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Summary

Energy efficiency has become the main constraint for most of today’s information
and communication technologies, from those involving high-performance computing
(e.g., cloud services) to those deployed on low-power applications (e.g., portable systems
for the Internet-of-Things). In the past decades, the pursuit of energy efficiency was
mainly supported through the advance of the underlying CMOS technology. Moving
towards a new node was the guarantee to achieve more than 90% of energy savings.
However, as soon as the CMOS entered the nanometric regime, improvements brought
by a technology shift have shrunk substantially, reaching 20% and then further less
generation by generation. To make matters worse, production costs raised dramatically
due to the technological impediments imposed by physical geometries below the 28 nm
mark. This made technology scaling impractical for many cost-sensitive applications.

New sophisticated energy-aware design practices were then introduced to alleviate
the suffering of a slow technology scaling. Very soon, low-power and energy-management
techniques become the actual kernel of any design and optimization flow. Unfortu-
nately, also design techniques are not fully renewable, namely, their effectiveness de-
grades with the advance of the technology nodes. This is the case of voltage scal-
ing, for instance, which encountered the 1.0 V plateau that still holds today, but also
other architectural-level techniques, such as multi-core/many-core solutions, which
have been seriously limited by stringent dark-silicon constraints.

The end of Moore’s law is not just a technology issue; it is also the prelude of a
design crisis that will soon require to rethink the optimization and integration strat-
egy of digital circuits and systems. A radical solution to all these concerns has to come
yet. However, the recent growth of data-centric applications is opening to new design
paradigms that alleviate the pressure. Much room is at the application-level indeed,
where alternative energy-management knobs are available. The basic idea is that of in-
tegrating the quality-of-results as a new dimension in the design space. Leveraging the
intrinsic error-resilience of data-centric applications, it is thereby possible to implement
an Energy-Accuracy Scaling (EAS) which is orthogonal to the technology adopted and
the low-power design strategy deployed. At the basis of this concept, there is the simple
intuition that an application whose output can be degraded without affecting the qual-
ity perceived by the user may require lower energy consumption for the same amount
of work.
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The broad objective of this dissertation is to introduce advanced design solutions
that improve the approach the EAS paradigm is implemented. Two new strategies are
presented which reduce the design overhead of classical approximate solutions; accord-
ing to the revisited taxonomy introduced in this thesis, one of the proposed strategies
belongs to the class of Adaptive EAS, while the second falls under the label of Static
EAS. With Adaptive EAS, the optimal energy-accuracy tradeoff is achieved by mea-
suring some quality metrics directly on-chip, at run-time, establishing a feedback loop
that drives the energy minimization. These metrics can be obtained by explicitly mea-
suring the output accuracy, or by indirect measurements, e.g., through the output error
rate. With Static EAS, the energy-accuracy tradeoff is fixed at design-time by functional
speculation, i.e., a modification of the logic functionality through algorithmic or circuit
simplifications which induce energy savings for a worst-case accuracy loss.

TheAdaptive solution encompasses the extension of the conventional ErrorDetection-
Correction techniques for data-driven voltage scaling in order to trade system accu-
racy for energy reduction. The new mechanism, called Approximate Error Detection-
Correction (AED-C), is built upon in-situ elastic timing monitors which allow to imple-
ment a lightweight error management scheme.The AED-C implements EAS using the
error detection coverage as a knob: a low error coverage accelerates supply voltage
over-scaling thus to achieve more significant energy savings at the cost of quality-of-
result; a high error coverage lessens the voltage scaling leading to higher accuracy at
the cost of lower energy savings. As EAS does not have to ensure full error coverage,
the traditionally large area/energy overhead of conventional techniques is drastically
reduced. Simulations over a representative set of applications/circuits, e.g., Multiply-
Accumulate (MAC) unit, Discrete Cosine Transform (DCT), FIR and IIR filters, provide
a comparative analysis with the state-of-the-art techniques. The collected results show
that AED-C substantially reduces the average energy-per-operation and the area over-
head, still guaranteeing reasonable accuracy.

The static EAS strategy, instead, is developed exploiting Machine Learning theories
which suggest alternative forms to represent relationships among data. Such theories
find their application in the Boolean domain, where logic functions can be described
as inference rules. The novel paradigm, named as Inferential Logic, leverages the con-
cept of statistical inference for the design of combinational logic circuits that are able to
mimic Boolean functions to a certain degree of accuracy. These inferential logic circuits
run quasi-exact computations trading energy efficiency for accuracy in error-resilient
applications.The figures-of-merit of an Inferential Multiplier are quantified using repre-
sentative image processing applications as a case study. A comparative analysis against
a state-of-the-art Booth Multiplier proves the inferential logic representation simplifies
the circuit complexity reducing the overall area/delay. As a result, the inferential multi-
plier can exploit latency reduction for power optimization guaranteeing a fixed average
accuracy.
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Chapter 1

Introduction

1.1 Context & Motivations
Energy efficiency is a critical constraint for most of today’s applications spanning a

broad range of performance and form factor, from high-performance computing (e.g.,
cloud servers and GPUs) to low-power applications (e.g., edge IoT).The available energy
budget directly affects the design and optimization of digital Integrated Circuit (ICs)
determining the achievable performance.

In the last few decades, energy reduction has been driven by technology scaling,
guaranteeing more than 90% of the energy savings at each new CMOS generation [75].
Figure 1.1 shows that energy consumption for general-purpose processors (blue dashed
plot) has dropped at the rate of 100×/decade, as theorized by the Koomey’s law [75]. A
similar trend, also known as Gene’s Law, has been observed for Digital Signal Processors
(DSPs - green dashed plot) [66]. However, in the last two decades, while GPUs energy
improved by 12-20×/decade (red dashed plot), the energy reduction for processors trend
has significantly slowed down to 10×/decade (black dashed plot).

Also, with the end of Moore’s law, pure technology advances are expected to have
less impact on energy minimization, only 4× in the decade ahead (dotted black line), as
the new CMOS generations will be able to guarantee savings lower than 20% at each
new technology node, with a limited set of remaining generations [60]. Besides, the
transistor cost below 28 nm is no longer being optimized [143], making further tech-
nology scaling an unfeasible option for cost-sensitive applications, e.g., sensor nodes in
IoT. In other words, the need for energy-efficient design practices at different levels of
abstraction have become more and more critical as the technology scaling alone cannot
guarantee the energy savings brought with previous nodes.

Likewise, standard design-level energy optimization strategies find lower margins
of applicability. Among them, the Voltage Scaling technique, extensively leveraged at
circuit-level in the last two decades, which encountered the 1.0 V plateau that still holds
today. Moreover, as commercial low-power processors and standard cell libraries volt-
age approaches transistor threshold, with 0.6 V corner already state-of-the-art, limited
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Figure 1.1: Energy per computation trend vs. year for general-purpose computer, DSPs
and GPUs [3].

room for further voltage scaling has been left [35]. At architectural-level, the energy
savings achieved through to parallelism have lessened, especially in those applications
whoseworkload is not naturally parallelizable. For example, in portable electronics plat-
forms (e.g., smartphones) the number of simultaneously active cores has settled; more
cores are added only to cover a broader range of energy-performance tradeoffs.

In summary, the historical energy reduction trend in ICs cannot be solely supported
by unceasing technology scaling, more aggressive voltage scaling or deeply parallelized
architectures [22]. This is a prelude of a design crisis that will soon require to rethink
the optimization and integration strategy of digital circuits and systems. A radical so-
lution to all these concerns has to come yet. However, the literature offers a solution.
The recent growth of data-centric applications is opening to new design paradigms that
alleviate the pressure. Much room is at the application-level indeed, where alternative
energy-management strategies are available. They propose to integrate the system ac-
curacy as a new dimension into the design/optimization space to have a further knob for
adjusting circuits energy-efficiency [1] [3]. Leveraging the intrinsic error-resilience of
data-centric applications, it is thereby possible to implement an Energy-Accuracy Scal-
ing (EAS) which is orthogonal to the technology adopted and the low-power design
strategy deployed. At the basis of this concept, there is the simple intuition that an ap-
plication whose output can be degraded without affecting the quality perceived by the
user may require lower energy consumptions for the same amount of work.

The benefits of EAS-based design strategy can be proved by an explanatory example
of a smartphone delivering a video stream [1]. The accuracy of the output video can be
tuned to lower values for saving energy, whenever (i) the quality of lighting is poor (as
sensed by a light sensor); (ii) the battery is drained out, and extending its lifetime be-
comes a priority; (iii) the user is on the go (as sensed by motion sensor) and is not focus-
ing on the content. Hence, integrated sensors might be used to understand the context
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scenario at run-time and drive the device energy efficiency through the power man-
agement system. From a power policy viewpoint, a possible approach might reduce the
energy/frame through an aggressive voltage over-scaling targeted to a minimum value
of video quality that does not compromise the user experience (e.g., tiny pixels imper-
fections due to occasional timing faults). The accuracy target, which can be managed
by directly measuring the output quality or by an indirect estimation of the accuracy
value, is used as a knob for generating the appropriate energy-accuracy tradeoff for the
systems involved in processing/visualizing the contents. Similarly, several multimedia
applications, e.g., audio/image processing, can be considered energy-accuracy scalable
systems as their output quality can be traded for energy savings.

The above illustrative case reports an EAS strategy which integrates the sensed con-
text information and the accuracy measure in a feedback loop used as a knob to adjust
the energy savings adaptively. However, as discussed in this dissertation, the energy-
accuracy tradeoff can also be statically fixed at design-time or can be set dynamically
among different energy-accuracy operating points pre-defined atworst-case conditions,
thus, ensuring acceptable quality degradation levels for specific energy savings.

Another motivating example refers to an emerging yet very promising market, i.e.,
the Internet-of-Thing (IoT). The key to success for the IoT galaxy is the availability
of always-on smart objects with embedded ICs that can process/transmit sensor data
ceaseless. Due to the limited budget of energy made available by small batteries, such
ICs must show ultra-low power consumption thus to guarantee reasonable through-
put. Thus, the need for energy efficiency imposes stringent design constraints on cir-
cuits and systems that cannot be achieved with classical low-power techniques, such
as Dynamic Voltage and Frequency Scaling, Clock-Gating, Power-Gating. The litera-
ture is plenty of viable options to match these stringent energy constraints [2]. How-
ever, as described above[1] [3], the recent trends in EAS highlight the rise of aggressive
power-management strategies that leverage the error tolerance of specific IoT appli-
cations, e.g., video/audio sensor node or wearable trackers, to trade energy efficiency
for quality-of-results through mechanisms that give real-time feedback, e.g., environ-
mental conditions or user status. Such information is used by the power management
system to identify and deliver the most appropriate energy-accuracy tradeoff.

1.2 Objectives & Contributions
The broad objective of this dissertation is to provide a new taxonomy and classifi-

cation of Energy-Accuracy Scaling (EAS) techniques, supported by a detailed pros&cons
analysis. Besides, two novel strategies which aim at implementing low overhead EAS
are proposed. According to the presented taxonomy, these strategies belong to the
Adaptive and Static classes of EAS. In the Adaptive EAS methods the optimal energy-
accuracy tradeoff is achieved bymeasuring qualitymetrics directly on-chip, at run-time,
establishing a circuit compliance feedback loop that drives the energy minimization.
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These metrics can be obtained by explicitly measuring the output accuracy, or by in-
direct measurement of the accuracy value, e.g., through the output error rate. On the
contrary, in the Static approaches, the energy-accuracy tradeoff is fixed at design-time
by functional speculation, i.e., a modification of the logic functionality through algo-
rithmic simplifications, or circuit- and gate-level approximations, which induce energy
savings for a worst-case accuracy loss.

A detailed discussion on the main contributions of this manuscript follows below.

Approximate Error Detection-Correction (AED-C) for Adaptive EAS

The contributions of this dissertation on the Adaptive solutions concern the exten-
sion of the conventional Error Detection-Correction techniques [39] for data-driven
voltage scaling in order to trade system accuracy for energy reduction.This mechanism,
called Approximate Error Detection-Correction (AED-C), is built upon in-situ elastic tim-
ing monitorswhich enable an error management scheme suited to adaptive power man-
agement (e.g., Adaptive Voltage Over-Scaling) on error-resilient applications. Inspired
by the working principle of Approximate Computing, AED-C implements EAS using
the error detection coverage as a knob: a low error coverage accelerates supply volt-
age over-scaling thus to achieve larger energy savings at the cost of quality-of-result;
a high error coverage lessens the voltage scaling leading to higher accuracy at the cost
of lower energy savings.

