eq. 3.5 represents a constraint
between ΦP and ΦR. Together with eq. 3.3, the model predicts that

ΦP = ρ
λ

κn
. (3.6)

This describes the linear relation between constitutive proteins (P-sector) and growth
rate λ for fixed nutritional capacity, and can be interpreted as a manifestation of
those proteins that provide the nutrients needed for the growth. In a similar way, eq.
3.2 may be seen as the R-class proteins providing the protein synthesis necessary for
growth:

(ΦR −Φ0) = ρ
λ

κt
. (3.7)

For different combinations of the nutritional (κn) and translational (κt) capacities, an
efficient allocation of resources requires that the abundance of proteins of R- and
P-classes must be adjusted so that the influx of nutrients provided by the P-sector
is balanced by the protein synthesis carried out by the R-sector. Thus, the growth
rate dependence of constitutive gene expression results as a balance between protein
synthesis and nutrient uptake/processing.

Such physiological laws were called by the authors “bacterial Ohm’s laws” due
to an analogy with the behaviour of an electrical circuit [5] (see Figure 3.2(c)
and Section 3.1.1 for further details). Moreover, the solution of eq. 3.6 and 3.7
together, leads to the Michaelis-Menten relation empirically known for describing
the dependence of the cell growth on the nutrient level, namely eq. 3.1:

λ (κt ,κn) = λc(κt)
κn

κn +κt
(3.8)

where λc(κt) = κt(rmax − r0) is the value of the maximal growth rate in a rich
medium.

Through this theory it has been possible to predict and explain global changes in
bacterial transcriptional program without the need of knowledge of many molecular-
scale details. For instance, they have been adopted to predict a wide spectrum of
microbial behaviours that range from antibiotic resistance to the decreasing of the
growth rate when unnecessary proteins are expressed [6].
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Figure S6

: Ohm’s law analogy for resource allocation and growth control The growth

(a)

(b)

(c)

Fig. 3.2 Three figures showing the results obtained by Scott et al. in [5]. (a) Sketches of the
empirical growth laws. Figure adapted from [6]. (b) Summarising sketches of the theory of
proteome partitioning. Figure adapted from [5]. (c) Analogy with Ohm’s laws for electrical
circuits. The three resistors correspond (also in colours) to the three proteome sectors of
panel (b). Figure adapted from Supplementary Materials of [5].

Even if less broadly than in bacteria, similar studies connecting growth and
gene expression have been performed also on some eukaryotic organisms such as
fungi [91], algae [92] and yeast [93, 94]. Having a similar systematic study on
eukaryotic cells coming from more complex organisms like mammalian cells, would
be very important since it could find many useful applications in bioengineering and
therapeuthics.

One first way of addressing this issue by adopting the same approach used
for bacteria, is to consider cancer cells. The choice is driven by a wide range of
analogies between behaviours of bacteria and cancer cells [32, 33]. To give some
examples, bacteria, through an advanced communication technique known as quorum
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sensing, are able to form complex communities (biofilms) and it has been found
that cancer cells may use similar communication mechanisms during metastatic
invasion [95]. Also the formation itself of biofilms (bacteria) and metastasis (cancer)
can be compared as well from different points of view, from the motility of cells
towards a certain substrate, to the adhesion and the formation of the structure, i.e.
biofilm or metastasis [96]. Another interesting analogy, useful for our purposes, is
the presence in both cases of an exponential phase of growth. As described in the
previous Chapter in Section 2.1.2, in his work of 1949 [2], Monod defined three
important phases of growth for bacteria (i.e. lag, exponential and stationary phase)
and it is interesting to underline how the same phases can be recognised in the case
of cancer cells when allowing them to exhaust the limiting nutrient. This is relevant
for our purposes since the approach we are interested in transferring to cancer cells
was valid for exponentially growing bacteria [5]. A further motivation for our choice
is the discovery that several tumor suppressors and oncogenes are related to protein
synthesis machinery [97], therefore possible relations between cancer growth and
proteome partitioning may exist.

In Section 3.2 we present an outline of the work. To this, it follows the detailed
description of the methods (Section 3.3) we used for obtaining the preliminary results
discussed in Section 3.4.

3.1.1 Analogy with an electric circuit

The authors of [5] draw an analogy between the proteome partitioning model and an
electrical circuit, by giving rise to the so-called Ohm’s bacterial growth laws. We
summarise here such similarities by referring to Figure 3.2 (c).

The main equations lying at the base of the bacterial growth theory are eq. 3.2,
3.5 and 3.6. Through these, the described theory is identical to the mathematical
description of the flow of electric current in a circuit composed by two resistors
connected in series to a battery with voltage (Φmax

R −Φ0). The current flowing in the
circuit is given by the growth rate λ . The resistors have a conductance equal to κn/ρ

(in magenta in Figure 3.2(c)) and κt/ρ (in cyan). The voltage drop corresponding
to the resistors is given by the mass fractions ΦP and (ΦR −Φ0). In this way, by
rewriting equations 3.6 and 3.7 as:
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λ =
κn

ρ
ΦP , λ =

κt

ρ
(ΦR −Φ0) ;

the analogy with the Ohm’s laws is evident: the current is equal to the product
between the conductance and the voltage drop upon the resistor. The nutrient- and
translation- modes for limiting the growth correspond to changes in the conductance
of one of the resistors, while the expression of unnecessary proteins is the analogous
of changing the applied voltage, namely by decreasing Rmax.

To conclude the analogy, we refer to eq. 3.8. This corresponds to the relation
between current and voltage in presence of two resistors connected in series, as it
can be easily seen by rewriting the eq. 3.8 in the following form:

λ =
(Φmax

R −Φ0)

ρ

κnκt

κn +κt
. (3.9)

3.2 Project outline

The aim of this project is to transfer the same top-down quantitative approach adopted
for bacteria in [5] to cancer cells for relating their growth to gene expression. The
project has been performed part in Torino and part at Imperial College in London. In
order to distinguish the two sets of results and methods, from now on we will refer
to them as Torino’s Lab and London’s Lab respectively.

For reaching the goal of the project, the following steps are required:

1. The experimental determination of the quantities we are interested in study-
ing, namely the ones describing the growth state of the culture and its gene
expression.

2. Define how to change the growth state.

3. Quantify the two chosen variables in order to look for possible empirical
relations between them.

4. Define a phenomenological theory based on the empirical relations of step 3..

5. Repeat the same approach with healthy mammalian cells.
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At the present time, steps 1. and 2. were broadly investigated and first data for the
realisation of step 3. are also available. Once reached statistically satisfying amount
of data of step 3., it will be then possible to continue with steps 4 and 5. Therefore
all the description that follows in this chapter will be relative to steps 1, 2 and 3.

As a first point for reproducing the same approach adopted by Scott et al. [5], we
decided to define the same variables they used, even though we do not know if these
can be representative for mammalian cells as well as they are for bacteria. Therefore,
we consider as empirical quantitaties to study: the growth rate, as representative of
the growth physiology, and RNA/protein contents as a proxy for gene expression,
since also for mammals, the ∼ 85% of RNA is ribosomal [98].

In order to vary the growth rate, we consider as variables the nutrient quality (like
for bacteria studies), the inoculum size (taking advantage of the results discussed
in Chapter 2) and the temperature. The choice of the temperature as a knob for
changing the growth rate, was driven by evidences that show that it effectively has an
impact on the growth rate both for mice [99] and for some human cancer cells [100].

In Torino’s Lab we fixed one nutrient quality (glucose), the growing temperature
at 37°C and changed the inoculum. In London instead, the initial concentration of
cells was fixed, while the nutrient quality (i.e. sugars in a minimal growth medium)
and the temperature were changed once at a time.

Concerning the nutrient quality, for each sugar, different experiments were
performed in order to determine the optimal non-limiting nutrient concentration,
reproducing in this way the Monod relation between the growth rate and the growth
limiting substrate concentration [2].

Once defined the growing conditions, we left the cells free to grow by exhausting
the nutrients and checked the growth day by day until the population reached the
exponential phase. At this point the total RNA and total protein content of the
population was extracted and quantified and then related to the growth rate.

Slightly different procedures were used in the two labs concerning the growth
experiments. All details will be exposed in the following Section 3.3.
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3.3 A systematic experimental approach

This section is dedicated to the discussion of the methods adopted in the project.

The cell lines considered here are Jurkat clone E6.1 (used in both labs) and K-562
(only in London’s lab). For a description of Jurkat and K562 cell lines see sections
2.3.2 and 2.3.9 respectively.

The general experimental procedure followed for growing cells in both labs can
be summarised as follows: cells were seeded with the defined condition (inoculum,
sugar quality, temperature) and their growth was monitored day by day. When the
cell population reached the exponential phase, it was freezed at −80°C and then total
RNA and total proteins were extracted from the entire population.

As mentioned before, slightly different procedures were followed in the two labs
for growing cells and following their growth. In the next Section 3.3.1 we describe
the experimental procedures for cell growth and in Section 3.3.2 we describe the
sets of experiments that we performed. In the last Section 3.3.3 instead, we briefly
present the experimental protocol for RNA and Protein extractions used in both labs.

3.3.1 Cell growth experiments

The methodologies used for the experiments in the two labs are described in the
following paragraphs.

Torino’s Lab

Growth experiments in Torino’s lab, were performed by following the general
procedure described in Section 2.3.2. To briefly summarise it, an initial concentration
of Jurkat cells (N0) was seeded in a fixed amount (5 ml) of their optimal medium,
i.e. RPMI which constitutively contains 25mM of Glucose. Cell population was
allowed to growth at constant temperature of 37°C and with 5% of CO2. The growth
was monitored day by day until it reached the exponential phase. At this point the
cells were freezed to later extract RNA and proteins (see Section 3.3.3 for RNA and
protein extraction protocol). In order to be sure to stop the growth at the desired time
point, another identical experiment (called A from now on) was started three days
before and left run until it reached the saturation phase. In this way, the A experiment
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resulted to be a “pilot” for checking the growth phases of the experiment needed for
the extraction (called B from now on). For each condition, in both A and B cases,
at least three replicates were performed. See Figure 3.3 for an example of A (blue
shaded circles) and B (red shaded circles) curves (N0 = 60 ·103 cell/ml). Each single
shade of the two colours represents one replica. The data were shifted in order to
start from time 0 h. It is possible to see how B data (red) follow the same trend as A
(blue) ones.

A curves were also used to estimate the growth rate of B ones. To this purpose,
for each B replica the sigmoidal fit described in Section 2.3.3 was performed on a set
of data composed by the joining of the desired B replica and all the corresponding A
data. In this way a complete curve was available and all the growth parameters could
be determined, namely the lag time, the saturation level (carrying capacity) and the
maximum growth rate. The last time point of the red curve corresponds to the time
of extraction of RNA and proteins.
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Fig. 3.3 Example of A (blue) and B (red) growth curves expressed as the logarithm of the cell
concentration (N) normalised to the initial cell concentration (N0) as a function of time. For
each colour there are 3 shades representative of 3 different replicates of the same condition.

London’s Lab

As mentioned before, in London’s lab we analysed two different human cancer cell
lines in parallel: Jurkat and K562. The “knobs” used for tuning the growth rate were
the nutrient quality and the growth temperature, while the inoculum size was fixed at
N0 = 105 cell/ml.
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The sugars here considered were: glucose (the “standard” used to compare
London and Torino results), fructose, mannose, maltose, galactose and xylose. For
varying the nutrient quality, different growth media were prepared. The minimal
medium lacks sugar so that the desired sugar at the given concentration was added.

Temperature was set at 37°C, 35°C, 33°C and 32°C.

Cells were seeded in 48-multiwells in fixed volume (1 ml) of growth medium.
To monitor the growth, we used the Tecan plate reader, an instrument that allows
high throughput. The instrument was supplied with temperature and CO2 controllers.
In this way, at the beginning of each experiment we set the desired temperature and
5% CO2 (value suggested for an optimal growth). These two quantities remained
constant for the whole duration of the experiment. For each experiment at least two
wells were filled with 1 ml of minimal medium and left free from cells. The trend of
these wells over time gave the background measurements.

The Tecan allows to automatically reconstruct growth curves by measuring
the absorbance of the medium at two fixed wavelengths, 430 nm and 560nm, that
correspond to the acid and basic peaks of the phenol red respectively [101]. To
remind what discussed in Section 2.3.2, the phenol red is a pH indicator present
in the growth medium. Therefore the measure of the absorbance of its acid and
basic peaks, gives an information on pH changes of the medium. Since the pH
changes in time accordingly to the cell density, the ratio between the two peaks
(abs430nm/abs560nm) can be used as a proxy for the growth of the population.

The protocol followed by the instrument to perform the measurement is the
following: it shakes the plate for 5 s, waits few seconds, then it measures absorbance
at 430 nm in each well, shakes again for 5 s, waits and measures absorbance at 560
nm in each well.

Since the measurements were very quick and automatic, we set the time step
every 12 hours. In this way we obtained growth curves with a resolution in time
higher than the one of Torino’s lab.

The panel in Figure 3.4 shows an example of Tecan measurements. In Figure
3.4 (a) we show the raw measurements performed by the instrument as absorbance
values vs time. Figure 3.4 (b) instead shows their ratio over time after background
subtraction. Indeed for each experiment, we also followed the absorbances of
the clean medium, whose ratio is representative of the background. Thanks to
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this, we subtract to every absorbance ratio the corresponding background thus
obtaining curves like the one shown in Figure 3.4(b). Data shown in this example
are measurements of K562 grown at 37 °C in glucose.
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Fig. 3.4 An example of K562 growth curve in glucose at 37°C. (a) shows the raw measure-
ments performed by the Tecan: absorbance at 430 nm in red and 560 nm in green. (b) shows
the ratio of absorbance 430 nm over 560 nm vs time after background subtraction.

Three different kinds of experiments were performed by following the above
protocol: (i) calibration, (ii) sugar saturation experiments and (iii) experiments for
the RNA and protein extractions. Each of them will be described in the following
section and the preliminary results will be discussed in Section 3.4.

It is worthy to mention also that the growth rates were calculated by fitting the
Tecan curves expressed as abs430nm/abs560nm with the sigmoidal-shaped function
described in Section 2.3.3. In this way the three phases of growth were determined.
The variable we are interested in is the growth rate of the exponential phase (λ ),
which was obtained by the slope of the linear fit of data within the exponential phase.

3.3.2 Three sets of experiments

The experiments we performed in the direction of the determination of the mam-
malian growth laws can be divided in three sets described in the following paragraphs:
calibration, sugar saturation and growth laws experiments.

Calibration
Since we need to compare London growth curves with Torino’s ones, we need

a way to convert results obtained in terms of absorbance (Tecan measurements in
London) to those in terms of cell density (direct manual counting in Torino). To this
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purpose in London’s lab we performed a parallel detection of cell growth both with
Tecan and with direct cell counting, for cells growing in glucose at 37°C with an
initial seeding N0 = 105 cell/ml. All the results obtained for the other conditions of
sugar and temperature are then expressed in relation to this.

Cells were seeded in the growth medium containing 25 mM of glucose. The
chosen concentration of sugar was exceeding the growth limiting value (see discus-
sion in Section 3.4). All the wells were measured by the Tecan day by day, and
every day two of them were also measured by directly counting the cells. Thus two
growth curves were obtained with both counting methodologies and used to make
the conversion.

The counting was performed through the use of NucleoCounter (see Section
2.3.9 for details about the instrument).

The results of this experiment are discussed in Section 3.4.1.

Sugar saturation experiment
The aim of this second set of experiments was to select the optimal concentration

of sugar in order to assure that it was exceeding the limiting value for the growth of
cells. In this way nutrients are not growth-limiting and any change in the behaviour
of the growth is mainly driven by the cells. (See Figure 3.1 for literature on this
topic).

To this purpose, different concentrations of sugars were added to the minimal
medium and cell growth was monitored with the Tecan from the beginning up to the
saturation phase. The temperature was set constant at 37°C. Section 3.4.2 is devoted
to the results of such experiments.

Growth laws experiment
Once the right concentration of the sugar has been determined, the experiments

for the extraction of RNA and proteins could be performed. In order to be sure to
stop the growth of the population at the right moment of the growth, we followed
the same protocol described for Torino’s experiments. Some wells were followed
by reconstructing the whole growth curve (“pilot” wells), while others were freezed
in three different moments of the exponential phase. In this way, the time point
corresponding to the desired moment of the exponential phase, possibly the half,
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could be determined a posteriori, once the entire curve was obtained from the “pilot”
wells. Then, RNA and proteins were extracted from the desired time point, by
following the protocol described in Section 3.3.3.

Results in Section 3.4.3, show the growth rate trends obtained with the chosen
sugars and temperatures.

3.3.3 RNA and Protein extraction

In both labs, the NucleoSpin RNA protein assay (MACHEREY-NAGEL) was used
to extract the total RNA and protein content of each selected population of cells. The
major steps of the protocol are here reported.

The freezed sample of cells was firstly unfreezed and joined with a buffer to
obtain cell lysate. Cell lysate was subsequently filtrate through a column equipped
with a membrane which allowed to separate RNA from proteins. In fact, the RNA,
together with DNA, remained bound to the membrane, while the proteins flew
through. At this point the two components were purified in order to eliminate all
unnecessary elements and then quantified. By knowing the total number of cells
from which the RNA and proteins have been extracted, it was possible to calculate
the amount of such components per cell.

The preliminary results of the RNA and protein trends by changing the growth
rates are presented in Section 3.4.3.

