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 I 

Preface and Objectives  
This dissertation is about the use of spectroscopic techniques, mainly near 

infrared spectroscopy (NIRS), in combination with multivariate data analysis for 
the real time monitoring and control of the production processes of the 
pharmaceutical and food industry. The expected final product quality is the main 
task to accomplish for the industrial organizations taking also into account the costs 
and environmental impact. Thus far, the quality assessment of manufactured 
products is performed primarily on a post-production based testing, using an off-
line laboratory strategy. This approach may result in products that do not meet the 
requested quality characteristics and should be disposed or reworked. The 
implementation of the strategy based on the Process Analytical Technology (PAT) 
concept, accepted as an effective tool for process monitoring and control, represents 
an innovative solution to avoid unwanted consequences stemming from the 
abovementioned quality control approach. The PAT paradigm involves an active 
process control, starting from the quality control of incoming raw materials and 
through the continuous process control, leading to semi-finished or final products 
within specifications having little variation with respect to the critical quality 
parameters. Spectroscopic sensors, in combination with computational analysis 
(multivariate data analysis), are regarded as the most advantageous process 
analysers for PAT successful implementation, moving the quality measurements 
closer to the process via at-line, on-line and in-line strategies. PAT, allowing real 
time collection, analysis and sharing of production process data, becomes a 
powerful tool in the manufacturing step included in the management of the value 
chain over the life cycle of pharmaceutical and food products as addressed by 
Industry 4.0. 

 
This thesis consists of three mainly parts. The first part contains four chapters. 
The first chapter is an introduction related to Industry 4.0 emphasising, the 

advantages for manufacturing process due to a set of constituents belonging to 
design principles and technology trends, and the benefits the pharma- and food- 
industry can obtain. 

Chapter 2 describes near infrared spectroscopy (NIRS) as the spectroscopic 
technique predominantly employed in this research activity to collect spectral data 
of solid and liquid samples according to diffuse reflectance, transmittance and 
transflectance modalities. 

Chapter 3 presents the multivariate data analysis as essential computational 
instruments to get qualitative and quantitative responses from the spectral data 
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acquired by a secondary analytical technique like NIRS. The principles of designs 
of experiments (DoE) are also briefly discussed. 

Chapter 4 includes the principles and components of the PAT approach as well 
as the strategies of NIRS analysis. At the beginning of the chapter is also presented 
an introduction of the most recent approach which takes advantage of the PAT 
benefits, known as Quality by Design (QbD). 

 
The second part (Chapter 5) contains three industrial research case studies that 

I have faced during my PhD period. 
The first case study (Section 5.1), related to a pharmaceutical industry, has been 

focused on two main objectives: 1. The development of chemometric models, for 
identity confirmation and identification (classification) of incoming raw materials, 
which allow to compare the NIR spectrum of a material (known or unknown) with 
the spectra of known materials employed previously for qualitative modelling; 2. 
The development of a regression model based on the PLS method in order to predict 
the quantity of the active ingredient DHA (docosahexaenoic acid) in a semi-finished 
or end solid product. 

The second case study (Section 5.2), involved a firm of vegetable oils where 
the research activity was focused on four aims: 1. The assessment of the shelf life 
of vegetable oils; 2. Quality evaluation of extra virgin olive oils as a function of the 
storage time; 3. The effect of two different presses on five vegetable oils produced 
starting from their seeds; 4. The evaluation of cold-pressed linseed oil oxidative 
stability when subjected to accelerated oxidation. 

The last case study (Section 5.3) concerns the coffee industry and has, as its 
main aim, the classification of green coffee beans according to their geographical 
origin using NIRS and chemometrics. 

 
The third part (Chapter 6) contains the conclusions and the future perspectives 

of this research approach. 
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Chapter 1 
 

1) Introduction 

1.1 Industry 4.0 

Industry 4.0 is a term originated in Germany in 2011 which depicts the world’s 
fourth industrial revolution following the three previous industrial revolutions 
which extended across for nearly 2 centuries. The first industrial revolution, that 
began at the end of the seventeenth century, developed mostly in England due to 
the inventions in the textile and iron metallurgy sectors and the availability of raw 
materials: coal, used for the operation of steam engines and iron, employed in the 
siderurgic and mechanical sectors with emphasis in the cast iron production. Cotton 
imported from the colonies led to the growth of the cotton industry. The second 
industrial revolution spanned mostly from 1870’s to 1970’s and was characterized 
by several scientific and technological discoveries, inventions and innovations as 
well as the use of new sources of energy that enabled radical transformations in 
industry. Henry Ford reorganized the entire factory around the assembly line 
officialising mass production and reducing production time and costs. The third 
industrial revolution was driven by the use of Information and Communication 
Technology (ICT), electronics and robotics to produce more automation in 
industrial manufacturing. Small scale and smart computer tools become mature 
enough to deliver services and IT infrastructure through smart networks. It is also 
being introduced the concept of lean production which is a systematic method 
aimed to reduce the waste, costs, stocks and to provide different kinds of products. 
Compared to the previous revolution the employees are characterized by a higher 
education and flexibility. The industrial sector expanded and developed all around 
the world along with the induced issues like climate change, pollution and 
sustainability. 

The definition created into the framework of the “Industry Platform 4.0”, 
started by companies, industrial associations, the Federal Ministry for Economic 
Affairs and Energy and the Federal Ministry of Education and Research in Germany 
in 2015 reports that: “The term Industrial 4.0 stands for the fourth industrial 
revolution, a new stage in the organization and management of the entire value 
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chain over the life cycle of products. This cycle addresses the increasingly 
individualized customer requirements and extends from the idea of the development 
and manufacturing, the delivery of a product to the customer up to the recycling, 
including associated services. The basis is the availability of all relevant 
information in real time through the networking of all entities involved in the value 
creation as well as the ability to derive, from the data, the optimal value flow at any 
time. By linking people, objects and systems, dynamic, real-time and self-
organizing, cross-company value-added networks emerge, which can be optimized 
according to different criteria such as cost, availability and resource consumption” 
(Wilkesmann, 2018). Industry 4.0 can be regarded as the implementation of cypher 
physical systems (CPS) with particular emphasis on the customers who are actively 
involved within the industrial production systems (Wan, 2015). The four essential 
constituents of Industry 4.0 are indentified with 1) the internet of things (IoT); 2) 
the CPS; 3) the internet of services (IoS) and 4) the intelligent and self-organizing 
factory (Hermann, 2016). 

According to the European Parliamentary Research Center (2015) the 
importance of industrial sector for the European Union (EU) economy decreased 
by one third over the last four decades. The reduction of value added by 
manufacturing is due to the growing of industry in countries with lower manpower 
costs and digital manufacturing is expected to stimulate economic growth 
increasing productivity and added value. However, there are great uncertainties 
about the social effects of this new phenomenon (European Parliament website). 

Many scholars are convinced that Industry 4.0 is an imminent event and the 
impact is compared to the impact the Internet had as an important technology. In 
order to remain competitive in the chaotic market, manufacturers must pave the way 
for digitized manufacturing changing in this way manufacturing processes, business 
models and outcomes (Ghobakhloo, 2018). The successful transition towards 
Industry 4.0 is reached by producing and implementing a strategic roadmap 
including strategic and technological steps in the direction of a full digital 
organization (Vogel-Heuser, 2016; Sarvari, 2018). Technology roadmapping is 
widely employed by modern businesses as a structure to sustain the research and 
development of coming technologies maintaining a possible competitive advantage 
(Lee, 2013). 

The successful transition from traditional to digital manufacturing involves a 
profound understanding of the characteristics of Industry 4.0 as a precondition for 
the progress of the strategic and technological roadmap. According to many 
scholars, design principles and technology trends have been considered the 
fundamental constituents of Industry 4.0. The study made by Ghobakhloo (2018) 
reviews these fundamental constituents of Industry 4.0 analysing their advantages 
for manufacturing processes identifying a set of key design principles and 
technology trends related to Industry 4.0 (Ghobakhloo, 2018). Design principles 
address the problem relevant to the identification and implementation of Industry 
4.0 scenarios by offering an arrangement of knowledge and describing the 
constituents of this phenomenon (Hermann, 2016) sustaining, in this way, 
professionals in developing suitable solutions. The rise of the new digital industrial 
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technology is permitted by technology trends that pertain to the advanced digital 
technological innovations (Gilchrist, 2016). The following figure (Figure 1-1) 
depicts the architecture of Industry 4.0 taking into account these technology 
advancements and design principles. 

 

 

Figure 1-1. Schematic representation of technology trends and design principles 
involved in the passage towards Industry 4.0 (modified from: Ghobakhloo, 2018). 

 
A brief description of the abovementioned design principles and technology 

trends has been carried out as follows. 
 

1.1.1 Design principles 

Service orientation. This principle is mainly related to Manufacturing as a 
Service (MaaS) and Product as a Service (PaaS) business models. MaaS refers to 
the diffusion of IoT and cloud manufacturing along with interconnectivity among 
manufacturers which enable Organizations to readily share their production demand 
and capability in order to use a common connected manufacturing structure to yield 
goods. This means collaboration among Organizations to perform complicated 
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tasks (Ghobakhloo, 2018). The capability of monitoring and managing in real time 
and in a remote way fabricated products by IoS allows to build business models in 
which a service is provided instead of a product and the user would benefit of a 
shared resource and pay this service on the basis of its actual use. An appropriate 
connection among people and smart objects via IoS enables to manufacture 
products that satisfy customer’s specifications. 

Smart product. Smart products within the Industry 4.0 framework are products 
equipped with embedded sensors able to self-process, memorize and transmit data, 
provide information about their identity and current status as well as communicate 
inside the industrial environment. During the manufacturing phase the various 
production steps that lead to the end product as well as the maintenance activities 
are communicated because of the product capability in computing algorithms and 
machine learning (Schmidt, 2015). 

Smart factory. Smart factory depicts a smart, highly digitized and productive 
manufacturing organization with connected machines, devices and systems which 
results in the prediction of equipment downtime and minimized waste. IIoT, IoP 
and WoT technologies in the smart factory allow not only the communication 
among smart objects but also between them and human resources in order to make 
real time decisions (Ghobakhloo, 2018). 

Interoperability. The interoperability is related to the ability to accurately and 
quickly communicate, operate, manage the data and share of information via IIoT, 
IoS, IoP, and WoT among all constituents of the manufacturing industry such as 
relevant technologies, smart products, human resources, etc. and with the 
manufacturing partners like suppliers, customers and other interested parties 
(Gilchrist, 2016). This results in a better decision making. 

Modularity. The modularity concerns the transformation from rigid systems, 
linear manufacturing and planning and inflexible business models towards a ductile 
environment able to manage the ever-changing requests in the supply chain, market 
situations and other relevant requirements that need flexibility (Gilchrist, 2016). 

Product personalization. Product personalization is related to the product 
development based on changing customer needs and preferences, enabled by 
developments in technology trends and identified by evaluating customers’ 
behaviour. Moreover, the manufacturers should predict customers’ behaviour and 
not just fulfil their current needs by foreseeing market evolution (Ghobakhloo, 
2018). This new manufacturing paradigm follows mass production (relatively 
inexpensive and limited variation of products) and mass customization where the 
product variation is augmented significantly (Berry, 2013). 

Decentralization. The decentralization refers to the autonomous operation and 
decision making of several constituents of the smart factory taking into account the 
common organization goal (Gilchrist, 2016). However, human decisions are still 
very important and so only some decisions can be fully automated (www.i-
scoop.eu). 

Virtualization. This design principle is related to the concept of “digital twin” 
that consists in the ability to create virtual models, starting from sensor data 
collected from the entire value chain of the real organization (warehouse, systems, 
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processes and products), that provide information from the physical objects. The 
assessment of the process yielding the product, as well as the customer satisfaction, 
is accomplished by the digital twin of the smart product as it allows to get a full 
virtual footprint along the product life-cycle. Real time capability has an essential 
role in virtualization because it includes data acquisition, analysis of data and 
decision making in real time and also the detection in real time of cyber security 
threats (Ghobakhloo, 2018). 

System integration. System integration incorporates either the vertical 
networking of layer upon layer of technologies and manufacturing systems 
(factories, products, etc.) or the horizontal integration related to the overall 
connection through the value chain with the aim of distributing the wanted 
functionality and creating value through networks institution (Ghobakhloo, 2018). 

Corporate social responsibility. It is part of the enterprise’s business model and 
is mainly related to the manufacture labour and environment rules. Some believe 
that Industry 4.0 is going to reduce the availability of jobs whereas others think that 
technology will create more jobs compared to those that will be cancelled. The 
organization, in order to be part of the industrial revolution, must train their 
employees with the aim to develop skills useful for Industry 4.0. Sustainable design 
of products and processes, sustainable manufacturing, increased performance of 
employees and implementation of green business models are achievable within the 
Industry 4.0 context improving environmental sustainability (Ghobakhloo, 2018). 

 

1.1.2 Technology trends 

Internet of things. The IoT refers to physical objects connected to the Internet 
and equipped with electronics, sensors, software and actuators able to exchange 
data with other connected objects (e.g. sensors able to catch process data and then 
to send the information to people and other products). The connected objects will 
enable the real time optimization of production processes and economic activities 
considerably reducing pollution and resource consumption. In the Industry 4.0 
framework the IoT is usually mentioned as Industrial Internet of Things (IIoT) 
which indicates the industrial application of IoT (Wang, 2016) as different actors 
have addressed this paradigm on their finalities, interests and backgrounds (Atzori, 
2010). IIoT pertains either the connected physical objects or the digital depiction of 
processes, products and manufacturing facility (Jeschke, 2017). Smart and 
connected tools related to IIoT capture and communicate data in a more accurate 
and consistent way compared to humans, whereas the interaction between humans 
and objects enabled by IIoT results in the remote monitoring and control of devices 
(Almada-Lobo, 2016). Moreover, the knowledge management (KM) IoT concerns 
the accomplishment of a wider network among people, objects and systems 
(Roblek, 2016). The continuous gathered data by monitoring machines and systems 
through KM IoT are combined with smart algorithms, allowing companies to get 
access to new information useful in decision making processes and creating 
innovations (Wilkesmann, 2018). The greater combination of data among 



 

 6

companies, suppliers and clients can reconsider the demand for intermediary parties 
(Porter, 2014). 

This technology can also play an important role in the preventative maintenance 
of equipment subjected to wear as well as in the assessment of functionality and 
usage of products and permitting an improved planning capacity due to the 
inventory monitoring (Bughin, 2015). The IoT allows individual identification of 
products which will be connected to details about their provenance, use and 
destination with no need to correlate products and information flows. For the 
common users there are also some risks related to the IoT, such as the improper use 
of data and privacy protection. 

Internet of services. IoS is related to the systematic use of the Internet to create 
and provide a high number of services based on the Product as a Service (PaaS) 
business model (Ghobakhloo, 2018). Previously separated available services on the 
Internet will be combined to create a more extended network of services with high 
added value with the involvement of several actors that can take advantage 
reciprocally. IoT represents the basic structure to support IoS, ensuring the 
connection between sevices whereas the possibility to store and analyse large 
amounts of data arising from the offered services allows to increase the value of the 
service itself. The company selling a service, thanks to the IoS, can make a real time 
connection to the IT system of the customer to assess and monitor the condition of 
the provided service. In this way the producer can remotely intervene in a prompt 
manner to anticipate possible incoming issues. Moreover, there is also the 
possibility to directly collect data from the customer to assess the performance of 
the product, either to deliver proactive and preventive maintenance (Leminen, 
2012) or sending the information to the research and development unit to yield a 
product with higher performances. 

Internet of data (IoD). IoD refers to the analysis of data on a larger scale and 
its aim is to record all the activities and monitor the data entities along their life 
cycles. The huge amount of data related to the high number of objects in the IoT 
domain should be effectively transferred, stored, managed and processed by the 
IoD. Accordingly, the IoD is useful as a constituent of IoT, IoS and the internet of 
People (IoP) and it is considered comparable with database management systems 
(Ghobakhloo, 2018). 

Cloud computing. Cloud computing development is due to the continuous 
recent progress in virtual technology, hardware, distributed computing and service 
delivery beyond the Internet (Oliveira, 2014). It is a technology offered as a service 
that enables to exploit software and hardware resources through remote server. It 
can be used to create new services, new applications, to store huge amounts of data 
and analyse the data to obtain strategic models and production plans and to perform 
continuous dat backups and promptly recover needed information. Cloud 
computing is fast and versatile enabling the enterprises to get the sought 
information in a short time and practically everywhere. The implementation of 
cloud manufacturing allows the integration of allocated manufacturing assets and 
the institution of an interactive infrastructure across organization spots allocated in 
different areas (He, 2015). 
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Big data. Big data refer to architectures, technologies and analytics that allow 
Organizations to extract value and hidden knowledge through generation, 
collection, storage and analysis of huge volumes of complex and various data. 
Organizations can use big data analytics to predict the outcome of an operation and 
the actions needed to get the optimal results (LaValle, 2011). Predictive models can 
also be built, starting from successful visualization (holograms, augmented and 
virtual reality methods), analysis and sharing of data originating from product 
development and manufacturing processes, and implemented in various smart 
manufacturing plants (Demartini, 2016). Pushing the boundaries of knowledge by 
using big data analytics, the Organizations can augment both the accuracy of 
knowledge and the accuracy of decisions and actions to be taken. The 
transformation of a product to a service (servitization), predictive maintenance, 
increase of product customization, agile production processes and more effectively 
management of supply chain are achieved through big data analytics. Big data 
analytics can also be used by Organizations to assess potential suppliers according 
to their previous performance and to establish performance indicators for managing 
the suppliers (Ghobakhloo, 2018). 

Blockchain. Blockchain is a communication protocol which identifies a 
technology based on the distributed ledger that enables the creation and 
management of a large distributed database (e.g. for the management of 
transactions). Blockchain as an open and transparent technology, able to guarantee 
immutability and incorruptibility, decentralised, shared, encrypted with strict 
security rules allows transparent, secure, reliable and quick private or public 
solutions (Underwood, 2016). Within the paradigm of Industry 4.0, blockchain can 
work as a distributed ledger among several constituents of smart factories, suppliers 
and customers to develop reliable and autonomous relation (Ghobakhloo, 2018). 

Augmented reality (AR). AR transforms huge quantities of data in images, 
overlapping the developed images with the real world. The proper visualization of 
the progress of activities enabled by AR ensures the improvement of production 
processes, quality control, maintenance and assistance. AR technology has also 
been implemented by modern manufacturers in support of personnel training, 
quality management and product design optimising the design phases, forestalling 
the issues related to the product, reducing the product development costs 
(Ghobakhloo, 2018). 

Automation and industrial robotics. This combination depicts two interacting 
technologies as the under way trend towards automation in manufacturing requires 
a growing need for industrial robots. Automation and industrial robotics permit 
improvements in the efficiency of processes by optimizing the operation, higher 
quality and reliability, reduced costs and time, increased reliability, reduced waste 
and better space usage (Ghobakhloo, 2018). 

Cybersecurity. This building block represents a critical technology in the 
implementation of Industry 4.0 since the cyber risks can be of different nature. 
Inside Industry 4.0 environment, everything is always connected through the 
Internet that means more susceptibility toward the external environment. 
Accordingly, the risk of stealing data, information and core know-how from the 
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companies increases significantly. The challenges of Industry 4.0 with regard to 
cybersecurity are related either to the ordinary information security or to the own 
privacy and security problems (Ghobakhloo, 2018). 

Additive manufacturing (AM). AM describes the techniques that build objects 
by adding point to point and layer upon layer of material in accordance with the 
original model. The model, usually, generated by a CAD (computer aided design) 
software is transformed into a real object by using 3D printers starting from various 
materials of solid or liquid appearance (Strange, 2017). Industry 4.0 is going to 
reduce the distance between customers and suppliers allowing customers to address 
production orders to the manufacturing company in real time. The advantages 
related to the additive manufacturing such as the speed of production, freedom, 
accuracy, supply chain cost reduction and small-scale manufacturing tests point out 
that additive manufacturing can sustain the smart factory idea (Ghobakhloo, 2018). 

Simulation and modelling. These technologies are already used for products, 
production processes and materials but in the future these techniques will be 
employed in plant operations in a larger scale, reflecting the physical world in a 
virtual model which can include machines, products and humans. Simulation and 
modelling allow manufacturers not only to avoid errors at an early stage avoiding 
costs for plant operators, but they can also be employed to optimise a manufacturing 
plant during in progress daily operations. According to industrial reports, the virtual 
testing of entire production systems is a common goal for many manufacturers 
(Ghobakhloo, 2018). 