As EAS does not have to ensure full error coverage, the traditionally significant
area/energy overhead of the conventional error detection-correction techniques may be
reduced by using a simpler error management circuitry. Simulations over a representa-
tive set of applications/circuits, e.g., Multiply-Accumulate (MAC) unit, Discrete Cosine
Transform (DCT), FIR and IIR filters, provide a comparative analysis with the state-
of-the-art techniques. The collected results show that AED-C substantially reduces the
average energy-per-operation (up to 44.7% savings w.r.t. Razor-driven Adaptive Voltage
Over-Scaling) and the area overhead (3.3% vs. 62.0%), still guaranteeing reasonable accu-
racy. As an example, when applied to a real-life image processing application, i.e., Dis-
crete Cosine Transform Unit (DCT) integrated into a JPEG compressor, AED-C shows
51.9% energy savings (w.r.t. a baseline DCT implementation) and a PSNR of 48.45 dB
(w.r.t. baseline JPEG images)

The strength of adaptive strategies lies under the capability of designing techniques
that can support context-driven reconfiguration/adaptation enabling low-power knobs
to be tuned at a finer scale granularity. However, such efficiency poses many chal-
lenges that need to be coherently addressed at different levels of abstraction, from the
application-/software-level down to the circuit-level and power delivery system. The
research key aspects that characterized this contribution concern:

1. the efficient implementation of in-situ timing sensors;

2. the design of architectural solutions responsive to the timing sensors real-time
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feedback;

3. the integration of voltage-accuracy scaling policies that drive the power delivery
system;

4. the development of EDA tools which implement a new across-level optimiza-
tion/simulation approach, as preliminary design exploration, chip design and ver-
ification, to meet performance and energy-accuracy constraints.

Low-power Infential Logic for Static EAS

Within the scope of static EAS, a new strategy is developed exploiting Machine
Learning (ML) theorieswhich suggest alternative forms to represent relationships among
data. Such theories find their application in the Boolean domain, where logic func-
tions can be described as inference rules. This novel paradigm, know as Inferential Logic
[150], leverages the concept of statistical inference for the design of combinational logic
circuits that are able to mimic Boolean functions to a certain degree of accuracy. Al-
though several options for building abstract models are available, Classification Trees
have proven to achieve high accuracy with a low level of complexity in many applica-
tion cases [15].

Inferential logic circuits infer output values by evaluating the key features of the
function learned during the training stage, skipping the logic operation. Their intrinsi-
cally speculative nature lead to low circuit complexity at the cost of a quality-of-results
drop. In other words, inferential logic circuits run quasi-exact computations trading en-
ergy efficiency for accuracy loss in error-resilient applications. This principle has a pos-
itive impact on arithmetic applications [149] [151] where inferential circuits design can
lead to architectures more prone to support aggressive adaptive power management.
For this reason, the figures-of-merit of an Inferential Multiplier are quantified using
representative image processing applications as a case study. A comparative analysis
against a state-of-the-art Booth Multiplier proves the inferential logic representation
simplifies the circuit complexity reducing the area by 22%. Also, the inferential multi-
plier can exploit 2× latency reduction for power optimization guaranteeing 76% average
accuracy.

The research key aspects of this contribution focused on:

1. the formulation of theories and methods that could support the involvement of
ML algorithms within ICs design.

2. the development of ML-based EDA tools for inferential logic circuits, i.e., the inte-
gration into the commercial platform of design flow steps thatmap logic functions
to statistical inference circuits based on Classification Trees.

3. the implementation of tools for inferential circuits design exploration, simulation,
and verification.
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1.2.1 Main Research Achievements
The novel techniques presented in this dissertation have been conceived to improve

existing EAS schemes, in terms of efficiency and flexibility, by matching the following
requirements/constraints: (i) do not apply any “irreversible” modification of the cir-
cuit (i.e., re-synthesis stages); (ii) introduce bounded design overhead (area/power); (iii)
avoid dedicated optimization algorithms that may be hard to integrate into industrial
design kits. The research achievements of the proposed strategies can be summarized
as follows:

• Approximate Error Detection-Correction (AED-C) for Adaptive Energy-
Accuracy Scaling (EAS):
porting of the Approximate Computing concept to Adaptive EAS techniques us-
ing the timing faults coverage as a knob to trade energy for quality-of-results.
AED-C offers across-level contributions in EDAmethodology/tools, architectural
solutions, and circuit implementation.

• Low-power Inferential Logic for Static Energy-Accuracy Scaling:
porting of Machine Learning (ML) theories into the Boolean domain to imple-
ment logic functions described as statistical inference rules. The inferential logic
circuits obtained through the proposed ML-based design flow present architec-
tures prone to support aggressive Voltage (Frequency) scaling in exchange for a
certain degree of accuracy.

1.3 Dissertation Outline
After this brief introduction of the context scenario and the main challenges/con-

tributions of this dissertation, Chapter 2 provides the reader with an overview of the
notions, approaches, and methods for Energy Scaling. Firstly, the chapter deals with
the classical power optimization strategies proposed in the literature in the last two
decades and mostly already integrated into commercial tools. Follows a brief review of
the techniques that ensured a more efficient energy reduction by delivering dynamic
management of the power/frequency (i.e., DVS and DVFS). The last part chapter fo-
cuses on the Better-Than-Worst-Case design strategy and how this principle enables
an adaptive, i.e., context-/data-driven, energy scaling yet guaranteeing always-correct
computation, i.e., preserving the quality-of-results. An overview of techniques leverag-
ing Better-Than-Worst-Case design is proposed with particular attention to those based
on the Timing Speculation principle and implemented through timing errors monitors.

Chapter 3 discusses the strategies conceived to operate beyond the Energy scaling
through the integration of the quality-of-results as a new dimension in the design/opti-
mization space.Themain techniques exploiting this concept, known as Energy-Accuracy
Scaling (EAS), are classified in a Taxonomy.The three identified classes, Static,Dynamic
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and Adaptive EAS, are exhaustively disclosed through a pros&cons analysis. This rep-
resents a preliminary contribution to this work.

The core of this dissertation is the development of two novel approaches which aim
at improving the techniques that belong, respectively, to the Static and Adaptive class.
In Chapter 4, the proposed Adaptive EAS solution is disclosed along with the stages
that bring standard Error Detection-Correction techniques to be more prone for ag-
gressive power management like Adaptive Voltage Over-Scaling (AVOS). These stages
include the development of in-situ elastic timing sensors that enable the Approximate
Error Detection-Correction (AED-C) strategy which plays with the timing faults cov-
erage knob to achieve fine-tuned energy-accuracy efficiency. Chapter 5 focuses on the
development of a Static EAS solution based on Inferential Logic. A Classification Tree
training step is integrated into the standard design flow to implement an Inferential
Multiplier. A comparative analysis with a state-of-art Booth multiplier discloses the
benefits of the proposed EAS solution. Chapter 6 provides final considerations and fu-
ture works.
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Chapter 2

Energy Scaling through Low-Power
Optimization

2.1 Power Consumption Model in CMOS Technology
The continuous progress in microelectronic circuits has been maintained mostly by

CMOS technology scaling, which results in exponential growth both in device density
and performance as predicted by Moore’s law [105]. The development of EDA tools
and the effort of digital system designer to develop novel computing architectures had
accelerated this process and had led to more complex and high-performance circuits.
However, as the technology scaling enters nanometer regime, energy efficiency became
one of the main design concerns for today’s digital Integrated Circuits (ICs). This is true
not just for portable applications (e.g., smartphones, wearables, IoT galaxy devices),
where the energy budget is limited by the use of thin batteries [11, 2], but also for
high-performance applications (e.g., cloud servers and GPUs) where a proper resource
management improves sustainability at a large scale [54, 167].

In the last two decades, in the semiconductor industry, energy consumption has
been mainly tackled by setting power dissipation as a primary design constraints. Re-
ducing power can extend battery lifetime of portable systems, decrease cooling costs,
as well as increase system reliability. In a digital CMOS circuit, the two major contri-
butions to power dissipation have a twofold nature, Dynamic and Static:

𝑃 = 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (2.1)

Dynamic power originates by the run-time activity of the circuit, i.e., by the input work-
load that is fed to combinational logic and sequential cells like Flip-flops and Latches.
Static power, on the contrary, refers to the power dissipated in stationary condition, i.e.,
when there is no circuit activity. The following sections explain in details the sources
of both power components.
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Dynamic Power Sources

Two major sources of dynamic power consumption can be identified: Switching and
Short-circuit power:

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑃𝑠𝑤 + 𝑃𝑠𝑐 (2.2)

The Switching power 𝑃𝑠𝑤, is due to to charging and discharging the capacitance
driven by the circuit, i.e., load capacitance, wire capacitance and the gate self-capacitance.
Figure 2.2 depicts all the capacitances seen by a CMOS inverter. current and charg-
ing/discharging of capacitances For a CMOS gate working in a synchronous environ-
ment, 𝑃𝑠𝑤 can be modeled by the following equation:

𝑃𝑠𝑤 = 1
2

⋅ 𝐶𝐿 ⋅ 𝑉 𝑑𝑑2 ⋅ 𝐹𝑐𝑙𝑘 ⋅ 𝐸𝑠𝑤 (2.3)

where, 𝐶𝐿 is the output load capacitance of a gate; it depends on the physical param-
eters of gates and wires. 𝑉 𝑑𝑑 and 𝐹𝑐𝑙𝑘 are the supply voltage and and the clock fre-
quency; they are design parameters as they affect the speed of the system. 𝐸𝑠𝑤 takes
into account the switching activity of the gate, defined as the probability of the gate’s
output to make a logic transition during one clock cycle; this terms models the case
that, except for the clock tree network cells, gates might not make a transition at each
clock cycle. According to Equation 2.3, reductions of 𝑃𝑠𝑤 can be achieved by: (i) Supply
Voltage (Vdd) Scaling. This allows 𝑃𝑠𝑤 to scale quadratically; this comes with circuit
performance decrease (lower circuit speed). A simple model of the propagation delay
of a cell is reported in Equation 2.1.

𝐷𝑝 ∝ 𝐶𝐿 ⋅ 𝑉 𝑑𝑑
(𝑉 𝑑𝑑 − 𝑉𝑡ℎ)𝛼 (2.4)

As to compensate the circuit performance loss introduced by reducing voltage, speed
optimization is applied first, followed by supply voltage scaling; this strategy brings the
design back to its original timing, but with a lower power requirement [122]. With (ii)
Frequency (𝐹𝑐𝑙𝑘) Scaling , 𝑃𝑠𝑤 can be traded for circuit speed; power, in fact, drops lin-
early. for lower circuit speed. Selective frequency scaling (as well as voltage scaling)
can be applied to specific units with no penalty in the overall system speed [122]. Fi-
nally, (iii) 𝑃𝑠𝑤 can be reduced by the minimization of Switched Capacitance, defined
as 𝐶𝑠𝑤 = 𝐶𝐿 ⋅ 𝐸𝑠𝑤; this approach has a lower impact on performance, yet allowing
significant power savings [122]. Static solutions (i.e., at design time) handle switched
capacitance minimization through area optimization (that corresponds to a decrease in
the capacitive load) and switching activity reduction via exploitation of different kinds
of signal correlations (temporal, spatial, spatio-temporal); Dynamic techniques, on the
other hand, aim at eliminating power wastes that may be originated by the application
of certain system workloads (i.e., the data being processed).

The Short-circuit Power 𝑃𝑠𝑐, is strictly related to the complementary nature of
CMOS logic. In actual designs, the assumption of the zero rise and fall times of the
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input wave forms is not correct. The finite slope of the input signal causes a direct
current path between Vdd and Gnd sources for a short period of time during switching,
while the NMOS and the PMOS transistors are simultaneously active. Thus, a current
flows through CMOS Pull-up and Pull-down stages while cell switches. Usually, the
contribution of 𝑃𝑠𝑐 to the total power is lower than 𝑃𝑠𝑤, yet optimizations can be applied
to it. In particular, transistors sizing is fundamental, as well as the relation between the
transition time of input signal and output signal. As reported in [122], the matching
between transition times of input and output signals is a rule of thumb which allows
the overall short-circuit current to be minimized.