3.4 Experimental results

First of all we will discuss the calibration method adopted to convert Tecan’s ab-
sorbance data into cell density (Section 3.4.1); secondly we will present the results
of the sugar saturation experiments (Section 3.4.2) which will be relevant for the
following Section 3.4.3, dedicated to the trend of growth rates when different sugar,
temperature and inoculi are considered and the first results of the RNA and protein
quantification.
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3.4.1 Calibration

As already mentioned, in order to compare the growth rates obtained through the
Tecan with those coming from direct cell counting, we need a conversion. This has
been obtained by following the Calibration experiments described in section 3.3.2.

The calibration has been performed in London’s Lab for cells growing in glucose
at 37 °C and starting from an inoculum N0 = 105 cell/ml. Figure 3.5 shows an
example of the growth curves obtained by direct counting (a), by Tecan with no
background (b) and then (c) the logarithm of the concentration of cells of (a) as
function of its corresponding absorbance ratio from (b). In Figure 3.5(c) two series
of data are shown (each with a different shade of colour): they correspond to the data
of both the growth curves measured to perform such calibration. The growth curves
of the darkest dots are those shown in (a) and (b); those of the brightest ones are not
shown.

Figure 3.5 (c) shows the relation between the two measurements. For both cell
lines, two regimes can be recognised: a first one with positive slope (solid lines in
Figure 3.5 (c)), and then a second regime where such linear dependence is lost. The
first regime corresponds to the exponential phase of growth, while the second one to
the saturation phase. This suggests that the quantity measured by the Tecan scales
linearly with the logarithm of the number of cells as long as the saturation phase
is not reached. Within this range, the Tecan measurements can be considered as a
proxy for the logarithm of the number of cells. Since such relation does not hold for
all the phases of growth, it is not possible to convert the entire growth curve obtained
with the Tecan in terms of concentration of cells. This can be possible only for data
points corresponding to the exponential phase. This is exactly the procedure that we
follow to calculate the number of cells from which we extracted RNA and proteins.
Indeed, by plugging into such linear relation the absorbance value corresponding
to the time point at which the extraction is performed, it is possible to know the
corresponding number of cells the population is composed of. This is useful in order
to calculate the amount of RNA or protein per cell. To be noted that this conversion
has been performed after the background subtraction of the absorbance data.
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Fig. 3.5 The left panel relates to Jurkat and the right one to K562. Plots of the row (a)
represent the logarithm of the number of cells per ml (N). Plots (b) show measurements of
the same wells in (a) performed with the Tecan. Plots (c) reveal the relation between cell
concentration and absorbance ratio. Here two sets of data have been joined to determine
the conversion law. The darkest dots corresponds to the growth curves in (a) and (b), the
brightest ones are the second set of data whose growth curves are not shown.

Moreover, we are interested in comparing exponential growth rates λ of the
two sets of experiments (manual count and Tecan’s ones), thus we need a way to
convert them. The presence of a positive linear trend between the absorbance and the
logarithm of the number of cells (Figure 3.5(c)) is a crucial point for such conversion.
Since we are interested in the growth rates of the exponential phase - linear in
presence of a logarithmic scale - , we can calculate them, in both sets of data, by
exploiting the fitting procedure discussed in Section 2.3.3 and then simply convert
the λ values through a proportion.

According to the fitting procedure in 2.3.3, the growth rates were calculated, for
both sets of growth curves Figure 3.5 (a) (λa) and (b) (λb), as the slope of the data
within the exponential phase of growth. In order to perform the fits in the same way,
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we needed to normalise also (b) curves to the initial value, as we did for curves in
(a) where ln(N/N0) is the observable. Thanks to the fact that the absorbance scales
logarithmically with the number of cells, the normalization was performed simply
by subtracting the initial value (absorbance in t = 0 h) to each point. The values of
the obtained growth rates are reported in the following Table 3.1, where we report
also the values of the doubling times (d.t.) corresponding to the growth rates:

d.t.=
ln(2)

λ
(3.10)

In order to justify why we are not considering the Tecan’s growth rate directly as
the growth rate of the population, we report the doubling time conversion also for
λb (d.t.b). It is worth noticing how the d.t.b values result almost compatible with
the duration of the experiments, therefore they can not be used as representative of
the growth rates, and a conversion is needed. As mentioned above, the exponential
growth rates have been calculated by applying the fitting procedure described in
Section 2.3.3 to both manual counting and Tecan’s growth curves. In presence of
data with a very steep sigmoidal fit function (see for example K562 curve in Figure
3.5(b)), the exponential window determined analytically was too narrow. Therefore,
in order to calculate the exponential growth rate λ , the slope of the line interpolating
the first four points of the growth curve has been considered.

Cell line/parameters λa (h−1) d.t.a (h) λb(h−1) d.t.b(h)

Jurkat 0.037 ∼ 18.9 0.0077 ∼ 90
K562 0.035 ∼ 19.5 0.0092 ∼ 75

Table 3.1 Values of growth rates (λ ) and relative doubling times (d.t.) of manual counts (first
two columns) and Tecan’s (3rd −4th columns) measurements. Lines correspond to cell lines.

The two values λa and λb are thus representative of the same quantity. Since the
growth rates are calculated in the exponential phase, they are in the linear regime
of conversion between the logarithm of the concentration and absorbance ratios.
Therefore the following simple relation is valid:

λN

λa
=

λT

λb
(3.11)
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where λN and λT are the growth rates calculated for manual counting curves and
Tecan’s ones respectively. To note that Each cell line has its own λa and λb.

Since the direct conversion among the growth rates has been obtained only for
cells growing in glucose (25mM) and temperature of 37°C, we can not assume it
being the same if changing the growing conditions. Thus, in order to compare all the
results, we express all the growth rates (λT and λN) as relatives to their corresponding
reference values λb and λa.

A last important observation concerns Jurkat growth curves obtained by direct
cell counting in London’s lab. From the analysis, the growth rates obtained (see
λa, Jurkat in Table 3.1) are consistent with those of Torino’s curve grown in the
same condition (N0 = 105cell/ml, 25 mM of glucose and 37 °C). Thus, since the
same cells, grown in two labs and in geometrically different plates showed consistent
behaviours, on one side we can claim a good reproducibility of our experiments, on
the other side we can be confident in comparing the results obtained in the two labs.

3.4.2 Optimal sugar concentrations

In order to identify the optimal non-limiting sugar concentration, we performed cell
growth experiments by testing different concentrations for each chosen sugar. In
Figure 3.6, for both cell lines and each sugar, the growth rates are plotted as function
of the sugar concentration. In light of the discussion of the previous Section 3.4.1,
the growth rates are expressed in terms of the reference one (λb). The darkest dots
with the error bars represent the average and the dispersion of different replicates,
whose values are shown by the brightest dots within the error bars.

The optimal sugar concentrations have been chosen as the values at which the
growth rate is either maximum or saturated. In other words, for levels of sugar in the
medium higher than the chosen ones, the fitness of the population of cells does not
increase: either it remains constant (see for example the case of Jurkat in Glucose
for concentrations higher than 25mM) or it decreases (Jurkat in more than 25mM of
Mannose ). Such optimal values are listed in Table 3.2.
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Fig. 3.6 Sugar saturation results for Jurkat (left) and K562 (right) cell lines. Each raw and
each colour correspond to a different sugar. Data represented as dark filled circles are the
average values of different replicates (brightest circles). The error bars show replicates
dispersion. The growth rates are expressed as referred to the reference value for Tecan’s
measurements λb.
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Gluc.
[mM]

Mann.
[mM]

Malt.
[mM]

Fruct.
[mM]

Gal.
[mM]

Xyl.
[mM]

Jurkat 25 25 25 50 50 25
K562 25 25 25 50 50 25

Table 3.2 Summary of optimal sugar concentration chosen for each cell line (rows) and each
sugar (columns).

3.4.3 Towards the growth laws

With the optimal concentrations of sugar defined, it has been possible to run the
first experiments for the quantification of RNA and proteins. The first step in this
direction is to show how the growth rates are changing with the different conditions:
sugar, temperature and inoculum. Afterwards, the very preliminary results of the
extraction values are presented.

Tuning the growth rates

In this paragraph we present the dependencies of the exponential growth rates on
the different conditions. The results of both Torino and London’s labs are shown in
Figure 3.7.
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Fig. 3.7 (a) Jurkat (on the left) and K562 (on the right) growth rates (λ/λa) as a function
of the inoculum size. The brightest dots are all the experimental data and their error bars
are the errors obtained by the fitting procedure. The darkest circles represent average values
obtained by binning over N0. The data correspond to the experiments at 37°C with glucose
(coloured in red, according to the legend of (b)). (b) Growth rates (λ/λb) as a function
of temperature for Jurkat on the left and K562 on the right. Each colour corresponds to a
different sugar. Black solid lines emphasise the trend of the data.

Figure 3.7(a), shows the growth rate dependence on the inoculum density for
both cell lines. The plots are the very same presented in Figure 2.15(a) and Figure
2.24(e), with the values of the growth rates re-scaled (λ/λa) in order to make them
comparable with results shown in Figure 3.7(b) obtained from Tecan’s growth curves.
The re-scaling has been performed by using the reference value for manual counts
in the case of Figure 3.7(a) and that of Tecan for Figure 3.7(b). The trends shown
by Figure 3.7(a) have been broadly discussed in sections 2.3.6 and 2.3.9, thus we
remind there for details.

Figure 3.7(b), instead, shows the dependence of the growth rate on sugar quality
and temperature for both Jurkat and K562.

First of all, focusing the attention (in all the plots of Figure 3.7) on the values of
growth rates of cells seeded at initial concentration of N0 ∼ 105 cell/ml in glucose
at 37 °C (red data), the values obtained with Tecan’s measurements (Figure 3.7(b))
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are in agreement with those obtained through manual counting (Figure 3.7(a)). This
again shows the high reproducibility of our experiments.

By comparing now the growth rates of different sugars at fixed temperatures
(Figure 3.7(b)), for both cell lines the data seem to divide into two main groups,
namely with "high" and "low" values of growth rates. As emphasised by the solid
black lines, both groups show an increasing trend with the temperature.

For both cell lines, at fixed temperature, the growth rates associated to glucose,
maltose and mannose belong to the group of "high" growth rates and do not show
significant differences among each other. Similarly, galactose and xylose that belong
to the second group of sugars, present compatible results. Fructose is the only sugar
that shows a different behaviour between Jurkat and K562. While for the first cell
line it determines a slow growth rate, it is responsible for an higher growth rate when
supplied to K562. As it can be noticed in the plots, results for growth rates are not
yet available for all the desired temperatures, therefore it would be necessary to
perform further experiments in order to drive better conclusions.

Despite of this, the so-far obtained results suggest the presence of a temperature
dependence on the growth rates for both cell lines, i.e. Jurkat and K562. We can
then argue that also for these cell lines the temperature may influence the growth, as
it has been found for other human cancer cell lines in [100]. It would be interesting
then to perform further experiments with other temperatures, higher for example, in
order to deeper investigate such issue.

Furthermore, from the above discussed results, it seems that a population of
Jurkat or K562 growing in an environment supplied with either glucose or mannose
or maltose, grows with a growth rate that is only modulated by the temperature and
not by the sugar quality. A similar conclusion can be driven when comparing cells
living in galactose or xylose. Thus in order to have a modulation of the growth
rates given by the sugars, it is necessary to choose sugars in one of the two groups
that cause low and high growth rates. It would be interesting looking for additional
sugars in order to enlarge the growth rate modulation due to sugar qualities.

Internal partitioning of resources

In this paragraph we show the results obtained from RNA and protein quantification.
The experiments are still in progress, therefore Figure 3.8 (a) and (b) show the very
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preliminary results obtained in London’s Lab, while 3.8 (c) presents those of Torino’s
experiments(red circles) joint with the London’s ones. All the shown results refer to
cells growing at 37°C.
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Fig. 3.8 Contents of RNA per cell, protein per cell and ribosomal fraction (RNA/protein) as
function of the growth rate. (a) shows results of Jurkat cell line and (b) of K562, both at 37°C.
Black solid lines represent the linear fits of the data. (c) RNA/protein data of Jurkat cells
shown in (a) joint with the results obtained in Torino’s lab from manual counting experiments
shown as red open circles. The x-axis represents the growth rates normalised to the reference
ones: λb for filled dots (Tecan’s measurements), λa for open circles (manual counting data).
Each colour corresponds to a single sugar, as explicited by the legend that refers to all the
shown plots.

First of all, focusing the attention on the first two plots of Figure 3.8 (a) and (b), it
is worth noticing that, since Jurkat cells are smaller than K562 cells (see descriptions
in 2.3.9), they present smaller values of both RNA and protein per cell.

Secondly, in order to drive proper conclusions on the general trend of RNA,
protein and ribosomal (i.e. RNA/protein) contents, further experiments would be
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necessary to increase the statistics. However, from these first results, in both cell
lines, the protein content per cell seems to decrease with the increasing of the growth
rate, while the RNA seems to remain roughly constant for Jurkat and decreasing
for K562. This results then in two slightly different trends in RNA/protein contents.
In Jurkat cells it seems to be very slightly increasing since the decreasing trend
of protein per cell prevails over the constancy of RNA per cell. Conversely, K562
cells show a slightly decreasing trend of RNA/protein, suggesting then that the RNA
content decreases lightly faster than the protein one.

In the end, in Figure 3.8(c) we highlight the high reproducibility of our exper-
iments. Indeed, the open red circles in the plot refer to the ribosomal contents of
Jurkat cells grown and quantified in Torino’s lab where the growth rate was modu-
lated through the inoculum density. The very fact that the results are compatible with
those obtained in London’s lab gives a further proof of the fact that the experimental
results are robust with respect to the used protocol for growing and counting cells.

3.5 Conclusions and perspectives on growth laws

In previous sections we presented the preliminary results obtained for the study of
the impact of cell growth on gene expression for two human cancer cell lines, i.e.
Jurkat and K562. Before reaching the final preliminary results that would allow us to
relate experimental values representative for gene expression to those representative
for cell growth, analogously to what have been performed for bacteria [5], several
necessary steps have been discussed.

Firstly, similarly to several studies in bacteria, we determined the variables to
look at: the RNA/protein as representative of gene expression and exponential growth
rate as a proxy for cell fitness.

Secondly, we found a method for comparing the interesting growth curve param-
eter, i.e. the growth rate, obtained with two different experimental strategies. Indeed,
on one side we directly counted the cells, on the other side we used the Tecan plate
reader, an instrument that indirectly estimates cell growth through measurements of
the absorbance of the growth medium. The use of such instrument has the advantage
to allow high throughput but, as drawback, it lacks a direct measurement of cell con-
centration. Knowing the number of cells at a given time is a necessary information
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when the extraction of RNA and protein occurs, in order to estimate the amount of
such quantities per cell. Thanks to the conversion method that we developed, we
have been able to estimate the number of cells in the colony in correspondence of
the exponential phase of growth, starting from absorbance measurements.

Thirdly, we performed sugar saturation experiments for the identification of
the optimal concentration of sugar to add to the minimal growth medium. In this
way cell populations were able to grow in a non-limiting sugar environment, thus
possible differences in their growth rates could be attributed to differences in the
sugar qualities, and not in their concentrations.

Then, fixed the optimal sugar concentration, experiments at different temperatures
(and fixed sugar quality and inoculum) have been carried out for both cell lines. It
emerged that, among the chosen sugars, two main growth rates could be spanned:
for both cell lines, cells growing in media supplied with glucose, mannose and
maltose showed growth rates faster than those supplied with galactose and xylose.
A difference among the two cell lines have been identified by the fructose. Indeed,
K562 cells supplied with fructose grew as fast as those supplied with mannose, while
Jurkat cells in fructose presented growth rates compatible with those of galactose and
xylose. In this way, two groups of sugars have been identified: one that determines
"slow" growth rates and the other "high" ones. In order to better modulate the growth
rate with sugar quality, it would be interesting to explore a larger set of sugars and
hopefully find more "groups" of sugars that define different growth rates.

An interesting finding concerns instead the modulation of the growth rate with
the temperature. Indeed, we found that, for both the above cited groups of sugars,
the increasing of the temperature gives an increase of the growth rates. Such result is
valid for both the investigated cell lines and suggests a possible growth dependence
on the temperature, as already found for other cancer cell lines in [100]. All the
results discussed so-far are relative to one inoculum density, however it would be
worthy investigating the influence of sugars and temperature on cells seeded at
different inocula.

The last part of this chapter was dedicated to the very preliminary results of
RNA and protein extractions, namely the experiments through which we investigate
RNA and protein contents of cells in order to look for possible empirical relations
between RNA/protein ratio and growth rate. We presented the results of RNA
and protein quantification by fixing the temperature (37°C) and the inoculum size
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(N0=105cell/ml) and modulating the growth rate with the sugar quality. The work is
still in progress, but the preliminary results suggest that for both cell lines the amount
of protein per cell decreases as the growth rate increases, while the RNA one either
remains constant (Jurkat) or it decreases (K562). These result in a constancy or
slightly increasing trend of the ribosomal content with the increasing of the growth
rate. The main aim of this work is to make comparisons with the bacterial growth
laws where the RNA/protein content significantly increases with the growth rate. In
order to reach such goal and drive statistically relevant conclusions for the chosen cell
lines, we need to increase the number of experiments and conditions especially in the
direction of trying to enlarge the range of investigated growth rates. However, such
preliminary results seem to be promising in showing that even for such mammalian
cells possible relations between cell contents and cell fitness could be found.

In conclusion, in light of the results discussed in this Chapter, we can claim that
the experiments we performed were highly reproducible and the results we obtained
are robust independently on the methodology used for monitoring the growth of the
population of cells.

The results presented in this Chapter, will be part of a publication in preparation
together with Dr. Francesca Ceroni and Dr. Carla Bosia.