Cyber physical systems (CPS). CPS is regarded as a technology with the 
potential of creating value along the three dimensions of digitalized manufacturing 
(i.e. smart product, smart manufacturing and business model). It is a collection of 
different technologies (sensors, actuators and decentralized intelligence) able to 
generate an autonomous, intercommunicating and intelligent system able to 
facilitate integration among different and distant subjects. This system enables data 
generation and collection, computation and aggregation of previously acquired data 
and supporting decision making. The physical feature of products, systems and 
processes connected to the network among them and integrated with elements 
(embedded sensors, actuators) provided with computation, storage (memory) and 
communication capability is joined to their virtual or digital depiction. Smart 
factory, made feasible through CPS implementation, ensures efficiency related to 
resource utilization as all the manufacturing steps are integrated and are 
manufactured solely the products required by the customer due to the ability to 
monitor the markets (Report smart manufacturing (sCorPiuS project)). According 
to this project (research project funded by the European Union) there are six classes 
of benefits arising from CPS implementation. 

 “New data driven services and business models” refer in particular to the 
managerial area with new opportunities of business allowing the company 
to be closer to the customers need. 

 “Data based improved products” is related to the advantages arising from 
the product digitization. The product is able to communicate inside and 
outside the firm sharing information, enabling a better understanding of 
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processes and services, augmenting the added value for the final client. The 
information obtained from the organization about the product utilization 
consents to get the customers feedback in real time creating services and 
making products tailored for each client. 

 “Closed loop manufacturing” includes the benefits related not only to the 
company but to the whole value network including suppliers and customers 
by integrating their own data and feedback with the aim to create zero waste 
supply chains. 

 “Cyberized plant/Plug & Produce” considers the benefits that CPS brings at 
the shop floor that makes easy the optimization and management of 
operations, validates flexible and reconfigurable production system 
scenarios, plant self-recovery, self-learning, self-analysis and the product 
traceability during manufacturing. 

 “Next step production efficiency” refers to the achievement of a more 
efficient production, able to make the manufacturing of small lots 
sustainable, speeding up and enhancing the production processes precision. 

 “Digital ergonomics” includes the advantages arising from the introduction 
of tools and cyber physical technologies that consider a faster knowledge 
transfer process, a work experience improvement and a reduction of 
operational complexity. 

 
Semantic technologies. These technologies facilitate integration, 

interoperability and analysis of data, processes and services providing reference 
models as well as information- and knowledge-sharing among various components 
of Industry 4.0. Semantic technologies have an important role concerning the 
management of things, tools and services whereas the several components and their 
constituents follow a unified and consistent model. In this way the process of 
integration of new components turn out to be more rapid and so the communication 
in a networked manufacturing (Ghobakhloo, 2018). 

 

1.2 Pharma and food industry 4.0 

Regarding the pharmaceutical production processes, the upcoming and existing 
technologies related to Industry 4.0 paradigm enable the transition from batch-
related production, where the process cannot be successfully controlled, to 
sustainable continuous production (unbroken flow of raw materials and final 
products) with on(in)-line quality monitoring and control. The integration of 
Process Analytical Technologies (PAT) within Industry 4.0 enables the collection, 
analysis and sharing of real time quality data across the supply chain by using 
sensors in continuous manufacturing. Sensors can also collect information in real 
time about the environment surrounding the production line. Whether during the 
continuous production processes the quality standards of any product constituents 
are out of specifications or not, it will lead to real time decisions affecting the 
subsequent steps. The Quality by Design (QbD) approach, introduced in the 
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following chapter, helps the companies to implement continuous manufacturing 
ensuring successful quality control by designing the whole production process and 
fosters them to continuously improve the quality management. A more effective 
process monitoring, from raw materials to product utilization, arises from the 
improvement in communication due to Industry 4.0 technologies which enables the 
share of information flow in real time. The implementation of technologies that 
compose Industry 4.0, the increased knowledge and the improved control of 
processes in the manufacturing sector of the pharmaceutical industry, will support 
quality improvement and the prediction of production processes. The vertical and 
horizontal integration of Industry 4.0 can promote mass customization through 
smart production lines and the different actors of the entire supply chain are more 
aware of personalised customer demands (Ding, 2018). Technologies such as 3D 
printing can enable the continues production of rapid and personalized 
pharmaceutical products (Goole, 2016). 

The components of Industry 4.0 have been applied in food industry in the optic 
of mass customization related to yoghurt production. The relevant selection of raw 
materials, the development of a model that allows continues production of several 
products on a non-reconfigurable production line, the virtualization of products, 
packaging, labelling and the preventive maintenance of the production line have 
been made possible by QR code technology, supervisory control and data 
acquisition (SCADA) system, radio frequency identification (RFID) for internal 
product tracking and other elements (Simon, 2018). 

The digitalization of the food industry is a new subject, with limited scientific 
literature, gaining interest only over the last years. Demartini (2018) proposed a 
paper based on interviews and literature review that emphasizes the development 
of a useful structure and a model for the digitalization of manufacturing processes 
in food sector by using the Manufacturing Value Modelling Methodology 
(MVMM). According to this work, the selected enabling technologies for food 
manufacturing digitization consist of cyber physical production systems (CPPS), 
IIoT, cloud and additive manufacturing, big data analytics and holograms. The 
suggested model, that should be validated considering more than one case study, is 
mainly qualitative and does not permit sufficient quantitative evaluations. 
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Chapter 2 

2) Near infrared spectroscopy 

2.1 Fundamentals 

Since the discovery of near infrared (NIR) electromagnetic radiation by 
William Herschel several decades have passed before encountering the first studies 
in analytical implementations. NIR spectra characteristics, the absence of 
mathematical tools as well as the slow advances in techniques that make use of NIR 
radiation brought to this gap. NIR spectroscopy is based on the exploitation of 
electromagnetic radiation at wavenumbers usually between 12800 and 4000 cm-1 
corresponding to the wavelength range between 780 and 2500 nm where the 
absorption bands are mostly due to overtones and combinations of fundamental 
vibrations (stretching and bending) (Blanco, 2002). 

According to Bokobza (1998), the absorption of infrared radiation by molecules 
causes the vibration of individual bonds which can be described through the ideal 
harmonic oscillator model. For the diatomic molecule the energy of equally spaced 
levels of harmonic oscillator based on the quantum mechanical treatment is given 
by: 

 

𝑬𝒗𝒊𝒃 =  ℏ𝝂 ൬𝐯 + 
𝟏

𝟐
൰                     Equation 2.1 

 
where: 
ℏ = the Plank’s constant 
v = the vibrational quantum number 
ν = the vibrational frequency expressed as: 
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                                Equation 2.2 

 
where: 
k = the classical force constant 
µ = the reduced mass of the bonding atoms 
 
Transitions from a vibrational energy level to another occur when the 

absorption of radiation causes a dipole moment change which implies that only the 
transitions involving heteronuclear diatomic molecules are possible. Moreover, in 
the harmonic oscillator only the transitions between consecutive energy levels are 
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allowed because the vibrational quantum number can only vary by one unit (Δv = 
±1). 

According to Boltzmann distribution the most likely transitions occurs between 
the ground vibrational level (v = 0) and the first vibrational level (v = 1) with higher 
energy since the ground level is more populated at room temperature. This 
transition called fundamental transition is characteristic of the middle infrared 
region and has the following energy (Blanco, 2002): 

 
∆𝑬𝒗𝒊𝒃 = ∆𝑬𝒓𝒂𝒅 = ℏ𝝂                       Equation 2.3 

 
The bands related to the allowed transitions between consecutive excited 

vibrational levels (v = 1 → v = 2, etc.) are called “hot bands” which are weaker and 
have the same frequency as that of fundamental transition according to the 
harmonic oscillator. 

The model based on the harmonic oscillator does not consider the Coulombic 
interaction or the dissociation of bonds involved in the molecule. Moreover, based 
on experimental observations the “hot bands” are characterized by frequencies that 
differ from the frequency of the fundamental band. The model that can better 
describe the behaviour of molecules is based on anharmonic oscillator where the 
vibrational energy levels are not equally spaced and the energy gap decreases with 
increasing the vibrational quantum number (v) according to the following 
expression (Blanco, 2002; Bokobza, 1998): 

 
𝚫𝑬𝒗𝒊𝒃 = ℏ𝝂[𝟏 − (𝟐𝐯 + ∆𝐯 + 𝟏)𝒚]                 Equation 2.4 

 
where: 
y = the anharmonicity factor 
 
The anharmonicity enables the transitions between non adjacent vibrational 

levels where Δv > 1. These multilevel vibrational energy transitions give rise to 
overtone bands that roughly take place at multiples of the fundamental vibrational 
frequency (Δv = 2→first overtone, Δv = 3→second overtone…). The probability 
of these transitions decreases when the vibrational quantum number increases and 
the overtone bands are much weaker in intensity than the fundamental bands since 
their transitions are less likely and occur between 12800 and 5000 cm-1. NIR 
combination bands are generated when the absorbed radiation modifies at the same 
time the vibrational energy levels of two or more interatomic bonds. This results in 
vibrational interactions expressed as the sums of multiples of each interacting 
frequency which appear between around 5200 cm-1 and 4000 cm-1 (Blanco, 2002). 

The main bands appearing in the NIR region are related to chemical bonds 
containing the hydrogen atom and other elements with low atomic weighs (Figure 
2-1). This includes C-H, O-H, N-H and S-H bonds whereas the bands related to 
bonds such as C=O and C-C are much weaker or even missing compared to the 
previous ones. The presence of the hydrogen as the lightest atom in bonds results 
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in a greater deviation from harmonicity with higher intensity overtone bands 
(Osborne, 2006). 

 

 

Figure 2-1. Main chemical bonds responsible for the NIR spectra and location of their 
vibrational frequencies (modified from: Osborne, 2006). 

 
The spectra arising from NIR analysis consist of overlapping, broad and weak 

bands (10-100 times weaker than the corresponding bands arising from the 
absorption of the mid infrared radiation) with difficulties in the visible 
interpretation of spectra due to the lack of selectivity. Usually, a chemometric tool 
is employed to overcome this drawback in order to relate spectral information to 
sample properties. There are also benefits related to the low absorption coefficient 
because it allows the NIR radiation to enter deeper into the sample as well as the 
direct analysis of samples without further pre-treatment. In this manner it is not 
necessary to use solvents or other chemicals that have negative environmental 
impacts. Moreover, the NIR analysis are fast and time saving since the spectra are 
obtained in few seconds (Blanco, 2002). 

The information contained in the NIR spectrum is of chemical (chemical 
composition of the sample) and physical origin such as particle size, crystal form, 
viscosity, etc. Elemental compositional changes at the molecular level, such as the 
substitution of light atoms with heavier atoms, will determine different NIR spectra 
even if the bonds related to the substituted atoms are not directly involved in the 
generation of bands. This is due to the effect of the new bonds on the an-harmonic 
vibrational modes and strength of the remaining bonds. Increasing the strength of 
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the chemical bond and/or decreasing the mass of the connected atoms, the relevant 
spectral absorption band(s) will shift towards higher wavenumbers. When 
analysing solid samples there is a linear relationship between the absorbance and 
the concentration of the absorbing species only when the range of concentration is 
limited as the scattering effect arising from the interaction of the radiation with solid 
samples affects the expected linear relation between absorbance and concentration. 
One way to reduce or remove the scattering effect consists in the mathematical 
treatment of the raw spectra (Pasquini, 2018). 

 

2.2 Instrumentation 

The need for fast analyses and instrument flexibility in order to suit for different 
types of samples brought to the development of NIR instrumentation that can merge 
several devices as shown in Figure 2-2. Depending on the wavelength selection NIR 
spectrometers can be discriminated in discrete wavelength and whole spectrum 
acquisition. The discrete wavelength instruments usually use filters that select 
relatively broad bands or light emitting diodes (LED) that generate narrow bands. 
These tools have been used in analysis with analytes absorbing at particular spectral 
ranges since only a few wavelengths interact with the samples. Acousto-optic 
tunable filters (AOTFs) are another type of wavelength selection dispersive 
monochromators that perform more reliable, rapid and reproducible wavelength 
scans than the grating instruments. NIR instruments based on whole spectrum 
usually incorporate dispersive grating monochromators and more recent systems 
based on Fourier Transform. Due to their advantages in flexibility compared to the 
discrete ones, they can be used in a wider range of applications (Blanco, 2002). 
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Figure 2-2. Schematic depiction of the several parts making up the NIR spectrometer 
(modified from: Blanco, 2002). 

 
There has been an evolution concerning the laboratory bench NIR 

instrumentation from the equipment employing filters and those based on 
diffraction gratings to the Fourier transform spectrometers equipped with 
interferometer (FT-NIR). The interferometer represents the most important 
component of the spectrometer, which consists of a beamsplitter and two mirrors 
(one of which is movable), with the function of modulating the light. FT-NIR 
spectrophotometers depict the most widespread commercial technology as 
laboratory bench NIR tools besides their robustness, durability and the progressive 
reduced size. Within a controlled laboratory ambient the above-mentioned 
technology con offer very high spectral resolution (seldom necessary for spectra 
arising from solid samples but useful when analysing other mixtures having almost 
identical chemical features where little changes in the spectra are important to build 
qualitative and quantitative multivariate regression models), very good signal-to-
noise ratio (SNR), quick spectra collection and spectral range covering the whole 
NIR region. The quality of NIR spectra provided by these instruments turn out to 
be very good in all the known acquisition modes, that is diffusive reflectance, 
transmittance and transflectance (Pasquini, 2018). 



 

 18

Detectors incorporated in the NIR technology can be divided in two classes: 
single channel and multichannel detectors. The single channel detectors are mainly 
based on semiconductors such as PbS and InGaAs. Detectors based on PbS have 
been the first ones employed in the NIR instrumentation and today are still used 
even though the detectivity shown is lower and the response time longer compared 
to InGaAs semiconductors. This last single channel detector is the most used in the 
modern FT-NIR spectrophotometers achieving good performance over the entire 
NIR spectral range even if it loses a little in SNR. Both the FT-NIR and dispersive 
based instruments display very good SNR, often surpassing 10,000:1. Detectors 
based on mercury cadmium telluride are also employed, even though they exhibit a 
lower performance over the entire spectral range. The multichannel detectors 
include diode arrays, in which elements are arranged in rows, and charged coupled 
devices (CCDs) where elements are arranged in planes. These systems allow to 
record the spectral information more rapidly by collecting many wavelengths at 
once. NIR imaging spectroscopy arises from this kind of detectors where the spectra 
collected by cameras provide a three dimensional image by which the shape and 
size of the sample is recorded besides the determination of the spatial composition 
and the wavelength employed (Blanco, 2002; Pasquini, 2018). 

NIR instruments equipped with fiber-optic probes provide fast spectra 
acquisition by selecting the appropriate mode depending on the sample 
characteristics that is, usually, diffusive reflectance for solids, transmittance for 
liquids and transflectance for opaque liquids and emulsions. Fiber-optic probes are 
usually an integrated part of process instruments. 

 

2.2.1 Process instruments 

Due to its advantages such as the non-invasive testing and the speed of 
analytical response (a few seconds), NIR process instruments have been employed 
as analytical techniques in several manufacturing sectors as integrating part of the 
PAT framework over the last years. PAT concept, which will be further described 
in detail in Chapter 4 of this thesis, has been mostly implemented in pharmaceutical 
industries where the production process is monitored and controlled by NIRS taking 
into account the instrument specifications. The operation of process instruments 
must be autonomous and the accomplishment of all the necessary procedures to 
guarantee the quality of spectral information must be automatic. The instrument 
performance and the sampling process tests must be carried out throughout the 
device operation to assure reliable results (Pasquini, 2018). 

An important aspect related to process instruments has to do with the collection 
speed of the spectral data. The sampling time, which can differ from a few seconds 
to some minutes, must be around ten times faster compared to the response time of 
the process. FT instruments are mostly used for on-line process monitoring after 
attentive installation of the spectrophotometer and are located at a certain distance 
from the production process line. Moreover, since the interferometer represents the 
most susceptible part of the instrument, improvements have been made to mitigate 
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the negative vibration effects on it. These instruments are equipped with optical 
fibres which are able to convey the radiation from the instrument to the process 
stream and then to send it back to the spectrometer after its interaction with the 
sample. Sometimes, when needed and if feasible, the sample is withdrawn from the 
line and transferred to the NIR instrument. Both the FT and dispersive instruments 
are frequently used in process monitoring even though their limits related to the 
moving components. The best solution for in-line or on-line process monitoring and 
control concerns the employment of solid state NIR devices where the combination 
of planar or concave gratings with an array of sensors made of PbS, Si, or InGaAs 
is the best known way to mitigate moving parts, with the drawback concerning the 
lower spectral resolution and the shorter wavelength range. Spectrophotometers 
equipped with the abovementioned sensors prove to be robust and the resulting 
spectrum can be acquired in less than one second. Technologies like AOTF have 
advanced in order to build monochromators with no moving parts and also 
characterized by a high scanning speed which makes them suitable for applications 
in production processes (Pasquini, 2018). 

 

2.2.2 Miniaturized instruments  

Some miniaturized spectrophotometers recently developed are transforming 
the NIR spectroscopy technique because besides being light, not too expensive and 
of a small-size are also able to collect data in the field along the value chain 
including the acceptance of materials, production processes, delivery, use, etc. 
Several manufacturers provide instruments with different specifications where the 
more important characteristic concerns the spectral range (Pasquini, 2018). 

Other small-sized spectrophotometers have a limited employment in the field 
due to their request for external radiation sources. Some portable NIR instruments 
can weight up to 1.5 kg and have halfway size. These spectrophotometers must 
include all the needed devices in order to work autonomously; most of them employ 
sensor arrays while others use MEMS (micro electro mechanical systems) as 
intermediate spectral component among other devices. A few manufacturers of 
portable instruments developed and produced miniaturized devices, employed to 
put together entire instruments, exploiting the progress in MEMS and 
microelectronics. In these instruments the radiation provenance used for diffusive 
reflectance measurements is internal and technologies like Bluetooth used for data 
transmission after collection are provided (Pasquini, 2018). 

Viavi solutions company proposed a microNIR instrument which includes 
tungsten filaments as source of radiation, a filter for the selection of wavelengths 
and an array of InGaAs sensors which are sensitive to a limited interval of 
wavelengths. The signal to noise ratio of the collected spectra can be improved by 
increasing the number of scans that can be averaged. This kind of instrument has 
an optical resolution included between 15 and 20 nm with good results in different 
applications like the identification of incoming raw materials in pharmaceutical 
industries, the adulteration of biodiesel, etc (Pasquini, 2018). 
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The smallest NIR instrument produced up to now is based on the MEMS 
technology and make use of a Fabry Perot filter where an applied voltage selects 
the restricted radiation beam to be transmitted. Another type of FT-NIR instrument 
commercialized but not yet assessed for applications uses the MEMS technology to 
build a micro-interferometer (Pasquini, 2018). 

A comparison made over the last years between the portable and bench 
instruments, including all areas of applications, revealed good performances of 
portable instruments although inferior comparing with the conventional ones. In 
order to standardize and transfer the models to various units, the stability and 
reproducibility assessment of miniaturised instruments presently in commerce is 
needed. The miniaturised NIR spectrometers compared to the bench instruments 
usually do not guarantee their robustness for a lengthy period of time because of 
the absence of an internal self-testing protocol. As the transfer of the model is 
important for NIRS applications at several points of analysis in production, delivery 
and usage, studies have proved that model transfer from bench to portable 
spectrophotometers is feasible (Pasquini, 2018). 

When analysing non-homogeneous samples by miniaturized instruments a 
common drawback is the insufficient representativeness of the measure owing to 
the very limited sample surface area entering in contact with the probe, overall 
bringing to non-accurate outcomes. In such occurrences before developing any 
qualitative or quantitative chemometric model a sampling procedure must be 
planned and/or adequate sampling devices should be employed. Avoiding sample 
transfer by performing in-situ measurements can improve the accuracy. Comparing 
the analytical data collected by portable instruments with the data arising from 
reference methods could not be the right way to assess the utility of a developed 
method. Taking into account two aspects like accuracy and speed of analysis, the 
methods related to miniaturized instruments can be characterized by lower accuracy 
but they gain importance in the real time measurements compared to methods 
arising from classical spectrophotometers (Pasquini, 2018). 