Static Power Sources

The Static (or Leakage) Power dissipation of a circuit can be expressed as follows:

𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = 𝐼𝑠𝑡𝑎𝑡𝑖𝑐 ⋅ 𝑉 𝑑𝑑 (2.5)

where 𝐼𝑠𝑡𝑎𝑡𝑖𝑐 is the current that flows between the power supply rails in the absence of
switching activity. Ideally, the static power consumption of a CMOS circuit should be
zero, as no static current should flows between PMOS and NMOS devices. However, in
non-ideal devices a leakage current flows through the reverse-biased diode junctions
of the transistor; 𝐼𝑠𝑡𝑎𝑡𝑖𝑐 can be caused by different physical phenomena [132] that are
modeled as three main current contributions. (i) Gate-oxide leakage due to the reduction
of the gate oxide thickness as a consequence of technology scaling. The electrical field
across the oxide increases, thus a leakage current due to tunneling effect is generated.
(ii) pn-Junction Reverse-Bias Current due to the reverse biasing condition of drain and
source to well junctions. (iii) Subthreshold leakage is current flowing between drain and
source when the gate voltage is under threshold (𝑉𝐺𝑆 < 𝑉𝑡ℎ). In fact, a non-ideal MOS
device it is not an ideal switch controlled by the 𝑉𝐺𝑆.

Figure 2.1: 𝐼𝐷𝑆(𝑉𝐺𝑆) for different values of 𝑉𝑡ℎ.

As reported in Figure 2.1, when 𝑉𝐺𝑆 is fixed to zero, the lower the threshold voltage
𝑉𝑡ℎ), the higher the drain-source current 𝐼𝐷𝑆 value. This translates into higher Static
Power consumption. The Equation 2.1 suggests that the speed of the gates can be in-
creased by reducing the 𝑉𝑡ℎ); however, as mentioned earlier, the price to pay is larger
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Static Power.
To be noticed that Leakage current strictly depends on temperature. Hence, the

operating temperature of the chip must be kept below the thermal safe temperature,
𝑇𝑠𝑎𝑓𝑒, to ensure that the chip operates within the safe range. This can be achieved by a
well-designed packaging, a physical-design stage aware of the temperature issues, and
by reducing the power consumption.

2.2 Classical Low-Power Optimization Techniques
Starting from the CMOS power model, different techniques at various level of ab-

straction have been proposed in order to minimize power consumption. Most of them
focus on reducing the dynamic power of digital circuits from the architectural-level
down to individual logic-gates and transistor-level. Figure 2.2 report a taxonomy of
the most representative low-power optimization methodologies, whose details are dis-
cussed in the following sections.

Low-Power 
Optimization 

Technological 
Level 

Circuit
Level 

Architectural  
Level 

Transistor Sizing and Re-ordering 

Parallelism, Pipelining

Low-Power Memory Hierarchies
Low-Power Control Logic Design

Gates Resizing
Re-mapping, Phase Assignment,
Pin Swapping
Dual-Vdd

Clock Gating

Power Gating

Dual-Vth

Dynamic and Pass-Transistor Logic

Low-Power Clock

Figure 2.2: Taxonomy of Classical Low-Power Optimization Techniques.

2.2.1 Architectural Level
Power efficiency can be obtained at the architectural level once the data-path, mem-

ory, control and interconnect structures are fully defined. This section describes some
of the historical architectural low-power techniques. Optimization at this level of ab-
straction means finding the best architectural composition for a given algorithm.
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Parallelism and Pipelining

Parallelism and Pipelining [121] approaches optimize the dynamic power ensuring
the same throughput at the cost of area overhead. Specifically, (i) the system is sped-up
by architecture re-organization, then (ii) the available timing slack can be consumed
through supply voltage scaling.

Parallel Architecture: in this approach a functional unit working at frequency
𝐹𝑐𝑙𝑘1 is replaced by two equivalent functional units operating at 𝐹𝑐𝑙𝑘2 = 1

2 ⋅ 𝐹𝑐𝑙𝑘1, re-
spectively, on the rising and falling edge of the clock. The timing slack obtained by
increasing the clock period can be used to reduce the supply voltage. However, this
method presents two main drawbacks: (i) the area is doubled with a consequent in-
crease of leakage power consumption; (ii) it presents a scalability issue as, when the
supply voltage approaches the threshold voltage (𝑉𝑡ℎ), the delay of the circuit increases
so quickly that which in turn may increase the overall energy consumption.

Pipelined Architecture: the propagation delay (𝐷𝑝) of a synchronous logic cir-
cuit can be reduced by splitting it combinational paths into several portions. As each
portion presents a worst-case delay lower than 𝐷𝑝, the supply voltage can be scaled to
consume the available slack. Similarly to the parallel architecture technique, this tech-
nique comes with some drawbacks: (i) overall latency increase, (ii) die area overhead
and (iii) scalability issues.

The combination of pipelining and parallelism can result in further power reduction
as the supply voltage can be reduced more aggressively [121][148].

Low-Power Control Logic Design

Within a Processor Architecture, the control logic that manages the operations is
a finite state machine (FSM): for each state, a specific piece of circuitry is activated.
Thus, low-power control logic can be designed by optimizing FSMs for power reduction.
As an example, FSM optimizations can be achieved by (ii) encoding the FSM states to
minimize the switching activity or by (ii) decomposition of FSM into sub-FSMs, where
only the circuitry needed for the currently executing sub-FSM is activated. According
to [46], applying these techniques jointly reduces processor power from 30-90%, while
area raises from 20-120%.

Low-Power Memory Hierarchies

As for the previous approach, this technique applies to ProcessorArchitecture, specif-
ically to the Memory component. Power consumption in memory can be bounded in
two ways: either by reducing the power dissipated in memory access, or by reducing
the number of accesses to memory [160].

Concerning the former strategy, the literature is plenty of optimization techniques.
An effective way to reduce power in memory access is obtained by partitioning the
memory into smaller sub-banks. This can be done by splitting memory into smaller,
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independently accessible components at different granularity such that for each mem-
ory access only the required circuitry is activated. Implementing a combination of sub-
banking,multiple line buffers and bit-line segmentationmight lead to 75% on-chip cache
power reduction [49]; this approach is technology-independent and does not compro-
mise the processor cycle time.

Another well-known strategy to save memory access power is implemented by aug-
menting the memory hierarchy with specialized cache structures; such a memory or-
ganization allows to decreases memory accesses. A simple implementation of this prin-
ciple is achieved by using a trace cache. This system keeps track of the instructions in
their executed order rather than their compiled one. Hence, if an instruction sequence
is already stored in the trace cache, it does not require to be fetched from the instruction
cache and can be decoded directly from the trace cache [59]. Nevertheless, conventional
trace caches (CTC) may lead to a power increase in the fetch unit. Simultaneous access
to both the trace cache and the instruction cache may occur, in fact. Dynamic direction
prediction-based trace cache (DPTC) avoids simultaneous accesses to the trace cache
and the instruction cache achieving 38.5% power reduction over CTC, while only trad-
ing a 1.8% performance overhead w.r.t. CTC [59].

2.2.2 Circuit Level
In the last two decades, Logic-level power optimization strategies have been ex-

tensively researched [145]. The most powerful of these techniques have been made
available into EDA commercial logic synthesis tools enabling logic-level power opti-
mization not only for structured logic in large-volume components, as microprocessors
(e.g., functional units in the data-path), but, also, for unstructured logic and low-volume
VLSI circuits.

A more detailed description of logic-level optimization techniques follows. To be
noticed that, as for architectural-level techniques, power is never the only cost metric
to take into account during optimization. Performance/area are tightly constrained as
well [101].

Gates Resizing

A common strategy of power optimization lies in a simple rule: a logic network can be
transformed to minimize power only if the critical path length is not increased. Under this
hypothesis, an effective technique is based on path equalization. A wide distribution of
path delays characterizes logic circuits, thus path equalization can be obtained by gate
resizing. Resizing focuses on fast combinational paths. Gates on fast paths are down-
sized, thereby decreasing their input capacitances, while at the same time slowing down
signal propagation. By slowing down fast paths, propagation delays are equalized, and
power is reduced by joint spurious switching and capacitance reduction. Resizing does
not always imply down-sizing. Power can also be reduced by enlarging (or buffering)
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heavily loaded gates, to increase their output slew rates. Fast transitionsminimize short-
circuit power of the gates in the fan-out of the gate which has been sized up, but its
input capacitance is increased. Inmost cases, resizing is a complex optimization problem
involving a tradeoff between output switching power and internal short-circuit power
on several gates at the same time.

For arithmetic circuits, such as adders of multipliers, path equalization ensures that
signal propagation from inputs to outputs of a logic network follows paths of similar
length. When paths are equalized, most gates have aligned transitions at their inputs,
thereby minimizing spurious switching activity (which is created by misaligned input
transitions).

Usually, during this logic optimization, technology parameters such as supply volt-
age are fixed, so the degrees of freedom are exploited in the gate resizing of a given
logic netlist.

Re-mapping, Phase Assignment, Pin Swapping

Logic-level power minimization techniques as Re-mapping, Phase Assignment and
Pin Swapping, can be classified as local transformations.They are applied to gate netlists,
and focus on nets with large switched capacitance. Most of these techniques replace a
gate, or a small group of gates, around the target net, in an effort to reduce capacitance
and switching activity. Similarly to gate resizing, local transformations must carefully
balance short circuit and output power consumption.

Figure 2.3: Local transformations: (a) re-mapping, (b) phase assignment, (c) pin swap-
ping [Courtesy of STMicroelectronics].

Figure 2.3 shows three examples of local transformations. In (a) Re-mapping trans-
formation is reported: a high-activity node (marked with x) is removed thanks to a
new mapping onto an AND-OR gate. Phase Assignment (b) is exploited to remove one
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of the two high-activity nets marked with x. Pin swapping (c) is applied to connect a
high-activity net to the input pin of the 4-input NAND with the minimum input capac-
itance..

Dual-Vdd

Path delay equalization can be obtained by playing with supply voltage Vdd. In a
logic circuit, a vast majority of gates do not belong to critical paths. Thus, gates on fast
paths can be fed with lower Vdd, thereby decreasing their switching power (quadrati-
cally) while at the same time slowing down signal propagation. Iteratively, slack avail-
able on fast paths can be consumed by feeding gates belonging to non-critical paths
with lower Vdd. Due to the complexity of on-chip voltage regulators and power delivery
network, the number of supply voltages to be assigned should remain low. In literature,
two values of Vdd are considered to be the best trade-off; from here Dual-Vdd.

Dual-Vdd Algorithms as [156] [34] [87] [83] have been proposed for automatic Vdd
assignment. They are based on heuristic methods that perform iterative graph visit that
iteratively trying to find the optimal netlist partitioning which minimizes power con-
sumption satisfying the timing constraints. The result of these algorithms is a logic
circuit mapped to voltage islands.

The major drawback of Dual-Vdd assignment is due to the employment of level
shifters necessary to interconnect tiles of die fed at different voltages. This generates
overhead and complexity in the physical design.

Clock Gating

Clock gating relies upon an intuition: the output of a logic block is not always useful.
Thus, the power dissipated by the switching activity can be reduced by disabling the
clock signal to unused blocks. Clock gating provides a way to stop the clock selectively,
and thus force the original circuit to make no transition, whenever the computation to
be carried out by a hardware block at the next clock cycle is useless. In other words, the
clock signal is disabled following the idle conditions of the block.

Themain effect of clock gating is the reduction of the switching power of the combi-
national logic fed by the gated registers. Also, clock-tree and registers power dissipation
decrease.

As reported in [67], many implementations of clock gating have been proposed.
The most common is Latch-Based clock gating, where the clock enable flag is stored in
a latch and ANDed to the clock signal. The latch is used to avoid hazard propagation
and to reduce the degradation of clock signal rising and falling transitions.

Power Gating

Power Gating strategy has been conceived for Static Power reduction. The main
idea behind this technique is to limit leakage current of gates in idle conditions [62]. As
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many works in literature report [7] [18] [19], Power gating is mostly implemented by
inserting high-𝑉𝑡ℎ transistors, namely sleep transistors, in series with the CMOS pull-up
and/or pull-down networks. When sleep transistors are off, the sub-threshold current of
PMOS/NMOS networks is reduced; when they are on, the logic circuit should keep op-
erating in nominal condition, thus, sleep transistors have to be properly sized to reduce
the overall circuit delay penalty.