Part II

Modelling and experimental test of
miRNA-target interaction





Gene expression and post
transcriptional regulation

In eukaryotes the expression process of a coding gene involves three main steps:
transcription (from DNA to mRNA), splicing (mRNA maturation) and translation
(from mature mRNA to protein). Gene expression is known to be tightly regulated:
all cells of an organism carry the entire set of genes, but they only express less
than the 2% of their genes at any particular time. The process through which a cell
increases or decreases the production of a specific gene product (protein or RNAs)
goes under the general name of gene regulation. Among the various gene regulatory
steps, the most important ones are (i) the transcriptional control, that occurs in
the nucleus and (ii) the post-transcriptional control, that instead takes place in the
cytoplasm. The former is one of the best characterised regulatory mechanisms and it
is carried out by transcription factors, proteins that through binding to the promoter
of a target gene can enhance or impede its transcription into RNA. Since transcription
factors are themselves proteins produced by other genes, from the cooperative and
combinatorial features of such regulation a complex network of interactions among
genes and between genes and their products arises.

The second gene regulatory mechanism is instead the main topic of this part
of the thesis. Post-transcriptional regulation has been discovered and characterised
more recently than transcriptional regulation [102], and among other players, it
is mediated by small (22 nucleotides-long) non-coding RNA molecules, called
microRNAs (miRNAs) [103]. MiRNAs act in the cytoplasm and, after transcription,
bind to other RNA molecules through Watson-Crick base pairing. Once bound, the
miRNA - which is here in its mature stage, that is uploaded into a macromolecular
complex called RISC (RNA Induced Silencing Complex) - may either induce the
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degradation of the RNA molecule or reduce its translation into protein. This leads to
a downregulation of the expression of the corresponding gene.

The interaction between miRNA and their target RNAs, have been investigated in
several studies and is based on molecular sequestration [9–11, 34]. Once bound, the
two molecules are sequestered: the formation of the complex miRNA-target prevents
any further interaction until dissociation. Such interaction is titrative and induces a
threshold-like response in the mean amount of free molecules as a function of some
key parameters, like for instance, their production rate. Depending on the relative
amount of the two species, two different regimes may be recognised: repressed and
unrepressed. If the amount of miRNA (the sequester) is larger than the amount of
its target mRNA, most of the target molecules are expected to be bound and thus
their free amount is close to zero (repressed state). In the opposite case, when the
abundance of target exceeds that of miRNAs, some mRNA molecules will be free
and thus can be translated, leading the system to the unrepressed state. In this case,
the amount of free molecules increases linearly with their total abundance. The
region close to the equimolarity point is the so-called ultrasensitive region [104].
Here, a threshold between the repressed and the unrepressed state arises and thus
small changes in the relative amount of the two species may cause a big fold change
in their free amount.

A further important feature of miRNA-mediated regulation is the fact of being
combinatorial: one single miRNA can regulate many different targets and one target
can be regulated by several miRNAs [105]. This suggests a whole new layer of
post-transcriptional cross-regulation named Competing Endogenous RNA (ceRNA)
effect [106]. The idea at the base of such theory is that the amount of a gene product
may be tuned by varying the concentration of another transcript that shares with the
first one the same miRNAs. The increasing, for instance, of the expression of one
target has the net effect of enhancing the expression of the other targets of the same
miRNAs. Indeed, this acts as a sponge, sequesters the miRNAs and prevents them to
bind to other targets. Such system has been widely studied from a theoretical point
of view [34–36, 107]. Both the description of the crosstalk among the targets and the
prediction of the coupling of their fluctuations have been investigated through the use
of stochastic models. By taking into account the transcription of both miRNA and
targets, their degradation and their interaction, a master equation can be associated to
the system. At the steady state, it is possible to obtain approximated solutions for the
moments of the distribution whose variation in time is given by the master equation,
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namely mean values and variances for the molecular species in the system. These are
predictions that have been then validated experimentally on an in vitro system [10].
In particular, a synthetic circuit consisting of two genes sharing the same miRNA
binding sites was transfected in a population of mammalian cells that endogenously
expressed the desired shared miRNA. By measuring the relative expression of the
two transfected targets it was possible to measure their miRNA-mediated crosstalk.
The results of such experiments were in agreement with the model predictions and
gave rise to new questions concerning the appearance of distinct phenotypes in the
distribution of the expression of the targets.

A remarkable feature of molecular networks lies in their intrinsic stochasticity
[108]. Since chemical reactions are probabilistic and the number of molecules
involved is often small, fluctuations in the abundance of such molecules become
relevant. Moreover, a second source of noise usually influences such systems.
This arises from all those processes “external” with respect to the system under
study and it is usually referred to as extrinsic noise. The combination of both
intrinsic and extrinsic noise gives rise to phenotypic heterogeneity in a population
of identical cells. Such variability may organise in bimodal distributions, whose
modes are representative of different phenotypes. Bimodal distributions may be
found in different processes like cell differentiation and cell-decision making or even
underline the existence of a healthy and a deseased phenotype [109].

This part of the thesis fits the above described framework. Indeed, we aim
at investigating the rising of bimodal distributions in a miRNA-target system in
presence of extrinsic noise. In particular, we continue the work presented in [11]
by experimentally testing the predictions of the mathematical model discussed in
[8]. Before going into details of the theoretical results, in Chapter 4 we give a
brief overview of what the microRNAs are, how they interact with their targets,
what is the role of the noise in such system and then we briefly present the ceRNA
effect. Afterwards, in Chapter 5, we present the results discussed in [8] by going into
details of the stochastic model that describes the system and how it can be treated in
presence of extrinsic noise. Finally, Chapter 6 is devoted to the experimental activity
performed in order to test and reproduce the main results obtained in [8]. The work
is still in progress, therefore after a description of the experimental setup, we discuss
the preliminary results obtained so far.



Chapter 4

Overview of microRNA-mediated
gene regulation

In this chapter we discuss the main features of microRNA-mediated gene regulation
by dedicating a section to each main subject. By starting from the definition of what
microRNAs are (Section 4.1), we move to the description of their interaction with
targets (Section 4.2). The considered reactions are probabilistic and the environment
in which they occur is noisy. Since this has a pivotal influence on the system under
exam, we devote Section 4.3 to discuss the ways different sources of noise may affect
such system. In the end, we describe the effect of competing endogenous RNAs that
rises from the presence of several mRNA targets sharing the same pool of miRNA
(Section 4.4).

4.1 Overview on microRNAs

microRNAs (miRNAs) are 22 nucleotides-long non-coding RNAs that operate post-
transcriptionally via sequence-specific binding to target RNAs and play a role in the
regulation of eukaryotic gene expression [110, 111]. Figure 4.1, adapted from [7],
shows miRNA biogenesis and its mechanism of binding to target RNAs. Following
transcription and maturation in the nucleus, miRNAs get incorporated into spe-
cialised, multiprotein complexes known as RISCs (short for RNA-induced silencing
complexes) [112]. Once within a RISC, the miRNA provides the pattern to bind spe-
cific sites called miRNA response elements (MREs) found on its target RNAs [112].
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Effective base pairing typically requires 6- to 9-nucleotides of complementarity. As
long as the miRNA is bound to its target, the former may promote the degradation of
the latter or reduce its translation into protein. This is the reason why miRNAs are
considered as post-transcriptional down-regulators of gene expression. As it will be
discussed in the following Section 4.2, the interaction between miRNA and target is
based on the mechanism of molecular sequestration [8–10, 34, 107].

More than 25000 miRNAs have been identified up to now in viruses, plants
and animals and about 2500 in human cells [113]. MiRNAs are well conserved in
animals and plants and take an active part in a wide range of regulatory mechanisms
involved in cell proliferation [114], organogenesis and differentiation [115] and
apoptosis [116]. Moreover their dysregulation can lead to diseases, among which
also cancer [117] is included.

A further feature of miRNA-target systems is its combinatorial nature: every
single miRNA can regulate several targets and one target can be regulated by different
miRNAs [110]. More than the 60% of the human genome has been predicted being
targeted by microRNAs [118]. The variety of targets the microRNAs regulate is large
and important for different signalling pathways and developmental stages, indeed it
is thought that an alteration of their expression may contribute to tumor development
and metastatisation [119]. A last remarkable consequence of such combinatorial
feature together with the nature of interaction between miRNA and targets, is the
rise of competition among mRNAs to bind to the same miRNA. Such competition is
in turn a source of crosstalk among the competing species [106]. This crosstalk is
also known as Competing Endogenous RNA (ceRNA) effect and it is described in
Section 4.4.
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Fig. 4.1 MiRNA biogenesis and target binding. Adapted from [7].

4.2 MiRNA-target interaction is titrative

Several studies suggested that the interaction between miRNA and their targets is
based on the mechanism of molecular sequestration [8–11, 34, 35, 107]. This can be
easily understood by thinking that when a miRNA is bound to its target, the complex
that is formed avoids the possibility of further interactions with other molecules until
its dissociation. Furthermore, as long as a mRNA is bound to a miRNA, the former
cannot be translated. An example of such interacting network is shown in Figure
4.2(a) adapted from [8], where R and S are the mRNA of the miRNA and the target
respectively. Only those targets that are not bound to the microRNAs are free to be
translated into proteins (P).
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It has been found that the behaviour of the system depends on the relative
abundances of the two species, in other words it is a titrative interaction [9]. Indeed,
if the quantity of miRNA is higher than that of mRNA, then all mRNA are expected
to be bound and not expressed. In this case, the system is said to be in the bound or
repressed state (see Figure 4.2(b)). On the contrary, if the amount of miRNA is lower
than that of mRNA, the latter would be free for translation and thus the system will
be in its unbound or expressed state. So, it is possible the definition of a threshold
for the transcription rate of the mRNA (kr in Figure 4.2(a)) such that the system is
either in one or in the other state, characterised by low or high level of expression
of mRNA. In particular, such threshold behaviour of the expression of mRNA is
strongly dependent on three parameters: the transcription rates of (i) miRNA and
of (ii) mRNA and (iii) the interaction strength between miRNA and mRNA. The
last parameter is related to the affinity between the two species and the number of
biding sites for the miRNA present on the target. This determines the steepness of
the threshold: the higher the interaction strength, the sharper the transition between
the two states. By varying the above cited three parameters, the two regimes may be
explored. The presence of the threshold underlines the non-linear transition between
the two regimes. Such threshold is located close to the equimolarity point, namely
where the abundance of mRNA molecules roughly matches that of miRNAs.
In the proximity of the threshold both the free miRNA and targets are low in number
and their fluctuations are strongly coupled. Thus, small fluctuations in their amounts
may lead the system to jump from the repressed to the expressed regime.

Such threshold-like behaviour has been studied from both experimental and
theoretical point of view in [9]. Moreover the authors explain the mechanism in
terms of molecular titration [104]. Given the goal of our work, we dedicate Section
6.1.1 to the description of the experimental protocol adopted by the authors.

In Chapter 5 we will go into the details of the network depicted in Figure 4.2(a)
and discuss the mathematical framework that leads to such behaviour.
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repressed expressed
state state(a) (b)

Fig. 4.2 (a) Network of interaction between microRNA (S) and its target mRNA (R). kR

and kS are the transcription rates of target mRNA and miRNA respectively and gR and gS

their degradation rates. kP and gP are respectively the transcription and the degradation rates
of the protein (P). g is the interaction strength between the miRNA and the target and α

is the fraction of not-recycled miRNA after the binding. Adapted from [8]. (b) Cartoon of
threshold-like behaviour describing miRNA and target mRNA interaction. The amount of
free mRNA is shown as a function of its transcription rate. Below the threshold the amount
of free mRNA molecules is smaller than that of miRNA (repressed state); the two quantities
are roughly equal around the threshold and above the threshold the free amount of mRNA is
higher than that of miRNA (expressed state). Adapted from [8].

4.3 The role of intrinsic and extrinsic noise

As anticipated, a molecular network is characterised by an intrinsic stochastic-
ity [108] given by the probabilistic nature of chemical reactions. Such intrinsic
stochasticity is referred to as intrinsic noise and it can be considered as negligible
in macroscopic systems - where large number of molecules are involved in the
reactions -, but it becomes relevant in biological systems where the numbers of
involved molecules are small. The miRNA-target system enters such latter scenario.
In such system, close to the threshold between the unbound and bound state (see
Section 4.2 for details), due to intrinsic fluctuations of the amount of both species, a
subset of the targets will be bound to the miRNA and another one will be unbound.
By considering such situation in terms of the distribution of the target, it leads to
bimodal distributions: the two modes are associated with the two states of the system,
i.e. bound and unbound. It is important to highlight that such bimodality is not due to
molecular mechanisms that induce multiple deterministic stable states in the system,
but it simply rises from the presence of noise.
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A second source of noise is known to play a pivotal role in such systems. It is the
so-called extrinsic noise and refers to all those noise sources external to the system
itself. Some examples are the fluctuations of the external environment that may
affect identical systems in different ways or even fluctuations in the space where the
biochemical reactions occur. Moreover, also variations of the amount of molecular
machineries or cellular components can be considered as an extrinsic source of noise.
This is known to influence gene expression and regulation at different levels resulting
in a large variability across a cell population. However, such variability seems also
to be dominated by the dynamics of the population itself [120]. For example, if a
monoclonal population of cells is considered, it presents cells in different phases
of their cell cycle, due to the processes of growth and division. It is known that
cell-cycle regulators are controlled by miRNAs, miRNA regulation can be in turn
cell-cycle dependent [121] and so its expression may depend to the specific phase
of the cell cycle [122]. In such a scenario then, the levels of miRNA may fluctuate
from cell to cell depending on the specific cell cycle phase. So, in light of this,
the heterogeneity with respect to the cell cycle within a population of cells can be
considered an example of extrinsic noise. Such feature will be accounted in the
experimental investigation of the role of extrinsic noise in miRNA-target interaction
discussed in Section 6.2.

As it will be broadly discussed in Chapter 5, it has been found that such extrinsic
noise on miRNA expression may induce bimodality on the targets for certain levels
of noise and stoichiometric conditions [8].

The bimodality raised by the sole intrinsic noise can be considered as a "single-
cell" effect, since if certain constraints are fulfilled then every single cell can jump
between the expressed and the repressed target state. Conversely, in presence of the
extrinsic noise, the amount of miRNA may be heterogeneous through the different
cells within a population (as discussed in [8]), thus bimodality can be seen at a
"population level". Such topic will be broadly discussed in the following Chapter 5
since it is the main result we addressed experimentally.

4.4 Competing Endogenous RNAs (ceRNAs)

The combinatorial action of miRNAs means that one miRNA can regulate several
targets and one target can be regulated by several miRNAs. Moreover, miRNAs
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can target both protein coding and non-coding transcripts. This gives as a result
the existence of a potentially enormous miRNA-target interaction network. From
here, rised the idea that the miRNA-target interaction network could be based on
the competition between targets for binding to the same pool of miRNAs and that
this competition could be a source of crosstalk between the competing targets. Such
crosstalk between targets of a common pool of miRNAs is known as competing
endogenous RNA (ceRNA) effect [106]. Together with the combinatorial nature of
the system, the mechanism of molecular sequestration underlies such phenomenon:
when interacting with a target mRNA, a single miRNA cannot bind to any other
target. Thus, the miRNAs available for the binding are the limiting factor in a system
composed of potentially interacting mRNAs. To better understand such phenomenon,
we refer here to a clarifying example described in [34]. Consider a gene A that
shares a miRNA with gene B. If A is upregulated, it means that its concentration is
increased, thus the miRNA preferentially binds to it. As a consequence, the mRNA
of gene B will result being less repressed and thus its concentration will result higher.
Thus, thanks to the presence of a shared pool of miRNA, it is possible to indirect
regulate the expression of one target by tuning another one that shares the same pool
of miRNA with the former.

Such cross talk effect has been observed in bacteria, where the role of miRNA is
played by small RNAs (sRNAs) and a titrative interaction among sRNA and their
target is present [123]. Moreover, the importance of such ceRNA effect has been also
experimentally proved in several pathological ad physiological conditions, including
in cancer [106, 124].

Several theoretical studies characterised such ceRNA effect through the use of
mathematical modelling [34, 107]. In particular, among other results, in [34], the
authors developed a mathematical model taking into account the intrinsic stochas-
ticity of the system and recover the threshold-like behaviour of both miRNAs and
ceRNAs as a function of the transcription rates of both the species. Moreover they
also showed the above described crosstalk induced by the competition.



Chapter 5

Modelling the role of noise in
miRNA-target interaction

This chapter is devoted to the main results published in [8] and partially described in
[125], focusing on bimodal distributions in presence of extrinsic noise. These results
will be then addressed expreimentally in the next Chapter 6.

5.1 Stochastic model for miRNA-target interaction with
extrinsic noise

The cartoon depicted in Figure 4.2, which involves a miRNA (S), its target mRNA
(R) and the corresponding translated protein (P) is the prototypical miRNA-target
system considered in [8]. The species S and R are assumed to be transcribed from
independent genes at constant rates kR and kS respectively. The intermediate reactions
that lead to the synthesis of the mRNA are neglected. Moreover, the authors assume
that miRNAs and mRNAs can be degraded by reactions governed by mass action-
laws with rates gS and gR. After their transcription, miRNA and mRNA can bind
into a complex (RS). The interaction between miRNA and target is quantified by
the parameter g that takes into account the strength of the coupling between the two
species, that is, from a biochemical point of view, the affinity of the two molecular
species and the number of miRNA binding sites on the target. The mRNAs are always
degraded due to the titrative interaction, while the microRNAs can be recycled with
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probability 1−α (α is the not-recycling probability). Finally, the mRNA not bound
to miRNA can be translated into protein (P) with a translation rate kP and the protein
can in turn be degraded with degradation rate gP.