 

2.2.3 NIR imaging instruments 

The devices employed as imaging instruments are usually spectral cameras able 
to get an image of the sample surface where a NIR spectrum is acquired and 
associated to each component of the spatial resolution (pixel) as opposed to the 
portable and bench spectrophotometers that provide a spectrum arising from the 
average composition of the explored sample area. The hypercube (3D cube) arising 
from the data collection and processing of the acquired spatial and spectral 
information consists of many slices arranged horizontally which coincide with the 
number of wavelengths and contain images related to the single wavelengths that 
make up the NIR radiation. The data set is described by the term “hyperspectral 
imaging” (HSI) when a large number of wavelengths is employed. Each pixel can 
be represented as a single sample with sizes which may vary from 1 x 1 to 600 x 
600 µm and the NIR spectra acquired in each of these small samples create the HSI 
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data set (Pasquini, 2018). When only a few wavelengths are available throughout 
the whole spectrum it is possible to refer to “multispectral imaging” (MSI) 
technology. 

Cameras based on the “focal planar array hyperspectral” employ technologies 
like the AOTF or MEMS integrated in variable Fabry-Perot interference filters as 
wavelength selection systems and an array of detectors of planar disposition. These 
instruments aimed to take a NIR hyperspectral image can employ different 
wavelength ranges of the NIR region. The main benefits related to this sort of 
camera include the achievement of qualitative and quantitative analytical tasks by 
choosing a limited range of wavelengths and the short time in getting the HSI. 
Moreover, the image must be acquired while the sample is steady (Pasquini, 2018). 

Recently, a snapshot camera composed by a system which allow to choose the 
wanted wavelengths and a flat detector array has been suggested. These cameras 
are made of Fabry-Perot filters as tools for wavelength selection placed on a 
detector made of metal oxide semiconductor. This device can acquire up to 170 full 
images per second even if a limited range of NIR radiation has been evaluated. A 
possible employment of these instruments concerns the process control by imaging 
following the appropriate choice of the required wavelengths given the limited 
amount of spectral channels (Pasquini, 2018). 

The advances in resolution and in spatial dimension are the main characteristics 
provided by HSI. Another benefit is the higher sensitivity of NIRS provided by HSI 
where low analyte concentrations are identified through imaging over the surface 
of the sample. Compared to the classical measurements based on reflectance, this 
technology allows the detection of lower amounts of adulterants or contaminants 
due to its analytical sensitivity and selectivity. By employing HSI, wide sample 
areas are quickly explored improving sample representativeness by providing a 
mean spectrum which arise from wider areas compared to conventional NIRS. The 
HSI technology embedded in cameras has also the potential for in-field applications 
in order to monitor larger areas with interest in the agricultural and environmental 
sectors (Pasquini, 2018). 

The large amounts of data arising from HSI technologies can be processed by 
using the present-day micro-computers. Multivariate data analysis including pre-
processing techniques can be used to get details about the sample composition, 
following the same way as classical NIRS, as the sample image can be considered 
like an ensemble of minute samples (pixels). The score values of the pixels forming 
an image on the PCA model can display the compositional distribution of the 
sample surface starting from the spectral data. Often, the term “chemical image” is 
referred to images deriving from samples where the scores of the pixels are used to 
rebuild it. The concentration of several analytes in each pixel area can be evaluated 
by combining multivariate curve resolution (MCR) with ordinary (OLS) or 
alternating least squares (ALS). The number and the concentration of compounds 
in each pixel can be estimated using the MCR-ALS by taking advantage of the 
analytes distribution, observed in the sample by imaging (Pasquini, 2018). All these 
data mining techniques will be further discussed in Chapter 3 of this thesis. 
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2.3 Acquisition techniques 

According to the sample presentation there exist several ways to perform the 
collection of NIR spectra. The main strategies are delineated below according to 
Osborne, (2006). 

 

2.3.1 Diffuse reflectance 

When the electromagnetic radiation at the interface between two mediums is 
not involved in diffuse (scattering) phenomena the term specular reflectance is 
used. Diffuse reflectance (Figure 2-4), instead, is the process by which the incident 
unidirectional radiation is reflected in many directions. When the radiation is 
reflected in a diffuse way but without penetration into the sample the absorption 
process doesn’t occurs. Instead, when the radiation penetrates the sample surface, 
it can be absorbed, reflected or transmitted (Figure 2-3). The modality of diffuse 
reflectance is usually used to acquire the NIR spectra of solid, powder and 
semiliquid samples. The absorbance (A), and so the concentration, is related to the 
diffusely reflected radiation (R) through a similar relation to that of the Lambert-
Beer’s law (A = log1/R). An important phenomenon which should be reduced or 
eliminated is the scattering of radiation as it affects the response values. 

 

Figure 2-3. Absorption, reflection and transmission of NIR radiation following the 
interaction with the sample. 

 

2.3.2 Transmittance 

The transmittance mode is usually used to collect the spectra of transparent 
liquid materials (vegetable oils, vine, etc.) where the Lambert-Beer’s law (A = εbc 
= log1/T), which put in relation the absorbance, the concentration (c) and the 
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transmitted radiation (T), is effectual as no scattering phenomena occur. For the 
acquisition of NIR spectra of vegetable oils there is no need to dilute the sample 
because of the low intensity absorption bands associated to overtones and 
combinations of fundamental vibrations. 

In the presence of scattering the Lambert-Beer’s law is not valid as the optical 
path (b) changes depending on the nature of the sample. Turbid liquids, semi-solids 
and solids being affected by light scattering can be analysed in diffuse transmittance 
(Figure 2-4). An example is that of the liquid whole milk in which the fat globules 
scatter the radiation changing the path length. Diffuse transmittance modality has 
been employed to collect the spectra of samples like grains, meat and cheese having 
a thickness of 1-2 cm. The appropriate arrangement of a device used for the whole 
grain analysis can also be employed for on-line measurements. 

 

Figure 2-4. Diffuse reflectance and transmittance phenomena involving radiation. 

 

2.3.3 Transflectance 

Transflectance analysis arise from the combination of transmittance and 
reflectance. It is usually used with liquid samples where the radiation first is 
transmitted across the sample and then reflected by a suitable material (usually 
ceramic) placed beneath it and lastly transmitted back through the sample in order 
to reach the detector. The liquid sample is therefore crossed twice, and this allows 
a stronger signal to be acquired requiring smaller amounts of sample. 
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2.4 Applications in food and pharmaceutical areas 

Based on the scientific literature, NIRS proved to be a useful technique for 
application in several fields due to its advantages compared to other analytical 
techniques. 

Spectroscopic techniques including NIRS coupled with multivariate data 
analysis have been explored by several organizations for the quality assessment of 
extra-virgin and virgin olive oil. Major and minor constituents have been 
quantitatively evaluated along with the prediction of sensorial and technological 
characteristics. Another objective attained by using these technologies was the 
authentication of oils related to their production location (Gomez-Caravaca, 2016). 

Coffee is one of the most consumed beverages and a high-quality product is 
necessary to be competitive by satisfying the clients. NIRS has the potential to 
provide information about the chemical components and the properties of coffee in 
a short time. This instrument can also be used for classification and authentication 
purposes as well as to assess sensory attributes. The knowledge about the evolution 
of the production process can be increased and for accomplishing this task further 
efforts must be made to transfer the knowledge in industrial applications (Barbin, 
2014). 
The detection of microbiological, chemical and physical hazards in various types 
of foods can be accomplished through NIR spectroscopy and imaging instruments 
combined with chemometrics. These techniques have also the potential to be 
applied for the food traceability and the discrimination of non-processed from the 
processed food. Besides the advantages over some other techniques, NIRS and 
imaging techniques are limited in the detection of trace amounts of chemicals which 
can be overcome by sample pre-treatment. The long-time collection of data is a 
drawback for spectral imaging instruments as it limits the on-line/real time 
applications (Fu, 2016). 

Another potential field of application of NIRS concerns the adulteration of food 
and raw materials. In order to fingerprint incoming raw materials and ingredients 
as part of the process analytical technology (PAT) framework, it is required to move 
away from the targeted strategy (focused on the targeted prediction of the interested 
quality parameters). The high frequency monitoring of incoming raw materials by 
NIRS coupled with chemometrics should allow detecting deviations from the 
specifications increasing the speed of the production process (Sørensen, 2016). 

NIRS has also been employed as a tool to assess the contamination of cereals 
by funghi and to estimate their secondary metabolites (mycotoxins). The outcomes 
arising from various studies showed the favorable employment of the technique for 
the identification of funghi and the assessment of specific levels of mycotoxins 
(Hossain, 2014) even though the inherent low sensitivity pose a strong limit. 

One of the advantages of NIRS concerns the absence of sample preparation 
which is an important factor for real time on-line applications. Rapid analysis, 
however, is not the only requirement for successful on-line measurements as other 
factors such as temperature variation or moving samples affect the production 
process. Scientific studies have been made with the purpose of on-line 
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measurements but without clear results. Although numerous scientific studies claim 
the potential of NIRS for industrial on-line process monitoring and control, a 
limited number of scientific papers have been focused on the possibility of 
industrial on-line applications. Therefore, other studies should be performed to 
assess the NIRS application for real time measurements in the food industry taking 
into account the process conditions (Porep, 2015). 

The pharmaceutical sector is another field of application of NIRS with studies 
aimed at the determination of the end point of mixing, granulation and drying 
manufacturing process. Qualitative and quantitative evaluations of pharmaceutical 
constituents are also performed by NIRS coupled with chemometrics. Final product 
physicochemical characteristics like porosity, hardness, compression, 
disintegration time and possible counterfeit have been monitored and controlled 
through spectroscopic determinations and the implementation of NIRS for the real 
time monitoring of pharmaceutical production processes will be a benefit for many 
industries (Jamrogiewicz, 2012). 

The identification of raw materials and moisture content are extensively 
performed by NIRS which is considered as a standard method. Its potential 
applications in pharmaceutical companies span from the conformity check of 
incoming raw materials to the real time quality monitoring and control of the final 
pharmaceutical products. Along with other advantages, the employment of optical 
fibres makes it a prominent process analytical technology (PAT) technique enabling 
the optimization of the manufacturing chain (Luypaert, 2007). 

The determination of the composition as well as the evaluation of natural 
products and the monitoring and control of production processes have been 
performed by NIRS. Its combination with chemometrics can enable to detect 
compositional characteristics which are even difficult to observe by conventional 
analytical techniques. Besides the advances in NIRS and chemometrics in order to 
fingerprint natural products, the endorsement of this technology in the 
abovementioned field is limited by the relevant training (Cozzolino, 2009). 

 

2.5 HSI in agro-food and pharmaceutical sector  

One of the main areas of application of HSI, concerns the agricultural sector, 
taking advantage of the spatial spectral potentialities. These instruments, for 
example, allow concomitant scanning of numerous kernels of various crops 
accelerating the analysis of each kernel. Information about several features like 
variety, possible contaminations as well as kernels classification can be obtained by 
integrating chemometrics. The detection of adulterants, such as melamine in milk 
powder by HSI can be obtained at lower concentrations compared with the 
conventional NIRS. Moreover, the HSI can give either surface or deep (up to a few 
millimeters) information of the interested sample. During the studies aimed to the 
adulterant detection it’s worth considering the transformation process to yield the 
final product. Along this phase the properties (e.g. degree of crystallinity) of the 
interested analyte may change which result in different NIR spectra. Another 
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ambient of application of HSI is the pharmaceutical industry including works in the 
evaluation of homogeneity and isolation of active pharmaceutical ingredients in 
compressed products as well as other uses such as the distribution of polymorphic 
forms and investigations on the deterioration of tablets. HSI assisted by 
chemometrics is also employed in forensic studies for analysing biological fluids 
with identification purposes where non-destructive analyses are needed (Pasquini, 
2018). 
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Chapter 3 

3) Multivariate data analysis 
(Chemometrics) 

Chemometrics is known as the branch of chemistry which studies the 
application of mathematical and statistical methods to the data arising from a 
system or from a chemical process (www.gruppochemiometria.it). The aim of 
chemometrics is: 

 to design, select, and optimize experiments; 

 to get as much as possible information from the system through data 
analysis; 

 to transform the information in a graphical representation. 
 

3.1 Design of experiments (DoE) 

In order to understand and learn on systems and processes operation, the simple 
and attentive observation is important but not sufficient when it comes to 
understand what happens when the input factors are modified. Therefore, it is 
necessary to perform experiments in order to understand the system’s output 
variations, i.e. the response variables, after changing the input variables, that is, to 
analyse the performance of systems and processes. According to Montgomery 
(2017), experimental design (or design of experiments, DoE) is used for various 
objectives which include: 

 Factor screening. When studying a system or process there may be several 
factors that must be taken into account. It becomes important to understand 
which factors more affect the desired response values, that is, which factors 
are significant and should be studied in detail and which of them can be 
removed. The characterization of factors is carried out for new processes 
and systems and when the knowledge about the system is not sufficient to 
get the requested performance. A model can be developed based on the 
relation between the significant factors and the response and then used for 
decision making. 

 Optimization. This step is usually performed after the identification of the 
significant factors with the aim of finding the levels of such factors which 
produce the desired outputs (e.g. maximize yield). As a screening 
experiment typically does not provide the optimum settings for the 
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significant factors the optimization experiment is a continuation of the 
factors’ characterization. 

 Confirmation. The confirmation experiment is usually carried out when the 
aim is to assess the coherence of the system’s behaviour with existing 
theories or experience, like for the evaluation related to a new advantageous 
material (e.g. in terms of costs) which may be equivalent, in theory, to 
existing materials but should maintain the same characteristics that affect its 
use. The scale-up of a manufacturing process from the pilot plant to the full-
scale production often requires a confirmation experiment. 

 Discovery. The output arising from the exploration of new materials or new 
factors is usually determined by discovery experiments (e.g. the effect of 
new products in treating disease). 

 Robustness. This kind of experiments are usually performed in order to 
understand the conditions that could bring to output responses with 
unacceptable variability. The objective is to set the levels of controllable 
factors into the system to minimize the response variability arising from 
factors that cannot be controlled very well. 

 
A good DoE results in saving time and resources and leads to concrete benefits 

for experiments where mathematical models related to the system are built. 
There exist many areas of applications that employ DoE methods. The 

implementation of these techniques in manufacturing process design and 
development as well as in process management may result in several benefits 
concerning process performance, development time and global costs. The design 
and development of new products (including product formulation) along with 
product improvement benefit from the application of experimental design as well. 
The advantages related to product realization may be the reduced time for the 
development of products, the augmented performance of the manufactured products 
and the inferior product costs (Montgomery, 2017). 

Usually the relation between the experimental response and the factors is 
represented through a model. In order to get reliable predictions of the response, the 
number of experiments to be run is of a crucial importance. Statistical experimental 
design provides a guide about the number and the nature of experiments needed to 
be performed (Leardi, 2009). For a straight mathematical relationship between the 
response and a given factor, the degrees of freedom (D), which is a measure of how 
well the data fits the theoretical model, is given by the difference between the 
number of experiments (N) and the number of coefficients (P) of the model. In order 
to assess if the data are consistent with the theoretical model, the information 
increases with the higher number of the degrees of freedom (Brereton, 2007). 

In order to get an idea about the experimental error it is necessary to repeat 
several times the experiment under the same conditions. It becomes very difficult 
to accomplish good predictions when the error is large. To calculate the degrees of 
freedom, the number of experimental replicates should also be taken into account. 
An experiment is usually good when the number of replicates is close to the number 
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of the degrees of freedom. The significance of factors and interactions between 
factors in models can be determined by the analysis of variance (ANOVA) available 
in the common statistical tools (Brereton, 2007). 

The first step when implementing a design of experiment consists in creating 
an experimental set-up which depicts the experiments performed under different 
factors conditions. This can be done using a design matrix, that is a matrix in which 
each row denotes an experiment and each column represents one of the parameters 
arising from the model (regression model) that depends from the number of factors. 
The design matrix is used along with the measured response values to estimate the 
best fit coefficients of the regression model from which the significance of factors 
can be inferred (Brereton, 2007). 

The choice of a probable design of experiment usually depends on some 
constraints (time, costs and equipment) and on the problem to deal with. In the 
following sections, a more thorough description of some of the most used designs 
has been done. 

 

3.1.1 Full factorial designs 

The study of the influence of two or more factors as well as their interactions 
on the response is usually carried out by factorial designs. Unlike the one-factor-at-
a-time design where factors are varied one at the time regardless of interactions, in 
factorial designs all combinations of the levels of factors defined in the experiment 
are examined. When interactions are not considered, this can lead to erroneous 
conclusions. Furthermore, also the estimation of the effects of a factor at various 
levels of the other employed factors is obtained by using factorial designs. In order 
to perform a full factorial design, the number of experimental runs to make is N = 
lf where f represents the number of factors, and l depicts the number of levels 
(Brereton, 2007). 

An important class of general factorial designs is the two-level, k factors full 
factorial design (2k) where the levels can be either quantitative or qualitative. The 
2k designs are extensively used in factor screening experiments as it is possible to 
study the k factors by performing a low number of runs which results to be 
advantageous in the first steps of the research work. For instance, the 22 factorial 
design refers to a design with two factors where each factor is at two levels which 
means that the number of experimental runs to perform is four without replicates 
(Brereton, 2007). 

When the purpose is to study the influence of three factors (A, B, C) and their 
interactions, each one taken at two levels, on the response values the number of 
experiments to run is eight (23 = 8). Denoting the low level of each factor (coded 
variable) as -1, the high level as +1 and the response y, the design set up can be 
depicted as in the Table 3-1. 
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Table 3-1. Experimental runs to be performed considering three factors each one at 
two levels (modified from: Brereton, 2007). 

Experiment A B C Response 

1 -1 -1 -1 y1 
2 1 -1 -1 y2 
3 -1 1 -1 y3 
4 1 1 -1 y4 
5 -1 -1 1 y5 
6 1 -1 1 y6 
7 -1 1 1 y7 
8 1 1 1 y8 

 
 
When replicates are performed then the total sum of the responses of each 

experimental replicate is considered in order to assess the factors’ importance. The 
23 can be visualized geometrically as a box (Figure 3-1) where each corner 
represents a given treatment combination. 

 

 

Figure 3-1. Geometric depiction of the experimental design illustrated in Table 3-1 
(modified from: Brereton, 2007). 

 
 
One possible way to understand the importance of factors and their interactions 

over the response is by estimating their corresponding parameters through the 
design matrix (Table 3-2). In order to optimize the system, the not relevant factors 
based on their parameters need to be eliminated. 
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Table 3-2. Design matrix related to the experiment presented in Table 3-1 (modified 
from: Brereton, 2007). 

Intercept A B C AB AC BC ABC 

1 -1 -1 -1 1 1 1 -1 

1 1 -1 -1 -1 -1 1 1 

1 -1 1 -1 -1 1 -1 1 

1 1 1 -1 1 -1 -1 -1 

1 -1 -1 1 1 -1 -1 1 

1 1 -1 1 -1 1 -1 -1 

1 -1 1 1 -1 -1 1 -1 

1 1 1 1 1 1 1 1 

b0 b1 b2 b3 b12 b13 b23 b123 

 
 

3.1.2 Fractional factorial design  

A full factorial design involves an exponential augmentation of the number of 
experimental runs as the number of factors rises. In order to achieve the aim more 
time and resources are needed, which can become increasingly impracticable 
depending on the number of factors. In situations with a high number of factors the 
degrees of freedom associated with higher order interactions are likely to be 
insignificant or their physical meaning is difficult to understand. In this way only a 
fraction of the full factorial design can provide information about the main effects 
and the lower order interactions. These designs are called fractional factorial 
designs and are mainly used in screening experiments for product design and 
process design and improvement. The general formula of a two-level fractional 
design is 2k-p. When p equals 1 the number of runs to be performed is reduced by 
half with respect to the complete factorial with consequently reduction of the 
amount of information. The number of experimental runs, for a three factor with 
each factor at two levels, equals four. The structure of the abovementioned design 
consists of the basic design which is a representation of the 22 factorial by adding 
the third factor that depicts the level interactions of the first and the second factors. 
This results in the orthogonality among the factors, that is the property that allow 
to differentiate the main effect of each factor varying distinctly (Montgomery, 
2017). 
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3.1.3 Plackett Burman designs 

To further reduce the number of experiments the Plackett-Burman designs can 
be employed. Through these designs the number of experimental runs to be carried 
out corresponds to the minimum number needed to study the factors of the system. 
These experiments are accomplished by using a “generator” in order to assure the 
orthogonality and exist for a selected number of factors (Brereton, 2007). 