The insertion of sleep transistors is a complex design task: it requires optimization
algorithms for (i) adjusting cell clusters, (ii) sleep transistors sizing and (iii) the distri-
bution network of on/off signals.

Dual-𝑉𝑡ℎ

As for Power Gating strategy, Dual-𝑉𝑡ℎ aims at Static Power reduction. As reported
in literature [58] [108], Dual-𝑉𝑡ℎ can be implemented using multi-𝑉𝑡ℎ cells. This is made
possible by the fact that silicon vendors provide technological libraries with (i) high-𝑉𝑡ℎ
cells, fast but having high leakage power, and (ii) low-𝑉𝑡ℎ cells, slow but less leaky,
which can be integrated into the same technological process The basic idea of Dual-𝑉𝑡ℎ
is based on the principle behind Dual-Vdd, i.e., path equalization. The design is firstly
synthesized and mapped onto low-𝑉𝑡ℎ cells; then the gates belonging to non-critical
paths are replaced with high-𝑉𝑡ℎ cells as long as the timing constraints are satisfied.
Usually, Dual-𝑉𝑡ℎ is applied simultaneously to gate resizing in order to reduce the total
power consumption.

Low-power Clock

Classical examples of low-power clocks are half-frequency and half-swing clocks.
Such clock signals reduce frequency and voltage respectively. Traditionally, hardware
events such as register file writing occur on a rising clock edge. Half-frequency clock
run at half the speed of regular clock and synchronize events using both edges halving
the clock switching power. Reduced-swing clocks use lower voltage signal reducing
power quadratically [73]. Data metastability issues should be addressed appropriately
applying this solution.

2.2.3 Technological Level
In this section, the CMOS power optimization strategies go down to technologi-

cal solutions. Three main approaches are considered: Transistor Sizing and Re-ordering,
Low-power Clock and Pass-Transistor Logic. Similarly, to architectural-/logic-level opti-
mization, these techniques aim at finding the best tradeoff between performance and
power.
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Transistor Sizing and Re-ordering

Combinational cells transistor sizing can have a significant impact on circuit de-
lay and power dissipation. If the size of the transistors in a cell increases, the delay of
the cell decreases. This because transistors with larger gate widths drain more current
than smaller transistors. Unfortunately, larger transistors also contribute more device
capacitance to the circuit and, consequently, result in higher power dissipation. Also,
larger transistors suffer more severe short-circuit currents, which should be avoided
whenever possible. The transistor sizing also affects the delay of a circuit: as gate size
increases, the load capacitance of the cell increases leading the delay of the fan-in gates
to raise. Hence, given a delay constraint, finding an appropriate sizing of transistors
that minimizes power dissipation is a computationally difficult problem.

An efficient low-power strategy minimizes transistor size whenever possible to re-
duce the dynamic power while meeting performance constraints. Thus, the transistors
that lie away from the critical paths of a circuit are usually the best candidates for
down-sizing.

A typical class of heuristic algorithms associates with each transistor a tolerable
delay, which varies depending on how close the transistor is to the critical path. These
algorithms then try to scale as small as possible each transistor without violating its
tolerable delay [36]. Another typical heuristic approach is to compute the slack at each
gate in the circuit, where the slack of a gate corresponds to how much the gate can be
slowed down without affecting the critical delay of the circuit. Sub-circuits with slacks
greater than zero are processed, and the sizes of the transistors reduced until the slack
becomes zero, or the transistors are all minimum size. Variants of the above approach
are presented in [147] and [8].

Among these power optimization techniques, also transistor re-ordering deserves
to be mentioned. As transistors arrangement affects the power consumption of a cir-
cuit, this method rearranges transistors to minimize their switching activity, thus the
dynamic power [79] [146].

Dynamic and Pass-Transistor Logic

In CMOS static logic, voltage is always fed to the nets by a conducting path from the
net to the supply rails. In the opposite, Dynamic Logic [43] nets can pass through the
operating condition in which there is no path to the rails, and voltages are fed through
the charge stored on nets capacitances. For this reason, the clock period is divided into
two phases: pre-charge and evaluation phase. During pre-charge, the output is charged
to Vdd. Then, during the next clock phase, the logic function is evaluated by an NMOS
network discharging the output node, if necessary. Historically, dynamic design styles
have shown relevant low-power properties, as an example, by having reduced device
counts. In practice, dynamic circuits have several disadvantages. For instance, each of
the pre-charge transistors in the chip must be driven by a clock signal. This implies a
dense clock distribution network and its associated capacitance and driving circuitry.

18



2.3 – Dynamic Power Optimization Schemes

These components can contribute significantly to the chip power. Besides, having every
single gate driven by the clock, skew issues become even more critical and challenging
to handle.

As for dynamic logic, Pass-transistor Logic [166] reduces the transistor counts, low-
ering circuit load capacitance. In the past, this made pass-transistor logic attractive as a
low-power circuit approach. However, like dynamic logic, pass-transistor circuits suffer
from several drawbacks. Pass transistors have asymmetrical voltage driving capabili-
ties, and the voltage gap between high and low logic levels decreases at each stage. In
summary, there might be conditions in which pass-transistor logic is more power effi-
cient than fully-CMOS logic; however, from a general point of view, the benefits of this
technique are limited if compared to the savings obtained by higher level approaches.

2.3 Dynamic Power Optimization Schemes
Energy efficiency is one of the major design concerns for today’s digital Integrated

Circuits (ICs). Dynamic power management is a design methodology that allows ICs
to dynamically re-configure the Energy/Performance tradeoff according to the input
workload (e.g., user’s requests) and the external environment conditions. Several em-
bodiments of this scheme have been proposed in the literature. Next sessions disclose
their implementation and efficiency.

2.3.1 Dynamic Voltage Scaling (DVS)
Dynamic voltage scaling (DVS) is an effective approach for energy reduction of in-

tegrated circuits. DVS was originally conceived for low-power processor designs [168]
and themain idea behind this method is straightforward: during stages of low processor
utilization, the performance level can be reduced such that tasks can be completed “just
in time.” As the processor frequency is cut down also the supply voltage can be scaled. As
shown by the equations 2.6, the frequency reduction combined with a quadratic reduc-
tion of the supply voltage results in an approximately cubic drop of power consumption.
However, with reduced frequency the time to complete a task increases, leading to an
overall quadratic reduction in the energy to complete a task.

𝑃 𝑜𝑤𝑒𝑟 ∝ 𝑉 𝑑𝑑2 ⋅ 𝐹𝑐𝑙𝑘 𝐸𝑛𝑒𝑟𝑔𝑦 ∝ 𝑉 𝑑𝑑2 (2.6)

DVS is, therefore, an effective strategy to reduce the energy consumption of a pro-
cessor, especially under wide variations in workload as it is common in mobile applica-
tions. Extensive work has been performed on the methodology to determine the voltage
scaling policies that maximize the energy savings [41] [40]. In a real system, Operating
System (OS) is in charge to set frequency and voltage dynamically in order to match
the changing demands for processing power. Hence, DVS requires algorithms, called
voltage schedulers, to determine the processor operating frequency at run-time. Several
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works in the literature evaluate scheduling algorithms in a verification environment
which consist of an energy-accurate cycle-level simulator [120].

Furthermore, as shown in [168], the operating voltage range of processors can be
significantly extended through additional design effort. Indeed, a lower limit of the volt-
age range can be determined for optimal energy efficiency. The optimal voltage limit
depends on two factors: the power/delay trade-offs at low operating voltages and the
workload characteristics of the specific processor.

2.3.2 Dynamic Voltage Frequency Scaling (DVFS)
The continuous progress in microprocessors has been supported mostly by tech-

nology scaling, which has been resulted in exponential growth of both device density
and performance. This trend opened the way to the revolution of the digital System-
on-Chips (SoCs) [161]. It is well known that power consumption is the most stringent
constraint for the growth of SoCs [161]. However, as the technology scaling entered
nanometer regime (100 nm), supply-voltage drop led CMOS devices to face many prob-
lems such as increasing leakage currents, large parameter variations, low reliability,
and yield [71]. This represented a bottleneck for clock frequency increase. Therefore,
in order to ensure computing performance growth without breaching power dissipa-
tion requirements, high- performance microprocessors moved to multi-core/many-core
paradigm [45] [117]. As explained in 2.2.1, Parallelism is one of the best ways to ad-
dress the issue of power reduction while maintaining higher computation throughput
with lower voltage and frequency. The result is a larger silicon area, but overall lower
power dissipation and power density. This is one of the ideas behind the transition to
multi-core/many-core. In addition, when high-performance systems need to meet a low
energy budget, the availability of multiple processing units that can be turned-ON/OFF,
or just slowed down depending on the actual workload, represents an efficient solution.
Within this context, Dynamic Voltage Frequency Scaling (DVFS) has been proven to be
the most effective technique to get close to minimum energy consumption. DVFS is
based on a straightforward working principle, that is, reduce the supply voltage (Vdd)
down to the minimum threshold that satisfies the frequency constraint (𝐹𝑐𝑙𝑘) imposed
by the actual workload.

Originally applied to “monolithic” SoCs [110] [157], the degree of freedom made
available by multi-processor SoCs (MP-SoCs) architectures enabled a more efficient
core-based, i.e., fine-grained, DVFS implementation [74]. With a fine-grain DVFS, each
core can be set working at a different operating point in the [𝐹𝑐𝑙𝑘, 𝑉 𝑑𝑑] space; this al-
lows to run multiple tasks asynchronously and bring down the minimum-energy point
of the whole SoC. An example of fine-grain DVFS on massively parallel platforms is
given in [153], where 167 processors are orchestrated over a wide frequency range
achieving minimum power consumptions, from 1.07GHz - 47.5mW at 1.2 V to 66MHz -
608𝜇Wat 0.675 V. As an add-on feature, fine-grainDVFS is a perfect knob to compensate
and/or mitigate variations due to Process, Voltage and Temperature (PVT) fluctuations
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Figure 2.4: Comparison between ideal-DVFS and dual-Vdd strategies [118].
that affect different cores after fabrication and during the lifetime of the circuit [33].

2.3.3 Beyond the DVFS: Fine-Grain Vdd-Hopping
A practical use of DVFS on MP-SoCs deals with the availability of programmable

on-chip Vdd regulators that can deliver the supply voltage with fine resolution step
and fast swing (Fig. 2.4a). Unfortunately, the use of integrated DC/DC converters is
made impractical due to high implementation costs. Indeed, on-chip DC/DC convert-
ers fabricated with today’s technologies may occupy a considerable silicon area due
to the low integration density of the components they contain, e.g., capacitors and in-
ductors [153][131]. The picture gets even more complicated if one considers that every
single core should be equipped with a dedicated converter.

The challenge faced by several works in literature is to achieve, or at least get close
to, the efficiency of high-resolution DVFS, ideal-DVFS hereafter, with a discrete set of
supply voltages. In their more general embodiment, discrete-DVFS strategies use two
Vdd levels (𝑉 𝑑𝑑𝐿 and 𝑉 𝑑𝑑𝐻) generated off-chip through external voltage regula-
tors and evenly distributed across the die (Fig. 2.4b). The absolute values of 𝑉 𝑑𝑑𝐿 and
𝑉 𝑑𝑑𝐻 are shifted up/down depending on the workload, while each core is fed with the
proper Vdd employing dedicated power switches (PS). Even though this design option
offers a practical solution with a low impact on area and power, it comes with a speed
penalty due to high voltage swing latency of the external voltage regulators [115]. Nev-
ertheless, this is an acceptable cost as the voltage scaling process typically applies at a
low rate.