The molecular reactions associated to the above processes and the production
and degradation of miRNAs are the following

/0
kS→ S, S

gS→ /0 (5.1)

The production and degradation of mRNA are

/0 kR→ R, R
gR→ /0; (5.2)

The interaction between miRNA and target mRNA can either lead to the degra-
dation of both the molecules:

R+S
gα→ 0; (5.3)

or to the degradation of the mRNA and the recycling of the miRNA:

R+S
g(1−α)→ S. (5.4)

The translation of the mRNA into protein and the protein degradation are:

R
kP→ R+P, P

gP→ /0. (5.5)

Both the intrinsic and the extrinsic noise are accounted in the model. The intrinsic
noise is defined as the fluctuations due to the stochasticity of the chemical reactions
that occur with constant rates. The extrinsic noise instead is taken into account by
considering fluctuations over the transcription rate of miRNA (kS). The system is
described by the following master equation that takes into account all the above
mentioned reactions:
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dP(n, t)
dt

= kR[P(nR −1, t)−P(n, t)]

+
gR

Vcell
[(nR +1)P(nR +1, t)−nRP(n, t)]

+ ks[P(nS −1, t)−P(n, t)]

+
gS

Vcell
[(nS +1)P(nS +1, t)−nSP(n, t)]

+
kPnR

Vcell
[P(nP −1, t)−P(n, t)]

+
gP

Vcell
[(nP +1)P(nP +1, t)−nPP(n, t)]

+
gα

V 2
cell

[(nS +1)(nR +1)P(nR +1,nS +1, t)−nRnSP(n, t)]

+
g(1−α)nS

Vcell
[(nR +1)P(nR +1, t)−nRP(n, t)].

(5.6)

Where Vcell is the cell volume and n = (nS,nR,nP) is the number of molecules
of the three X species under exam that relate to the concentration ρX according to
nX =VcellρX .

The authors obtained approximated expressions for the first and second moments
of P(n, t) by using Van Kampen’s system-size expansion [126].

To investigate the role of extrinsic noise, they considered a fluctuating miRNA
transcription (kS) drawn from a Gaussian distribution P(kS) with mean kS and vari-
ance σ2

kS
. The intensity of the noise is quantified through the coefficient of variation,

defined as CV =
σkS
kS

. With the introduction of such additional source of noise, equa-
tion 5.6 did not hold anymore. The issue has been solved by considering the law of
total probability, namely the probability distribution of the entire system P(n) has
been written in terms of the conditional probabilities as follows:

P(n) =
Z

P(kS)P(n|kS)dkS (5.7)

where P(kS) is the above mentioned Gaussian distribution of the miRNA tran-
scription rate kS and P(n|kS) is the conditional probability of observing a given
system configuration n, given kS. Such probability distribution is a solution of eq.
5.6 for any known kS. At this point the van Kampen’s expansion can be applied on
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P(n|kS) to obtain the moments of such distribution. The full solution is finally given
by the average of the results over the values of kS.

5.2 Bimodality as a population-level effect

Both the intrinsic and the extrinsic noise affecting the system may give rise to
bimodal distributions of the target. Given the threshold-like behaviour between
miRNA and target and depending on the relative abundance of the two species, the
system may be either in the repressed or in the expressed regime (see Section 4.2).
The threshold appears at the quasi-equimolarity condition. Here, the intrinsic noise
allows the system to jump from one regime to the other in a stochastic manner giving
rise to bimodal target distributions that may appear for small ranges of values of the
target transcription rate kR, as discussed in [34]. Such bimodality is a characteristic
at the single cell level: every single cell may jump between the two states if the
interaction strength (i.e. the coupling constant) between miRNA and target is strong
enough. In presence of extrinsic noise, when the population of cells is heterogeneous
with respect to the miRNA transcription rate, every cell presents rates either above or
below the threshold. In this case the bimodal distribution of the targets arises at the
population level. Such bimodal distribution is given by the superposition of single
cell unimodal distributions obtained with different values of transcription rate of the
target (kR). So, in presence of the extrinsic noise, the range of target transcription
rate for which the bimodality appears is wider than the case with only intrinsic noise.
Indeed, in the latter case a fine tuning of the miRNA and target transcription rates is
necessary, while in presence of extrinsic noise the effect is visible even with high
values of mRNA transcription rates and small miRNA-target interaction strengths.
Moreover, also the separation between the two peaks - corresponding to the bound
and unbound targets - is greather than in case of pure intrinsic noise.

The so far discussed widening of the range of the parameters is clearly shown
by Figure 5.1(a) adapted from [8]. Figure 5.1(a) represents a phase diagram of
the bimodality in the distribution of the free molecules of target mRNA obtained
through Gillespie’s simulations. The three variables considered in the plot are the
following: (i) on the x-axis, the transcription rate of the mRNA (kR); (ii) on the
y-axis, the quantification of the extrinsic noise, namely the coefficient of variation
of the distribution of the transcription rate of the miRNA (CV ); (iii) the colour
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map, the presence of the bimodality for different values of the strength of the
interaction strength (parameter g of the model). Such last value is represented from
a biochemical point of view, by the number of binding sites of the miRNA present
on the target mRNA.
In presence of pure intrinsic noise, a bimodal distribution is obtained only for high
values of the interaction strength between the two species and the bimodality region
enlarges when increasing g. Therefore, the interactions strength influences the range
of kR for which bimodality is present.
When in presence of the extrinsic noise the constraint on the strength of the interaction
relaxes. Indeed, it is the heterogeneity of the miRNA transcription rates that leads
some cells being in the repressed state while other in the expressed one. Moreover,
when increasing the intensity of noise (i.e. σS > 0) the bimodality is present for a
wider range of values of the mRNA transcription rate.

In light of the so far discussion, we can say that both the interaction strength g and
the extrinsic noise influence the range of values of kR for which a bimodal distribution
is present, thus they can be considered two "knobs" to control the bimodality. Indeed
in [8], it is evidenced how the two act at similar levels: in order to obtain bimodal
expression distributions, a high level of extrinsic noise can compensate for a weak
coupling. Such features are shown in Figure 5.1(b) through results of Gillespie’s
simulations [127]. Here the authors highlight the possibility of obtaining bimodal
distributions either by increasing the extrinsic noise(orange histogram) or through
increasing the interaction strength between miRNA and target (blue histogram) with
respect to the case of reference with only intrinsic noise (no extrinsic one) and a low
interaction strength between the two species (i.e. low number of miRNA binding
sites on the target mRNA).
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(b)(a)

Fig. 5.1 (a) Phase diagram of the bimodality in the distribution of free molecules of target
mRNA. The extrinsic noise on the miRNA transcription rate (CV) is plotted as a function
of the target transcription rate (kR). The colour map shows the presence of bimodality for
different values of the miRNA-target interaction strength g (see the legend). Adapted from
[8]. (b) Distribution of free mRNA in the case of: pure intrinsic noise and small miRNA-
target interaction strength g (solid black line); pure intrinsic noise and high miRNA-target
interaction strength g (blue histogram) and extrinsic noise and small interaction strength g
(orange histogram). Adapted from [8].

A further interesting result discussed in [8] concerns the role of extrinsic noise in
the ceRNA effect. As described in the dedicated Section 4.4, given the combinatorial
nature of the miRNA-target interaction, a change in the expression level of one
target may induce a change in that of another target mRNA sharing the same pool of
miRNA [34]. Given such crosstalk between competitors, if one of the target mRNA
is bimodally distributed, then the expression of other competing target mRNA is
influenced. Thus, the authors modelled a system with two ceRNA and one shared
miRNA in presence of extrinsic noise. They found that the extrinsic noise increases
the range of values of the interaction strength of the two targets for which the cross
regulation is possible - through a comparison with the case without extrinsic noise.

Recalling that the presence of bimodality is associated to the presence of two
different phenotypes, all the discussed results allow to say that the combination
of extrinsic noise together with the threshold behaviour allow to obtain bimodal
phenotypes without the need of fine tuning the rates of the reactions, as it happens in
a system with only intrinsic noise. Thus, the strong heterogeneity that characterises
a population of cells may be seen as an advantage in view of the role of such
bimodality.
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In light of the findings of [8] discussed here, in the next Chapter 6, we intend to
experimentally investigate the role of the extrinsic noise in the rising of bimodality in
a miRNA-target system, by exploiting, as source of extrinsic noise, the heterogeneity
of a population of cells with respect to the cell cycle.



Chapter 6

Experimental investigation of the
model predictions

So far, we discussed the theoretical results obtained in investigating systems con-
sisting of microRNAs that bind to their targets mRNAs. Moving from the simplest
system (one miRNA interacting with one target mRNA [9]) towards more complex
one (one miRNA shared by two target mRNAs [10]) experimental evidences have
proved the predictions of the models. Our aim is now to test the theoretical predic-
tions obtained in [8], namely on the role of the extrinsic noise on a miRNA-target
system. In particular, we aim at investigating the hypothesis concerning the rising of
bimodal distributions in the free amount of targets.

To this purpose, in this chapter we firstly describe the previous works [9, 10] in
order to introduce the experimental set-up we used (Section 6.1) and then, in Section
6.2 we move into the discussion of the experiments we performed. It has to be said
that the work is still in progress, therefore we will present here the very preliminary
results we obtained so far.
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6.1 State of the art

6.1.1 One miRNA and one target mRNA

The remarkable property of the miRNA-target interaction is the rise of a threshold like
behaviour. This has been shown in the work of Mukherji and coworkers [9] through
synthetic biology experiments. The authors developed the two-colour fluorescent
reporter system whose schematic is represented in Figure 6.1(a). The system consists
of a plasmid, i.e. a circular filament of DNA, that contains two genes coding for two
fluorescent proteins: mCherry (red) and eYFP (yellow). The two genes are controlled
by a bidirectional promoter, namely the RNA polymerase may transcribe them with
equal probability. On the 3’UTR (the codon stop sequence) of the gene coding
for mCherry, a fixed number N (N = 0, 1, 4 and 7) of binding sites for a specific
miRNA (miR-20a) has been engineered, while the gene coding for eYFP has been
left untouched. The number of binding sites represents a proxy for the strength of
interaction between the miRNA (miR-20a) and its mRNA target (mCherry mRNA).

Through a transient transfection, these plasmids were then inserted in human
embrionic kidney cells 293 (HEK293) that endogenously express miR-20a. With
the transfection the plasmids can enter the cells and be transcribed. To be noted
that they are not integrated into the genome, thus when cells duplicate the plasmids
are diluted since they do not replicate. Given the randomness of the number of
plasmids that enter each cell during the transfection, the fluorescent proteins present
an heterogeneous expression level among the cells. However, thanks to the feature of
the promoter being bidirectional, both mCherry and eYFP genes are always expressed
at the same level inside the cell. The authors measured the fluorescent intensity of
both fluorophores at the steady state after the transfection in each cell through two
kinds of measurements: fluorescence microscopy and flow cytometry. The latter is a
technique that exploits microfluidic channels to measure the fluorescence of each
single cell, by exciting them with lasers at the required wavelengths. In this way up
to 105 −106 cells can be measured in a short amount of time.

The system composed by the two fluorescent reporters inserted inside the cells,
is an empirical representation of the miRNA-target system. In presence of non-
zero binding sites (1, 4, 7) the mCherry is targeted by the miR-20a and, once this
binds, the translation of the corresponding protein (red) is repressed. Thus the red
fluorescence can be considered as a proxy for the amount of free molecules of the
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target mRNA. The yellow fluorophore (eYFP) instead, being not regulated by the
miRNA, has been used as a control to monitor the level of transcriptional activity of
the target mCherry, i.e. its expression level in absence of miRNA regulation. Since,
as mentioned above, the number of plasmids entering single cells is random, there
is an heterogeneity of the transcriptional activity among the cells and this allows to
explore a wide range of expression levels.

In this way, the typical profile of free amount of target molecules as a function of
their transcription rate can be reproduced by considering the scatter plot between
the fluorescences of mCherry vs eYFP (see Figure 6.1(b)). As expected, in the
case with 0 binding sites (i.e. absence of miRNA regulation), the scatter plot
mCherry vs eYFP fluorescence, presents a linear dependence, see black data in
Figure 6.1(b)). By increasing the number of biding sites N, a threshold-like behaviour
appears, as shown by the blue data in Figure 6.1(c). Through such system other two
theoretical predictions have been evidenced: firstly the position of the threshold in
correspondence of the equimolarity point, secondly the fact that the steepness of the
threshold could be controlled through the interaction strength between miRNA and
target, namely through the number of binding sites for the miRNA.

(b)(a)

Fig. 6.1 (a) Two colour fluorescent reporter system used in [9]. Bidirectional plasmid
engineered to code for eYFP and mCherry genes. The 3’UTR region of the latter gene
contains a number N of binding sites for the miR-20a. Adapted from [9]. (c) Relation
between fluorescence intensity of the mCherry gene (proxy for the amount of free molecules
of target mRNA) as a function of that of eYFP (proxy for the transcription rate of the target).
The two series of data represent the case of 0 (black data) and 1 (blue data) binding sites for
the miR-20a. Adapted from [9].

Such experimental approach is efficient to experimentally quantify the predic-
tions of the mathematical models giving evidences to the molecular sequestration
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mechanism and the threshold-like behaviour of the miRNA-target interaction. Given
the efficiency of the method, this has been improved by Bosia and coworkers, in
order to experimentally investigate the theoretical predictions of the ceRNA effect
[10]. Next section is devoted to such topic.

6.1.2 One miRNA and two ceRNAs

An experimental setup (Figure 6.2(a)) similar to the one described in the previous
section has been adopted by Bosia and coworkers [10] in order to experimentally test
the predictions obtained in [34] on the ceRNA effect. The synthetic system exploited
in [10] is composed of two plasmids: one was the very same previously described
and used in [9], the other one instead had the same structure as the first, but coding
for two different fluorescent proteins, i.e. mCerulean and mKOrange. Similarly
to the case of eYFP-mCherry, the 3’UTR sequence of mCerulean was engineered
in order to contain 0, 1, 4, 7 binding sites for miRNA miR-20a, while the gene of
mKOrange was left unchanged in order to monitor the transcriptional activity. The
theoretical model the author tested is the one sketched in Figure 6.2(a).

(a) (b)

Fig. 6.2 (a) Fluorescent reporter system used in [10]. The upper construct is the same
birectional plasmide used by [9] and described in Figure 6.1(a). The lower one is the
bidirectional plasmid coding for mCerulean and mKOrange. The 3’UTR sequence of the
former gene is engineered to contain a fixed number of N binding sites for the miR-20a.
Adapted from [10]. (b) Sketch of the minimal model of miRNA-ceRNA interactions studied
in [10]. Adapted from [10].

Such system represents then the case of two targets (synthetic, mCherry and
mCerulean) that can bind to the same miRNA (miR-20a). In this way the ceRNA
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effect was investigated by performing experiments similar to those discussed in
Section 6.1.1. The plasmids were transfected inside HEK293 cells with different
combinations of miRNA binding sites. The fluorescence intensity of each cell was
then measured through flow cytometry.

In this way the authors verified the theoretical predictions discussed in [34].
Indeed among other results, the predictions on the cross regulation among ceRNAs
have been confirmed. The experiments showed that the level of expression of one
target and the steepness of the threshold response could be modulated through a
variation on the strength of the interaction between the miRNA and the other target,
i.e. by increasing the number of binding sites on the other target with respect to
the one investigated. Moreover, the correlations between the targets revealed being
maximal around the threshold and here, an optimal range of values of miRNA-
target interaction strength has been identified. Such correlation raised from the
coupling between the fluctuations of one target and those of the other one through the
extrinsic noise. Such phenomenon is called retroactivity and discussed for instance
in [128]. A last worth to mention result concerns the case of strong repression of one
target. In such case, near the threshold bimodal distributions of fluorescent intensity
appeared. This finding supported the hypothesis that the gene regulation mediated
by microRNAs may increase cell-to-cell variability and the fact that such variability
is organised in two distinct phenotypes allows to relate it to the presence of extrinsic
noise.

6.2 The role of extrinsic noise in miRNA-target inter-
action

In Chapter 5 we discussed the role played by the extrinsic noise in the interaction
between microRNAs and their targets from a theoretical point of view. In particular
we highlighted how a source of extrinsic noise on the miRNA may induce the
rising of bimodal distributions on its target. More specifically, the extrinsic noise
can compensate for a low miRNA-target interaction strength in order to obtain
differentially expressed phenotypes across a population of cells.

In this chapter, we focus on such predictions and aim at testing them on an in
vitro system, by continuing the work presented in [11].
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By adopting the same setup described in Section 6.1, we investigate the expres-
sion of the synthetic target of a miRNA (miR-20a), being the latter endogenously
expressed in the cell line examined (HEK293 cell line). The transcription rate of
such endogenous miRNA depends on the cell cycle phase [121].

During its life, a cell undergoes different phases called G0/G1, S, G2 and M
that lead the cell to its division. In the first G1 phase, the cell grows and copies the
organelles. Cells in G1 may enter a resting state, the G0 phase, where they do not
actively prepare themselves to divide but carry out specific tasks. After phase G1,
the cell enters the S phase in which a complete copy of the DNA is synthesised in
the nucleus. When such DNA synthesis is finished, the G2 phase occurs, where the
cell grows more and makes organelles, proteins and organises its contents for the
last phase, the M phase, the mitosis. In such phase the cell divides [129]. So, during
such cycle and before dividing the cell increases its size, the number of organelles
(like ribosomes), duplicates the chromosomes and modulates the expression of its
genes. As a result, the amount of DNA present in the cell varies according to the cell
cycle phases.

By considering the fact that the expression of the miRNA we are interested is
related to the cell cycle phases, within a population of cells heterogeneous from the
point of view of the cell cycle, the levels of transcription of such miRNA are highly
variable. Driven by this, we assume such cell cycle heterogeneity as a source of
extrinsic noise on miRNA levels.