 

3.1.4 Mixture designs 

Mixture designs require a set of factors, whose total percentage is constant and 
results to 100%, with the objective to find the optimal combination of components 
(factors) that yield the desired response. The several factors are interdependent and 
the mixture space, within which the experiments are depicted as points, turns out to 
be a triangle for three components, a tetrahedron for four components and so on 
(Brereton, 2007). 

 

3.1.5 Designs for multivariate calibration 

The conventional analytical methods (e.g. chromatographic techniques) are 
considered as time-consuming methods which makes them unsuitable when it is 
needed to get quick and continuous analytical responses. One way to obtain quick 
responses consists in collecting the spectra (e.g. NIR spectra) of samples that can 
be acquired in a few seconds and subjecting the spectra to computational methods 
in order to obtain calibrations that allow to extract quantitative information. A 
calibration model can be developed by collecting the spectra of samples with known 
concentrations of the compound of interest and, as a result, the future unknown 
concentration of the compound can be computed from the model. The data 
employed to build the calibration model is called training set. In order to provide 
reliable quantitative predicted responses of unknown samples, the design of the 
training set is very important. In the experimental design for the multivariate 
calibration the number of reasonable concentration levels is five (Brereton, 2007). 
The number of experimental runs to be performed for mixtures (made by more than 
one compound) equals k x l^p, where p is a whole number greater or equal to 2, k 
a whole number greater or equal to 1 and l corresponds to the number of 
concentration levels. Choosing five levels of concentrations with k and p at their 
lower levels, the number of experiments (mixtures) to perform according to this 
design is 25 (the resulting spectra). The benefit of this kind of design is that all the 
components of the mixture result orthogonal (Brereton, 2007). 
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3.2 Exploratory analysis 

An exploratory analysis can provide information about the nature and the group 
membership of samples as well as information about the relationship between 
samples and variables. Usually, the multivariate data are subjected to a pre-
processing step before exploratory investigation (O'Donnell, 2014). 

 

3.2.1 Pre-processing techniques 

Pre-processing methods are employed after the spectral data acquisition and 
before chemometric modelling. The spectra arising from NIR spectroscopic 
technique can be affected by non-linearities and baseline shifts which depend on 
the light scattering. The aim of pre-processing is to reduce or even remove these 
undesired variations (i.e. not related to the chemical nature of the sample) from the 
spectral data. For instance, Lorentz-Mie scattering is prevalent when the infrared 
radiation interacts with solid samples whose particle sizes are larger than the 
interested wavelength. The benefits arising from pre-processing can be of great 
importance during the steps of exploratory analysis, bi-linear calibration or 
classification modelling (Rinnan, 2009). 

The abovementioned techniques can be distinguished between classical pre-
processing methods and signal correction methods. 

 

3.2.1.1 Classical pre-processing methods 

These methods can be employed for a wide range of multivariate data including 
spectroscopic and process information data. Two of the most common methods are 
mean centring and scaling. 

 

– Mean centring: The criterion consists in subtracting the variable mean of 
a specific position in the data matrix (i.e. a specific column) to each 
variable value of the same position (i.e. column) helping the subsequent 
modelling algorithm to focus on the variation between samples. It is 
usually recommended in combination with other methods for pre-
processing of spectral data. The raw data arising from samples of “Vitamin 
A” (employed as raw material) and the outcome after the mean centring is 
shown in Figure 3-2a and b, where the mean on each column of the mean-
centred data equals zero. 
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Figure 3-2. Raw spectral data (a) and mean centring (b) pre-processing outcome 
starting from the raw data of ”Vitamin A”. 

  
– Scaling: Unit variance scaling divides each variable at a specific position 

by its corresponding standard deviation and is employed to make variables 
of different scales comparable prior to further processing. It is not applied 
to spectroscopic data as the relevant information is related to the 
differences in signal intensities. The integration of unit variance scaling 
with mean centring results in the so-called “auto scaling”. 

 
The abovementioned methods belong to the “column-wise” treatments whereas 

the following methods refer to the “row-wise” treatments (O'Donnell, 2014). 
 

3.2.1.2 Signal correction methods 

According to Rinnan (2009), the row-wise pre-processing methods used in NIR 
spectroscopy can usually be grouped in scatter-correction methods and spectral 
derivatives. The class of the scatter-correction techniques consists of Multiplicative 
Signal Correction (MSC), Extended MSC (EMSC), Standard Normal Variate 
(SNV), Normalization, etc. The most used pre-processing techniques based on 
derivatives (first derivative that corrects the added baseline and the second 
derivative which corrects both offset and baseline slope), that use a first step of 
smoothing to reduce the noise arising from derivatives, belong to Savitzky-Golay 
(SG) polynomial derivative filters and Norris-Williams (NW) derivatives. 

 

– MSC: The aim of Multiplicative Signal Correction is to remove the 
undesired scatter effects from the NIR spectral data before the subsequent 
modelling. It is one of the most applied scatter correction methods. The 
MSC algorithm includes two steps: 
 
 The first step ends up with the estimation of the parameters (𝑎 and 𝑏) 

that contribute to the additive and multiplicative effects (Equation 3.1), 
by means of least squares fitting: 
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𝑿𝑜𝑟𝑔 = 𝒂 + 𝒃 ∗ 𝑿𝑟𝑒𝑓 + 𝒆                    Equation 3.1 
 

where 𝑋𝑜𝑟𝑔 represents the original NIR spectra, 𝑋𝑟𝑒𝑓 refers to the 
reference spectrum that can be the mean spectrum of the training set used 
for pre-processing of the whole set of data, while 𝑒 is the error (the un-
modelled portion of the original spectra). 
 
 The second step results in the correction of the obtained spectra 

(Equation 3.2). 
 

𝑿𝑐𝑜𝑟𝑟 =
𝑿𝑜𝑟𝑔 − 𝒂

𝒃
                                 Equation 3.2 

 
where 𝑋𝑐𝑜𝑟𝑟 represents the corrected spectra. 
 
An example depicting the raw spectral data (Figure 3-3a) of “Xangold” (raw 
vegetable material qualitatively assessed in Section 6 of this thesis, source 
of carotenoid esters) and the outcome of pre-processing by MSC is 
displayed in Figure 3-3b. The spectral response is expressed as reflected 
radiation. 
 

 
 

Figure 3-3. Raw spectral data (a), MSC (b), SNV (c) and Savitzky-Golay second 
derivative (d) pre-processing outcomes starting from the raw spectra of ”Xangold”. 

  
While in MSC the correction is performed through a first-order polynomial, 
in EMSC a second order polynomial for reference correction is used, and 
the correction terms (parameters) are found by fitting a second order 
polynomial to the original spectra. 
 

– SNV: There are analogies between SNV and MSC and the result in most 
practical cases is almost the same. The correction according to SNV is 
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operated on each spectrum individually, and it can be computed as 
(Equation 3.3): 
 

𝑿𝑐𝑜𝑟𝑟 =
𝑿𝑜𝑟𝑔 − 𝒂଴

𝒃଴
                           Equation 3.3 

 
where 𝑎଴ is the mean value of the NIR spectrum which has to be corrected 
and 𝑏଴ represents the standard deviation of the spectrum. The result of SNV 
pre-processing is shown in Figure 3-3c. 
When the collected NIR spectra are noisy, as it can happen in on-line or in-
line applications, a method named “robust normal variate” is recommended. 
This method employs as estimates for a0 and b0 the mean and the standard 
deviation of the inner quartile range, respectively. With regard to the 
normalization method, a0 is set to zero and b0 can be taken as the Euclidean 
norm or the normalization can be done over the variable with maximum 
absorbance or on a chosen wavelength. 
 

– Savitzky-Golay derivation: By fitting a polynomial (the window size and the 
degree of the polynomial need to be selected) on the raw data, the 
parameters of the polynomial are computed, and the calculated derivative 
of the polynomial function is employed as derivative estimate for each data 
point. This procedure is applied to all the spectral data points with the order 
of derivative that depends on the polynomial degree. The outcome of this 
kind of pre-processing computing a second order derivative on the second 
degree polynomial trend using a window size of 15 points is displayed in 
Figure 3-3d. 
 

– Norris-Williams (NW) derivation: The NW pre-processing involves at first 
a smoothing step of the spectral data, accomplished through the average 
over a selected number of points in the smoothing window. Then, the 
corrected spectrum is obtained by derivation through finite differences after 
setting a gap size between the smoothed values.    
 

3.2.2 Principal component analysis (PCA) 

PCA aims at projecting a set of samples, originally located in a high-
dimensional space whose dimensions depend on the number of variables, onto a 
new space of lower dimensions, described by so-called principal components (PCs). 
The PCs represent the axes of the new space and the coordinates of each sample of 
the set are named “scores”. In the new space, the main axis called first PC has the 
direction of the maximum variance of the samples and the second axis which is 
orthogonal to the main axis, depicts the maximum of the remaining samples 
dispersion. The following new axes are searched in this way until their number 
matches the number of original variables. By projecting the sample set on the new 
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PCs axes, the distances and the scales between them are preserved. PCA operates a 
reduction in dimensionality, making it possible to easily visualize the set of samples 
by means of two- or three-dimensional representations, obtained by plotting the 
scores one against the other (O'Donnell, 2014). 

The data set is usually arranged in a matrix  𝑋 where the number of rows 
represents the number of observations (samples) and the number of columns 
describes the number of variables. With respect to the spectroscopic data, the 
variables correspond to the spectral wavelengths. The application of a PCA 
algorithm decomposes the variance-covariance matrix of  𝑋 into three matrixes i.e. 
the matrix  𝑇 containing the scores, the matrix  𝑃 containing the loadings 
(coefficients of the linear combinations of the original variables, each set 
corresponding to one principal component) and the matrix  𝐸 containing the un-
modelled part of the data (the residuals) with the same dimension as the original 
matrix (Figure 3-4). For a chosen number of components k, the matrix  𝑋 having n 
rows and p columns can be decomposed as follows (Equation 3.4): 

 

𝑿௡×௣ = 𝑻௡×௞𝑷௞×௣
𝑻 + 𝑬௡×௣                               Equation 3.4 

 
where the number of columns of the scores matrix 𝑇 equals the number of rows of 
the transposed loading matrix  𝑃் . Since a total of p PCs can be extracted, the last 
p–k components  are included in the error matrix  𝐸 (O'Donnell, 2014). 
 
 

 

 
Figure 3-4. Visualization of the PCA decomposition structure. 

 
When using continuous data like spectra, it is always recommended to pre-

process the data by using the mean-centring step along with other techniques before 
applying the PCA algorithm. The loadings (principal components), which describe 
the explained variance in a decreasing order in all the samples, will be the same for 
all the averaged data. The score values, on the other hand, indicate how much each 
loading match the individual spectra and are different depending on the averaged 
spectra. The un-modelled part of the spectral data will be represented by the 
residuals E. If two samples have similar scores, it means they have similar chemical 
and physical characteristics (Bro, 2014). The relation between spectral variables 
and their contribution to the first and second PC as they explain most of the variance 
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is displayed in Figure 3-5a for a set of NIR spectral data arising from various lots 
of xangold. 

 

 

Figure 3-5. Loadings plot (a) and scores plot (b) of the raw material xangold, as 
obtained from the first and second principal components. 

 
The relationship between the several lots (samples) of the abovementioned raw 

material is shown by the scores plot in Figure 3-5b where the first PC explains 
around 64% of the variance of the spectral data and the second PC around 28% for 
a total of 92% of variance explained by just two principal components. 

 

3.2.3 Outlier detection 

Within a set of samples subjected to multivariate data analysis there may exist 
outliers that are different from the other samples and as a result can un-properly 
perturb the model. Once the outliers are detected it is necessary to remove them 
from the analysis or keep them depending on why these samples are outliers (e.g. 
wrong labelling, measurement error, etc.) and how many within the data set are 
determined as such (if removing too many samples the model arising from the 
remaining samples may not be representative) (Bro, 2014). Outliers can be detected 
by means of a series of information and coefficients that results from the PCA 
decomposition such as:  
Scores plot. One way to detect the outliers is by looking for atypical samples in the 
score plot of a set of NIR spectral data. It is important to investigate whether a 
sample can be considered an outlier or not looking at all the score plots according 
to the number of components. The scores plot in Figure 3-6 shows that the blue 
samples (ginkgo biloba dry extract 6%) are clearly different from the other plotted 
samples (ginkgo biloba dry extract 24%): these three samples can thus be identified 
as outliers. 
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Figure 3-6. Outlier (ginkgo biloba dry extract 6%) detection by using scores plot and 
95% of confidence limit. 

 
Concerning the regression techniques such as PLS, which will be subsequently 
explained, the detection of outliers can be carried out by plotting the scores of the 
matrix Y against the scores of the matrix X. 
 
Leverage or Hotelling’s T2. The most used way for the detection of outliers is 
through the leverage (h) or Hotelling’s T2 which are two tools that generally provide 
the same result related to the scores. The leverage computes the distance of each i-
th sample from the centre of the model, according to the following equation 
(Equation 3.5), and is analogous to Mahalanobis distance (De Maesschalck, 2000). 
 

ℎ௜ = 𝒕௜(𝑻଴
்𝑻଴)ିଵ𝒕௜

்                            Equation 3.5 

 
where 𝑇଴ corresponds to the matrix of scores and 𝑡௜ represents the score vector 
related to the i-th sample. 
 
The outliers that provide high leverage values (“strong” outliers) need to be 
explained as they have a huge effect on the model (O'Donnell, 2014). 
Hotelling’s T2 can be employed in process monitoring (in-line or on-line) for the 
automatic detection of outliers comparing the scores of a given sample with the 
variation of the remaining data set, even if the visual representation of the model is 
a better approach (Bro, 2014). 
 
Residuals or Q. Another tool used for outlier detection concerns residuals or Q 
distance. Residuals incorporate the un-modelled part of the spectral variance taking 
into account spectroscopic data. The Q distance refers to the distance of each sample 
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to the model’s hyperplane. Outliers with a high residual variance are called “weak” 
outliers. The simultaneous detection of all types of outliers is achievable by plotting 
the residual variance against the T2 (O'Donnell, 2014). This plot is named influence 
plot and the Figure 3-7 displays this plot considering NIR spectral data of Ginkgo 
biloba dry extract 24% and 6%. From this figure plot we can see that PC1scores 
capture 76.537% of the total variance whereas the remaining is residual variance. 
The plot shows that there are three large score outliers which represent the three 
spectra of the same sample of Ginkgo biloba 6%, and three slight residual outliers 
within the group of Ginkgo biloba 24%. The three samples of Ginkgo biloba 6% 
can be considered as outliers and removed from the plot. 
 

 

Figure 3-7. Influence plot of spectral data representing two Ginkgo biloba dry extracts 
according to a confidence limit of 95%.  

 

3.3 Classification techniques 

In univariate classification just one variable output is employed to classify 
objects whereas in multivariate classification several variables of the same sample 
are used for discrimination. Classification techniques are divided in “unsupervised 
methods”, like clustering which aim to group samples searching for similarities, 
and “supervised methods” whose objective is to allocate samples to previously 
established classes (O'Donnell, 2014). 

Unsupervised techniques consist of hierarchical clustering methods (all the 
samples are considered at the beginning) and non-hierarchical clustering methods, 
such as K-means, where a number of samples is left out at the beginning (O'Donnell, 
2014). 

Some of the supervised classification methods are described as follows. 
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3.3.1 Soft Independent Modelling of Class Analogy (SIMCA) 

SIMCA belongs to the supervised classification techniques: each class is 
modelled independently using a specific PCA (the number of principal components 
used to build the various classes can be different). Usually, the limits of the classes 
are established through the confidence interval of the integration of Q distance and 
Hotelling’s T2 criteria or by computing the Euclidean distance of the residuals. 
SIMCA is referred to as a “soft modelling” technique because it allows the presence 
of regions in which two or more classes can overlap and hence a sample can belong 
to more than one class or none of the classes. On the contrary, with a “hard 
modelling” method discrete classes have to be build, and each sample is assigned 
to one class only. Four regions can be distinguished by plotting the residuals of two 
classes, built by applying the PCA algorithm, taking into account the confidence 
limits. Two zones are assigned respectively to the two classes, one zone 
representing the overlap between classes and the last zone within which fall the 
samples belonging to neither the classes (O'Donnell, 2014). 

 

3.3.2 Partial Least-Square Discriminant Analysis (PLS-DA) 

PLS-DA is an extension of the quantitative regression method (PLS) employed 
for qualitative analysis. The purpose of the PLS is to correlate the information 
between two blocks (usually multivariate)  𝑋 and  𝑌. In order to exploit the PLS 
benefits for classification purposes the matrix 𝑌(n×m), which is called “dummy 
matrix”, describes the m classes (represented by discrete numbers) included in the 
set of calibration samples. The two most important equations that explain the PLS-
DA are shown below (Equations 3.6 and 3.7): 

 
𝑿 = 𝑻𝑷 + 𝑬                            Equation 3.6 

 
𝒀 = 𝑻𝒒 + 𝒇                             Equation 3.7 

 
with 𝑇 that represents the score matrix, 𝑃 and 𝑞 are the loadings, 𝐸 and 𝑓 represent 
the residuals (Brereton, 2014). 
 
Figure 3-8 illustrates the model for a matrix 𝑋 with n rows and p columns of which 
the n samples are divided in two equal classes (A and B) labelled with the binary 
code 1 and 0. 
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Figure 3-8. PLS-DA model of two classes depicted by the 𝑌 column vector (modified 

from: Brereton, 2014). 

 
By applying PLS-DA, the matrix 𝑋 (which contains the spectral data) will be 

described by a set of latent variables (LVs), which can be regarded as the linear 
combination of the original variables (similarly to the way principal components of 
PCA are built). The optimal number of LVs is decided using a cross-validation-
based approach during the model training procedure (Ballabio, 2013). 

 

3.4 Calibration techniques 

In some specific situations the goal is to predict the quantity of one (y) or more 
(Y) quality attributes of interest. This aim can be achieved by correlating the 
attributes to a set of variables (X). These variables can be spectral data when 
spectroscopic techniques are used to collect the information on samples. The 
general equation has the following structure (Equation 3.8): 

 
𝒚𝒑𝒓𝒆𝒅 = 𝒇(𝑿)                              Equation 3.8 

 
where  𝑦௣௥௘ௗ is the vector containing the predicted quantities of the attribute and f 

is the correlation function linking the  spectral data of samples (X) and the quantity 
y to be predicted (O'Donnell, 2014). This function minimises the error between the 
actual responses (𝑦௥௘௙) and the predicted values (𝑦௣௥௘ௗ). 

 
The regression model is first developed (calibrated) and optimized starting 

from the two known sets of data X and y and then used to predict the quantity 
attribute of unknown samples. Linear or non-linear regression methods can be used 
depending on the relation between X and y. Concerning the linear modelling, the 
following equation (Equation 3.9) combining X and y when X is multivariate (e.g. 
spectral data), contains the vector (b) of the regression coefficients of variables and 
the offset b0 (O'Donnell, 2014): 

 
𝒚𝒑𝒓𝒆𝒅 = 𝒃଴ + 𝑿𝒃                           Equation 3.9   
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3.4.1 Multiple linear regression (MLR) 

MLR can be used when the number of variables in the original matrix does not 
exceed the number of samples and at the same time there is no collinearity between 
the variables. This method is not suitable for NIR spectral data as the number of 
variables is too high. The regression vector for this method is calculated on the 
original data (O'Donnell, 2014). 

 

3.4.2 Principal component regression (PCR) 

PCR differs from PLS as the scores of the only X matrix are calculated by the 
PCA algorithm. Then the regression vector (b) is calculated on the scores matrix T 
to avoid the effect of the possible correlation among the variables of the original 
matrix. The occurrence that the scores and loadings (PCs) are calculated only on 
the X matrix not taking into account of the Y matrix represents a drawback for PCR 
method (O'Donnell, 2014). 