The two most representative cases of discrete-DVFS are the Vdd-Hopping [98] and
the Vdd-Dithering [9]. The Vdd-Hopping is a basic scheme in which the supply volt-
age range is split into a discrete set of values, two or more depending on the external
voltage regulator (Figure 2.5a); the proper Vdd is selected among the available values
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Figure 2.5: Frequency-Power tradeoff of existing DVFS strategies [118].
such that the frequency constraint is met. The Vdd-Dithering scheme is a more elabo-
rated, yet precise scheme that implements a Vdd time-sharing strategy. Differently from
Vdd-Hopping, the Vdd is made switching from low (𝑉 𝑑𝑑𝐿) to high (𝑉 𝑑𝑑𝐻), leading
the core to an average frequency equals to the frequency constraint (Figure 2.5b). The
power-frequency tradeoff obtained through Vdd-Dithering can be seen as a linear ap-
proximation of ideal-DVFS

While the techniques mentioned above aim at pushing power consumption close to
ideal-DVFS while using a discrete set of supply voltages, Ultra-Fine Grain Vdd-Hopping
(FINE-VH) is a practical methodology that brings DVFS beyond its theoretical limit
[119], [118].

FINE-VH leverages the working principle of Vdd-Hopping applied within-the-core
through an ultra-fine dynamic dual-Vdd. As reported in Figure 2.6, FINE-VH is a tile-
based strategy, i.e., it applies to regular sections of the layout.
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Figure 2.6: FINE-VH within-the-core layout partitioning and tiles organization [118].
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Working with multiple voltages within the same functional unit raises several con-
cerns during the place&route stages, e.g., area overhead and timing closure, due to lay-
out fragmentation and standard cell displacement. Moreover, the static power consump-
tion increases due to the leakage currents of those logic gates driven by tiles powered
at different Vdd. An optimal body-bias assignment technique can compensate for the
intra-tile leakage at no delay penalty.

2.4 Adaptive Power Management (APM)

2.4.1 Better-Than-Worst-Case Design
As extensively explained in previous sections, the advent on nanometer feature sizes

in silicon fabrication has triggered three main challenges for ICs design: (i) the design
complexity having a larger transistor budgets, (ii) the design uncertainty due to increas-
ing environmental and process variation, (iii) the protection from faults, especially soft
errors. Limited energy budgets and increasing time-to-market pressure have raised even
more concerns about these challenges.

Better Than Worst-Case design (BTWC) faced these design demands through a novel
strategy that brought a huge innovation in ICs design style [5]. BTWC proposed to de-
couple the constraints of correctness and robustness from those of performance and
power. The approach splits designs into two primary components: a core design com-
ponent and a compliance checker. The core design component is responsible for perfor-
mance and power efficient computing; the checker is in charge of verifying the correct-
ness of the core computation. In this way, the core design is relieved from the overall
concerns of operating compliance that are transferred to the checker component. With
more relaxed compliance constraints in the core, design challenges can be more effec-
tively addressed.

In addition, BTWC core/checker paradigm enabled adaptive power management for
energy-efficient ICs design. Indeed, BTWChas been proved to bemore efficient than the
classical low-power techniques, discussed in Section 2.3, whose weakness lies in their
intrinsic “always-correct” nature which dictates a theoretic lower bound of the energy
savings. Let us take a straightforward implementation of voltage scaling for instance.
There is a minimum supply voltage Vdd𝑚𝑖𝑛, imposed by the worst-case condition anal-
ysis, at which timing paths violate the set-up time; below such threshold, timing faults
do arise, and logic errors propagate. A further reduction of the Vdd can be only accom-
plished with modification of the circuit, i.e., as BTWC paradigm proposes, through a
checker block that monitors the system compliance.

BTWC design idea imposes a constraint onto the checker component, i.e., it must be
simple to implement to avoid system complexity overhead. According to the literature
[5], mainly circuit-timing checkers match this constraint; such checker components
validate the timing compliance of circuit-level computations. Using this capability to
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Figure 2.7: BTWC paradigm abstract view and Adaptive Power Management.

monitor timing errors, BTWC design can eliminate power-hungry voltage margins. In-
deed, the checker mechanism can be used to adaptively manage the power delivery
by adjusting the supply voltage according to the timing compliance state of the core
circuit, as shown in Figure 2.7. Finally, if BTWC is combined with a dedicated fault re-
covery mechanisms the design can be pushed beyond the theoretical limit of classical
low-power techniques yet ensuring an “always-correct” computation.

An in-depth analysis of adaptive low-power management strategies, in particular
Adaptive Voltage Scaling, and the implementation details of BTWC designs based on
timing-compliance checker mechanisms are reported in the following sections.

2.4.2 Adaptive Voltage Scaling (AVS)
Among the low-power techniques proposed in the literature, Adaptive Voltage Scal-

ing (AVS) [37] [32] [137] represents the very first example of speculative powermanage-
ment approach which perfectly match with the BTWC paradigm. The key idea of AVS
is that of tuning the supply voltage by monitoring the error rate coming from checker
mechanism. In other words, AVS technique gives circuits the capability to understand,
at run-time, depending on the input workload, i.e., the flow of data, if/when there is
margin to further reduce the energy consumptions below the theoretical minimum im-
posed by worst-case operating condition.

As explained, the “adaptive” nature of AVS power management comes from the fact
that the optimal voltage configuration is identified through the measurement of the in-
put workload, which is, in turn, an indirect measurement of the circuit dynamic paths
distribution made by the checker component. This represents the key difference be-
tween AVS and DVS. Indeed, DVS is an open-loop system as it employs a voltage/task
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one-to-one mapping pre-defined at design time through a voltage/workload character-
ization at worst-case conditions. Thus, in order to guarantee robust operations under
worst-case, significant energy scaling margin is left. In contrast, AVS can adaptively
(i.e., according to the context) reduces the worst-case voltage margins improving the
overall energy efficiency of the design.

In summary, the crucial difference between “dynamic” and “adaptive” power man-
agement lies in the nature of the information used for setting the target voltage while
an application is run. DVS, as an open-loop strategy, schedule (or predict) the operating
voltage according to a design-time (or static) workload characterization; AVS employs
a feedback mechanism that keeps probing the actual on-chip conditions, specifically,
the timing compliance, and according to that set the target voltage. As a closed-loop
power management approach, AVS requires a stable and safe method to detect the tim-
ing faults. Several of fault detection mechanisms are available in the literature [123] and
are discussed in the next sections.

2.5 Implementing APM: Timing Speculation for AVS
The previous section has highlighted how BTWC core/checker design paradigm en-

ables adaptive power management for energy-efficient digital systems. As the most ef-
fective checker components are designed to be sensitive to the circuit timing compli-
ance, Timing Speculation principle has been exploited to implement adaptive low-power
techniques. This strategy relies upon the probabilistic assumption that only a small and
infrequent sub-set of input patterns sensitize the longest circuit timing paths; for Vdd
belowVdd𝑚𝑖𝑛 those paths are rarely activated and, therefore, timing faults remain latent.
In the event they get excited, latent faults become true faults but the resulting error can
be recovered through some correction mechanism, guaranteeing an “always-correct”
computation. As a result, the circuit operates at minimum energy consumption point
for most of the time.

As the key idea of AVS is to adaptively tune the supply voltage by monitoring the
timing faults rate measured by an error detection mechanism, it comes naturally to con-
sider AVS as the power management that best exploits the timing speculation principle.
Several embodiments of AVS are available in the literature [123]; they differ in terms
of (i) the method used to detect faults and/or (ii) the circuit optimization applied to re-
cover the occurrence of errors. Figure 2.8 reports a classification of AVS implementation
techniques grouped according to the timing faults detection strategy.

In-situ timing Monitors (or Sensors) provide the power manager with real-time and
local feedback on the health of the chip. As they require measurement within the inter-
nal structure of a circuit, monitors typically use double-sensing Flip-Flop on the most
critical paths of the circuits. Depending on the implementation, a timing sensor can (a)
detect an occurred error and correct it through a recovery mechanism; (b) predict the

25



2 – Energy Scaling through Low-Power Optimization

Adaptive Voltage Scaling (AVS)

Prediction-based elastic clock In-situ Timing Monitors
- Error Detection-Correction
- Error Prediction-Prevention 
- Half-path Error Prediction-Prevention

Timing Speculation

Replica Paths
- CRISTA
- Elastic Circuits

- Static
- Tunable

Figure 2.8: Adaptive Voltage Scaling driven by Timing Speculation: a classification.

occurrence of an error by measuring the slack of activated path; (c) predict the occur-
rence of an error by measuring a delay at the half point of a critical path. By predicting a
possible timing fault, both (b) and (c) prevent the occurrence and, thus, the propagation
of the error. In-situ sensing ensures small area overhead and fine-grained observability
of the timing errors.

On the contrary, Replica Paths placed on the border of the circuit are in charge of
measuring the effect of the voltage scaling preventing the potential occurrence of timing
faults in the functional paths of the circuit. This technique is less intrusive on-chip but
the cost to pay is a more coarse-grained capability of the timing faults detection.

Prediction-based elastic Clock techniques operate at synthesis level isolating the crit-
ical (long) paths of the design and provide an alert mechanism raised when they are
activated. It ensures a fine-grained capability of detecting timing errors at the cost of a
full modification of the original circuit due to onerous re-synthesis stages.

For the sake of clarity, all of these AVS techniques perform an efficient energy scal-
ing yet ensuring “alway-correct” computations. Amore detailed overview of AVSmeth-
ods is reported in the following sections.

2.5.1 In-situ Timing Monitors: Error Detection-Correction
This class of AVS approaches allows the faults to occur by operating at the edge of

failure, i.e., reducing the supply voltage to consume the conservative slack guard-band
introduced by the worst-case design. To manage the timing errors, these approaches
require two main mechanisms: (i) an error detection system, i.e., a mechanism to detect
the incorrect state values caused by the timing errors; (ii) an error correctionmechanism
triggered upon an error detection flag to compensate the effects of errors during system
operation.

Razor

Within this class, Razor [39, 38] is the primary reference. As reported in Figure
2.9, it is based on Razor-FFs that check the correctness of the circuit through a time-
skewed comparison of the sampled values in the main Flip-Flop (FF) and a Shadow
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Figure 2.9: Abstract view of Razor FF and augmented pipeline [38].

latch. As previously highlighted, the key idea of Razor-based AVS is that of tuning the
supply voltage by monitoring the error rate. This reduces the voltage margins improv-
ing energy efficiency. Razor finds application in microprocessors architectures, where a
three-stage mechanism implements the error recovery: first, as the timing error occur,
the processor pipeline is stalled; second, FFs in violation are refreshed with the correct
value sampled in the shadow latch (2.9); third, the last pipe-cycle is re-executed. Both
error detection and correction are performed locally, i.e., on the Razor-FFs.

As Razor-FF plays with a time-skewed clock signal, setup and hold constraints at the
main FF input might not be respected leading the state of the FF to become metastable.
A metastable signal increases critical path delay which can cause a shadow latch in the
succeeding pipeline stage to capture erroneous data, thereby leading to incorrect exe-
cution. Also, a metastable FF output can be inconsistently interpreted by the error com-
parator and the downstream logic. Hence, an additional detector has been introduced
to correctly flag the occurrence of metastability at the output of the main FF [30]. The
outputs of the metastability detector and the error comparator are ORed to generate
the signal of the Razor-FF. Thus, the system reacts to the occurrence of metastability
exactly in the same way as it reacts to a conventional timing failure.

Energy savings due to Razor-based AVS on a 64-bit processor are 50% over worst-
case operating conditions; this result is obtained by scaling supply voltage to achieve a
0.1% targeted error rate, at a fixed frequency of 120 MHz [30].

Razor II

As a further effort to avoid possible metastability issues, Razor II [31] has been pro-
posed as an extension of Razor. This solution fights metastability by checking the oc-
currence of errors through a transition detector instead of using a shadow latch (Figure
2.10). Moreover, it shifts the error-recovery mechanism at a “architecture” level, that
is, the FFs are in charge of error detection, while the correction is performed through a
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Figure 2.10: Razor II implementation [31].

full replay of the latest instruction. Instruction replay is achieved by check-pointing the
Program Counter (PC) register. The PC register is scrolled along the processor pipeline.
When an error is detected, the entire pipeline is flushed, and the PC in the fetch stage is
overwritten with the check-pointed PC, i.e., the PC of the instruction has generated the
timing error. Normal instruction execution resumes from then on. Since an erroneous
instruction is re-executed through the pipeline during replay, the same instruction can
suffer repeated timing errors. Hence, the clock frequency is halved to allow guaranteed
completion.

Razor II strategy significantly reduces the size the Razor-FF at the cost of overall per-
formance penalties. The results collected on a 64-bit microprocessor show 33% average
energy savings and an instruction-per-cycle degradation of 0.2%.