Our aim is then to modify the intensity of such extrinsic noise from an exper-
imental point of view in order to check the predictions of the model described in
Chapter 5. The easiest way to tune the noise has revealed being not an increase
rather a decrease of such cell-to-cell heterogeneity. We monitored the different cell
cycle phases through a cell-cycle marker, i.e. a fluorescent dye that binds to DNA.
The fluorescence level of such dye is a proxy for the amount of DNA present in the
cell. Since the amount of DNA is related to the cell cycle phases, by measuring
fluorescence emission of the dye, the cycle phase of the cells can be determined at a
single cell level. Assuming a relation between extrinsic noise and heterogeneity of
the cell cycle, sorting the cells with respect to their specific cycle phase should give
a change in the intensity of the extrinsic noise.

We devote the next sections to the description of the experimental setup adopted
(Section 6.2.1) and the discussion of the results obtained so far (Section 6.2.2).
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6.2.1 Experimental setup

To perform the experiments [11] we used the same bidirectional plasmid developed
by Mukherji and coworkers in [9]. To summarise here what described in Section
6.1.1, it is a bidirectional plasmid, namely a circular DNA that hosts two genes that
can be transcribed with the same probability thanks to the presence of a bidirectional
promoter. The genes code for two different fluorescent proteins: mCherry (red)
and enhanced yellow fluorescent protein (eYFP). The stop codon (3’UTR region)
of the mCherry gene has been engineered in order to host a fixed number N (with
N = 0,1,4 and 7) of miR-20a binding sites. The gene coding for the eYFP has been
instead left unchanged: it represents a control to monitor the constitutive expression
of the target, i.e. its expression when no regulation occurs.

Such plasmid is then transfected in epithelial cells of human kidney embryo
(HEK293), a cell line that endogenously expresses miRNA miR-20a. Cells were
transfected with Effectene Transfection Reagent (QUIAGEN). 48 hour after the
transfection, the steady state measurements of the expression of the target across
the population of cells have been performed with the flow cytometer. In this way,
for each cell it has been measured the fluorescent level of both the mCherry and
the eYFP fluorophores. As described in Section 6.1.1, the fluorescence intensity of
the mCherry represents a proxy for the expression of the target -i.e. a proxy for the
amount of free target molecules -, while that of eYFP is a proxy for the constitutive
expression. The latter indicates the transcriptional activity of the system and is
proportional to the number of plasmids that enter the cell during transfection. Since
we do not have any information on the number of plasmids that enter each cell, we
are able to explore a wide range of values of transcriptional activity. This, in turn,
can be considered a proxy for the transcription rate of the target, i.e. the parameter
kR of the model discussed in Chapter 5.

Since the amount of DNA within a cell depends on the cell cycle phases, the
monitoring of such phases has been performed through a DNA staining. Immediately
before performing the measurements at the flow cytometer, a DNA marker (Hoechst
33342) has been injected in the cell culture. Hoechst33342 is a blue fluorescent dye
that stains the DNA in living cells. Thanks to the fact that the emission spectrum
of such dye does not interfere with those of mCherry and eYFP, it was possible to
measure the intensity of fluorescence of all the three fluorophores in each cell. The
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level of blue fluorescence has been used as a proxy for the DNA content and thus of
the phase of the cycle the specific cell was.

Through flow cytometer measurements, for each transfected cell we obtained
information on the fluorescence intensities of mCherry, eYFP and Hoechst3342,
together with two morphological information. These are known to be related to the
size and the granularity of the cells and have been used to distinguish alive from
dead cells. The very same kind of measurements have been performed also on
non-transfected cells in order to have an estimation of the background fluorescence
intensities relative to each detecting channel.

The raw data obtained through the flow cytometer have then been analysed
through Matlab software. We dedicate the next Section 6.2.2 to the preliminary
results we obtained.

6.2.2 Preliminary results

In this section we discuss the experimental results obtained so far concerning the
investigation of the role of the extrinsic noise on the interaction between miRNA and
its target mRNA.

The flow cytometer measurements have been processed through Matlab software.
First of all, the background intensity has been subtracted to all measurements.
Secondly, we set constraints on the granularity and the size of the cells in order to
select only the alive and healthy cells. Finally, according to the specific purpose of
the analysis, we sorted the fluorescent values with respect the eYFP intensity (i.e.
the target transcription rate) and the Hoechst33342 fluorescence intensity (i.e. the
cell cycle phase proxy for the level of noise).

Cell cycle phases

As a first result, we show that the DNA staining allowed us to determine the cell
cycle phases. Figure 6.3(a) [11] depicts the distribution of the fluorescence intensity
of the DNA marker (Hoechst33342) across the entire population of cells. It is worth
noticing that two peaks emerge from the distribution: one is centred at a value
roughly twice the other one. Such two peaks correspond to the phases G0/G1 (left
peak) and G2 (right peak) of the cell cycle, while the region in the middle is relative
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to the S phase. The two peaks present a different abundance of cells due to the
different time duration of the phases. As expected, cells in G2 phase (preparing for
mitosis) present a double amount of DNA with respect to those in G0/G1 phase.
Thus, sorting the cells according to the fluorescence of the DNA marker, allows to
divide the cells in sub-populations belonging to specific phases of the cell cycle.
Since the expression of the endogenous miR-20a is known to be related to the cell
cycle, we exploited the sorting of cells with respect to the cell cycle to reduce the
cell to cell variability and thus to decrease the extrinsic noise of the system.

A last observation concerning differences of cells within the cell cycle is depicted
in Figure 6.3(b). Here, cells have been sorted with respect to the parameters of the
flow cytometer measurements related to size and granularity, as shown by the red
("small" cells) and green ("big" cells) rectangles in the inset. By plotting (in the main
plot) thus the distribution of the DNA marker, it is evident that small cells (in red)
contain half of the DNA amount than the big ones (in green). Thus, combining this,
with the information of Figure 6.3(a), cells in G0/G1 phase are smaller than those in
G2. According to this, the discrimination of the cell phases (G0/G1 and G2 at least)
can be roughly done even by sorting the cells according to their size.

(a) (b)

Fig. 6.3 (a) DNA marker (Hoechst DNA stain) distribution. The cell cycle phases (G0/G1, S
and G2) are emphasised by arrows. (b) Distributions of the Hoechst DNA stain for big (in
green) and small (in red) cells. The inset shows the determnation of the two groups of cells
by constraining on cell granularity and dimension. Both (a) and (b) are adapted from [11].
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Zero miRNA binding sites. The cell cycle does not influence the transcriptional
activity

The transcriptional activity can be investigated in the case of zero binding sites for
the miRNAs. Figure 6.4 shows that the transcriptional activity is not influenced by
the cell cycle phases. In the scatter plots each dot represents a single cell and for
each cell the fluorescent level of the mCherry is expressed as a function of that of
eYFP. mCherry fluorescent level is a proxy for the free amount of target molecules
while the eYFP fluorescence gives an information on the transcriptional activity of
the construct. The three plots represent sub-populations of cells selected according
to their cycle phases (i.e. G0/G1, S and G2).
Since the considered case is that with 0 binding sites for the miRNA, this does not
regulate the mCherry thus, as expected, in each plot a linear relation between the two
variables is shown. Moreover, such linear dependence does not change with respect
to the cell cycle phase. In light of this, it is possible to claim that the expression of
the construct is independent on the phase of the cell cycle if the miRNA does not
regulates its target. A direct consequence is then that in the cases of non-null miRNA
regulation, the eventual differences shown among the cell cycle phases may be due
to the variability of the miRNA expression across the cell cycle.

Such conclusion supports the idea that the heterogeneity of the cells with respect
to the cell cycle can be considered a source of extrinsic noise affecting the miRNA-
target system and in particular the transcription levels of the miRNA. By constraining
then on specific cell cycle phases such noise can be modulated. Starting from this
observation, in the next paragraph we discuss the results obtained so far in this
direction.

Fig. 6.4 Zero miRNA binding sites. Scatter plots (each dot is a cell) of the fluorescence
intensity of the mCherry as a function of that of eYFP. The cells are sorted according to the
phase of the cycle: from left to right, G0/G1, S and G2 phase. Adapted from [11].
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The extrinsic noise plays a role in the rising of bimodal distributions

Let’s consider now the cases of non-zero binding sites for the miRNAs. Figure 6.5
shows the scatter plots analogous to those depicted in Figure 6.4, corresponding to
the transfections with constructs with 1, 4 and 7 miR-20a binding sites. Each raw
corresponds to a different number of binding site and each column to a cell cycle
phase.

A first observation concerns the cell cycle dependence of the miRNA expression.
By fixing the eYFP level (i.e. the transcriptional activity), the level of mCherry
changes both through the number of miRNA binding sites (i.e. the repression
strength) and the cell cycle phase. Since we showed in the previous paragraph that
the translational activity of the construct does not change with the cell cycle phase,
the variability in the expression of the mCherry that we observe here can be attributed
to the variability of the expression of the miR-20a within the cell cycle.

The plots of the first column in Figure 6.5 are relative to the G0/G1 phase. From
these it is possible to notice the presence of bimodal distributions in the expression
of the mCherry for a wide range of eYFP. While for low and high values of eYFP
the data seem to have a monomodal population with respect to the expression of
mCherry, there is an intermediate region of eYFP in which the two populations can
be seen at the same time. Here is the bimodality. Such effect is more evident by
enhancing the miRNA repression, i.e. by increasing the number of miRNA binding
sites. In such cases, the repressed and expressed states can be recognised. The mean
value of the former is characterised by a threshold-like behaviour as a function of the
transcriptional activity. The latter, instead (i.e. the expressed state) shows a linear
relation with respect to the translational activity. The role of the cell cycle is that of
reshaping such expression distributions. By fixing the number of binding sites and
observing plots relative to S and G2 phases, a strong difference arises with respect to
the case of G0/G1. By sorting the cells according to the cell cycle one of the peaks
of the population distribution can be selected.
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Fig. 6.5 Scatter plots of the fluorescence intensity of mCherry as a function of that of eYFP.
Each dot represents a cell. Each raw corresponds to a different number of binding sites, from
up to down 1, 4 and 7 respectively. Each column corresponds to a sorting according to the
cell cycle phase, from left to right: G0/G1, S and G2. Adapted from [11].

If we consider the extrinsic noise as related to the heterogeneity of the cell
population with respect to the cell cycle, the discussed results show that selecting
the cell cycle phases corresponds to decrease the level of noise. Thanks to this, we
can recover the theoretical phase diagram of [11] (Figure 5.1(a) and 6.6(a)) with the
experimental data.
To remind what discussed in Section 5.2, the theoretical phase diagram shows the
regions of bimodality in the distribution of the free molecules of mRNA target of a
miRNA. In presence of extrinsic noise the bimodality region (given by the colour
map) is wider than the case without extrinsic noise and it is present also for low
values of interaction strength between miRNA and targets - differently than the case
of absence of extrinsic noise.
Our experiments allow to match the parameters of Figure 6.6(a) with empirical ones.
Indeed, (i) the extrinsic noise levels are given by the different cell cycle phases; (ii)
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the mRNA transcription rate (kR) corresponds to the eYFP fluorescence intensity
and (iii) the miRNA-target interaction strength g is the number of binding sites
present on the 3’UTR region of the mCherry gene. Changing the cell cycle phases
corresponds to changing the levels of extrinsic noise and choosing different levels of
eYFP intensity is equal to change the transcription rate of the mRNA (kR), as shown
by the white arrows in Figure 6.6(a).

In Figure 6.6(b) we present the very first results of such empirical phase diagram.
Here the case of 7 binding sites is shown. The cells have been sorted according to
their cell cycle phase (level of noise). Since the case G0/G1 is the phase in which
cells grow and double their components, we assume it being the case of maximum
noise after the unsorted condition in which all the cell cycle phases are considered
together. The phase G2 instead is the one in which the cells have doubled their
contents and the DNA is already doubled, therefore we expect it being the phase of
minimum noise level. The S phase, instead, we assume lying in the middle between
the former two. Of course, a proper quantification of such noise levels will be
necessary to confirm such assumptions.
Each single cell has its values of intensities of mCherry and eYFP. By choosing
4 bins of eYFP fluorescent intensities (i.e. changing the transcription rate of the
target, kR) the distribution of the mCherry expression of the cells belonging to the
given bin and the given cell cycle phase has been obtained. As emphasised by the
dashed blue line in Figure 6.6(b), there is a wide region within such line in which
the target expression distribution is bimodal. Such region gets wider as the level of
noise increases. A systematic quantification of such bimodality is still lacking. We
intend to compute it similarly to what have been performed in [8], where the number
of maxima of every distribution has been taken into account. By repeating the same
kind of analysis with the cases of 4 and 1 binding sites, we expect such region to
shrink and move towards higher values of noise, since in this way, we are decreasing
the interaction strength between miRNA and its target.

Even though a more systematic and quantitative analysis is still lacking, the
presented preliminary results are promising in giving experimental evidences of the
stochastic model broadly discussed in [8]. Moreover, they suggest the possibility of
controlling such system not only from a theoretical but also from an experimental
point of view.



134 Experimental investigation of the model predictions

(b)

(a)

eYFP intensity

ce
ll 

cy
cl

e
 p

h
a
se

Unsorted

G0/G1

S

G2

Fig. 6.6 (a) Phase diagram for the bimodality in the distribution of the free molecule of
mRNA target of a miRNA. The x-axis represents the transcription rate of the target mRNA
(kR); the y-axis shows levels of the extrinsic noise; and the colours are relative to different
values of interaction strengths (parameter g). The white arrows parallel to the x- and y- axis
represent the direction of variation of the corresponding experimental parameters, i.e. the cell
cycle phase as a proxy of the extrinsic noise and the eYFP intensity for kR. Adapted from [8].
(b) Similar phase diagram of plot of (a) obtained with the experimental data corresponding to
the case of strong interaction strength (7 binding sites for the miRNA). The extrinsic noise is
shown as a function of the level of eYFP fluorescence intensity. The distributions are relative
to the mCherry expression level for cells sorted according to the cell cycle phase and eYFP
levels. From high to low noise (i.e. from top to bottom), the cell cycle phases are: unsorted,
G0/G1, S and G2.
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6.2.3 Future perspectives

The preliminary experimental results presented in the previous section revealed
being in agreement with the theoretical predictions discussed in [8] concerning
the role of the extrinsic noise in inducing bimodal gene expression. However, as
already mentioned, in order to drive proper conclusions on the compatibility of
the empirical and theoretical results, a systematic quantification of the investigated
parameters is needed together with the repetition of the very same analysis on the
data corresponding to different miRNA-target interaction strengths. In this way it
would be possible to experimentally reproduce what have been broadly studied only
theoretically up to now, namely the landscape of conditions that allow, through the
extrinsic noise, to drive a miRNA-target system to show a bimodal expression of the
target.

A further important issue that arises from the discussed results, concerns the
distribution of miRNA miR-20a. We showed that the expression of miR-20a changes
according to the cell cycle phases and the sorting of the cells with respect to them
allows to to control the range of bimodality in the expression of the target. In order
to be sure that, as supposed, this is due to a reduction of the noise in the expression
of the miR-20a, it should be worth checking whether there is or not a correlation
between the distribution of the miRNA and the one of its target. In a positive case, the
selection over the cell cycle phase would mean selecting specific expression levels
of the miRNA. In such case, the control of the bimodal expression could be due to
changes in the mean expression levels of the miRNA rather than to a modulation of
the extrinsic noise.

In order to experimentally quantify the miRNA at single cell level, some recently
developed assays are available [130, 131]. The quantification is not trivial and such
assays are based on a technique called Fluorescence in situ Hybridization (FISH)
that allows to label specific sequencies of RNA or DNA with fluorescent probes. By
combining FISH with a further technique that amplifies the signal of the DNA, this
can then be detected through flow cytometry measurements. In order to exploit such
technique for our purposes and reconstruct miR-20a distributions, a check on its
compatibility with the already used fluorophores and DNA marker has to be made.



Appendix A

The role of sodium acetate on cell
growth

In this appendix we describe the project on monoclonal antibodies carried out
during a visiting period at the Centro de Inmunología Molecular (CIM) of Havana
in collaboration with Prof. R. Mulet, Dr. J. F. de Cossio Diaz, Prof. A. Lage
Castellanos, L. Calzadilla Rosado and B. A. Peréz Fernández.

The aim of the work is the investigation of the impact of sodium acetate on the
growth and protein production of a specific human cell line. Since the work is still in
progress at the present time, only the preliminary results are discussed here.

The first Section A.1 is dedicated to a brief introduction to the problem and it is
followed by the description of methodologies adopted for reaching the goal (Section
A.2 and A.3). In Section A.4, we present the first results. Afterwards, in Section A.5
we discuss the criticalities of the adopted methodologies, suggest improvements and
test them on new experiments before concluding in Section A.6.