 

3.4.3 Partial least squares (PLS) 

PLS regression is the most used linear multivariate regression method to predict 
the quantity of constituents of interest in samples. It correlates the information 
present in two different data matrixes. Considering a multivariate matrix X of 
spectroscopic data with n rows (samples) and p columns (variables) and a matrix Y 
with n × r dimensions containing the real values of the components. When the 
matrix Y contains only one variable the method is called PLS1 regression and when 
it is multivariate (two or more variables) it is called PLS2. A PCA algorithm 
decomposes the Y matrix in Y = UCT + F (U(scores), C(loadings) and F(residuals)) 
and the matrix X in X = TPT + E (T(scores), P(loadings) and E(residuals)). The 
values of Y can be predicted by predicting its scores (U). The PLS algorithm 
maximizes the covariance between T and U, i.e. the first score of Y has the 
maximum covariance with the first score of X (u1 = r1t1, and so on). In this way the 
prediction of the components of interest in an unknown sample can be made after 
collecting the relevant spectrum and knowing its score values which allow to 
predict the score values in Y and so to predict Y (Wold, 1983). An illustration of 
the PLS regression model is depicted in Figure 3-9. 
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Figure 3-9. Graphical visualization of the PLS regression for a three component model 
(modified from: Wold, 2001). 

 

3.5 Validation techniques 

The developed models can be affected by overfitting or underfitting. The 
overfitting can arise from the high number of the latent variables employed in the 
calibration stage which may include in the model portions of the non-relevant part 
of the data. An overfitted model yields optimal but unrealistic results in calibration, 
but bad performance in the prediction of new samples. On the contrary, an 
underfitted model represents just a fraction of the data variability yielding poor 
result in calibration and prediction. In order to optimise the model avoiding the 
overfitting and underfitting, the model validation is required. Basically, there are 
two families of methods used for data validation to assess the quality of predictions: 
Cross-validation and test set validation (O'Donnell, 2014). 

 

3.5.1 Cross-validation 

The cross-validation method is the most used validation tool, based on an 
internal validation set. From the data set, one or more samples are removed at one 
iteration time. The remaining samples of the data set are used to develop the model, 
which is then employed to predict the removed sample or group of samples. All the 
samples are subjected to the abovementioned procedure in an iterative procedure, 
in which each sample will be removed at least one time. The leave-one-out is the 
less performing (less realistic) cross validation scheme where only one sample is 
removed at a time. The other methods remove blocks of samples in a continuous or 
random fashion. Cross-validation is usually used when the data set consists of a 
small number of samples (Brereton, 2007). 
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3.5.2 Test set validation 

A better realistic result can be achieved when an external validation set is used. 
This implies the partition of the data set into two independent blocks which can be 
of different size. One of them is used as a training set for the model development 
whereas the samples of the other block called “test set” are predicted through the 
model (Brereton, 2007). Moreover, another data set made, for instance, of spectral 
data collected later than the first data set can be employed as external validation set. 

 

3.5.3 Bootstrap 

The bootstrap method has been proposed as a half way between cross-
validation and the single test set. The test sets are internally generated in an iterative 
way and incorporate different combinations of samples where some samples can be 
part of various test sets. A prediction of the iteratively produced and afterwards 
removed test sets is performed accordingly (Brereton, 2007). 

 

3.6 Model evaluation criteria 

The most used criteria for the estimation of the predictive capacity of a 
developed model are the root mean squared error (RMSE) and the coefficient of 
determination (R2). RMSE is computed by the root square of the ratio between the 
prediction error sum of squares, which is a measure of the closeness between the 
true (𝑦௥௘௙) and the predicted values (𝑦௣௥௘ௗ), and the number of samples (n) as 

shown in Equation 3.10. RMSE of calibration (RMSEC) is computed from the 
training set of samples. RMSE of cross-validation (RMSECV) is computed from 
the cross-validated samples whereas the RMSE of test set validation (RMSEP, 
prediction) is computed from the test set of samples (Nørgaard, 2000). 

 

𝑹𝑴𝑺𝑬 = ඨ∑൫𝒚௥௘௙ − 𝒚௣௥௘ௗ൯
ଶ

n
                         Equation 3.10 

 
The quality of the predictions is determined by the R2 (Equation 3.11), that 
approaches 1 as the predicted values approach the true values. 

 

𝑹𝟐 = 𝟏 −
∑൫𝒚𝒓𝒆𝒇 − 𝒚𝒑𝒓𝒆𝒅൯

𝟐

∑൫𝒚௥௘௙ − 𝒚ഥ൯
ଶ                              Equation 3.11 

 
 

RMSEs and R2 are both computed on calibration and validation sets. The plot 
reporting RMSEs versus the number of latent variables is then used to select the 
optimum number of components, which coincide with the minimum error in 
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validation. In order to avoid overfitting, the RMSEs of calibration and validation 
should be as close as possible (O'Donnell, 2014). 

3.7 Process Monitoring and Control 

Process improvement in industries can be achieved by variability reduction 
through statistical process control, which implies first the detection of the 
assignable causes (e.g. using control charts) and subsequently their removal. The 
variability can also be reduced taking advantage of the process regulation approach 
where the variability of the process output related to an established target can be 
minimized by regulating the process variables (Montgomery, 2009). 

 

3.7.1 Multivariate Statistical Process Control (MSPC) 

With respect to the production process there can be available different kind of 
sets of data: 1) prior the processing, 2) during the process and 3) after the processing 
(end product data). These data are important for process analysis, monitoring and 
control when process variables and quality attributes exceed their limits indicating 
that the process is out of the statistical control. Previously available data related to 
a given production process to be carried out is a starting point for understanding 
and monitoring purposes. The data belonging to the in-control processes or batches 
are used as reference for the future step. Having the data set of process variables 
(X) and quality attributes (Y) of the end product, a PLS regression can be performed 
(O'Donnell, 2014). 

In a continuous process the X matrix is bi-dimensional (time points × number 
of variables), whereas when working with batches a tri-dimensional matrix is 
generated with each row representing a batch. The score and the loading plots, 
related to the process variables, can differentiate the processes or batches in clusters 
and provide the information to explain them. 

The quality assurance of a product can be achieved through process monitoring 
and control instead of relying only on the final product measurements. Process 
monitoring allows the real time assessment of the process based on the decided 
control limits. Corrective actions need to be taken when the process is out of 
specifications depending on the nature of deviation. 

Univariate control charts like the Shewhart (Brereton, 2007) can be used for 
monitoring purposes. These charts allow the monitoring of different process 
parameters (e.g. quality characteristics) independently. The evolution (systematic 
or random) of single parameters provides information about the process. When 
these characteristics exceed their upper or lower control limit, actions must be 
taken. However, inspecting the variables independently can result in misleading 
considerations. In order to get more accurate results, it is recommended the use of 
multivariate control charts, which are based on the covariance between variables. 
The Hotelling’s T2 multivariate control chart is based on computing the multivariate 
distance between the sample and the centre of the model (built on reference data). 
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Another multivariate control chart called squared prediction error (SPE) is based 
on the residual variance of each sample. The instruments used to understand the 
cause of a deviation from the limits which arise from loadings are called 
contribution plots representing each sample and control chart (O'Donnell, 2014). 

Process monitoring, sometimes, depends on the spectroscopic data like NIR 
spectra, where each spectrum is acquired in a few seconds. Building a control chart 
for each variable would become difficult to manage as the number of variables is 
very high. One possible solution is to use multivariate qualitative methods based on 
PCA to represent the samples on a bi-dimensional space. PLS regression methods 
allow to monitor the quantity of one or more response variables with the process 
time, starting from previous calibrations arising from NIR data and the quantitative 
variables of interest (Brereton, 2007). 

The monitoring of the batch evolution is accomplished through the batch 
statistical process control by comparison with a reference batch. The real time batch 
monitoring and the later release is performed by methods based on multi-way PCA 
and multi-way PLS which, differently than PCA and PLS that work on bi-
dimensional matrices of data, are tools that performs PCA and PLS in 
multidimensional arrays as it happens when different batches of a process are 
considered at the same time. The corrective actions undertaken, arising from a 
deviation during the process, belong to the feed-back control procedure. Moreover, 
a control procedure arising from a model built on the current measured quality of 
the raw materials is part of the feed-forward control (Kourti, 2006). A process can 
therefore be controlled both looking at (monitoring) its outputs (feed-back) and its 
incoming raw materials which can change from batch to batch or lot to lot (feed-
forward). 
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Chapter 4 

4) Process Analytical Technology and 
Quality by Design 

Process analytical technology (PAT) term was introduced by the US Food and 
Drug Administration (FDA) in 2004 and defined as: “A system for designing, 
analyzing, and controlling manufacturing through timely measurements (i.e., 
during processing) of critical quality and performance attributes of raw and in-
process materials and processes with the goal of ensuring final product quality” 
(FDA, 2004). The PAT has its origins in the process analytical chemistry (PAC) 
developed in the early part of the 20th century. PAC strategy was developed and 
applied mainly for the chemical industry with the aim at monitoring the related 
processes on an at-line at the beginning and later on/in-line, real-time based 
approach. In order to extend the field of application to other industries such as 
pharmaceutical, biochemical and so on the term “technology” was employed 
instead of “chemistry” (Workman, 2011). PAT is recognized as an important tool 
for the monitoring and control of manufacturing processes of pharmaceutical and 
food industries and has become an essential part of the more recent and 
comprehensive approach known as Quality by Design (QbD). In the following 
paragraphs, after a brief introduction to the QbD concept, the PAT approach will 
be further detailed. 

 

4.1 Quality by Design (QbD) 

A broader approach which includes the PAT tool, known as Quality by Design 
(QbD), first developed by Joseph M. Juran (Juran, 1992), was defined in 2009 as: 
“A systematic approach to development that begins with predefined objectives and 
emphasizes product and process understanding and process control, based on sound 
science and quality risk management” (ICH Q8 (R2), 2009). The elements making 
up the QbD approach with respect to the product development within the 
pharmaceutical industry can include: 

 
 The identification of the critical quality attributes (output product 

properties that should comply with limits) of the product by the quality 
target product profile (QTPP) which represents the starting point for the 
design of product development. QTPP may depend on the intended use, 
dosage form, delivery structure, etc. 
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 Product design and understanding, that aims at developing a product that, 
guaranties its expected performance during its shelf life and, meets the 
final user’s needs validated through stability and clinical studies. The 
successful design and development of a product should be based on the 
characterization (chemical, physical and biological) of active ingredients, 
selection of other ingredients (excipients) taking into account their natural 
variability, interaction of several ingredients, identification of critical 
material attributes (input material properties that should comply with 
quality limits) of the ingredients and in-process materials, and at last but 
very important the formulation optimization. 

 Process design and understanding. The critical quality attributes (CQAs) 
of an end-product depend on the critical material attributes (CMAs) and 
the critical process parameters (CPPs, parameters which need to be 
monitored or controlled as their variability affects the critical quality 
attributes). In general, process robustness studies are performed to assess 
the outcome (in terms of product quality and performance) of process 
parameters and material attributes changes. According to the ICH Q8 
(R2), it is also defined the design space as: “The multidimensional 
combination and interaction of input variables (e.g., material attributes) 
and process parameters that have been demonstrated to provide assurance 
of quality”. A process understanding is achieved through the identification 
of the critical sources of variability and the accurate prediction of quality 
attributes of the product, managing the variability by the process. Usually, 
the manufacturing process involves several steps to get the desired final 
product and the identification of the critical attributes and parameters may 
be performed on every unit operation or a combination of unit operations 
following the steps of process understanding. 

 Control strategy. Control strategy is defined by the guideline ICH Q8 (R2) 
as: “A planned set of controls, derived from current product and process 
understanding that ensures process performance and product quality”. 
There can be three levels of control. The first level of control (level 1), 
which is based on automatic engineering control, guaranties the final 
product quality through the monitoring of the attributes of incoming 
materials and the real-time adjustment of process parameters. Real time 
release testing can be achieved by this control level employing the PAT 
tool. The second level of control (level 2) includes a limited number of 
analysis on the final product and flexibility related to the input material 
attributes and process parameters into the design space. The third level of 
control (traditional level) consists in large final product analysis and 
restricted understanding of material attributes and process parameters. 
Control strategy as an integrated approach along the production chain can 
be based on the control of incoming material attributes, product 
specifications, controls related to unit operations that can affect the 
following processing or product quality, analysis and control of critical 
quality attributes over processing and a monitoring program at established 
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periods of time based on product analysis with the aim of assessing the 
accuracy of multivariate prediction models. 

 Process capability and continual improvement. A process subjected to 
discontinuous variation (special cause) doesn’t result in a state of 
statistical control and the related measurements lead to process 
performance index. Besides the special causes, the process can be affected 
by random, regularly present common causes that are responsible of 
intrinsic variation. An estimation of the process capability can be done 
starting from the specification limits and the intrinsic variability related to 
a stable process in a state of statistical control. The potential sources of 
intrinsic variation can be identified in an early stage of product 
development and as a result keep them under control due to product and 
process understanding components along with the control strategy of the 
QbD approach. The absence of a QbD approach during manufacturing 
may bring to commercial production interruption when the intrinsic 
variability is detected during this step. The elimination of intrinsic 
variability sources from the process operation status and incoming raw 
materials can be achieved by continuous improvement with the aim of 
improving the process measurable by process capability. Multivariate 
analysis can be employed to investigate previous manufacturing data with 
the purpose of gaining knowledge on the variability of raw materials and 
process parameters. The reduction and control of the abovementioned 
variability will result in continuous improvement. 

 
There also exists some risk associated with the manufacturing and use of a final 

product. The risk assessment is conducted to identify the critical variables, helping 
the control strategy development and implementation. Tools like risk ranking and 
filtering, hazard analysis and critical control points, etc. can be employed for risk 
assessment purposes. The implementation of QbD aim at reducing the product 
variability, improving manufacturing performances and product development 
where PAT is a tool which helps to achieve the goals of QbD (Yu, 2014). The 
principles of QbD can also be applied in food industry with the support of PAT 
technology (van den Berg, 2013). 

 

4.2 Process Analytical Technology (PAT) 

PAT can be used as a functional tool for good manufacturing practice (GMP) 
system due to its advantage in improving the production processes. Several 
processes in the food and pharmaceutical industry need continuous validation to 
guarantee their effectiveness and the PAT approach can facilitate the achievement 
of this objective. The systematic preventive approach known as Hazard Analysis 
and Critical Control Points (HACCP) is adopted in the food industry with the aim 
at reducing the risks associated to chemical, physical and biological hazards. The 
PAT technology can also be integrated in the HACCP system to assure food quality 
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and safety taking advantage of the process monitoring. The benefits of PAT 
application in production processes may concern environmental sustainability using 
more efficiently the resources and reducing costs and environmental impacts 
(O'Donnell, 2015). 

The ever higher quality and safety standards of products considering the 
variability of raw materials and the variation in processes, can be achieved by 
moving from traditional discontinuous time consuming analysis to rapid methods 
of analysis within the PAT framework which yield a high number of analytical 
responses. The expected goals in both food and pharmaceutical industry are the 
same and can include: high product quality and safety, low use and consumption of 
natural and human resources, restrained effect of raw materials variability, 
increased productivity and shelf life of products. The food industry, particularly, 
depends on soft, fragile and not pure raw materials that consist on various 
compounds. Environmental and storage conditions as well as processing affect 
easily the physical properties of these raw materials. Moreover, the physical, 
biochemical and microbiological processes at the micro-scale could not be known 
(Hitzmann, 2015). Process monitoring of the food industry tends to be more 
difficult compared to monitoring of the pharmaceutical production processes as 
foods are complex matrixes (solids, liquids, gels, etc.) made of heterogeneous 
classes of compounds such as carbohydrates, fats and proteins along with the 
micronutrients (van den Berg, 2013). 

 

4.2.1 PAT principles 

The PAT implementation can enable manufactures to deliver a product, that 
meets the specifications, through the active process control procedure avoiding the 
post-process conformity analysis. This is a shift from the common feed-backward 
process control (post-problem), where the corrective actions on the process are 
taken after the final product analysis, to predictive process control (during problem) 
where the process adaptations over manufacturing compensate the high raw 
materials variability (Figure 4-1). The active process control is facilitated by the 
developments made in the measurement tools which allow to perform on/in-line 
analysis. The benefits arising from the effective implementation are: the effective 
use of raw materials, the reduced variation of quality attributes of the end product, 
the rework and/or waste reduction, the replacement of slow and expensive 
laboratory analysis, and continuous learning. The diffusion of the PAT is facilitated 
by the advances in spectroscopic monitoring techniques equipped with fibre optic 
probes and chemometrics (van den Berg, 2013). 
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Figure 4-1. Schematic representation of the monitoring and control process involving 

a manufacturing unit operation (modified from: van den Berg, 2013). 

 
The employment of PAT tools involves the prior considerations of some 

features which can include: 1. The efficacy of the process analyser to achieve the 
purposes of process monitoring or control and product information; 2. The process 
analyser location depends on the production process and the expected information 
to obtain; 3. The favourable measurement conditions of the process analyser in 
order to get data that represent the real process; 4. The performance of the process 
analysers should be validated at needful intervals of time. Moreover, other factors 
such as food matrix characteristics, the degree of process automation and the 
robustness of validated PAT sensors used for in-line applications have to be 
assessed (Panikuttira, 2018). 

 

4.2.2 PAT components 

According to Van den Berg (2013), the implementation of PAT relies mainly 
on four constituents, taking into account the developments in process testing 
technology, fibre optics and computational methods. A description of the 
abovementioned components is given below. 

 

4.2.2.1 Critical product quality attributes and process parameters 

One of the main steps in PAT implementation concerns the dependence of the 
critical quality attributes from the process operating parameters. Understanding this 
relation may be useful for establishing the allowable limits regarding the variation 
of quality attributes which supports the decision on the suitable sensor choice. On 
the other hand, the impact of process parameters on the critical quality attributes 
can be understood through the application of PAT. 
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4.2.2.2 Process dynamics and sampling  

There are other aspects to take into account during the implementation of PAT 
such as: the features of process analyser (sensor), the efficacy of the sampling 
procedure to represent the process and the process dynamics. The relation among 
the three abovementioned factors of process understanding can be illustrated by five 
elements as follows: 

 
 Measurement uncertainty. The robustness and sensitivity of a sensor 

employed in a given application rely on its measurement uncertainty 
(which depends on process environment) and the model built for prediction 
purposes. Moreover, the value of the sensor is assessed as the ratio of the 
measurement error and the natural process variability. 

 Frequency of measurements. The better approximation of the real process 
signal is accomplished by the on/in-line sensors as they provide a high 
frequency of measurements compared to the at/off-line analytical 
techniques. 

 Time of measurement. The utility of the sensor response depends also on 
the time needed for the measurement. In order to perform real time 
monitoring a short time of measurement is required. 

 Carry over effect between measurements. The memory effects, which can 
result in delayed response, originated from some process sensors and 
sampling designs are the cause of carry over signals. Spectroscopic sensors 
equipped with fibre optic probes designed for non-invasive analysis can 
overcome this problem. 

 Lapse of time between sampling and measurement. In order to perform real 
time process monitoring and control the off-line measurements are usually 
unsuitable as the process will change significantly during the time between 
sampling and analysis. By using spectroscopic techniques, the lapse of 
time tends to be reduced or eliminated. 

 

4.2.2.3 Spectroscopic techniques and imaging 

Spectroscopic techniques are key tools for the implementation of PAT due to 
their characteristics in providing multiple chemical information in a fast and non-
destructive fashion. Besides the NIR spectroscopy illustrated in chapter 2, other 
spectroscopic techniques such as fluorescence and Raman spectroscopies, which 
are briefly described below along with ultraviolet-visual (UV-VIS) and infrared 
(IR) absorption spectroscopies, can be employed as tools to achieve the PAT 
objectives. Besides their high sensitivity, the drawback of UV-VIS and 
fluorescence sensors, which involve electronic transitions in substances, is related 
to the limited number of molecules that can be tested (van den Berg, 2013). 
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 Fluorescence spectroscopy 
The phenomenon of fluorescence is related to the emission of energy following 

the transition of the previously exited molecule from the exited electronic state of 
singlet to the ground electronic state (Guilbault, 1990). The fluorescence 
spectroscopy has the advantage of being the most sensitive among the spectroscopic 
tools and can be used for the monitoring of raw materials, processes and product 
quality attributes. Most of the applications involving this technique up to now 
concern the laboratory scale instead of the industrial PAT applications. The 
monitoring of fermentation processes such as that of rye sourdough has been carried 
out coupling fluorescence with chemometric techniques like PLS and PCR in order 
to predict pH and acidity values (Grote, 2014). Another study aimed at improving 
the food security has been focused on the possible determination of acrylamide by 
converting it to a compound with a strong fluorescence emission (Liu, 2014). Based 
on previous results, some authors proposed the application of fluorescence imaging 
for routine testing in delicatessens (Beck, 2015). Some scholars proposed a method 
based on hyperspectral imaging and multivariate image analysis tools comparing 
fluorescence imaging arising from the visible region to that deriving from violet 
and ultraviolet spectral region (Hitzmann, 2015). 