Error-Detection Sequential (EDS)

Authors in [14, 13] proposed an alternative circuit for error detection and correction
which prevent metastability by replacing the Razor FFs with time borrowing Latches.
They called this technique Error-Detection Sequential (EDS). An AVS-based design can
be implemented by replacing FFs on the critical paths with EDS circuits. As shown in
Figure 2.11, the EDS is a double-sampling circuit augmented with a time-borrowing
latch mechanism. It consists of the main FF, a shadow latch and an XOR gate. Similarly
to Razor, the main FF and shadow latch sample the data on the critical path end-point
at the rising and falling clock edges, respectively. The XOR logic gate compares these
time-skewed samples and in case of mismatch generates an ERROR signal. Specifically,
if the main FF input does not meet the setup time constraint due to voltage scaling or
variations, the latch and main FF outputs differ, resulting in a ERROR signal rising. The
generated ERROR flag can be propagated to the rest of the chip to invalidate the erro-
neously executed operation and trigger a proper recovery mechanism for correction,
which is architectural as in the Razor II case. Silicon measurements on microprocessor
circuit show an efficient AVS profile with remarkable energy reduction (37%). However,
the most significant limitation of this technique concerns the need to the to convert the
standard design into a latch-based design.

28



2.5 – Implementing APM: Timing Speculation for AVS

Figure 2.11: Abstract view of EDS [14].

Synthesis-level Slack Redistribution

Recent works introduced circuit/architectural level optimization for a more efficient
AVS based on error detection-correction [61][64] [51]. These techniques proposed to
reduce the minimum allowed Vdd by means of a timing slack redistribution. With such
techniques the most frequently exercised paths are made faster, thereby forcing timing
errors on the most infrequent paths [64].This choice maximizes the Vdd lowering range
while reducing the power consumption under a given constraint of performance loss.
Experiments upon an open source processor demonstrate 23% power savings with an
error rate of 1% and an area overhead of 2.7% [64].

Reshaping the original path distribution is a (static) design approach which may
result too weak (or too pessimistic) as most critical paths may change due to process
variations and/or time-dependent variations [18, 159].

On the limitation of standard error detection-correction schemes

Existing Error Detection-Correction strategies suffer from the so-called short-path
race, i.e., the overlapping between short- and long-paths during error detection, which
imposes the adoption of tedious hold-fixing procedures run at design time. Hold-fixing
(when converging) may induce a substantial modification of the circuit’s characteristic.
Firstly, depending on the characteristics of the circuit, hold-fixing may lead to signifi-
cant area/power overhead. As reported in [70], for a simple test-case made up of three
16-bits multipliers, the area grows by 2.1x, while energy per operation increases up to
81% w.r.t. the baseline circuit. Furthermore, paths are substantially shifted towards the
clock edge. This issue (as proven by our simulation results) represents a severe imped-
iment for effective use of AVS [126]..

2.5.2 In-situ Timing Monitors: Error Prediction-Prevention
Unlike Error Detection-Correction techniques, this class of circuits addresses tim-

ing speculation in a complementary way. The timing error is predicted by tracking the

29



2 – Energy Scaling through Low-Power Optimization

Figure 2.12: Abstract view of a Canary FF [134].

slack of the activated paths and prevented by raising the supply voltage. The most rep-
resentative device of this class is the Canary FF [134]. As reported in Figure 2.12, Canary
FF circuit uses the same double-sampling mechanism of Razor, but it feeds a delayed
input signal to the shadow FF (rather than a delayed clock). The delay amount is called
prediction window and represents the timing slack to which the Canary FF is sensitive.
Specifically, a comparator is in charge of checking whether a data transition occurs in
the prediction window, meaning that a path with a slack lower or equal to prediction
window has been activated, and thus, raising an error trigger (or warning). As reported
in the literature, the AVS is driven by a warning rate which measures the frequency of
the potential errors during a monitoring period.

This technique does not introduce the short-path races issue with the tedious and
expensive hold-time constraint fixing procedure, needed in Razor technique. Thus, less
area overhead and easier timing closure can be achieved. Moreover, Canary-based AVS
does not require the synthesis of a delayed clock tree.

However, Canary FFs can only predict and prevent potential errors from propagat-
ing as the supply voltage is scaled. If a critical path activation occurs in the current clock
cycle, the main FF stores an erroneous sample, thus the timing error cannot be detected
nor prevented, and the fault may propagate in the fan-out logic stage. In other words,
Canary can only prevent future errors, and cannot recognize errors that occurred in the
current clock cycle. Due to this reason, Canary has beenmostly applied in error-resilient
applications, where a certain amount of errors can be tolerated (e.g., image/video codec,
base-band processor) [134]. Very conservative configurations of the prediction window
can bring canary-based AVS to quasi always-correct computation [44] with error occur-
rence probability very close to zero. However, recent works like [10] [133], have shown
that “always-correct” computation can be obtained in specific applications (e.g., BCH
encoder/decoder) by setting for each canary FF a prediction window width that follows
the slack of the observed critical path.
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Figure 2.13: Abstract view of AVS based onHalf-Path Error Prediction-Prevention [169].

2.5.3 In-situTimingMonitors:Half-pathError Prediction-Prevention
The core idea of this class of techniques for AVS is that the timing error can be

predicted by detecting the late-arriving data transitions at an intermediate node in the
critical path instead of at the end-point FF. Then, the observed potential timing error
can be prevented through dynamic clock gating, as reported in Figure 2.13. In [169]
[138] [107] the half-path-delay point is marked as the optimal place for detecting a
late-arriving transitions. Any transition occurring after the falling edge of the clock at
the half-path-delay point can be identified as a potential timing error.

Unlike Error Detection-Correction techniques, this method does not need to fix the
short-path race issue as a late transition is observed at critical path half-point. This re-
duces the area/power overhead and makes the timing closure much easier especially
for ultra-low-voltage operation. Also, the error prediction is oriented toward the faults
in the current clock cycle, rather than toward future errors like in the Canary FF tech-
nique. Furthermore, error prevention is performed by dynamic clock gating, which can
be easily integrated into general digital designs. Practical use of this kind of AVS tech-
nique is reported in [90] where an energy-efficient sensor node processor is presented
for intelligent sensing in the Internet of Things applications.

A more recent work, SlackProbe [82], has shown that in-situ monitors can be placed
at different intermediate nets along the circuit paths. This monitors track the slack of
critical paths and raise a warning when potential timing violations may occur.

The main drawbacks of these techniques can be summarized as follow: (i) possible
timing error miss predictions can happen if an error raises in the second half of the
critical paths or after the nets where the in-situ sensors have been placed leading to
functional failure. (ii) False alarm detection can occur when an error warning raised in
the first half of the critical path is then compensated in the second-half; this condition
might lead to severe performance overhead due to unnecessary error prevention mech-
anism activations (i.e., clock gating). (iii) Design complexity and area overhead due to
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the sensors placement in the case of a large number of critical paths; also, the complex-
ity to identify the right half- or intermediate-points along critical paths in the presence
of variations.

2.5.4 Replica-Paths Error Prevention
Unlike in-situ timingmonitors, Replica-paths (or external sensorsmonitors) are placed

on the same chip die, but outside of the functional paths enabling less intrusive timing
monitoring operations. This technique relies upon the principle for which critical paths
replica of a circuit can be used to measure the effect of the voltage scaling preventing
timing faults from occurring in the functional paths of the circuit [78] [154]. Figure 2.14
shows the AVS circuit is composed by three main parts: (i) the voltage scaled circuit, (ii)
the voltage control logic, and (iii) the critical paths replica. According to the literature,
critical paths replica are often implemented through three components: replicated logic,
delay buffers, and an edge detector. The latter checks the transition edge timing at the
end-point of the critical path replica for every clock cycle and generates a warning sig-
nal when the edge is late. Replica circuits should include many paths of the main circuit
as to have the most similar sensitivity to variations during voltage scaling. Obviously,
this comes with a large area cost. However, compact replica paths have been proposed
in the literature to overcome this issue.They can be implemented through a design-time
sensitivity characterization [69] or by integrating tunable replica paths that can be set
at post-fabrication time [155].

Figure 2.14: Abstract view of Replica-paths based AVS [96].

Among on-chip sensing and adaptive tuning circuits, the critical path replica tech-
nique has the lowest overhead, but it cannot capture the local variations due to the
location difference between the actual critical path and the replica circuit. Also, unlike
in-situ timing monitors, replica paths are not sensitive to the input workload, making
AVS very conservative and not responsive to the context (i.e., the flow of the input data).
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2.5.5 Prediction based elastic-clocking
Themost representative technique among this class of AVS powered by timing spec-

ulation is proposed in [50]. The authors introduce a design paradigm, called CRISTA,
that implements AVS under a desired frequency constraint. The basic idea is to isolate
the most critical paths through a custom re-synthesis stage that reshapes the original
paths distribution. The Vdd is then tuned such that the most critical paths violate the
set-up time, while the remaining non-critical paths run error-free. The activation of the
critical paths is predicted by a dedicated control logic that works as a logic error sen-
sor.The flag returned by this sensor triggers timing speculations: an extra clock-cycle is
given when long-paths are excited.The CRISTA design methodology ensures activation
rates of the long-paths are low enough to avoid excessive performance penalties. For a
two-stage pipelined ALU, CRISTA allows reducing the power consumption by 40% with
a mere 9% area overhead.

The solution presented in [99, 21] is a variant of the CRISTA paradigm which still
exploits the concept of variable latency units. Results show 45% power savings w.r.t. the
baseline implementation. When tested on a 5-stage pipeline micro-architecture using
SPEC2K benchmarks the throughput penalty is 4%.

Nomatter its actual implementation, CRISTA is applied at design time, namely, both
the selection of the critical paths and the synthesis of the activation function (or variable
latency units) are done statically using some a-priori knowledge of the circuit. How-
ever, process variations represent a serious concern; the path distribution may change
due to manufacturing imperfections, and some critical paths may result uncovered by
the activation function (defined at design time). As far as reported in the literature, a
practical solution to make CRISTA adaptive/tunable for post-silicon calibration does
not exist; indeed, “guard-banding”, i.e., an over-selection of the critical paths that have
to be isolated, seems the only option available. Unfortunately, this exacerbates the de-
sign overhead. Also, CRISTA requires additional logic synthesis stages which are not
available in standard design kits.
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Chapter 3

Energy-Accuracy Scaling: a New
Paradigm

As already introduced in Chapter 1.1, the energy efficiency of Integrated Circuits
(ICs) is a major bottleneck in a wide range of today’s applications, from SoC for the
Internet of Things (IoT) up to cloud and datacenter-scale computing (e.g., servers and
GPUs).The last decades’ energy reduction trend in ICs supported by technology scaling,
and architectural-/circuit-level optimization strategies (e.g., deep parallelism and ag-
gressive voltage scaling) has approached its physical limits. Among the recent works in
the literature, an application-level approach, defined as Energy-Accuracy Scaling (EAS),
proposes to embed the system accuracy as a new dimension into the design/optimiza-
tion space to have a further knob for adjusting circuits energy-efficiency [1] [3].

In general, the Accuracy of a circuit/system represents the capability to deliver out-
put results as conforming as possible to the expected result. Thus, an application that
can admit inaccurate computation by tolerating the occurrence of errors is called error-
resilient [16] [85] [89]. Real-world is plenty of systems that are resilient to errors in
fields like multimedia, where a human end-user may not notice small degradation in
images computed by circuits affected by errors [111], or artificial intelligence where
algorithms have intrinsic mechanisms to deal with inaccurate or uncertain data (e.g.,
Neural Networks) [16]. These applications prove that output accuracy can be naturally
traded for energy savings if the user does not perceive the quality degradation. A gen-
eral rule for EAS is summarized in Figure 3.1: higher accuracy can be achieved by paying
a higher energy per task, or more interestingly, the computation energy can be reduced
if the running application can tolerate lower accuracy.

Following sections show that EAS is the key to pushing energy efficiency beyond
the limits encountered with classic energy scaling strategies presented in Chapter 2,
exploiting the error-resilience of specific applications. However, let us discuss firstly
a taxonomy of functional- and circuit-level techniques that enables energy-accuracy
scalable digital ICs.
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Energy

Accuracy

Figure 3.1: Energy-Accuracy tradeoff trend for error-resilient ICs.