A.1 Bioproduction and aim of the work

Antibodies are proteins produced by plasma cells and used by the immune system
to target a specific foreign object (antigen). When they are derived from a single
parent cell, they are called monoclonal antibodies (mAbs). mAbs, together with
recombinant proteins, are two of the most known examples of the so called protein
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therapeutics. This is a large group of bioproducts widely used in research and, as the
name suggests, for therapeutical purposes [132]. Its fields of medical applications
range from immunology, to organ transplant and to oncology [133]. To give an
example of the last field, the use of monoclonal antibodies is widely developed for
cancer therapy [134], in particular cancer immunotherapy, where they are used as
immune checkpoint inhibitors [135]. Immune checkpoints are pathways critical
for the ability of the immune system to control cancer cell growth. Indeed, such
pathways are used by many cancers in order to grow by avoiding the immune system.
Through the use of mAbs as immune checkpoint inhibitors, the immune system is
able to block these pathways and thus stop or slow the cancer growth.

mAbs and recombinant proteins are produced by different systems, from non-
mammalian, such as bacteria or plants, to mammalian expression systems, like for
example human cell lines. Those produced by mammalian cell lines (both human
and animal), have the great advantage to be directly secreted by cells, while those
produced by bacteria, for example, must be extracted through cell lysis. Among
all mammalian cell lines the most used for producing monoclonal antibodies are
Chineese Hamster Ovary (CHO) and mouse myeloma (NS0) [39]. Human cell lines
have even more advantages for the applications due to the fact that their produced
proteins are similar to those naturally synthesised in humans [132]. Among the
products approved as recombinant biotherapeutic products, there are those produced
by human fibrosarcoma HT-1080 and embryonic kidney 293 (HEK293) cells [132].
In the work we are presenting in this appendix we focus precisely on this last line and
its products. HEK293 cell line in fact is known to rapidly grow and to have an high
efficiency in protein production [132]. Normally HEK293 cells live in adhesion, but
cell lines modified in order to make them living in suspension exist. In particular, we
are considering a HEK293 suspension cell line able to produce extracellular domain
protein of epidermal growth factor receptor (Her1-ECD) [136].
The human epidermal grow factor receptor (EGFR or Her1) is a protein consisting
of an extracellular ligand binding domain (ECD) that binds to epidermal grow factor
(EGF) and plays a role in the regulation of neoplastic processes and development.
Indeed, when binding to its specific ligand (EGF) it may lead for instance to a
modulation of cell proliferation or to the tissue differentiation in normal tissues or
tumours. Indeed, its deregulation and over expression is known to be related to
many epithelial tumours like brest, ovarian, prostate, lung and colon tumours [137].
For these reasons cancer therapies that target EGFR have been developed, such as
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therapeutic antibodies, immunotoxins and vaccines [138]. On the last topic it is worth
mentioning that a clinical trial phase I of a vaccine based on Her1-ECD (released
from the Quality Control Department from the Center of Molecular Immunology in
Havana) has been recently evaluated on patients affected by prostate cancer [139].
The active ingredient on which such formulation is based is the Her1-ECD protein
obtained from the supernatant of HEK293 cell line [139–141].

Since the importance of such therapeutical proteins, researchers have been in-
terested in investigating ways for improving their productivity. Several methods
have been developed for increasing the bioproductivity of cells, both for mammalian
cells and for bacteria. Concerning bioproductivity in bacteria, we remind for an
example the commentary [38] we worked on in collaboration with Dr. F. Ceroni
(Imperial College, London). There we describe the work of Rugbjerg and colleagues
[142], who developed a bioengineering strategy able to limit the enrichment of
non-producing cell populations in cell cultures employed for bioproduction. The
strategy is called "product addition" and it is based on placing the genes responsible
for the growth under the control of a promoter that is responsive to the bioproduct.
In this way the productivity is depending on the product itself. The author tested it
in Escherichia coli engineered to produce mevalonic acid in long terms cultivations.

Concerning mammalian cells, it has been found that adding chemicals to the
growth medium is an efficient way for stimulating the cells to express proteins
[41]. Glycerol, dimethyl sulfoxide (DMSO) and sodium butyrate [39–41] are some
examples of such chemicals that are able to enhance protein productions in some cell
lines. Another interesting example is given by the sodium acetate (C2H3O2Na), the
sodium salt of the acetic acid that naturally occurs in animal tissues and plants. There
are evidences showing that cell viability of human gastric adenocarcinoma (AGS)
epithelial cells, for example, is stimulated by sodium acetate in a dose-dependent
manner as well as their ability to produce some proteins [143].

The aim of our work fits here. We are interested in studying how the growth
and productivity of the above cited HEK293 cell line changes when exposed to
different concentrations of sodium acetate. To address such issue in a quantitative
way, we took advantage of the cell growth protocol discussed in Chapter 2 in order
to perform a systematical monitoring of cell growth. Then, the quantification of the
produced proteins at different growth phases allows to relate the bioproductivity of
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the examined cell line to the concentration of sodium acetate supplied to the growth
medium.

In this appendix we focus on the first part of the project, namely the optimisation
of the growth protocol. The details of the adopted techniques are explained in the
next sections.

A.2 Summary of the experimental methodology

To the purposes of this project, we adopted the same experimental and data analysis
methodologies described in Chapter 2. To briefly summarise it, we set up batch
cell growth experiments (see Section A.3 for details) by seeding cells in the growth
medium supplied with different concentrations of sodium acetate. The growth
was followed day by day by taking micrographs of representative samples of the
population and then by counting cells through the use of an image segmentation
algorithm (Section A.3.1). A supernatant aliquote was saved each day in order to
later quantify the protein production corresponding to the desired growth phase. This
last step has been carried out by the researchers at CIM and will not be described
here. As preliminary results in Section A.4, we present the growth curves obtained by
applying the segmentation algorithm and then their analysis performed by exploiting
the same analytical tools described in Section 2.3.3. In the last Section A.5 we
discuss the criticalities of such adopted methodology and suggest a new one based
on an improved image segmentation algorithm.

A.3 Experiments

The cell line under exam is HEK293, human embrionic kidney cells living in sus-
pension. Like Jurkat cells (see Section 2.3.2), also these tend to form clusters when
growing. A macroscopic difference between the two lines is that while the disruption
of clusters for Jurkat cells is not critical, it is so for HEK293. Here indeed the
disruption of clusters through pipetting is less efficient and may cause a stronger
stress to cells which tend to change their shape. To give an example, Figure A.1 (a)
and (c) show representative micrographs of samples in which there are many cells
with jagged boundaries as well as many big clusters. This is more likely to happen
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when the cell concentration is high (Figure A.1(c)). These issues has been taken into
account in the image segmentation algorithm in order to properly estimate the cell
number (see Section A.3.1).

The experiments were performed with two different initial concentrations: N0 =

3 ·105 cell/ml and N0 = 3 ·106 cell/ml in order to investigate also the inoculum size
influence on the growth.

We set up batch experiments by seeding the fixed initial concentration of cells in
flasks containing 10 ml of growth medium. Since we were interested in studying the
effect of sodium acetate, we prepared 5 flasks with the growth medium (DMEM)
considered as standard for culturing these cells, supplied with an increasing concen-
tration of sodium acetate, from 0 mM up to 20 mM. Cells were then incubated at
37°C with 5% CO2 in an incubator that was constantly shaking the flasks gently.

Analogously to the procedure adopted in Chapter 2, cell growth was followed by
counting cells day by day through the use of a custom-made image segmentation
algorithm able to analyse micrographs of samples representative of the population.

Every day, two different aliquotes of the population were taken from each batch
and put in tubes of 1.5 ml: one for later quantification of medium components and
the other one for counting purposes.

The first aliquote was centrifuged in order to allow cells to form a pellet at the
bottom of the tube. Afterwards the surnatant was transferred into another clean
tube and freezed. These tubes will be used for the quantification of the bioproducts
present in the medium (in progress, not shown).

The second aliquote, instead, was necessary for cell counting. Each tube was gen-
tly vortexed or pipetted in order to destroy clusters as much as possible. Then 3x10 µl
of the mixture composed by cells+medium was injected in mono-use Burker’s cham-
bers (see paragraph 2.3.2) and bright field images were taken with an inverted
microscope (magnification 10x).

In order to estimate the cell concentration, we adapted the image segmentation
algorithm described in Chapter 2 for the analysis of such new images. In the next
section we describe the details of such image processing code.
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A.3.1 Image segmentation and growth parameters

For counting cells we adapted the image segmentation algorithm described in Section
2.3.2 to the study of HEK293 cells. It is important to highlight that, since the
strong presence of cell clusters in the images, in this new case the estimate of
cell concentration have been performed with an indirected method, namely by
determining a representative area of single cells and therefore by dividing the total
area of detected cells/clusters by the representative one. Due to this, the image
segmentation algorithm mainly aimed at segmenting objects and calculate their
areas. For this purposes, the first part of the code described in Section 2.3.2 was
not considered, since the Watershed procedure tend to change too much the object
shapes. Therefore, the second part of the mentioned algorithm - the one concerning
sizes - was the one adapted to our new purposes.

We remind to Section 2.3.2 for details on functions and image processing method-
ologies mentioned in the following description.

After a contrast adjustment of the original image in order to better distinguish
alive cells (the brightest objects) from the background and residuals (the darkest
objects), a Gaussian filter and a threshold binarization is performed. The threshold
is chosen by analysing the intensity profile of the contrasted image and setting a
value equal to the mean of the intensity profile plus one standard deviation, since
the images were generally very bright. Afterwards a closing (dilatation of objects
followed by an erosion) and hole filling procedures are applied in order to possibly
split big objects and make them being compact and easily recognisable. Then a first
segmentation through bwlabel function is performed and the sizes of the detected
objects are determined by using regionprops function. At this point a threshold on
the minimum accepted size is set in order to eliminate residuals present in the image.
At the end, a new labelling has been performed and the final segmented image is
produced: one label is associated to each object. Figure A.1(b) and (d) show two
examples of the segmented results: each detected object is labeled with a different
colour for an easy visualisation.

Since, as said at the beginning, the cluster disruption process caused suffering
of the cells, most of them resulted not round-shaped as they instead should be. For
this reason, together with the fact that many visible clusters did not have a regular



142 The role of sodium acetate on cell growth

shape, the threshold on the circularity present in the algorithm in Section 2.3.2 was
not applied. In this way the software is able to recognise even irregular objects.

At the end, the algorithm saves the information on the total number of detected
objects, the area of each object (Ai) and their sum that is the total segmented area
(At).

(a) (b)

(c) (d)

Fig. A.1 Two examples of micrographs (a) and (c) and their respective image segmentation
results (b) and (d), where each RGB colour represents a different detected element. (a) and
(b) are an example of lower concentration while (c) and (d) set of images refers to a high
inoculum experiment.

The concentration of cells was estimated through the analysis of the single areas
distribution. We chose the most common value of the distribution (Amo) as the
representative area. This choice was driven by the fact that the size distributions
were very broad with a defined mode (see Figure A.2 for an example). Therefore,
the choice of the mean value (red line) would not have been a good estimate since
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it takes into account also the right tail, representative of the clusters. The mode of
the distribution (black line) instead, resulted to be located at smaller values than the
mode and seemed a more reasonable proxy for the average dimension of single cells.
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Fig. A.2 Example of size distribution of object detected by the algorithm. The highest
value of area is not visible in the plot and corresponds to a size of 34750 px2. The red line
represents the mean of the distribution, the black line the mode. The mode has been chosen
as representative of single cell areas.

Thus, by dividing the total area by the mode, we obtain the number of objects
with average area Amo. By converting such number into concentration, we finally
obtained the growth curves. Figure A.3(a) and (b) in next section show examples of
such curves in logarithmic scale for both low and high inoculum experiments at two
different sodium acetate concentrations.

In order to quantify the growth parameters, we fit the logarithm of the growth
curves, normalized to the initial density (ln(N/N0)) with the sigmoidal shape func-
tion described in Section 2.3.3 and here reported for simplicity:

ln
N
N0

=
A

1+ exp
h

4λmax
A (tlag − t)+2

i
The parameters A, λmax and tlag are the maximum reachable value, the maximum

growth rate and the lag time respectively. Thus, after the analytical definition of the
three growth phases as described in Section 2.3.3, the growth rate of the exponential
phase (λ ) can be calculated as the linear fit of data within that phase. This is the
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variable that we are interested in relating to the sodium acetate concentration, as
described in the following section A.4.

A.4 Toxic activity of sodium acetate

This section is devoted to the first results obtained by following the procedures
described in the previous section. The discussion here reported concerns the impact
of sodium acetate concentration on the growth of cell populations.
The section is structured as follows: we (i) firstly present and discuss the growth
curves in order to comment the performance of the algorithm and the procedure
adopted for cell density determination. To this it follows (ii) the analysis on the
growth parameters in relation with results of Chapter 2.

A.4.1 Robust growth curves

In this section we discuss the performances of the image segmentation algorithm and
the methodology for estimating the concentration, through general considerations on
the growth curves.

Figure A.3 (a) and (b) show examples of growth curves relative to low and high
inoculum sizes respectively, expressed as the logarithm of the concentration of cells
(N) vs time. Dots are experimental data, while solid lines represent their trends.
The two colours represent two different concentrations of sodium acetate added to
the medium, 0 mM in red and 20 mM in blue. In both plots, the experimental data
are reported as the average value of the three replicates and the error bars are their
dispersion.

First, we observe that, in general, the error bars are within the 10−15%. This
suggests that (i) there is a good compatibility of the technical replicates among each
others; (ii) the image segmentation algorithm gives results consistent among each
others independently on the overall cell concentration. Thus, despite all the problems
faced with the image analysis, the algorithm seems to show consistent performances
when applied to similar conditions.

Secondly, the concentrations of cells estimated with our protocol at time t = 0 are
higher than the expected initial concentrations (3 ·105 and 3 ·106 cell/ml). It is worth
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noting that some variability among samples is usual during the preparation of the
experiments due to practical issues. However, a reason for the higher values that we
found can be dig up also in the method we adopted for estimating them. As already
discussed, we decided to use as a reference value the mode of the distributions of
the size. It is then possible that in some cases, this value results lower than the real
single cell sizes, thus giving a higher number of cells.
In order to obtain more reliable results, more refined methods for estimating cell
concentrations should be found. Since in our analysis we are not focusing on
absolute values of cell densities, but on their trends, we will discuss the results
obtained through this method in the rest of the present section. Afterwards, driven by
the above observations, in Section A.5 we present a new segmentation algorithm and
sampling preparation protocol that we developed in order improve the cell density
estimate.
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Fig. A.3 Examples of growth curves obtained for two different concentrations of sodium
acetate: 0 mM in blue, 20 mM in red. Dots are experimental data expressed as the mean
value of 3 replicates. Error bars are given by the replicates semidispersion. (a). Results of
low inoculum experiment (N0 ∼ 3 ·105cell/ml). Solid lines are the sigmoidal shape fit of the
experimental data. (b). Growth curves from high inoculum experiment (N0 ∼ 3 ·106cell/ml).
Solid intersected lines represent the trend of the exponential and saturation phases of the
experimental data.

A.4.2 The tuning of the parameters of growth

The fitting procedure described in paragraph A.3.1, was applied to each single growth
curve.
We refer to Figure A.3 - where the average trend of the replicates is shown - for
making some considerations on the way the parameters were estimated in the two
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set of experiments.
By focusing on Figure A.3 (a), it is possible to notice how the experimental data
could be fit with a sigmoidal shape curve and the three phases of growth - i.e. lag,
exponential and saturation phases - can be recognised. Therefore in this case, the
growth parameters have been determined for each curve through the procedure
described in paragraph A.3.1, namely by fitting the data with a sigmoidal shape
curve to define the growth phases and then compute the exponential growth rate.
From Figure A.3 (b), instead, it is evident that the data do not present a lag phase.
In order to define the exponential growth rate (λ ) and the carrying capacity (k) we
performed two linear fits (represented by the solid lines in Figure A.3 (b)). For
determining the parameter λ , the first 3 data points were considered; while for k, we
computed the average of the data corresponding to a saturation phase.

Despite the methodologies we adopted for inferring growth parameters, the
general trend of the cell populations in these two conditions agrees with findings of
Chapter 2. There, in fact, we claimed that populations of Jurkat cells seeded at high
concentrations showed a smaller lag time duration and tend to quickly saturate. A
first observation of HEK293 growth curves under study seems to suggest a similar
behaviour.

In order to deep investigate the relation of growth parameters both with the
inoculum size and especially with sodium acetate, in the following sections, we
focus on the behaviour of the three growth parameters so far considered.
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Fig. A.4 Growth parameters analysis. (a) shows the exponential growth rate (λ ) as function
of sodium acetate concentration. Blue dots are relative to the lower inoculum experiment
(N0 ∼ 3 ·105 cell/ml), orange dots refer to higher inoculum (N0 ∼ 3 ·106 cell/ml). Each point
is a single experiment. Error bars are obtained through the fitting procedures that estimates
the parameters. The lines represent the trend of the data. (b) represents the carrying capacity
vs sodium acetate concentration. Again here the error bars are given by the fits. In this case,
the general trends of the data are relative to sodium acetate concentrations bigger than 0.
In (c) the lag time vs sodium acetate concentration only relative to the experiment at low
inoculum. Error bars are the errors of the fit to obtain the lag time. The line is the linear fit
of the data.

Exponential growth rate λ

Figure A.4 (a), shows the exponential growth rate as function of the concentration
of sodium acetate for two different inoculum sizes (low inoculum in blue and high
inoculum in orange).

We focus on the difference between the growth rates at 0mM of sodium acetate.
Here, again, we find results in agreement with the Jurkat inoculum-dependent growth
studied in Chapter 2. Indeed, the growth rate of the population seeded with low
inoculum is higher than that of the population with higher N0, suggesting that such
N0 is close to the carrying capacity.
Focusing now on the growth rates obtained with different concentrations of sodium
acetate, we observe a different trend between the two experiments. In case of
low inoculum (blue data), the growth rate decreases when increasing the external



148 The role of sodium acetate on cell growth

metabolite concentration. This suggests a dose-dependent toxic activity of sodium
acetate on population growth.
Data for high inoculum show instead a different trend. In this case, by changing
concentration of sodium acetate, the growth rate remains constant and takes the same
value obtained in absence of the metabolite. It is interesting to notice that such value
is closer to that of cells seeded at low concentration and growing in 20mM of sodium
acetate. These latter results suggest then that a higher concentration of cells may
balance the toxic effect of the metabolite, since even without it, the population does
not grow with high rates.