 

 Raman spectroscopy 
The Raman spectrum is characterized by two set of lines called Stokes (greater 

intensities) and anti-Stokes arising from the inelastic collision between the incident 
monochromatic radiation (usually visible region at high wavelength) and the 
molecule (Colthup, 1975). Surface-enhanced Raman spectroscopy (SERS), instead, 
is based on the occurrence that the Raman scattering signal can be enhanced 
(chemical or electromagnetic enhancement) when the scatterer molecule is 
positioned on or close the surface of a roughened noble-metal substrate (Hynes, 
2005). Some scholars have taken advantage of the benefits provided by SERS in 
combination with chemometric techniques to identify prohibited food additives for 
food safety purposes (He, 2015). The quantitative determination of soft drinks 
ingredients such as glucose, fructose and sucrose has been accomplished by using 
a rapid method based on Raman spectroscopy (Ilaslan, 2015). Through another 
study was demonstrated the capability of Raman technique as process sensor for 
on-line monitoring of the wine fermentation constituents such as sugar, ethanol and 
glycerol employing high pressure liquid chromatography (HPLC) as reference 
method (Wang, 2014). The combination of Raman spectroscopy with multivariate 
data analysis resulted also effective for on-line monitoring of the meat quality. 

 

4.2.2.4. Chemometrics 

The quality monitoring and control of industrial production processes has 
undergone a revolution due to developments in multivariate spectroscopic sensors 
(e.g. NIR spectroscopy equipped with optic fibres) and chemometrics. During a 
process’ batch, the large amount of NIR spectral data, collected automatically by a 
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sensor which is connected to a production process, need first to be analysed and 
then the information obtained is transformed into real knowledge about the process 
through chemometric models. The analysis of information provided by 
spectroscopic sensors through multivariate bilinear exploratory methods like PCA 
and regression methods such as PLS brought to good demonstrated results for 
quality control. The benefits ensuing from the use of the abovementioned 
chemometric methods can bring to new process and production understanding, 
which can be used to monitor or control the critical sources of variability, as well 
as to more efficient calibration models due to their advantages in the exploration of 
the process trajectory, outlier detection, etc. (van den Berg, 2013). 

 

4.3 NIR analysis strategies  

According to the location of the analytical instrumentation, the ways to perform 
measurements can be distinguished in: off-line, at-line, on-line, in-line and non-
invasive as illustrated in Figure 4-2. 

 

 
 

Figure 4-2. Representation of the several strategies which can be used to test the 
product throughout the process. 

 

4.3.1 Off-line testing 

For off-line measurement the sample, once removed manually from the process 
line, is then transported to a centralized support laboratory to perform the analysis. 
Besides the advantages related to the laboratory analysis in terms of the availability 
of an expert team, some disadvantages such as costs and the delay between 
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sampling and provided results are typical. This delay is critical especially when the 
purpose of testing is related to process monitoring and control. Therefore, this 
approach is usually used when discontinuous process information is required. 
However, NIR spectroscopy has the advantage to perform analysis in few seconds 
compared to time consuming methods like HPLC. 

 

4.3.2 At-line testing 

In order to perform at-line testing the analytical instrument is located within the 
production area in the proximity of the process line. Usually the instrumentation 
used is simpler and more robust than the benchtop laboratory instruments, suited 
for a rough environment and aimed at performing specific analysis on samples 
collected from several locations within the production facility, with higher ease of 
use and the dedicated process team can provide faster responses that can fit for 
process monitoring and control purposes. 

 

4.3.3 On-line testing  

On-line analysers systems enable automated sampling with injection of a little 
quantity of sample stream within the analyser (intermittent methods) or continuous 
measurements as the sample flows continuously though a by-pass loop (continuous 
methods). These systems can provide sample pre-treatments before analysis where 
the end point of the analysis concerns the critical quality attributes instead of the 
chemical composition generally provided by off-line analysers. External devices 
such as pumps can be controlled by on-line systems of testing. The instrumentation 
based on spectroscopic sensors is typically employed for continuous on-line process 
measurements providing real time analytical responses. 

 

4.3.4 In-line testing 

The in-line process instruments are equipped with a chemically sensitive probe 
(ideally it can be similar to a temperature probe) which is put directly into the 
process stream providing in-situ measurements (real time information) with no need 
to use a side stream as required for the on-line analysis. For example, the 
developments in fibre optic probes enabled the implementation of in-line analyses. 
In this equipment the light generated from a remote source is conveyed through a 
fibre at the distal end of the probe (e.g. reflection probe) which is immersed into the 
process stream. The reflected radiation, arising after the interaction with the sample, 
can be collected by another fibre and conveyed into the instrument (usually 
spectroscopic tools) for testing. 
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4.3.5 Non-invasive testing 

This strategy of analysis yields the analytical response while the probe is not 
physically in contact with the sample, for example using a transparent window 
directly positioned on a pipe or a fermenter/reactor through which an optical fibre 
can convey and collect the light chosen for performing the analysis (Callis, 1987). 

 

4.4 PAT implementation in food and pharmaceutical 
industries 

The at-line monitoring of vegetable oil deterioration, made of two different oils, 
during the frying process has been performed by using spectroscopic sensors 
combined with chemometric methods (Engelsen, 1997). Different chemical and 
physical quality attributes, such as anisidine number, free fatty acids, vitamin E, 
etc., have been measured during the process. It is shown that the development and 
the complexity of the process is not addressed by monitoring one variable at a time. 
The PCA model build on the NIR spectra collected during the process explained 
the drying process evolution and process dynamics over time. This implementation 
is a form of real-time PAT application and had the aim to match the sensor 
characteristics to the process dynamics gaining knowledge (van den Berg, 2013). 

An on-line system, based on NIR spectroscopy and chemometrics, for 
automatic process monitoring and control of ammonia dosing to produce low 
methoxylated amidated pectin from high methoxilated pectin has been successfully 
implemented (Zachariassen, 2005). This study covered all the aspects related to the 
PAT development. The implementation of a selected NIR sensor, performing high 
frequency measurements, revealed a considerable fluctuation of ammonia 
quantities after dosing which were not noticed employing the reference method. 
The acquired process knowledge about process dynamics has been used for real-
time control of ammonia providing a reduction of process fluctuations. 
Accordingly, a series of benefits resulted such as product uniformity, compliance 
with specifications, scrap and environmental footprint reduction through the more 
controlled dosing of reactant and the less usage of traditional chemical testing 
(Zachariassen, 2005). 

According to various studies there is a strong potential and need for the PAT 
adoption in cheese manufacturing with the aim at improving product quality and 
enhancing process efficiency (Panikuttira, 2018). PAT components such as 
spectroscopic sensors have the potential to achieve these objectives considering the 
recent technological advances of these tools. Milk quality parameters, which affect 
the cheese quality and yield, including the presence of adulterants and contaminants 
as well as the key unit operations (standardization, coagulation, syneresis and 
ripening) involved in cheese manufacturing will increasingly be monitored by NIR, 
MIR, fluorescence and Raman sensors in combination with chemometrics 
(Panikuttira, 2018). 
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The implementation of PAT is a step forward towards Industry 4.0 which will 
lead to enhancement of raw materials validation, process optimization, better 
traceability, increased quality and automation across the production due to the 
connectivity of factory components (Panikuttira, 2018). 

The characterization of the alginate (binary polysaccharides) composition by a 
fast and at-line FT-IR method has been accomplished (Salomonsen, 2008). 
Alginates are obtained from the brown algae and used in food and pharmaceutical 
industry as thickeners, gelling agents and stabilizers. For the purpose of the study, 
a calibration data set of 100 alginates samples covering the whole ratio (parameter 
that affect alginate properties) range between the two compositional monomers was 
subjected to testing performed either by the reference, time consuming, off-line 
nuclear magnetic resonance method or by the FT-IR technique. The correlation 
coefficient and the prediction error arising from the multivariate PLS regression 
model have been considered acceptable for the application. In this implementation, 
the process understanding resulted from this post-production PAT employment can 
then be used for future product improvements (van den Berg, 2013). 

A feed-forward PAT application showed its potential for the classification of 
porcine carcasses based on fat quality in abattoirs. To achieve this target an on-line 
spatially resolved NIR method was developed to predict the degree of fatty acid 
unsaturation as a function of the penetration depth, employing the Gas 
Chromatography technique as reference method (Sørensen, 2012). 

A PAT approach based on the combination of FT-NIR and chemometrics 
demonstrated the potential for in-line process monitoring of hot melt extrusion 
(HME) (Vo, 2018). HME is a process that can also be used to create dosage forms 
for active pharmaceutical ingredients (API) with low solubility and in which the 
assurance of product quality and uniformity is achieved through monitoring and 
control of critical process parameters. On a chosen NIR spectral interval a robust 
PLS model has been developed for the quantitative prediction of a API. Moreover, 
the evolution of the process depending on the critical process parameters such as 
temperature and the rate of incoming material has been monitored by a PCA 
qualitative model (Vo, 2018).  A PAT system based on UV/VIS spectrometer was 
implemented for in-line monitoring of the critical quality attributes (carbamazepine 
and theophylline) of a dosage form (solid dispersion) produced by hot melt 
extrusion where the active ingredients are distributed in a hydro-soluble polymer 
matrix (copovidone) carrier (Wesholowski, 2018). 

Blending is one of the unit operations forming the pharmaceutical 
manufacturing process and the monitoring and control of the progress of this step 
is necessary to ensure product quality and identify the end point. The 
implementation of PAT to assess mixing uniformity and content can lead to benefits 
such as better process monitoring and increased manufacturing process 
understanding compared to the current strategy of blend uniformity assessment. 
NIR spectroscopy in combination with chemometric methods is the most 
investigated technique among the large number of PAT sensors studied for 
homogeneity purposes. However, for the implementation of these sensors to a 
particular system, the drawbacks such as the location and adaptation of the 
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equipment to provide real process information, costs, etc. should be kept into 
account (Crouter, 2019). 

In the continuous manufacturing, a PAT strategy based on NIRS and 
multivariate data analysis demonstrated its usefulness for the in-line monitoring and 
control of the tableting step (Pauli, 2019). Two strategies consisting on NIRS and 
the PLS regression method were successfully developed and optimized, using 
HPLC as a reference technique, for the assessment of the API content uniformity 
in the mixture within the feed frame and for the monitoring of the tablet content 
uniformity at different tableting speeds. Both calibration models displayed 
outstanding predictive capabilities, for the active component, assessed by the 
correlation coefficients and the root mean square errors. The development and the 
implementation of calibration models for predicting the quantity of water in tablets 
is an important task as the water is a critical quality attribute which effects product 
shelf life (Pauli, 2019). 

The development of a method based on NIRS for the quality control of 3D 
printed tablets of different geometries, excipients and concentrations of 
paracetamol has been validated showing an outstanding linearity and accuracy in 
prediction. Information about the dispersion and the crystalline/amorphous content 
of the active ingredient in the several dosage forms has been achieved by using 
Raman confocal microscopy (Trenfield, 2018). 
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Chapter 5 
 

5) Case studies research 

5.1 Pharmaceutical industry 

5.1.1 Introduction 

The manufacturing process of dietary supplements and food can be outlined in 
the following consecutive stages: raw materials receiving, inspection of the 
incoming materials, production, packaging and the final product delivery. The 
conformity of incoming materials can be assessed through sampling and the 
following analysis according to established and planned procedures based on the 
good manufacturing practices (GMPs). One usable way to assess the quality of 
materials involves the use of conventional, reference methods established by 
regulatory bodies. These analytical methods besides of being reliable have some 
disadvantages such as the need of sample treatment, long time of analysis and the 
related material and environmental costs. Moreover, the time consuming reference 
methods cannot meet the timely outcomes expected by the suppliers. The delay in 
the acceptance procedure has adverse effects for those raw materials that has to be 
stored under proper conditions and disadvantages for just in time manufacturing 
procedures. The delay in the analytical response can be reduced by the 
implementation of rapid, non-destructive testing methods like NIR spectroscopy in 
combination with computational methods. The main purposes of the conformity 
control of incoming raw materials consist in preventing the use of out-of-
specification materials, identification of possible adulteration and the assurance that 
the materials fulfil the recipe requirements (Hitzmann, 2015). The high frequency 
quality control of incoming materials and ingredients as an integrated part of the 
PAT can be performed by NIR technology according to an untargeted approach in 
order also to detect deliberate adulteration. The above mentioned potential of NIRS 
is just an integration of the capability to perform targeted calibrations of quality 
attributes (Sorensen, 2016). The non-conformity of starting materials due to several 
economic and/or effectual adulterants such as Melamine testing which was 
recommended by FDA led the dietary supplement manufacturers to the 
development of testing procedures for all the incoming raw materials as they are 
responsible for the quality of their released products (Champagne, 2011). 

Regarding the botanical raw materials (botanicals), the presence of intentional 
and unintentional adulterants like active substances or other compounds arising 
from the unwanted part of the plant or from a different plant can result in toxic 
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effects or cannot provide the expected pharmacological effects. Moreover, a large 
number of naturally occurring contaminants in raw materials can be a source of 
non-conformity with adverse effects on the intended use of the end product 
(Sanzini, 2011). 

NIRS and chemometrics proved to be useful in the discrimination of several 
celluloses with different physical and chemical properties, employed as excipients 
for pharmaceutical purposes, providing reliable identification (Krämer, 2000). 

Raw material testing based on NIRS demonstrated its potential benefits not 
only in pharmaceutical organizations preventing unexpected products. A raw 
material spectral library built with spectroscopic data can be effectively used for 
identity confirmation and classification purposes taking advantage of the created 
models based on qualitative algorithms (Kemper, 2003). 

A proactive control approach of the process is accomplished when the output 
of testing of the raw materials is used with the aim of determining the process 
conditions to assure the product quality. The fulfilment of product specifications 
and the reduction or elimination of waste (muda) can be attained by continuous 
process monitoring and control which permits corrective actions during the process 
instead of the reactive approach where the information on product quality is used 
to undertake the corrective actions on the process (Kourti, 2006). 

The purpose of the study concerns: 1. The development of chemometric models 
for identity confirmation and identification (classification) which allow to compare 
the NIR spectrum of a material (known or unknown) with the spectra of known 
materials employed previously for qualitative modelling; 2. The development of a 
regression model based on the PLS method in order to predict the quantity of the 
active ingredient DHA (docosahexaenoic acid) in a semi-finished or end solid 
product. 

 

5.1.2 Materials and methods 

5.1.2.1 Raw materials and semi-finished product 

Raw materials. The materials and ingredients under investigation have been 
employed as active compounds and excipients in the formulation and 
manufacturing of end products (dietary supplements) and has been supplied from 
several manufacturers over a period of three years. A list of the examined solid 
materials including botanicals, pure substances and other solids is displayed as 
follows (Table 5-1). Moreover, the NIR spectra of other raw materials have been 
collected but not subjected to modelling due to the limited number of lots for each 
of these materials. 
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Table 5-1. List of the botanicals and other solid raw materials with the highest number 
of lots purchased by the company (*Raw materials subjected to exploratory analysis and 
classification purposes that have been included in this work). 

 

Botanicals (dry extracts) 

  Name Lots Note 

1 Acerola 8  

2 Alga wakame 6  

3 Aloe 8  

4 Bergamot 17 * 

5 Hawthorn 7  

6 Boswellia 12 * 

7 Eschscholzia 12  

8 Fennel 10  

9 Fucus vesiculosus 17  

10 Ginkgo biloba phytosoma 8 * 

11 Ginkgo biloba 6% 4 * 

12 Ginkgo biloba 24% 17 * 

13 Ginseng 10  

14 Melilotus 10 * 

15 Melissa 0.5% 7 * 

16 Melissa 2% 10 * 

17 Melissa 6% 6 * 

18 Passionflower 1-1.2% 16  

19 Passionflower 4% 9  

20 Passionflower parti aeree 7  

21 Propolis 7  

22 Soybean 20 * 

23 Green tea 7  

24 Tilia 9  

25 Valerian 13 * 
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26 Ginger 9  

27 Senna tinnevelly 17  

 

Pure substances and other solids 

28 Acesulfame K 7  

29 Acetyl-L-carnitine 
hydrochloride 

18  

30 Anhydrous citric acid 14 * 

31 Monohydrate citric acid 6 * 

32 Hyaluronic acid 13  

33 Thioctic acid Matris fast 25 * 

34 Thioctic acid Matris retard 25 * 

35 Alpha galactosidase 16 * 

36 Beta galactosidase 14 * 

37 Orange aroma CC 10 * 

38 Orange aroma spray 10 * 

39 Lemon drycell aroma 11 * 

40 Lemon juice aroma 9 * 

41 Passion fruit aroma 11  

42 Bamboo fibre 9  

43 Beta carotene powder 11  

44 Anhydrous caffeine 10  

45 Cetyl alcohol 9  

46 Citicolin 20  

47 Choline bitartrate 13  

48 Creatine monohydrate 10  

49 Cutin 10  

50 Corn anhydrous dextrose 16  

51 Docosahexaenoic acid 14  

52 Diosmin 16  
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53 Hesperidin 16  

54 Konjac flour glucomanan 20  

55 Fe gluconate 9  

56 Fructooligosacharides 10  

57 Fructose 21  

58 Kollidon 9  

59 Lactium 15  

60 Lactoferrin 14  

61 L-arginine base 13 * 

62 L-arginine hydrochloride 16 * 

63 Whole milk in powder 10  

64 Lactose 10  

65 Lecithin 10  

66 L-glutamine 15  

67 Libramed 57 * 

68 Mg hydroxide 11  

69 Mg oxide 24  

70 Mg pidolate 11  

71 Maltodextrin 20  

72 Dried maltodextrin 15  

73 Mannitol P 400 11 * 

74 Mannitol P  SD 200 15 * 

75 Melatonin 11  

76 Vitaminic mix 12  

77 K citrate 14 * 

78 K sorbate 12 * 

79 Na benzoate 9  

80 Fermented soybean 19  

81 Sorbitol 28  

82 Stearyl alcohol 11  
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83 Troxerutin 21  

84 Ubidecarenone Q10 12 * 

85 Ubidecarenone 10% 50 * 

86 Vitamin A acetate 16  

87 Vitamin B12 0.1% 12  

88 Vitamin B5 9  

89 Vitamin B6 9  

90 Vitamin C 38  

91 Vitamin E 50% 11  

92 Xangold beadlets 10% 17 * 

93 Xangold beadlets 20% 13 * 

94 Xilitol xilisorb 22  

95 Zeaxanthin 15  

 
The samples withdrawn from the batches of purchased raw materials have been 

put within opaque glass containers, stored at controlled temperature (25°C) and 
humidity (30%) conditions before analysis. 

 
Semi-finished product. Concerning the potential of NIRS in the quantification 

of DHA in the semi-finished product, 22 mixtures including a replicate have been 
prepared taking into account the mixing process carried out by the company and the 
specification limits. The total number of concentration levels in DHA has been 11 
ranging from 5% to 10%. The partial list of the solid ingredients used for the product 
formulation is shown in the following table (Table 5-2). The starting raw material 
is a complex mixture containing DHA. 

 

Table 5-2. Incomplete list of the solid raw materials employed to make the product. 

DHA 
Citric acid 

X4 
Sucralose 

Zinc citrate 
X5 
X2 
X1 

Isomalt Galeniq 
X3 

Sorbitol 
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5.1.2.2 Data collection 

The spectral data of both the incoming raw materials and the mixtures with 
different concentrations in DHA were acquired using a FT-NIR spectrometer 
(Buchi NIRFlex N-500) equipped with a fiber optic probe for solids (Figure 5-1). 
The following acquisition parameters were employed: 

Acquisition modality: Diffuse reflectance 
Spectral range: 10000 – 4000 cm-1 
Resolution: 8 cm-1 
Detector: InGaAs photodiodes 
 

 

Figure 5-1. Buchi FT-NIR instrument used to collect the spectral data from the 
abovementioned samples. 