3.1 Energy-Accuracy Scaling (EAS): a Taxonomy
This section introduces a revisited taxonomy of approaches that support EAS classi-

fied according to one main feature: the capability of tuning the energy-accuracy tradeoff.
In general, as shown in Figure 3.2, three main categories can be identified for EAS strat-
egy: (i) Static, (ii) Dynamic and (iii) Adaptive.

(i) In the Static approach, the energy-accuracy tradeoff is fixed at design-time (i.e.,
not tunable) by functional speculation rules, i.e., a modification of the circuit logic
functionality through algorithmic simplifications and/or circuit approximations.
These design transformations induce area/energy savings in exchange for an ac-
curacy loss threshold. The output errors cannot be either mitigated nor recovered
at run-time but they are guaranteed to be bounded by a worst-case magnitude.
Some examples of techniques in this class are the circuits based on approximate
computing and inferential logic.

(ii) Unlike static methods,Dynamic EAS enables a tunable energy-accuracy tradeoff at
run-time. The collection of the energy-accuracy operating points are pre-defined
at design-time through a circuit characterization at worst-case conditions. Dur-
ing the run-time stage, this EAS technique can schedule (or predict) the operat-
ing point according to the design-time (or statistical) characterization, ensuring
a worst-case accuracy drop for energy savings. Dynamic Voltage Accuracy (Fre-
quency) Scaling, a.k.a. DVAS (DVAFS), is an example of dynamic EAS indeed, as it
allows voltage scaling through accuracy reduction without inducing timing faults,
i.e., matching worst-case conditions.
Dynamic techniques are by nature open-loop systems as they do not receive any
feedback information directly from the chip (e.g., input workload, output/tim-
ing compliance). However, environmental conditions can trigger operating point
switch; for example, in a JPEG compression of a picture taken from a camera, a
specific accuracy drop can be tolerated when the quality of lighting is poor, as
sensed by a light sensor.

(iii) By definition, Adaptive EAS is a closed-loop scaling approach for which the op-
timal energy-accuracy tradeoff is achieved by measuring defined quality metrics
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Energy-Accuracy Scaling (EAS)

AdaptiveDynamicStatic
- ANT
- Razor-based
- AED-C

- DVAS
- DVAFS
- DVOS

- Approximate Logic
- Inferential Logic

Figure 3.2: Energy-Accuracy Scaling techniques classification.

directly on-chip, at run-time. This metrics can be obtained by a direct measure
the output accuracy, or by an indirect estimation of the accuracy value. While in
the former case an upper bound on the error can be fixed, e.g., Algorithm Noise
Tolerant (ANT) systems, in the latter one the accuracy loss is kept under control
through statistical tools, e.g., the errors rate measured by Razor timing monitors.
Most importantly, the feedback loop allows the adaptive approaches to achieve a
finer tunability of the energy-accuracy tradeoff beneath the margins introduced
by the conservative energy-accuracy operating points defined for the Dynamic
EAS.

These classes of EAS are discussed more formally in the following sections; for the sake
of space, only the most representative techniques for each class are reviewed in details
(please, refer to Figure 3.2).

3.2 Static EAS: speculation at Functional-level
As introduces in the previous section, in Static EAS the energy-accuracy tradeoff is

fixed at design-time by functional speculation, i.e., a modification of the logic function-
ality through algorithmic or circuit simplifications which induce energy savings for a
worst-case accuracy loss. Compared to Dynamic solutions, Static EAS cannot change
the energy-accuracy tradeoff, i.e., the worst-case error and power savings cannot be
tuned at run-time. Also, it does not integrate any feedback loop from the circuit, e.g.,
workload info or timing/output compliance; this implies the output error cannot be
either mitigated nor recovered at run-time as Adaptive EAS strategies can do.

Two major applications belong to this class of technique: Approximate Logic and
Inferential Logic. The former relies upon the Approximate Computing principle, ex-
tensively investigated in literature in arithmetic circuits. It found application several
error-resilient applications, particularly in multimedia (e.g., Audio/Video processing).
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The latter exploits Machine learning theories to describe Boolean logic functions as in-
ference rules. As a result, statistical inference algorithms are leveraged to design combi-
national logic circuits, i.e., inferential circuits, that mimic boolean functions to a certain
degree of accuracy.

The following sections briefly report some Approximate Logic Circuits design rules,
then show how Inferential Logic is conceived for low-power circuits that run quasi-
exact computation in error-resilient applications.

3.2.1 Approximate Logic
Functional-level approximation has been extensively used to reduce energy-accuracy

through algorithmic and circuit simplifications. The rich literature on the approximate
computing theme covers a wide scope of approximate adders [92] [48] [171] [170] [63]
[97] [72] [4] and multipliers with truncated carry chain [94] [81] [77] [88] [106] [6]
[135] which respectively lead to an energy reduction of 1.5-3.7× and 1.5-3.2×. Simi-
larly, approximateDSP blocks have been investigated, such as FIR filters [144],Multiply-
Accumulate units [27] [68], arithmetic processors [136], and Discrete Cosine Transform
accelerators [116], with energy savings in 2× - 4.1× range.

Also, several frameworks proposed an automatic synthesis of approximate func-
tions with power-quality target fixed at design-time. Some of these frameworks in-
troduce an approximate replica of the circuit to check for timing faults of the main
circuit [28], the extraction of those minterms which generate the minimum error rate
[141], the statistical pruning of Boolean and arithmetic functions [86], andmore general
approaches for sequential [124] and combinational circuits [163]. The energy savings
achieved by employing these frameworks ranges from 1.2 to 7.5×.

Energy can also be lowered by reducing the execution time required by tasks. For
example, the execution time can be reduced by order reduction in digital filters [93],
and sub-sampling of input data [27]. More in general, energy benefits can be obtained
through the early termination of iterative algorithms (“anytime” algorithms) [95] and
loop break [142]); monotonic output-accuracy increase over execution time can be guar-
anteed. An explanatory example among the galaxy of approximated multipliers can
be used to clarify logic approximation techniques: a multiplier approximation through
function under-design. Let us discuss it briefly.

Multiplier Approximation through Function Under-design

The authors of [77] propose to introduce error into a multiplier by manipulating its
logic function, specifically by removing some Karnaugh Map entries. They designed an
architecture that leverages a modified inaccurate 2×2 multiplier building block to im-
plement larger multipliers.The structure of the resulting under-designed 2×2 multiplier
is reported in Figure 3.3a, opposed to the exact function in Figure 3.3b. The inaccurate
circuit is smaller and faster as the critical path delay is reduced. Also, fewer wires are
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(a) (b)

Figure 3.3: Accurate (a) and Inaccurate (b) 2×2 multipliers with the critical paths [77].

required. Hence, such design is able to trade energy for accuracy by introducing in the
design logic function approximation..

Larger inaccurate multipliers can be built upon 2×2 multiplier building blocks ex-
ploiting the rules of computer arithmetics for binary numbers (Figure 3.4). Such multi-
pliers achieve an average power saving which ranges from 31.78% to 45.4% over corre-
sponding accurate multiplier design, for an average error of 1.39% and 3.32% respec-
tively. Using image filtering and JPEG compression applications, the inaccurate ar-
chitecture can achieve 2× - 8× better Signal-Noise-Ratio (SNR) for the same power
savings when compared to probabilistic based power-error tradeoff methods citege-
orge2006probabilistic.

Figure 3.4: Building larger multipliers from smaller blocks.

3.2.2 Inferential Logic
In the Authors’ view of [150], Machine Learning (ML) techniques should be ex-

ploited to implement logic circuits that mimic how the human brain works, i.e., like a
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Figure 3.5: Classification problem: (a) analytical model, (b) abstract model representa-
tion using a Classification Tree, (c) input space partitioning, (d) new samples classifica-
tion [151].

statistical inference engine [24] [152].This paradigm shift encompasses the replacement
of exact logic rules and Boolean operators in favor of statistical models and inference
mechanisms, namely, to design inaccurate, yet energy-efficient logic functions [149]
[151]. In this new design methodology, the representation of a generic Boolean func-
tion is built through a learning problem.The result is a logic function whose behavior is
described by a more compact abstract model that serves as a statistical representation of
the function itself. Such a representation is then used to infer the results of the Boolean
function with a certain level of accuracy. Once mapped on a piece of hardware, the re-
sulting circuit runs the quasi-exact computation of the logic function trading accuracy
for energy savings; this logic block is called Inferential Logic Circuit. Let us focus on an
explicative example of this approach: the implementation of quasi-exact logic function
through Classification Trees, a very efficient and compact ML algorithm.

Training Classification Trees

Classification Trees (CTs) are machine learning tools belonging to supervised learn-
ing algorithms, used when prior knowledge of the problem is available, i.e., an observa-
tion set of samples properly labeled. CTs allow the identification of the most significant
key features among observation samples. More formally, is it possible to split a generic
classification problem in twomain phases: (i) Training, during which a training data set,
consisting of 𝑛 samples labeledwith one of the 𝑚 available classes 𝑦𝑖 ∈ 𝑌 = {𝑦1,… , 𝑦𝑚}
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and described through 𝑝 predictor variables 𝑋 = {𝑥1,… , 𝑥𝑝}, as in Figure 3.5a, is used
to learn an efficient abstract model representation, as the one reported in Figure 3.5b;
(ii) Validation, during which a data set, made up of a new set of samples labeled with
𝑌 and described through 𝑋, is used to quantify the accuracy of the trained data model
representation, as shown in Figure 3.5c which describes the input space partitioning
due to the rules imposed by the model, and Figure 3.5d that shows how samples are
classified.

Although various options for building abstract classification models are available,
CTs represent a solution that combines high accuracy with a low complex tree structure
[15] which enables the partitioning of even complex input space into ideally separated
clusters. Such partitioning is obtained through recursive splits of the training data set
(through the Gini index [15]) , hence a stopping criteria must be fixed such that the final
tree structure includes only a subset of the available predictors, i.e., the most significant
key features, hence, the ones that hold the most useful information to the solve the
classification problem [149].

Quasi-exact logic functions through Classification Trees

In [151] the authors propose a novel ML-driven synthesis methodology that allows
to describe generic Boolean functions through a representative subset of core expres-
sions using Classification Trees (CTs). Obtained circuits are able to mimic Boolean func-
tions to a certain degree of accuracy, hence the name quasi-exact logic functions.

According to the proposed methodology, a classification tree is trained using the
truth table of a logic function output as a labeled training set. As reported in Figure
3.6 (top, from left to right), a single node of a CT can be seen as a Multiplexer (MUX)
primitive. Therefore, any classification tree trained on Boolean samples can always be
represented through a tree-of-MUXes. In addition, the proposed synthesis flow enables
a smart hardwaremapping onMUX-INV library by firstly translating the CT in a Binary
Decision Diagram (BDD) which is efficiently reduced and ordered (3.6 - bottom, from
left to right).

Experiments conducted on a subset of open-source benchmarks demonstrate that
CTs are indeed able to cover rather complex Boolean functions with a very high degree
of accuracy, 88% on average, still requiring 3× less area over conventional multi-level
baseline circuits.

41



3 – Energy-Accuracy Scaling: a New Paradigm

Figure 3.6: On the top, CT decision node representation and mapping: from left to right,
original representation (i), node transformation (ii), and MUX mapping (iii). On the
bottom, from CT to MUX-INV representation. From left to right, Original CT structure
(i), reduced and ordered BDD representation (ii), MUX-INV implementation (iii). Solid
and dashed lines represent true and false branches, respectively; dotted lines represent
negated edges. [151].

3.3 Dynamic EAS: Run-time Tradeoff

3.3.1 Dynamic Voltage-Accuracy Scaling (DVAS)
As widely explained in the first part of this chapter, a dynamic energy-accuracy

tradeoff brings an extra degree of freedom for power management. Among the state-
of-the-art EAS techniques, Dynamic Voltage-Accuracy Scaling (DVAS) is one of the
most representative and powerful strategy [102].

In its general embodiment, DVAS refers to dynamic techniques that allow voltage
scaling through accuracy reduction without inducing timing errors. Compared to static
EAS techniques which drop energy consumption by modifying the logic functions of
the circuit building blocks, DVAS presents a run-time tunable energy-accuracy tradeoff
which allows circuits to achieve larger energy savings when quality-of-results can be
further sacrificed.