In order to deeper investigate the growth rate dependence on the sodium acetate
metabolite, further experiments are necessary. In addition to the repetition of the
same experiments here presented for confirming or not these first hypothesis, other
possible conditions could be investigated by varying the inoculum, investigating in
this way the initial seeding dependence of the system.

Carrying capacity
Another interesting variable representative of the growth is the carrying capacity

k, that corresponds to the concentration reached by the population in the saturation
phase at time t = ∞. For the low inoculum experiments, k is obtained from the pa-
rameter A of the fit (see Section 2.3.3) and takes into account the initial concentration
N0 as follows:

k = exp[A] ·N0. (A.1)

For the high-inoculum experiments, k has been calculated as the mean value of
saturation data. The trends of the carrying capacity as function of the concentration
of sodium acetate are shown in Figure A.4 (b).

Analogously to the discussion on the growth rate, we firstly focus on the values
of the growth rates in absence of the external metabolite. Interestingly, the curves of
the two sets of experiments saturate at similar levels. This again, seems in agreement
with the fact that the level of saturation is a property of the growth medium and it
does not depend on the history of the population (see Chapter 2 for details on this
topic).
Looking at the dependence of k on the concentration of sodium acetate, interesting
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results arise. For the low-inoculum data, the carrying capacity does not depend on the
concentration of the toxic metabolite. Its value is visibly lower than that in absence of
sodium acetate, as it is evident also from the growth curves of Figure A.4.1(a). This
result supports the hypothesis of the toxic activity of sodium acetate on HEK293 at
low concentrations: it seems to influence the growth rate in a dose-dependent manner
while sets the maximum achievable concentration to a fixed value. A completely
different behaviour emerges from the high-inoculum experiments. In this case,
the saturation level seems to depend negatively on the concentration of sodium
acetate and for higher concentrations of the metabolite tends to the value reached by
the low-inoculum experiments. Such results suggest then that highly concentrated
HEK293 cells seem to grow with a growth rate independent on the concentration of
the sodium acetate, but they can saturate at different levels depending on the dose
of the metabolite present in the environment. The higher the concentration of the
metabolite, the lower the saturation level. Also in this case a toxic effect of the
sodium metabolite on the growth of the population is suggested.

However, it has to be said again, that the results obtained by the segmentation
algorithm in this case are less reliable than those obtained for low concentration
experiments, therefore a thorougher analysis would be necessary.

Lag time
The last variable to be considered for the growth curves is the lag time, namely the

time a population needs to adapt to the new environment. As in Section A.4.2, growth
curves relative to the experiment at high seeding do not present a visible lag time.
For this reason, Figure A.4 (d) shows only data of the low-inoculum experiment.The
lacking of lag time (i.e. lag time equal to 0 h) for cell populations seeded at high
densities, agrees with the inoculum dependent behaviour of the lag time found in
Chapter 2 for Jurkat cells. Even though for the low inoculum case a lag time could
be computed, the big error bars shown in the plot suggest a difficulty of the fit to
estimate it. Also in such case, thus, it would be necessary to increase the frequency
of the measurements in the lag phase, in order to increase the resolution of the data
and allow the fitting function to better estimate the value.

Despite of this, Figure A.4 (d) shows a negative trend of the lag time with the
increasing of the sodium acetate concentration.
When the sodium acetate is present at high concentrations (such as 20 mM), it
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influences the growth making the cells faster to adapt to the environment, but letting
them grow with a low growth rate and reaching a level of carrying capacity lower
than the case without sodium acetate.

A.5 Criticalities and improvements

The results presented in the previous section seem to be promising towards the
direction of a quantification of a toxic activity of the sodium acetate on the growth of
population of HEK293 cells living in suspension. However, all the conclusions we
drew are strongly dependent on the estimate of the growth curves, from which then
the interesting growth parameters are calculated. The bottleneck of such analysis
lies in the daily estimate of the size of the growing population, i.e. the concentration
of cells. As discussed in Section A.3.1, both the way the cells were prepared for
counting (pipetting and vortexing) and the algorithm we adopted to count presented
high criticalities and needed to be improved.
For this reason, we suggest here a new protocol for sample preparation and a new
counting algorithm able to (i) reduce the number of big clusters in the micrographs,
(ii) recognise alive from dead cells and (iii) better estimate the size of single cells. We
tested then such protocol by performing a new set of experiments with populations
of the same HEK293 cells.

Since the investigated cells have a strong attitude to form clusters and the pipetting
method adopted strongly influenced cells vitality, a better way to prepare the samples
is to avoid to pipet the cells and only shaking them. This allows the cluster to dissolve
better without causing a changing in the shape of the cells. Irregular shapes are more
difficult to be automatically detected than regular shapes. Moreover, a dilution (in
the growth medium) of the sample to be counted can be performed in order to have
less cells in the field of view of the micrographs. Such dilution factor must then be
accounted during the conversion to obtain the concentration of cells.
In order to discriminate alive from dead cells, we used the Trypan blue, a blue dye
analogous to the methylen blue used in Chapter 2, that enters only the dead cells
making them appearing blue and darker than the alive ones. Such distinction is
visible in the bright field micrograph shown in Figure A.5(a) where the darkest spots
are dead cells. Such image, together with Figure A.5(c) is an example of micrographs
taken by following such new sample preparation protocol.
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By using as input micrographs like those shown in Figure A.5(a) and (c), we
developed a new and more sophisticated image segmentation algorithm able to (i)
distinguish single cells and evaluate their size; (ii) recongnize clusters and evaluate
their area and (iii) estimate the number of single cells contained in such clusters by
using as representative size of the single cells the mode of the distribution of such
sizes. In the following we briefly explain how the algorithm works.

A.5.1 New image segmentation algorithm to recognise single cells
and clusters

We present here the main steps of the new image segmentation algorithm. (We
remind to section 2.3.2 for the definition of the Matlab built-in functions mentioned
below).
First of all the new algorithm requires as input a micrograph of a representative
sample of the population of cells, previously added with the Trypan blue used to stain
the dead cells. In the new set of experiments we performed, (as for the old set) we
repeated the counting 15 times for each sample, in other words we took 15 images
of the same sample. To do it, we prepared 3 counting chambers with cell-medium
mixed with an 1 : 2 dilution of Trypan blue.

Here are the details of the code that works on one micrograph at a time.
First of all, the contrast of the image is adjusted and the mode of the distribution
of the pixel intensities is considered. Since the cells in the sample are diluted, the
major part of the field of the image will be covered by the background. The mode of
the distribution of the pixels gives then a proxy information on the intensity of the
background. This will be exploited later on to in order to recognise dead cells, that
are darker than the background.
Afterwards, by exploiting the Matlab function edge, the edges of all the objects
present in the image are recognised. After other two steps to close the open segments
and fill the closed areas, all the single objects are then recognised and labeled (bwla-
bel). A threshold on the minimum size of the recognised objects is then applied in
order to discard all those elements too small to be considered cells.
Here the dead cells recognition occurs. Indeed, the algorithm computes the mode of
the distribution of the original pixels of each recognised object and discards all those
with values of the mode lower than the background. Such discarded object could
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be either dead cells (if round shaped) or residues of the Trypan blue in the growth
medium (amorphous shapes). Now, the area of each remained object is computed.
In such image (that we call here ImT for seek of simplicity) there will be both single
cells and clusters and it will be used later-on to discriminate the two kinds of objects.
At this point, the circularity of all the objects is calculated and a narrow threshold is
set in order to select only the round shaped ones: these will be the single cells. The
area of each object is computed.
In this way, the total number of single cell (Ns) present in the input image is obtained
together with their areas. By running such algorithm over all the images correspond-
ing to the same sample (15 in our case), it is possible to have enough statistics to
properly estimate the representative value of the single cells (let’s call such value
As), defined as the mode of the single cell distribution sizes.

At this point the only missing part concerns the recognition of the clusters and
the estimate of the number of single cells of area As contained in them. To this
purpose, we considered two segmented images: the one with both single cells and
clusters undistinguished (ImT ) and the one containing only single cells ImS. By
subtracting the second to the first one, a new image is obtained and it only contains
the clusters. Of such clusters all those whose size is smaller than As and bigger than
200As are discarded, being them either single cells that have been wrongly detected
as clusters or artefacts. The total area of the remaining clusters is then computed and
divided by Am. In this way, the estimate number (Nc) of cells of area As included
in the clusters is obtained. In the end, by adding, for each image its corresponding
Ns and Nc, the total number of cells is computed. By accounting the dilution factor
due by the sample preparation and that due to the adding of the Trypan blue then the
concentration of cells is finally obtained.

Figure A.5 shows an example of the input and the final output of the described
algorithm. (a) and (c) are two examples of representative micrographs used as the
starting point of the algorithm. Figure A.5(b) and (d) are instead the results of the
running of the algorithm: in red are the single cells while in blue are the clusters.

Such algorithm revealed being robust and showed good performances across the
analysed samples: both for samples with a few and a lot of clusters it managed to
discriminate them from single cells and estimate the concentration.

In the next section we present the results of the new experiments we performed
by adopting the new sample preparation protocol and counting algorithm.
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(a) (b)

(c) (d)

Fig. A.5 Examples of inputs (a,c) and corresponding outputs (b,d) of the new counting
algorithm. The darkest spots in (a) and (b) are dead cells. In (b,d) the single cells are
coloured in red and clusters in blue.

A.5.2 Testing of the algorithm on a second set of experiments

We repeated the same experiments described in Section A.3. We investigated the
same inoculum densities of cells as previous experiments with only three concentra-
tions of sodium acetate (i.e. 0 mM, 10 mM and 20 mM). Cells were cultured in flasks
(with a different geometry than the former ones) with 20 ml of growth medium.
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By daily monitoring the growth with the discussed protocol and algorithm, we
obtained the following new results, shown in Figure A.6.
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Fig. A.6 Results obtained through the use of the new algorithm and the new sample prepara-
tion protocol on the second set of experiments. (a) and (b) are representative growth curves
at low and high inoculum density respectively. Red stands for a concentration of 0 mM
of sodium acetate while blue is 20mM. Dots are experimental data, the lines show their
trends. Each curve corresponds to a single replicate. The error bars are the propagation
of the error on the counting. (c) Growth rate trend as a function of the sodium acetate
concentration. Each dot corresponds to a single replicate, the error bars are the error of the
fit. The lines represent the trend of the data (linear fits). Low density data are shown in blue,
while high density ones are in orange. (d) Carrying capacity as a function of the sodium
acetate concentration. Dots are experimental data and their error bars are the error of the fit.
When not visible is because they have the same size than the dots. The lines represent linear
fits of the experimental data. It is valid the same colour legend of plot in (d).

Figure A.6(a) and (b) show two representative growth curves for each set of
experiment, low and high inoculum sizes respectively. Each growth curve represents
a single replicate and the error bar is the error on the concentration obtained by propa-
gating the standard deviation on the average of the counted number of cells of the 15
micrographs. Such errors are roughly within the 10% of the measurement suggesting
thus a good compatibility among the different repeated measurements. The solid
lines of A.6 are the fit of the growth curves through the sigmoidal shape function
used to determine the growth phases and their representative parameters. Curves
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belonging to the experiments at high inoculum sizes, as in the old experiments, show
lack of lag time, therefore the phases of growth (exponential and saturation) have
been determined as follows. The first one is a linear fit among the first four points of
the curve. The slope represents the exponential growth rate λ . The saturation phase,
instead has been considered as the average of the maximum value of the curve joined
with its previous and following point.
Figure A.6(c) and (d) shows the results concerning the growth rate λ and the carrying
capacity, analogously to Figure A.4(a) and (b). According to such data, the results
seem opposite to the previous experiments. There, the growth rate for low cell
density was decreasing in a sodium acetate dose-dependent manner, while that of
high inoculum was constant. Here, the two values seem similar and with a slight
decreasing trend for the data belonging to the high inoculum density. However,
all the data are compatible within the error bars. A more evident difference is in
the carrying capacity. First of all it shows different values between high and low
inoculum densities even at 0mM of sodium acetate. This does not agree with the
expectation of having a constant carrying capacity with respect to the inoculum size
(See Chapter 2). In order to drive proper conclusions on such topic, it is necessary
firstly to repeat the experiment in order to increase the statistics. Secondly, it is
worth to systematically check with the image segmentation algorithm whether its
performances drastically change when the concentration of cells in the flask is very
high. In such case, indeed, the overall amount of clusters is increased and this may
still affect the measurements causing the non homogeneity of the prepared sample.
Despite the difference between the two inoculum densities, the carrying capacity
seems to remain roughly constant with a possible slight decrease for low inoculum
densities depending on the dose of sodium acetate. Such trend is the opposite than
that presented in Section A.4. What seems to be more evident is that the fluctuations
of the carrying capacities become smaller as the sodium acetate concentration in-
creases. However a larger set of experiments would be necessary in order to drive
any conclusion.
We do not show any result concerning the lag time, since in all cases the lag phase
resulted very short, even for the cases of low inoculum density. To better resolve
such phase, a monitoring of the cell concentration more frequently in time would be
necessary.

In light of the results obtained so far, it is not possible yet to drive quantitative
conclusions on the effect of sodium acetate when supplied to a population of HEK293
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cells. The only observation that can be made on this purpose concerns the fact that,
in all cases, the increasing of sodium acetate in the growth medium seems to suggest
a toxic activity on the growth parameters. None of the found trends were increasing
together with the increasing of sodium acetate concentration. In all cases, the trends
were either independent or decreasing in a dose-dependent manner with the sodium
acetate.
Moreover, we can claim that the new methodology that we adopted to monitor cell
growth is more sophisticated than the first one. Thus, it would be necessary to adapt
such new counting algorithm for analysing the old data, in order to better estimate
cell concentration of the first set of experiments and compare with the second one.
It would be not trivial, given the high density of clusters and irregular shaped cells
in the old micrographs, but it will certainly give better estimations and thus more
reliable results. However, improvements are still necessary concerning high density
data.

A.6 Conclusions

In this appendix we presented a quantitative method to systematically investigate
the influence of sodium acetate on the growth of populations of HEK293 cells.
We performed batch cell growth experiments with different (fixed) sodium acetate
concentrations and two different initial population densities. The growth was daily
monitored through automatic cell counting. This was performed by exploiting a
custom-made image segmentation algorithm that requires as input micrographs of
samples representative of the population.

We showed that the bottleneck of such quantification lies in such micrographs.
The studied cells indeed tend to form strong clusters when growing. The dissolution
of such clusters is necessary in order to have an homogeneous sample and measure
its concentration in an automatic way. Such measurement is performed by taking an
aliquote of a sample representative of the population under exam. We discussed how
the pipetting and vortexing of such samples alters cell vitality, causing a change in
the shape of the cells that in this way becomes irregular. Moreover, the higher is the
concentration of cells in the sample, the higher the concentration of big clusters in the
micrograph. Thus, by joining such effects, the estimate of the effective concentration
of cells of the population through an image segmentation algorithm results difficult.
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In order to improve the samples preparation, thus we showed firstly how it is better
to not pipet the cells but only shake them. In this way cells undergo a smaller stress
and do not change their shape, that remains regular and then easier to be detected
by an the counting algorithm. Secondly, we suggested to dilute the sample when
preparing the counting chambers in order to have a sparser distribution of cells over
the slide. Again, this allows better performances of the algorithm.

Concerning the algorithm itself, we presented a first version applied the images
with irregular shaped single cells and an high amount of clusters. Such algorithm
allows to have a very rough estimate of the cells. Through this, indeed, the total
segmented area is considered (i.e. undistinguished clusters and single cells) and
divided by the mode of the distribution of the areas of the single segmented objects.
We consider such last value as a proxy for the size of the single cells, on average more
abundant than clusters. Such method gives a too rough estimate of cell concentration.
We presented then an improved version that, starting from micrographs obtained
through diluting samples, it is able to (i) recognise separately all the single cells and
clusters present in an image, (ii) compute the mode of the distribution of the single
cells as a proxy of the representative size of a cell and (iii) estimate the total number
of such representative single cells contained in the clusters. In this way, by adding
the number of counted real single cells to that of the single cells estimated within
the clusters, the final concentration of cells is computed. Such algorithm is more
sophisticated than the former one and gives also the possibility to recognise dead
cells. In this case, indeed, we stained dead cells with a dye that makes them appearing
darker than the alive ones in the images. The algorithm discards all the dark objects,
counting thus only bright ones. A further improvement of such algorithm would
be to recognise, among the dark objects those that are cells. This can be done by
exploiting the roundness of cells that is maintained even when dead.

The described project is still in progress and, as future steps we intend to adapt
such second algorithm to the old images in order to firstly have a better estimate of
the concentration of cells and thus more reliable growth curves and secondly, to test
the efficiency of the presented method to discriminate single cells and clusters in
more crowded images.

By exploiting such methodologies we obtained robust growth curves through
which we analytically determined the growth parameters useful for the quantification
of the influence of sodium acetate on HEK293 cells growth. The results obtained by
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exploiting the two described methodologies of sampling preparation and counting,
suggest the possibility of a general light dose-dependent toxic activity of the sodium
acetate on the growth. Moreover, they underline a possible cross correlation between
such effect and the initial density of cell population. Going into details however, we
obtained different results between the application of the two methods, thus more
detailed quantitative discussions cannot be done yet. Despite of the application of
the new algorithm to the old samples in order to better quantify the growth, further
experiments will be necessary in order to have a more robust statistics to drive
conclusions. In addition to this, the quantification of the bioproducts will allow to
quantitative cross correlate the productivity of such cells with the sodium acetate
concentration supplied to the medium and thus growth variables.

The work here presented will be continued and it will be part of a publication in
preparation.