 
Three spectra have been collected for each sample, in three different spots, by 

placing the probe in contact with the solid material. Before sample analysis the 
background has been acquired by reflecting the entire range of selected radiation. 

 

5.1.2.3 Multivariate data analysis 

The raw spectral data once acquired have been subjected to several pre-
processing techniques and their combinations such as mean centring, SNV, MSC, 
Savitzky–Golay algorithm, etc. in order to reduce or eliminate the variations not 
related to the chemical information of spectra. Afterwards, the pre-processed 
spectral data have been modelled by using pattern recognition methods like PCA 
algorithms and classification methods such as PLS-DA algorithms with the aim of 
incoming raw materials conformity assurance. Likewise, the spectra arising from 
the solid samples with different concentrations in DHA have been pre-processed 
and subjected to regression methods like PLS. To achieve the abovementioned 
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objectives have been employed the LatentiX software and PLS toolbox used within 
the MATLAB environment. 

 

5.1.3 Results and discussion 

Raw materials. The qualitative models developed, in order to monitor the 
conformity of the incoming raw materials, can be implemented by the company in 
order to have a rapid conformity assessment allowed by the NIRS. This approach 
i.e. the use of NIRS and chemometrics allows the organization to assess the quality 
of the materials provided by the suppliers, even if they are accompanied with the 
certificate of analysis, as the main responsibility for the non-compliant end products 
pertains the manufacturing company. On the other hand, the use of time consuming 
analytical techniques will result in a production delay. The methods used showed 
the potential to build models, which allow identity confirmation or classification, 
either for pure substances or for complex ingredients such as dry extracts which 
consist of a mixture of compounds including additives as well. 

Once the model has been developed, the limits of a known set of raw materials 
used for identity confirmation can be assigned by calculating the Mahalanobis 
distance allowing in this way the recognition of doubtful samples and outliers. The 
Figure 5-2 displays the PCA model of Libramed (raw material) on which the limits 
of this group of samples are provided according to the Mahalanobis distance. The 
plot shows that there are some doubtful amber colored samples which most likely 
belong to Libramed besides the presence of large outliers colored in purple. 

This concept can be extended to pattern recognition or classification models 
depicting more than one different group or class. 
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Figure 5-2. PCA scores plot depicting the limits of the known group of libramed 
samples based on the Mahalanobis distance. 

 
The company up to now succeeded in the development of a few models related 

to the pure incoming raw materials whereas the models developed during this study 
covered also the more complex ingredients. 

The following figures display only the PCA models, stemming from the NIR 
spectral data considering the whole spectral range (between 10000-4000 cm-1), as 
the classification models developed using the PLS-DA method provide a similar 
result. 
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Figure 5-3. PCA scores plot of arginine base and hydrochloride using SNV and MC as 
pre-processing techniques. 

 

 

Figure 5-4. PCA scores plot of orange and lemon aroma using SNV and MC as pre-
processing techniques. 
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Figure 5-5. PCA scores plot of anhydrous and monohydrate citric acid using SNV and 
MC as pre-processing techniques. 

 

 

Figure 5-6. PCA scores plot of alpha and beta galactosidase using Savizky-Golay 
(window size: 19; polynomial order: 2; 2nd derivative) and MC as pre-processing 
techniques. 
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Figure 5-7. PCA scores plot of potassium citrate and sorbate using MSC and MC as 
pre-processing techniques. 

 

 

Figure 5-8. PCA scores plot of two grades mannitol, according to particles size, using 
SNV and MC as pre-processing techniques. 
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Figure 5-9. PCA scores plot of thioctic acid in the two forms (Matris fast and retard) 
using SNV and MC as pre-processing techniques. 

 

 

Figure 5-10. PCA scores plot of ubidecarenone in the two forms using SNV and MC 
as pre-processing techniques. 
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Figure 5-11. PCA scores plot of xangold in the two forms using EMSC and MC as pre-
processing techniques. 

 
Among the solid materials, the identity confirmation or classification of 

botanicals were of particular interest for the company as they are more complex and 
belong mostly to the active ingredients in the dietary supplement recipes. Some 
PCA models are displayed in the following figures. 

 

 

Figure 5-12. PCA scores plot of the three forms of ginkgo biloba dry extracts using 
SNV and MC as pre-processing techniques. 
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Figure 5-13. PCA scores plot of the three forms of melissa dry extracts using SNV and 
MC as pre-processing techniques. 

 

 

Figure 5-14. PCA scores plot of soybean dry extracts, purchased from two suppliers, 
using SG (window size: 19; polynomial order: 2; 2nd derivative) and MC as pre-processing 
techniques. 

 
The scores plot displayed above shows predominantly two groups of soybean 

dry extracts with the same denomination which are well separated according to the 
two different suppliers. 
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Figure 5-15. PCA scores plot of four different dry extracts using SG (window size: 19; 
polynomial order: 2; 2nd derivative) and MC as pre-processing techniques. 

 
An example of model implementation performed by the staff of the 

organization (aizoon Technology Consulting) concerns the Ginkgo biloba dry 
extract in three different chemical compositions mostly related to the concentration 
of active constituent/s. This qualitative model resulted from classification methods 
(PLS-DA) has been first developed starting from the spectral data collected and 
then implemented in a dashboard through a Data Lake. The NIR spectral data, 
belonging to new Ginkgo biloba 24% dry extracts (not included in the training set), 
collected in few seconds have been synchronized and uploaded in the dashboard 
within which have been automatically pre-processed and predicted through the 
classification model displaying successfully the membership class as shown in 
Figure 5-16. 

 

 

Figure 5-16. Ginkgo biloba 24% pre-processed spectra (a) and their subsequent 
prediction on the previously developed PLS-DA model (b). 
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Semi-finished product. NIRS coupled with chemometrics displayed also the 
potential related to the quantitative prediction of the DHA as active constituent in 
the semi-finished and end product. To accomplish this goal, the PLS regression 
algorithm has been applied to the pre-processed (SNV + MC) spectral data and the 
model obtained is shown in Figure 5-17. The regression model chosen with 4 
principal components, as the RMSEs of cross validation (0.31) using Venetian 
Blinds and calibration (0.30) were close, resulted in a R2 for cross validation of 
0.96. 

 

 

Figure 5-17. PLS linear regression model depicting the predicted versus the actual 
concentration of DHA in the various mixtures ranging from 5% to 10% according to the 
DoE explained in Section 5.1.2. 

 
The quantity of DHA in two end products manufactured in different times has 

been predicted, using this model in which the mean spectrum of the three collected 
spectra of each standard mixture has been considered, showing the allocation of 
samples (marked in red) within the specification limits, i.e. 6.6% and 9% (Figure 
5-18). 
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Figure 5-18. Prediction of six NIR spectra representing two final products 
manufactured in two different times.  

 
It has also predicted the concentration of DHA in two prepared out of 

specification samples having a higher and lower title with respect to the 
specification limits. Through the linear regression model these samples have been 
predicted out of the specification limits. 

The NIR spectra of another end product without DHA have been collected and 
after pre-processing have been predicted using this model. This end product has 
been placed on the regression model far away from the specification limits. 
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5.2 Vegetable oil company 

5.2.1 Introduction 

The continuous study on vegetable oils related to their ever increasing 
employment for various purposes in food, pharmaceutical and other sectors 
(Spatari, 2017) is due to their benefits in providing essential fatty acids, liposoluble 
vitamins and other quality attributes (Li, 2016). 

The quality of edible oils can be determined based on physicochemical 
parameters such as free acidity, peroxide value, anisidine value. Acidity value, 
expressed as the percentage in grams of oleic acid, is a very important parameter 
mostly for olive oils as their classification is based on free fatty acid content 
according to the European Regulation and the product intended for marketing 
cannot be subjected to neutralization. Peroxide value, determining the amount of 
hydroperoxides resulted by a radical mechanism of degradation over the oil 
exposure to light, heating, air, etc., is an indicator of the primary oxidation of edible 
oils expressed as the milliequivalents of peroxide in a kilogram of oil. Anisidine 
value, instead, measures the secondary oxidation arising from the decomposition of 
peroxides which mainly results in carbonyl compounds. Edible oils and fats consist 
on acylglycerols (esters of glycerol with fatty acids) where the triglycerides 
represent the most abundant structures. Fatty acids, according to the presence or not 
of the double bonds, are distinguished in saturated, monounsaturated and 
polyunsaturated, can have a specific role on health depending on their quality and 
quantity (Dorni, 2018). 

Besides the traditional methods of analysis based mainly on titration, several 
laboratory studies showed the potential in quantifying free acidity and peroxide 
index in olive oils and other edible oils by means of NIRS (Armenta, 2007). The 
classification of several edible oils as well as quantitative information related to 
fatty acids profile have been performed by a developed rapid NIR method (Azizian, 
2005). The classification of extra virgin olive oils based on their geographical origin 
has been carried out by means of a UV-VIS-NIR spectroscopy equipped with a fibre 
optic (Mignani, 2007). Authentication and adulteration studies on edible oils have 
been performed using NIRS and chemometrics (Armenta, 2010). 
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Additionally, other parameters used to assess the quality of edible oils include 
sensory characteristics like taste, aroma and colour. The oil colour which relies on 
the quantity and category of pigments is one of the characteristics which affects 
consumer’s acceptance. Pigments such as chlorophylls and carotenoids, which 
occur in oilseeds and accordingly in the crude oil, are mostly responsible for the 
colour. The amount of these pigments is determined by the type of raw vegetable 
oil and the processing techniques used for the production (El-Hamidi, 2016). Light 
and heat are the main sources of pigments deterioration, particularly chlorophylls, 
modifying the sensory characteristics (Choe, 2006). 

Several studies have been carried out in the pharmaceutical sector, focused on 
oil photo-stability due to the manifested limits in pharmacological activity and the 
evolution in toxic products. Food products containing oil can even reduce or miss 
their sensory properties and nutrients during the contact with light (Spatari, 2017). 

The quantification of the abovementioned quality and sensory parameters 
determines the freshness and the shelf life of several types of oils. 

The purposes of the present study on vegetable oils concern: 1. The assessment 
of the shelf life of vegetable oils; 2. Quality evaluation of extra virgin olive oils as 
a function of the storage time; 3. The effect of two cold pressing systems on five 
vegetable oils produced starting from their seeds; 4. The evaluation of cold-pressed 
linseed oil oxidative stability when subjected to accelerated oxidation. 

 

5.2.2 Materials and methods 

5.2.2.1 Materials and designs 

Shelf-life assessment. Three different types of vegetable oils have been 
employed in order to assess their shelf life. Hemp oil, linseed oil and the sunflower 
oil have been yielded via mechanical extraction using an expeller press (cold 
pressing equipment) starting from their seeds. The oils have been extracted within 
the same day using the same pressing conditions in terms of press speed and put in 
dark glass bottles having a volume of 250 millilitres. In order to assess their shelf-
life the following experimental design have been made: the bottles stored at 20°C 
have been subjected to artificial radiation for a period of 12 months, employing a 
NEON (Cool White 840) and a LED light with the same light power and colour 
(6500K and 1500 lumen), switching between the light (12 hours) and the dark (12 
hours). At time intervals of two months one bottle for each sample have been 
withdrawn from the storage and subjected to several analyses using primary and 
secondary analytical techniques. 

Extra virgin olive oil. Regarding the extra virgin olive oil, two batches have 
been stored in two tanks. The first tank containing an already stored oil by 6 months 
and the second one containing a fresh oil (just stored). From each tank, at intervals 
of 15 days, two samples have been withdrawn (one from the upper part and the 
other one from the lower part of the tank) noticing the external and internal tank 
temperature and afterwards have been subdued to testing in order to assess the oil 
quality. 
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Comparison between two cold pressing systems. Concerning the third point, an 
expeller press and a hydraulic piston press have been used for pressing the several 
seeds (hemp, linseed, sunflower, pumpkin and walnut). The expeller press operated 
under two pressing conditions i.e. cochlea speed at 70% and at 100%. Whereas the 
two working conditions of the hydraulic press relied on the applied pressure (860 
kg/cm2 and 900 kg/cm2) and on the pressing time (700” and 900”) as displayed in 
Table 5-3. Unlike walnut where two pressing replicates have been accomplished 
for each condition, the remaining oils have been yielded in three replications for 
each condition. 

 

Table 5-3. Working conditions of the mechanical expeller pressing and hydraulic 
press. 

 Expeller press Hydraulic piston press 

Condition 1 70% 860 kg/cm2 – 700” 
Condition 2 100% 900 kg/cm2 – 900” 

 
 
Cold-pressed linseed oil oxidative stability. With respect to the last objective, 

an expeller press operating at two different speeds (20% and 80%) has been 
employed for pressing a linseed batch. For each of the two operating conditions 
have been performed three pressing replicates. During each pressing an assembled 
portable FT-NIR tool has been employed to collect the NIR spectra in real time as 
shown in Figure 5-19. The linseed oil, after pressing, has been subjected to 
accelerated oxidation for five days in order to assess its oxidative stability. The NIR 
spectra of linseed oil before and after oxidation have been acquired using the bench 
FT-NIR instrument. The same modality of analysis has been used for the other 
abovementioned oils as well. 
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Figure 5-19. Expeller press equipped with a thermocouple and an in-house assembled 
portable FT-NIR instrument equipped with a fibre optic transflectance probe. 

 

5.2.2.2 Data collection 

The spectral data have been acquired without sample pre-treatments using two 
spectroscopic techniques: 1. FT-NIR MPA spectrometer (Bruker optics, Ettlingen, 
Germany) equipped with a sample compartment for liquid samples testing (Figure 
5-20a). The samples have been placed in a transparent glass vial before the 
acquisition of spectra; 2. UV-VIS spectrometer (Cary 5000, Agilent) displayed in 
Figure 5-20b). The cuvettes in polystyrene have been used as sample holder. 

The acquisition parameters employed for spectra collection by FT-NIR are 
displayed as follows: 

Acquisition modality: Absorbance 
Spectral range: 12500 - 4000 cm-1 
Resolution: 16 cm-1 
Detector: InGaAs photodiodes 
Sample scans: 35 
Optical path: 8 mm 
Acquisition temperature: 35°C 
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Figure 5-20. FT-NIR MPA spectrometer from Bruker optics (a) and Varian Cary 5000 
UV-Vis Spectrophotometer (b). 

 
The characteristics of UV-VIS method used to acquire the spectral data are 

listed below: 
UV-VIS source: Deuterium-Tungsten halogen 
Acquisition modality: Absorbance 
Spectral range: 300 - 800 nm 
Optical path: 1 cm 
Detector: Photomultiplier tube 
 
An example of NIR spectrum of extra virgin olive oil is displayed in Figure 

5-21. 

 

Figure 5-21. NIR spectrum of olive oil with the assignment of the main absorption 
bands. 

 

5.2.2.3 Multivariate data analysis 

The raw spectral data collected using NIRS and UV-VIS spectroscopy have 
been subjected to pre-processing employing in combination SNV + MC techniques. 
Afterwards, the pre-processed spectral data have been analysed by using 
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exploratory data analysis (PCA algorithm) employing the PLS toolbox within the 
MATLAB environment. 

 

5.2.3 Results and discussion 

Shelf-life assessment. The three different vegetable oils employed for their 
quality and shelf life assessment showed different behaviour along the storage in 
controlled conditions. The colour of the linseed and sunflower oils had not changed 
in the first six months of light exposure. On the contrary concerning the hemp oil 
after two months of light exposure the effect of the two light sources on the colour 
was minimal compared to the initial colour (green colour due to chlorophyll 
pigments with absorbances at 664 nm (chlorophyll a), 647 nm (chlorophyll b) and 
631 nm (chlorophyll c1 and c2) taking into account the purified pigments (Lorenzen, 
1980)). Moreover, there was also a little difference in the colour due to the two light 
sources. After four months of NEON light exposure the colour of hemp oil shifted 
towards yellow due to carotenoid pigments with absorbances at 432, 455 and 480 
nm (El-Hamidi, 2016) whereas the effect of LED apparatus was less apparent. The 
NEON light showed a more drastic effect in chlorophylls deterioration after four 
months compare to LED. After six months of NEON light treatment the colour of 
hemp oil became almost yellow and the impact of LED yielded a yellow colour 
effecting in this way the chlorophylls transformation (Figure 5-22). 

 

 

Figure 5-22. Visible impact of hemp oil arising from NEON and LED light exposure 
(a) and the spectra of the three oils collected in the visible region (b). 

 
The visible impact of pigment transformation can be explained by modelling 

the spectral data arising from both NIR analysis (Figure 5-23) and UV-VIS 
spectroscopy (Figure 5-24) using exploratory data analysis. From the PCA model, 
developed from the spectral data collected in the visible region, it is clear that the 
hemp oil after four months under NEON light is close to the samples exposed for a 
period of six months on both the lights whereas the scores of the same hemp oil 
exposed to LED are close to the scores of the fresh hemp oil. 
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Figure 5-23. PCA scores plot of NIR spectral data of the three vegetable oils. 

 

 

Figure 5-24. PCA scores plot of visible spectral data of the three vegetable oils over 
the six months of storage under controlled conditions. 
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Extra virgin olive oil. The extra virgin olive oils withdrawn from the two tanks 

(silos) over a period of five months (from August to December) and analysed by 
NIRS turn out to be distinguished by the scores plot of the PCA model (Figure 
5-25). This difference may arise as a result of the two different cultivars or due to 
the different storage time. 

 

Figure 5-25. Scores plot of the collected spectral data of extra virgin olive oils with a 
different storage time (gap of six months of storage). 

 
Taking into account only one tank (S704) and selecting the spectral region from 

5400 cm-1 to 4900 cm-1, related to H2O combinations, as the pre-processed spectra 
displayed differences in that region (Figure 5-26) a PCA model (Figure 5-27) has 
been developed accordingly. 
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Figure 5-26. NIR spectral data resulting from extra virgin olive oil stored in tank S704 

over the five months. 
 

 

Figure 5-27. PCA scores plot of extra virgin olive oil during the five months of storage. 

 

From the scores plot we can identify a distribution according to a storage effect 
related to the decreasing of the extra virgin olive oil temperature over the storage 
period of time as shown in Figure 5-28. 
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Figure 5-28. Evolution of the oil temperature, detected on the top and bottom, within 
tank S704. 

 
Comparison between two cold pressing systems. Concerning the effect of 

pressing and experimental conditions, the spectral data arising from the FT-NIR 
testing of each oil have been subjected to exploratory data analysis providing PCA 
models for each oil, taking into account the two conditions. and an overall model 
including all the samples. From the PCA scores plot of sunflower, pumpkin and 
hemp vegetable oils (Figure 5-29) we can see that the samples are evenly distributed 
without distinction according to the two different pressing equipments and/or 
working conditions. 

 

 

Figure 5-29. PCA models of hempseed, sunflower and pumpkin oils yielded starting 
from their seeds. 
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On the contrary, the effect of the two different presses is more obvious for the 
walnut oil and less evident for the linseed oil. Concerning the walnut and linseed 
oils the first principal component can split the samples depending on the two types 
of presses (Figure 5-30). Even for the abovementioned walnut and linseed samples 
there is less evidence about the effect of the two different conditions on the chemical 
composition of oils as the scores are close in the PCA model. The appearance of 
the walnut oil yielded from the two pressing systems was not the same, which 
reflected on the NIR spectra and accordingly on the PCA scores plot. 

 

 

Figure 5-30. PCA models of walnut and linseed oils yielded by the two presses. 

 
The overall PCA model displayed also a clear separation of walnut oil 

according to the two extraction tools whereas the distribution of linseed oil samples 
does not reflect the previous graphical depiction due to the augmented bi-
dimensional space (Figure 5-31). 

 

 

Figure 5-31. Overall PCA scores plot of the mean spectra of each replicate (three 
replicates for hemp, sunflower, linseed and pumpkin oils; two replicates for walnut oil). 
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Cold-pressed linseed oil oxidative stability. With respect to the employment of 
expeller press showed in Figure 5-19, the NIR spectra arising from the linseed oil 
before and after accelerated oxidation in stove taking also into account of the two 
extraction speeds show some differences in some specific regions (bands at 9000-
8000 cm-1 due to C-H 2st overtone and bands at 7500-6000 cm-1) as displayed in 
Figure 5-32. 

 

 

Figure 5-32. NIR spectra of linseed oil acquired by using the bench-top instrument, 
right after pressing under two different speeds, and after accelerated oxidation. 

 
A PCA algorithm has been applied on the pre-processed spectral data. From the 

scores plot we can identify a limited area with close scores (blue samples) on the 
two principal components representing all the samples before oxidation. Following 
the oxidation treatment there is a wide distribution of the samples on scores plot 
according to one direction (red and green triangles). The oil samples (green 
triangles) arising from the higher pressing speed (cochlea speed = 80%) and 
subjected to accelerated oxidation are located in the upper part of the scores plot 
and distributed into two groups related to the two replicates (same pressing speed). 
On the other hand, the samples (red triangles) arising from the lower pressing speed 
(cochlea speed = 20%) are located towards the lower right part of the plot and 
divided into two groups due to the replicates (Figure 5-33). 
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Figure 5-33. PCA scores plot of linseed oil samples before and after accelerated 
oxidation in stove. 
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5.3 Coffee industry 

5.3.1 Introduction 

The sensory features of coffee, one of the most popular and consumed beverage 
of the world, is significantly affected by the chemical composition of the green 
coffee beans, which is, in turn, highly correlated to their geographical origin. The 
variability existing among coffee grown in different world’s regions has led, in 
many cases, to commercial frauds, like mislabelling and adulteration problems 
(Alonso-Salces, 2009). In this frame, the interest from coffee producers and 
industrial manufacturers in protecting the coffee market reputation has highly 
increased during the last decades and has led to the investigation of reliable 
techniques to assess the coffee authenticity. In this context, different analytical 
methods, such as liquid (LC) and gas chromatography (GC), mass spectrometry 
(MS) and Nuclear Magnetic Resonance (NMR) spectroscopy, were tested and 
allowed gathering accurate information about the coffee composition (Arana, 
2015). However, these approaches present noticeable drawbacks, such as the time 
required, the cost, the complexity and the need of sample preparation before the 
analysis through the use of chemical solvents. A good solution to overcome the 
above mentioned issues is represented by NIR spectroscopy, which has widely 
demonstrated its suitability for the rapid and non-invasive prediction of important 
food quality parameters and has been successfully applied with different purposes 
in the coffee supply chain, such as the prediction of coffee species, the 
determination of organoleptic properties of the coffee beverage and the coffee 
colour after the roasting process (Bertone, 2016). Just a few studies (Marquetti, 



 

 96

2016; Medina, 2017) were instead found regarding the use of NIR spectroscopy for 
the direct determination of the geographical origin of coffee beans. 

In this study, NIR spectroscopy, coupled with multivariate data analysis, was 
investigated for the development of a rapid and non-destructive method to classify 
green coffee beans based on their geographical origin. The FT-NIR spectra of 
coffee samples coming from different countries of Centre-South America and Asia 
were acquired and separately elaborated by two different laboratories.  A 
preliminary data exploration was performed using the Principal Component 
Analysis (PCA). Subsequently, Partial Least Square-Discriminant Analysis (PLS-
DA) classification models were developed by considering at first the continent and 
then the country of origin as discrimination parameter. Moreover, interval PLS-DA 
algorithm was investigated to select the most informative regions of NIR spectra. 

The present study also considered the inter-laboratory comparison of the model 
results, which was performed using the McNemar test. A further inter-laboratory 
model validation was finally carried out by predicting the spectral test set of a 
laboratory using the model calibrated on the spectra collected by the other 
laboratory. The work described in this Section has been already published and can 
be found in Giraudo (2019). 

The purpose of the study concerns the employment of NIRS coupled with 
chemometrics for the classification of green coffee beans based on their 
geographical origin. 

 

5.3.2 Materials and methods 

5.3.2.1 Coffee samples 

An overall dataset of 191 different samples of green coffee beans was 
considered in this study. The first 88 samples came from countries belonging to the 
Centre-South America (Brazil, Honduras, Colombia, Costa Rica, Guatemala, 
Nicaragua), while the remaining 103 ones were harvested in Asian countries (India, 
Vietnam, Indonesia). The samples, each one consisting of three hundred grams of 
coffee beans, were vacuum-packed in light barrier packaging bags and send 
concurrently, within seven days from the preparation and in eight subsequent 
deliveries, to the two laboratories, i.e. the Department of Food, Environmental and 
Nutritional Sciences (UNIMI, University of Milan) and the Department of Applied 
Science and Technology (DISAT, Polytechnic of Turin). 

 

5.3.2.2 Data collection 

In both laboratories, the NIR spectra were collected using the same model of 
MPA FT-NIR spectrometer employed previously in Section 5.2, provided also with 
an integrating sphere for diffuse reflectance measurements. NIR spectra were 
acquired on the green coffee samples directly, i.e. without performing any kind of 
pre-treatment. 
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The acquisition parameters employed for spectra collection by FT-NIR are 
displayed as follows: 

Acquisition modality: Absorbance 
Spectral range: 12500 - 3600 cm-1 
Resolution: 8 cm-1 
Detector: InGaAs photodiodes 
Sample scans: 64 
 
Three replicate measurements were performed on each sample, keeping the 

sample holder in rotation during the spectra acquisition. All the measurements have 
been performed at room temperature and within 48 hours from the delivery of the 
coffee samples. 

 

5.3.2.3 Multivariate data analysis 

The data analysis has been independently performed on the NIR spectral data 
collected by the two laboratories using the PLS Toolbox running under MATLAB 
environment. 

First, the replicate measurements of each samples have been averaged. 
Different pre-processing methods were then investigated, i.e. SNV, MSC, 1st and 
2nd derivatives, combined in all cases with MC before the application of PCA 
algorithm. 

For continent-based classification, PLS-DA models were built considering 
American and Asian samples as two independent classes. For the implementation 
of the country-based classification models five classes were instead considered: 
each one of the most representative countries in term of number of available 
samples (Brazil, Honduras, India, Vietnam) was labelled as an independent class, 
while all the remaining countries’ samples, being their number not enough 
representative to build independent classes maintaining a balanced design, were 
grouped to form a unique class, named ‘other’. The dataset was split into 75% 
training set and 25% validation set. 

The performance of the PLS-DA classification models has been evaluated by 
comparing the reference class to the class predicted by the model. In this context, 
four different conditions may occur based on the model prediction, since the 
samples can result “true positive” (TP), “true negative” (TN), “false positive” (FP) 
or “false negative” (FN) (Szymanska, 2012; Ballabio, 2013). A series of statistical 
parameters were then calculated for all the classes separately i.e.: 

 
 Sensitivity (SENS), which expresses the model capability to correctly 

recognize samples belonging to the considered class (Equation 5.1). 
 Specificity (SPEC), which describes the model capability to correctly reject 

samples belonging to all the other classes (Equation 5.2). 
 Efficiency (EFF), calculated as the geometric mean of SPEC and SENS 

(Equation 5.3). 
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𝑺𝑬𝑵𝑺 =  
𝑻𝑷

(𝑻𝑷 + 𝑭𝑵)
                            Equation 5.1 

 

𝑺𝑷𝑬𝑪 =  
𝑻𝑵

(𝑻𝑵 + 𝑭𝑷)
                             Equation 5.2  

 

𝑬𝑭𝑭 =  ඥ(𝑺𝑷𝑬𝑪 ∗ 𝑺𝑬𝑵𝑺)                    Equation 5.3 

 
All these parameters can assume values between 0 (0%) and 1 (100%) and were 

calculated referring to the calibration (TRN, CAL), to the cross-validation of the 
training set (TRN, CV), and to the prediction of the external test set (TST, PRED). 

The variable selection was performed using the iPLS-DA algorithm, which 
consists, similarly to other interval-based chemometric techniques available in 
literature (Savorani, 2013), in cutting the whole spectral range in different intervals 
and building a series of ‘local’ models, first using one interval at a time and then 
adding the remaining intervals in an iterative way. The best model in terms of 
selected variables is the one characterized by the lowest Root Mean Square Error 
value achieved in cross-validation (RMSECV) (Leardi, 2004). In the present study, 
four different interval size values (i) were considered, with an arbitrary-defined 
length of 80, 40, 20 or 10 spectral variables, respectively. 

Eventually, the achieved results were compared in terms of prediction 
performance applying the ‘testcholdout’ Matlab function, which performs one-
tailed, mid P-value McNemar test, a particular case of Fisher’s sign test that verifies 
if two models have the same error rate (Grassi, 2018). 

 

5.3.3 Results and discussion 

PCA models. Both the PCA models calculated on the spectra collected from 
DISAT and POLITO laboratories allowed to appreciate a rather good separation of 
coffee samples after the combined application of SNV + MC as pre-treatment 
techniques. More than 80% of the total variance is explained by PC1, which is the 
main direction along which the coffee samples are separated according to both the 
continent and the country of origin (Figure 5-34a), while PC2 was found to 
essentially account for the within-class variability. As it can be clearly seen, only 
the samples belonging to the class ‘other’ did not grouped in a defined cluster. For 
this reason, they were excluded before the implementation of the country-based 
classification models. 

A good correspondence was then found between the PCA loading values (data 
not shown) and the spectral wavelength regions responsible for the differences 
between American and Asian coffee samples (Figure 5-34b). In particular, negative 
loading values on PC1 were assigned to the wavelength regions where NIR signal 
is higher for the American samples (8450-8000 cm-1, 7000 cm-1, 5780 cm-1 and 
5680 cm-1), while positive loading values were assigned to the regions where NIR 
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signal is higher for the American samples (4020 cm-1 and 5000 cm-1). The above 
mentioned spectral regions are essentially related to the NIR absorption of the C-H 
bonds of caffeine, amino- and fatty acids and lignin, the O-H bonds of cellulose and 
the N-H bonds of proteins and polyamides. 

 

 

Figure 5-34. PCA scores plot of samples having different country of origin (a) and the 
average of SNV American and Asian NIR spectra of green coffee beans (b). 

 
Classification models. The continent-based PLS-DA models developed using 

both the DISAT and POLITO spectra led to an EFF on the external test set (EFFTS) 
always higher than 93%, no matter the considered data pre-treatment (Table 5-4). 

 

Table 5-4. Results of continent-based Partial Least Squares-Discriminant Analysis 
(PLS-DA) on NIR spectra collected by DISAT and UNIMI after the application of different 
mathematical pre-processing: EFF obtained in calibration (CAL), cross-validation (CV) 
and prediction of the external test set (TS); Raw: raw spectral data without any pre-
processing except MC; SNV: standard normal variate; MSC: multiplicative scatter 
correction; d1: first derivative; d2: second derivative. 

   AMERICA   ASIA 
     CAL CV TS   CAL CV TS 

DISAT 

Raw  98.6 98.6 100.0  94.6 94.6 100.0 
SNV  98.6 98.6 100.0  93.2 93.2 93.1 

SNV + d1  98.6 98.6 100.0  93.2 93.2 96.6 
SNV + d2  98.6 98.6 100.0  95.9 93.2 96.6 
MSC  98.6 98.6 100.0  93.2 93.2 93.1 
MSC + d1  98.6 98.6 100.0  93.2 93.2 96.6 
MSC + d2  98.6 98.6 100.0  95.9 93.2 96.6 
d1  98.6 98.6 100.0  95.9 95.9 100.0 
d2  98.6 98.6 100.0  97.3 94.6 96.6 

                   

UNIMI 

Raw  98.6 98.6 100.0  97.3 97.3 100.0 
SNV  98.6 98.6 100.0  93.2 91.9 96.5 
SNV + d1  98.6 98.6 100.0  94.6 93.2 93.1 
SNV + d2  97.2 97.2 100.0  94.6 93.2 96.5 
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MSC  98.6 98.6 100.0  93.2 91.9 96.5 
MSC + d1  98.6 98.6 100.0  94.6 93.2 93.1 
MSC + d2  97.2 97.2 100.0  94.6 93.2 96.5 
d1  98.6 98.6 100.0  91.9 91.9 96.5 
d2   97.2 97.2 100.0   95.9 93.2 96.5 

 
 
Concerning the country-based PLS-DA models, up to the 98.1% of the 

Brazilian test set samples were correctly predicted, while from 90.0% to 97.8% of 
the Honduran, Indian and Vietnamese test set samples were properly assigned, 
depending on the pre-processing technique applied on the spectral dataset. 

The iPLS-DA variable selection further improved the model results, with EFFTS 
of 100% and 96.5% for the classification of American and Asian test set samples, 
respectively. Regarding the country-based classification, the iPLS-DA models led 
to EFFTS ranging from 100% to 94.9%, depending on the class and the interval size 
of contiguous spectral variables considered. 

In particular, the best iPLS-DA continent-based model was built using SNV + 
MC data pre-processing and just 40 spectral variables out of 1154 (which 
correspond to the whole spectral range) selected in four different spectral regions, 
i.e. 12258-12188 cm−1, 5855-5786 cm−1, 5315-5246 cm−1 and 4852-4783 cm−1. The 
best performance in terms of country-based classification was always achieved on 
the SNV + MC pre-processed data, but selecting 90 spectral variables in three 
different spectral regions (9018-8871 cm−1, 8632-8177 cm−1 and 6009-5940 cm−1). 

The McNemar test was always performed by comparing both the results 
achieved by DISAT and UNIMI separately and then their combination. 

In all cases, at least the models calculated using the SNV and MSC pre-
processed spectra were comparable (P >0.05) in term of prediction performances. 
This similarity was further proven by the very good results achieved by the ‘cross-
laboratory’ validation approach. As a matter of fact, the cross-laboratory models 
(i.e. DISAT calibration set - UNIMI external set and vice versa) led to correctly 
classify up to 100% of American and Asian test set samples and up to 95% of the 
test set samples according to the country of origin. 
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Chapter 6 

6) Conclusions and future 
perspectives 

6.1 Conclusions  

6.1.1 Pharmaceutical industry 

Raw materials. The compliance of raw materials with the quality standards is of 
crucial importance because of the intended use of the final products. 

NIRS coupled with chemometrics showed the potential for rapid identity 
confirmation and/or classification of incoming materials, including botanical raw 
materials ensuring their quality based on the feed-forward control approach 
included in the PAT strategy. 

The classification model developed and implemented without the employment 
of variable selection methods, related to ginkgo biloba dry extracts (botanical raw 
material), successfully predicted new samples of the three different classes which 
did not belong to the set of data used to build the model. 

Concerning the composite raw material (soybean dry extract), the PCA model 
displayed a good separation of batches, with the same denomination, based on the 
two different suppliers. 
Semi-finished and/or end product. The quantity of DHA in two final products was 
successfully predicted using the previously developed model. 

The developed linear regression model, according to the evaluation criteria, i.e. 
RMSECV and R2, and the number of principal components (4PCs), can be 
considered a good and simple model able to predict the active ingredient in end 
products. The abovementioned positive outcome showed the potential for the 
implementation of the quantitative prediction model within the dashboard enabling 
a fast outcome when it comes to predict the quantity of DHA in the semi-finished 
and end product, allowing in this way the company to make quick decisions about 
the production process. 

This study showed the potential application of a quality control approach 
involving the several stages of processing, starting from the raw materials, semi-
finished and end products as indicated by the PAT guidelines taking into account 
the complexity of quality control. 

The reduction of the analytical time of response regarding incoming raw 
materials quality and semi-finished products conformity can improve the 



 

 103 

management of resources (natural, human and financial) and manufacturing 
planning accordingly. 

 

6.1.2 Vegetable oil company 

Shelf-life assessment. The exploratory data analysis based on the visible 
spectral region of the three oils provided a clear separation of hemp oil subjected at 
the two different light sources (LED and NEON) after four months of exposure due 
to the different impact of light initiators (NEON showed a more drastic impact) on 
the chlorophylls, which are the main pigments of hemp oil effecting the sensory 
characteristics. The PCA model build on the NIR spectra did not provide a clear 
effect, based on the two various light sources, as the NIR spectral profile of hemp 
oil is almost the same over the light treatment period contrary to the visible spectra. 

Extra virgin olive oil. The effect of the different storage period or cultivar that 
characterize the two olive oils is displayed with two separate groups on the PCA 
scores plot. The storage effect displayed on the scores plot of qualitative model 
arises from the decreasing trend of the oil temperature over the storage period of 
five months. 

Comparison between two cold pressing systems. The two pressing tools have 
shown different effects depending on the type of seeds (walnut oil differentiates 
from the other oils based on the pressing system) while the impact of the two 
operating conditions was insignificant as showed by the PCA scores plot of the 
single vegetable oils and the overall model. 

Cold-pressed linseed oil oxidative stability. The two different expeller press 
working conditions related to the pressing speed (20% and 80%) showed a similar 
outcome based on the PCA model stemming from the NIR spectra. On the contrary, 
the effect of accelerated oxidation on the linseed oil produced by setting two 
cochlea speeds is variable as showed by the qualitative model. The portable FT-
NIR instrument equipped with a fibre optic transflectance probe showed the 
potential for in-line monitoring of the pressing process where the pressing speed 
affected the spectral signal to noise ratio. 

 

6.1.3 Coffee industry 

NIRS and chemometrics, through this study, proved their potential for the 
determination of the geographical origin of green coffee beans. 

The similarity of results in calibration and validation (cross-validation and test 
set validation) revealed the robustness of the developed classification models 
referring either to the continent or country based approach. 

The automation of the analysis based on the speed, objectivity and non-invasive 
nature is the main advantage of the proposed method. 

The discrimination performances attained by the iPLS-DA algorithm have been 
superior than those obtained using the whole NIR spectral region. During the 
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development of handheld instruments in order to perform NIR analysis directly in 
field, the abovementioned advantage should be taken into account. Moreover, the 
proposed method can be used among several production sites or industries because 
of the successful cross-laboratory model validation. 

 

6.2 Future perspectives 

6.2.1 Pharmaceutical industry 

Raw materials. The abovementioned platform, takin advantage of NIRS and 
multivariate data analysis, which results in a quick conformity response besides the 
advantage to display the bi-dimensional classification model can be extended to 
other raw materials of organization’s interest once the number of batches is large 
enough to represent the variability of samples. 

The quantitative prediction of active constituents in composite raw materials 
such as botanicals can also be performed in a rapid way, by linear regression 
methods (e. g. PLS algorithm) starting from the NIR spectra and the reference value 
of the interested component/s. This potential can enable a quick comparison with 
the ingredient’s content stated in raw materials data sheet, instead of the 
employment of time consuming techniques. 

Authenticity inspection and the classification of materials based on their origin 
can be achieved by the untargeted analytical technique (NIRS) coupled with 
chemometrics. 
Semi-finished product. With respect to the compliance of semi-finished and final 
products to the specifications, quantitative models related to other products can be 
developed, based on the abovementioned approach, and subsequently implemented 
to achieve the organization’s goals. 

Regression models which can enable the simultaneous quantitative prediction 
of the various constituents of the product can be developed based for instance on 
the designs for multivariate calibration (illustrated in Chapter 3, Section 3.1.5). 

 

6.2.2 Vegetable oil company 

Shelf-life assessment. The assessment of the impact of LED and NEON on the 
three vegetable oils is in progress and will end after a year of light exposure. 

Extra virgin olive oil. As the storage period of olive oil has been rather short, 
the extension of this interval of time can provide more information due to the 
temperature change over a longer period. 

Comparison between two cold pressing systems. The impact of the two systems 
of pressing can be further assessed by using more pressing conditions according to 
an experimental design and further diversifying the seeds. 

Cold-pressed linseed oil oxidative stability. The lapse of time and the 
conditions of accelerated oxidation can be varied in order to better understand the 



 

 105 

process employing NIRS and chemometrics. An in-line testing system based on 
NIRS can be used for the monitoring of other pressing processes made with various 
presses in order to compare the qualitative outcome such as turbidity, particle 
suspensions, etc. Some qualitative parameters such as peroxide value, could be 
monitored during the process taking advantage of the prediction models previously 
developed. 

 

6.2.3 Coffee industry 

Model optimization and scale-up may be the next steps to perform taking into 
account a subsequent application as a tool for rapid conformity assessment of green 
coffee beans, within the feed-forward control strategy, before the roasting process. 

The research study can be extended, for instance, by increasing the number of 
involved countries. 

 