Appendix B

The role of STIM1 in endothelial cell
endosomes trafficking

This project has been performed in collaboration with Prof. G. Serini and Dr. G.
Villari from Institute for Cancer Research and Treatment (Candiolo, Italy), and aims
at investigating endosomes trafficking.
Our collaborators found that STIM1, a protein that promotes the formation of a
molecular motor complex (dynein/dynactin) formation, regulates the traffic of late
and early endosomes, vesicles located within cells. Our contribution has been the
development of an image processing algorithm able to track fluorescent endosomes
in time-lapse videos taken with a confocal microscope. Through the tracking, char-
acteristic quantities related to the morphology and the dynamics of the detected
endosomes have been quantified and then used to support the experimental observa-
tions.
The work is object of a publication in preparation together with Serini’s lab enti-
tled: “STIM1 regulates the dynein/dynactin complex formation contributing to the
transport of early and late endosomal traffic on microtubules”.

In the following Section B.1, we report a brief introduction to the biological
issue. Section B.2 is devoted to methods and to the image segmentation algorithm
we developed and finally the last Section B.3 we present the principal results of the
project.
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B.1 Overview on endosome trafficking and project
outline

Endosomes are membrane-delimited compartments found in the cytoplasm of eu-
karyotic cells that control the recycling or the degradation of membrane components
[144]. They are formed by endocytosis, an either receptor- or non-receptor-mediated
process through which cells internalise external materials (fluids or macromolecules)
by invaginating the plasma membrane and thus forming vesicles and vacuoles. En-
dosomes can be considered as intracellular transport carriers since they transport
the extracellular molecules within the cell. The first endosomes to be formed are
called early endosomes (EE). Some material that they contain can return back to
the plasma membrane to be recycled, thanks to the so-called recycling endosomes.
Other molecules, instead, can be brought towards the inner part of the cell by the so
called late endosomes (LE). Once there, they might be degraded by the lysosomes,
membrane-enclosed organelles able to break down all biological composites into
single units. The passage from early to late endosomes is called endosome matura-
tion [144]. As early endosomes can be considered the first sorting stations of the
cell, late endosomes serve as second sorting and trafficking hub of the endosomial
system. Evidences suggest that such trafficking is also influenced by endosomes
interaction with the endoplasmatic reticulum (ER) which is present in the whole cyto-
plasm [145]. Endosomial system can thus be considered as a dynamic and organised
complex system, where its single components can autonomously move [146]. These
movements are driven by molecular motors, namely molecular machines able to
consume and convert energy into motion. In particular, they convert chemical energy
into work allowing the intracellular cargo transport along cytoskeletal structures,
such as microtubules or actin filaments. Two examples of widely studied molecular
motors are kinesins and dyneins, usually responsible for the centrifugal (anterograde)
and centripetal (retrograde) transport respectively [145].

The aim of the project lies in this framework focusing on the influence of the
protein STIM1 on the early and late endosomal trafficking in human endothelial
cells.
STIM1 (Stromal interaction molecule 1) is a transmembrane protein known for its
ability to control endothelial cell migration [147] and barrier functions [148]. For
example, in condition of Ca2+ depletion in the endoplasmatic reticulum, STIM1
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activates a plasma membrane Ca2+ channel (ORAI1) allowing extracellular calcium
to enter and refill the storing sites [149]. Another known function of STIM1 is its
ability to bind to a protein (+TIP protein EB1) located at the pheripherical end of
microtubules by allowing the elongation of endoplasmatic reticulum tubules together
with microtubules [149].

Through mass spectometry and biochemical experiments (co-immunoprecipitation
experiments) our collaborators identified STIM1 as an interactor of neuropilin 1
(NRP1), an endocytic receptor known to be involved in endosome trafficking [150].
Therefore the project was focused exactly on the investigation of the role of STIM1
in endosome trafficking, in particular on its influence on molecular motors involved
in the dynamics of both early and late endosomes. For this purpose, confocal images
and time-lapse videos have been performed on fluorescent marked endosomes. A
detailed image analysis allowed to quantify information on characteristics and be-
haviours of endosomes under different conditions. Our contribution to the project fits
here, in the development of an algorithm of image segmentation that allows to track
endosomes over time and identifies their total number, size and position. In the next
Section B.2 we present a description of the algorithm and the analysed quantities.
The results of both this analysis and other related experiments, are presented in the
last Section B.3.

B.2 Methods for endosome tracking

In order to quantitatively investigate the influence of STIM1 on endosome traffick-
ing in endothelial cells, it has been necessary to quantify variables related to the
morphology and the dynamics of the organelles exposed to different conditions.
For this purpose, once the environmental conditions, i.e. cell treatment, have been
determined, endosomes were marked with a fluorescent dye (red for LE and green
for EE) in order to make them visible under a confocal microscope. Thus, both
time-lapse videos (2 frames per second) and fixed images were taken. We developed
an image segmentation and particle tracking algorithm that implements built-in
Matlab functions and is able to recognise and follow endosomes frame by frame. In
this way, for each detected endosome we quantified size, distance from the nucleus
and the deviation of the motion from a linear trajectory (persistence).
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The algorithm takes as input single frames of time lapse videos. The image
acquisition has been obtained in RGB colour scale, thus as a first preliminary step,
the channel of interest is selected. From this point on, the algorithm consists of five
different steps which are described below:

segmentation to firstly recognise objects.

check1 (from frame 2 on) to map new objects into the old ones, as long as the
centroid of new ones is located within a certain range from the old ones.

connected components to check that no more than one object of the new frame is
mapped in one object of the previous frame. If this happens, the new endosome
closest to the old one is considered as the correct one to map. The other ones
become new objects.

check2 to look for lost matches in mapping due to the presence of more than one
connected components.

variables saving to save interesting variables, i.e. objects sizes and centroid posi-
tions.

N.B. For all the details about the cited Matlab functions and about the methods, see
Section 2.3.2.

In the first segmentation step, an image segmentation is performed by labelling
recognised objects (through the function bwlabel). The threshold for the labelling
was chosen as the sum of the mean value of the intensity distribution of the image
plus twice its standard deviation. In this way, eventual differences between frames are
taken into account and part of the background is removed. For each detected object
then, after a proper removal of all those objects with size lower than a threshold,
the position of each centroid is saved. The segmentation of the first frame (frame
corresponding to time t = 0 s) ends here together with saving the information on the
size of each detected endosome. Size and centroid positions are defined through the
Matlab function regionprops.

From the second frame on, the aim is to track endosomes over time. In order
to do it, the code detects elements in the new frame with the same segmentation
procedure used in the first one (segmentation) and then maps the new labels into the
old ones. For this purpose, a check between the object of the actual frame and the
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previous one is performed (check1). For example: if endosome called B at time t
(Bt) is located within a certain range with respect to endosome C at time t −1 (Ct−1),
then the name Bt is changed in Ct , because they represent the same object. If, in the
second frame, no match is found then the name of the endosome is saved in an array
that is updated frame by frame and that contains (for each frame) the names of all the
endosomes that disappeared. At this moment a second check is necessary (connected
components step) in order to be sure of not having two endosomes mapped in the
same endosome of the previous frame, i.e. two or more with the same label. For this
purpose, by running on all endosome names, the algorithm checks the number of
connected components. If it is bigger than 1, it chooses as the right endosome for
the new mapping that endosome which has the minimum spatial distance from the
centroid of the endosome with the same name of the previous frame. New names are
then given to the other components.

Now a new check (check2) with the same procedure used for check1, is necessary
to assure that those endosomes which were considered as “disappeared” were truly
so (and not wrongly labelled). If a match is not found, then the endosome maintains
its label.

At this point the code ends by saving in arrays the size and centroid position of
the present endosomes (variables saving). These information are then used for the
calculation and the identification of the interesting variables describing the system.
The so described code is repeated for all the frames of the time-lapse.
The output of this part of the code is the total number of detected objects per frame,
together with their size and centroid position.

Since the endosomes are free to fluctuate in different planes of the endoplasmatic
reticulum, they can eventually be lost frame to frame and eventually re-appear in
the same position after a while. From the trajectories of the detected endosomes
this information is available and used to split trajectories. Figure B.1 shows an
example that we use to clarify this point. In the plot, the size of endosome #174
(name given after the check2 step) over time is shown. A value equal to 0 means
that none endosome can be mapped into this one at that specific frame. Due to the
fact that endosomes can appear and disappear, we decided to consider the detected
endosome as two different objects when there are at least three frames without any
detection of the specific endosome. This is shown by the three different colours
and new names (in the legend) of endosome #174 in Figure B.1. Afterwards, for
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the analysis of the morphological and dynamical quantities, we consider only those
endosomes that can be seen for at minimum 21 frames (10s), like the green one in
the plot.

Fig. B.1 Example of the size trend in time of an early endosome detected with the image
segmentation and tracking code. The three colours represent the three endosomes in which
the first detected one (#174) is split. For further analysis only the green one will be considered,
since it appears continuously for more than 21 frames.

As already mentioned, the variables of interest are number, size, distance from
the nucleus and deviation from a linear trajectory:

Number is total number of elements detected in each frame. For this purpose, all
endosomes were considered, independently of the duration of their trajectories.

Size is the conversion in µm2 of the size in pixel obtained from the segmentation
algorithm.

Distance from the nucleus is the distance between the punctual position of the
endosome and the centre of the cell nucleus.

Persistence is a deviation from a linear trajectory and is calculated as the ratio
between the minimum path (pmin) and the effective one (pe f f ).

Each of these variable is discussed in Section B.3.
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For each experiment we performed a comparison between the results relative to
endosomes in cells with silenced STIM1 protein and those from cells of control (wild
type) (see Section B.3 for details). The way we adopted for analysing differences
in the distributions of the observables relative to the two cases is the Kolmogorov-
Smirnov test that we briefly describe in the next paragraph.

Kolmogorov-Smirnov test
Kolmogorov-Smirnov test is usually adopted for defining whether two samples

come from the same population or not. The parameter characteristic for this test
(Dk), given by the maximum distance between the empirical distribution functions
of the two samples under exam F1(x) and F2(x) of sizes N1 and N2 respectively.

Dk = max{|F1(x)−F2(x)|} (B.1)

If the two distributions come from the same population, then the parameter Dk

must be lower than a critical value Dcrit :

Dcrit = c(α)

r
N1 +N2

N1N2
(B.2)

where α is the significativity chosen for the test. c(α), for n sufficiently large, is
equal to the inverse of the Kolmogorov distribution. For significativity α = 5% and
populations bigger than 50 data, then c(α) = 1.36.

B.3 Results and discussion

The relation between endosome trafficking and STIM1 has been studied in human
umbilical vein endothelial cells (HUVEC).

As mentioned in Section B.1, from mass spectroscopy and co-immunoprecipitation
experiments, it has been found that STIM1 is related to the protein NRP1, a receptor
involved in endocytosis. Biochemical analysis showed that the silencing of STIM1
(siSTIM1) increases the NRP1 endocytosis, and thus early endosomes formation.
This suggested a possible influence of STIM1 on endosomes formation and eventu-
ally also on their dynamics. In order to investigate this issue, two different sets of
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experiments were set up with the same cells treated in two different ways. A first
set used as a control (CTL) was compared to the second one, in which the protein
STIM1 has been silenced. Endosomes of these cells were marked with fluorescent
dyes in order to make them visible under a microscope. In this way, we have time
lapse videos for early endosomes and fixed confocal images for late endosomes.

Figure B.2 compares the features of CTL and siSTIM1 endosomes obtained from
the image analysis described in Section B.2. Early endosome plots refer to time
lapse videos and therefore the temporal trend of number and size is shown. For the
distance from the nucleus and the persistence, we show the trend at 10s from the
beginning of the endosome trajectories. Late endosomes, instead were analysed in
single frame images and therefore we show the distribution of static quantities. A
schematic representation of these first results are shown in Figure B.3(a).

If the silencing of STIM1 increases early endosomes formation, the number of
early endosomes in siSTIM1 should be higher than the control. However we found
fewer endosomes than the control (see Figure B.2(a)), but with average bigger sizes
(Figure B.2(b)). This suggests that STIM1 silencing may promote the formation of
early endosomes which then tend to fuse together, resulting bigger and fewer then
expected. Note that the sizes of siSTIM1 EE are much more dispersed than in the
control.

By looking at the same variables on late endosomes (Figure B.2(a) and (b),
LE), they show, as expected, a behaviour opposite to that of EE. Late endosomes
in cells where STIM1 have been silenced are fewer. Concerning the size, from
Figure B.2(b), LE siSTIM1 have the same size of the control. However, this can
be due to thresholding issues in the segmentation algorithm, necessary to remove
undesired objects. Further experiments would be necessary in order to detect whether
a difference in sizes is present between silenced and not silenced STIM1 conditions.

By focusing on the distribution of the distances from the nucleus of siSTIM1
early endosomes (Figure B.2(c)), it is worthy to notice that it is narrower than the
control, and centred towards lower values. In order to support this observation and
thus the existence of a difference between the two distributions, a Kolmogorov-
Smirnov test has been performed (see Section B.2). The cumulative distribution
functions relative to the test are shown in the second plot of Figure B.2(c). The test
gave a result higher than the threshold (Dk = 0.21 and Dcrit = 0.12), thus confirming
the difference between the two distributions. About late endosomes, we notice an
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opposite trend: siSTIM1 LE are located farther from the nucleus with respect to their
control.

Figure B.2(d) shows the persistence of early endosomes as function of their
minimum path. The persistence gives information on the deviation from a linear
trajectory and is the ratio between the minimum and the effective path made by the
endosomes in time. The persistence of early endosomes seems to be less dispersed
and lower than that of their controls. This result suggests that siSTIM1 EE follow a
path which is less linear than that followed by the control, namely when silencing
STIM1 the motion seems less guided.

From literature, it is known that the microtubules-dependent motility of late
endosomes is driven by a machinery that involves the dynein/dynactin motor complex,
responsible for a retrogade (centripetal) motion [145]. Additional biochemical
analysis have been performed then in this direction and showed that STIM1 is
effectively related to the dynein. Deeper investigations have been carried out by
performing new experiments. This time, the dynein activity has been inhibited
(siDyn in Figure B.3), and thus the known retrograde motor suppressed. To inhibit
dynein activity, cells were treated with Ciliobrevin D, a repressor of dynein ATPase
activity. In this condition, LE were located far from the nucleus, as expected, while
EE showed the same behaviour obtained with STIM1 silencing: they were bigger
than the control and close to the nucleus. See Figure B.3(b) for a scheme of these
results. To recapitulate, all these findings allow us to support a theory in which
the presence of STIM1 promotes the formation of the complex dynein/dynactin,
required for both retrograde and anterograde transport in early and late endosomes
respectively.

Since for EE the dynein silencing did not restore the STIM1 control situation
(endosomes far from the nucleus), it is supposed the presence of a second retrograde
motor in addition to the dynein, responsible for the perinuclear accumulation of
early endosomes. As mentioned in Section B.1, kinesins are usually associated to
anterograde transports, however some of them exist as retrograd motors. KIFC1
is a retrograd kinesin expressed by the cells we examined. Therefore experiments
of KIFC1 silencing have been performed and showed that it causes the perinuclear
accumulation of EE, while it was not influent on LE (see schematics of in Figure
B.3(c)). This allowed to assume then that KIFC1 was responsible for motility of
the early but not of the late endosomes. The association of silencing of both KIFC1
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and dynein restored the same early endosomes position obtained in the control of
siSTIM experiments, namely EE far from the nucleus and dispersed in the cytoplasm,
as represented in Figure B.3(d). A deeper quantification of the dynamics of such
new treatments concerning the silencing of dynein and KIFC1 will be performed
by exploiting the same image segmentation algorithm used to investigate siSTIM1
protein.

To conclude, a summary of the results obtained with the described experiments
are shown in Figure B.3. There, each square represents a portion of a cell where the
nucleus is emphazised by a circle, the membrane by a black line. The green and red
filled circles represent early and late endosomes respectively. Circles dimensions are
representative for endosome size.

We found that protein STIM1 inhibits endocytosis mediated by NRP1 receptor
and promotes the assembly of dynein/dynactin complex, which is responsible for the
centripetal and centrifugal transport along microtubuli of LE and EE respectively.
Furthermore, we identified a kinesin (KIFC1) that acts as an additional retrograde
motor only for EE and not for LE. Recently, Herbert and colleagues [151] proved the
existence of dyneins, usually involved in retrograd transports, which are necessary
for anterograd movements. Similarly we found a kinesin, usually an anterograd
motors, involved in retrograd transports.

The results here presented are object of a publication in preparation together with
Serini’s lab.
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Fig. B.2 Comparisons between features of early (EE, left column) and late endosomes (LE,
right). Blue data represent siSTIM1 condition, red/orange ones the control. (a) Shows the
average number of endosomes per cell vs time for EE and number distribution for LE. In(b)
again temporal average trend for EE and distribution at a fixed time for LE of endosome
sizes. Line (c) is dedicated to distance to nucleus distributions. For EE the plot of cumulative
distribution functions showing the difference between the two populations is shown. Last
line (d) represents the persistence versus minimal path of early endosomes, not available for
LE. Blue and red lines here represent general trend of correspective data.
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Fig. B.3 Schematic representation of the main results of the project. Each square represents a
portion of a cell, where the empty circle is the nucleus and the black line the membrane. Early
and late endosomes are represented respectively as green and red filled circles whose sizes
give an idea of the differences in endosomes size. From top to bottom the control (siCTL)
situation is shown together with the following conditions: (a) STIM1 silencing (siSTIM1);
(b) dyneine silencing (siDyn); (c) KIFC1 silencing (siKIFC1) and (d) the combination of
silencing of KIFC1 and dynein together.
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