DVAS methodology can be easily explained by targeting arithmetic circuits, specif-
ically an array multiplier (Figure 3.7). The energy efficiency of an array multiplier can
be increased by truncating the input to reduce the circuits switching activity [52] [162]
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Figure 3.7: DVAS principle applied to an Array Multiplier [102].

at the cost an accuracy loss due to the quantization error introduced by the bit trun-
cation, which by definition is bounded. However, using smaller bit widths not only
reduces circuit activity but also shortens data paths enabling voltage scaling without
timing violations. This principle, which represents the main intuition behind DVAS, is
depicted in Figure 3.7: when the entire input bit width is used (𝑋 = {𝑥0,… , 𝑥3} and
𝑌 = {𝑦0,… , 𝑦3}), the activity is high as the number of active gates is twenty, and the
critical path is the longest possible (red dashed line). When only the 2 MSB’s are used,
only six gates are active and the critical path length drop (shorter blue dashed line),
allowing an aggressive yet safe voltage scaling. For each input bit width a worst-case
minimum voltage can be identified (at design-time), thus, the energy-accuracy tradeoff
can be tuned by switching among different [𝑏𝑖𝑡 𝑤𝑖𝑑𝑡ℎ, 𝑣𝑜𝑙𝑡𝑎𝑔𝑒] operating points.

(a) Dynamic Energy vs. Accuracy (b) Static Energy and Area Overhead

Figure 3.8: Energy efficiency and Design overhead for a 16-bit DVAS multiplier [102].

DVAS can be generalized to pipelined systems by implementing EAS-oriented crit-
ical paths re-timing. This procedure is needed as in pipelined systems bit truncation
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does not directly lead to shorter critical paths. Path re-timing is achieved by placing
bypassable pipeline registers at strategic places of the data path. Two possible solutions
to include by-passable registers in a digital design were implemented [102]: (i) extra by-
passable registers placed in the specific path nets; (ii)muxed rewiring of specific signals
to one single register, without placing extra registers. As reported in Figure 3.8, both
techniques for pipelined DVAS introduces area/energy overhead which represents the
major limitation of this dynamic EAS. Indeed, it has to be noticed that not all the de-
sign can undergo a re-timing/re-synthesis process with an “irreversible” modification of
the circuit; also, this DVAS-oriented design reshaping includes dedicated optimization
tools/algorithms that may be hard to integrate into commercial design kit.

3.3.2 Dynamic Voltage-Frequency-Accuracy Scaling (DVAFS)
The natural evolution of DVAS to further reduce digital ICs energy is represented

by the Dynamic Voltage-Accuracy-Frequency Scaling (DVAFS) strategy [104]. It exploits
the concept of subword parallelism [103] which increases the energy savings of DVAS
by reusing inactive arithmetic cells at a reduced precision. Figure 3.9 reports a pictorial
representation of this principle: a 4-bits array multiplier can be converted to a 4-bit sub-
word parallel multiplier that can process two 2-bits subword operations per cycle. This
allows, by keeping constant the computational throughput, to drop the operating fre-
quency and hence scales voltage significantly below DVAS values. As a result, DVAFS is
an EAS technique which simultaneously scales all run-time tunable parameters affect-
ing energy consumption: supply voltage is dropped by shortening critical paths with bit
truncation, switching activity is reduced with bit truncation, and at constant computa-
tional throughput frequency is cut via subword parallel operations.

Figure 3.9: DVAFS principle applied to an Array Multiplier [104].
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As for DVAS, the energy-accuracy tradeoff can be tuned by switching among differ-
ent [𝑏𝑖𝑡 𝑤𝑖𝑑𝑡ℎ, 𝑣𝑜𝑙𝑡𝑎𝑔𝑒, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦] operating points pre-defined at design time. To be
noticed that DVAFS is based on a concept very similar to Dynamic Voltage-Frequency-
Scaling (DVFS) [157]; however, in DVAFS, voltage and frequency are tuned on accuracy
rather than throughput requirements.

Contrarily to DVAS, which can solely save energy in precision-scaled arithmetic
blocks, DVAFS allows EAS in full system, including control units and memory, hereby
shrinking energy overheads drastically at low precision. For this reason, DVAFS it has
been applied to reduce energy consumption in highly parallelizable applications, like
Deep Learning in embedded systems [103].

3.3.3 Dynamic Voltage Over-Scaling (DVOS)
The techniques mentioned above, DVAS and DVAFS, are conceived to keep the er-

ror magnitude under a specific bound (bit truncation worst-case error) avoiding timing
fault occurrences and providing an acceptable average output accuracy. However, there
are several works which try to exploit the intrinsic resiliency of different circuit archi-
tectures to aggressively scale the voltage allowing timing faults to occur and without
imposing any maximum value to error. This EAS strategy is known in the literature
as Dynamic Voltage Over-Scaling (DVOS) [65]. This technique extends the concept of
dynamic voltage scaling beyond the critical voltage value imposed by the worst-case
corner. If the circuit architecture is able to mask timing errors, scaling beyond critical
voltage brings to significant energy savings without severe degradation of output qual-
ity. Obviously, logic circuits can run DVOS only after a design-time characterization of
energy and quality-of-results.

(a) Adder comparison [91]. (b) Arithmetic functions comparison [100]

Figure 3.10: Arithmetic units under DVOS.

Researchers extensively investigated to identify the most suitable arithmetic unit
for DVOS. [91] and [100] proved that Carry-Select-Adder provides the best energy–ac-
curacy tradeoff under DVOS (Figure 3.10a); the reason behind this result lies in the
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internal characteristics of this adder. Indeed, its architecture allows a graceful output
degradation in case of timing errors. On the other hand, tree adders and subtractors fail
as the supply voltage is scaled and, thus, the delay target is not met (Figure 3.10b, red
and black plots respectively).

In [114], a characterization of various data representations under DVOS has been
performed. It showed that radix-2 redundant binary can be considered the best EAS
approach in systems with large data widths while 2’s complement representation is
more suitable in systems with small data widths.

By characterizing the most common computational kernels used in multimedia,
recognition, and mining algorithms, [100] proposed design techniques to make the
hardware implementations of these meta-functions behave more gracefully, i.e., to gen-
erate few or small errors, under DVOS. In Figure 3.11 is reported the results for dot-
product meta-function implemented with both Ripple-Carry and Kogge-Stone adders
optimized for DVOS.

Figure 3.11: Error vs. Voltage plot for dot-product meta-function [100].

Also, the concept of Probabilistic CMOS, wherein each transistor and logic gate dis-
plays a probabilistic rather than deterministic behavior, was proposed as an energy effi-
cient alternative to traditional deterministic computational models [113]. Such methods
exploits of the statistical behavior of nano-scale devices and circuits and target prob-
abilistic applications such as multimedia, recognition, and mining. Such applications
perfectly fit for DVOS as they typically rely upon iterative and successive refinement
techniques, which canmask errors introduced in the previous iterations. In other words,
DVOS energy-accuracy characterization is performed on a probabilistic basis. Scalable
Effort (SCE) [27] and Error Resilient System Architecture (ERSA) [84] are the most rep-
resentative techniques of this approach.

As a final remark, DVOS energy-accuracy tradeoff can be considered sustainable as
long as a probabilistic accuracy characterization proves a graceful output degradation
when timing error occurs (as explained in [100]).
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3.3.4 Dynamic Inferential Logic Circuits
Inferential logic circuits can also dynamically adjust the energy-accuracy tradeoff.

The architecture of a Dynamic Inferential Logic Circuit (DILC), Figure 3.12, is a straight-
forward implementation of the Boolean formulation through Classification Tree (CT)
described in Section 3.2.2. It consists of two main logical blocks: (i) the Inferential Unit
(IU), which implements the CT function 𝐼; (ii) the Supervisor Unit (SU), which restores
the output of 𝐹 when 𝐼 yields to an incorrect prediction. As shown in [150], DILC can
work in two operating modes regulated at run-time.

Quasi-exact mode: the IU evaluates the input 𝑋; its output is similar to the Boolean
function 𝐹. In this run-mode, accuracy can be sacrificed for energy savings.

Exact mode: both the IU and the SU evaluate the input 𝑋. Two are the possible out-
comes: (i) the input pattern belongs to the set of misclassified patterns, hence the output
inferred by the IU is wrong, and the SU redirect the 1’s complement of IU toward the
primary output; (ii) the input pattern belongs to the set of correctly classified samples,
hence the value inferred by IU is propagated to the output. This operating run-mode
can be dynamically enabled when accuracy scaling is not an option.

Figure 3.12: Dynamic Inferential Logic Circuit architecture [150].

47



3 – Energy-Accuracy Scaling: a New Paradigm
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Figure 3.13: Adaptive EAS classification depending on the feedback loop nature.

3.4 Adaptive EAS: Beyond Dynamic Tradeoff Limita-
tions

Adaptive EAS is the speculative evolution of the dynamic EAS approach as instead of
switching among conservative operating points pre-defined at design-time (please refer
to DVAS/DVAFS), the adaptive approach let the input workload, measured through on-
chip monitors at run-time, to drive the circuit to the optimal energy-accuracy tradeoff.

Following a more formal definition, the techniques in this class implement a closed-
loop EAS, i.e., an approach which adaptively fine-tunes the energy-accuracy tradeoff by
directly measuring quality metrics on-chip (i.e., computation-compliance information),
at run-time. For the sake of clarity, the nature of the feedback information is strictly
related to the input workload, i.e., the flow of input data, and to the topology of the
circuits, i.e., to the logic paths distribution. According to the works proposed in the
literature, the feedback quality metrics can be a direct measurement of the output ac-
curacy or an indirect estimation of the accuracy value. Specifically, as shown in Figure
3.13, Adaptive EAS can be driven by (i) the Output Compliance, i.e., the computation of
the quality-of-results (e.g., the error magnitude), or (ii) the Timing Compliance, i.e., an
evaluation of the output accuracy using circuit timing information (e.g., the timing er-
ror rate). Let us analyze this classification by reporting the most representative adaptive
AES techniques:

• Adaptive EAS driven by Output Compliance
This approach is usually implemented through on-line monitors that perform a
direct measure of the output error magnitude. The most representative strategy
for this class of techniques is AlgorithmNoise Tolerance (ANT) [57, 56].Themain
idea of ANT is to shift the correction of the timing errors to a lightweight replica
of the circuit, the estimator. The output produced by the estimator is compared
with the output of the main circuit by a decision block that computes their differ-
ence. When such difference exceeds a given threshold (pre-determined at design
time), the error-control block forwards the estimator output to the main output of
the circuit, such that the output error can be mitigated. The most relevant benefit
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of ANT strategies is that an upper bound on the error magnitude can be imposed.
However, as shown in the next session, this comes at the cost of considerable de-
sign overhead.

• Adaptive EAS driven by Timing Compliance
This strategy adapts the system voltage w.r.t. the delay of the circuit paths sensi-
tized by the input workload, i.e., to the timing error rate. As shown in the litera-
ture, the timing error rate is usually measured through Error Detection and Cor-
rection strategies which used in-situ timing sensors, such as Razor, to controls
the voltage scaling [76] [126]. There might be specific sequences of input pat-
terns that push the supply voltage so down that some of the longest paths could
even bypass the detection mechanism leading to potential error propagation in
the fanout logic; such cases, called error miss-detections, represent the primary
source of accuracy loss. In [126], all detected errors are corrected, but the oc-
currence of error miss-detection contribute to quality-of-results degradation. On
the contrary, in [76] errors are only counted, but no error recovery is performed,
directly affecting the output quality. In general, if the error rate is lower than a
user-defined threshold, Vdd is scaled; otherwise, the supply voltage is raised back
to ensure safe operation. In this way, the circuit tends to work close to the edge
between error-free and erroneous computation.
A novel strategy, which is the core of the next Chapter, leverages on Approxi-
mate Error Detection-Correction (AED-C) [128]. This technique implements EAS
using the error detection coverage as a knob: a low error coverage accelerates
supply voltage scaling thus to achieve larger energy savings at the cost of quality
of result; a high error coverage lessens the voltage scaling leading to better output
quality at the cost of lower energy savings. The AED-C mechanism is built upon
elastic timing monitors, Razor FFs augmented with a tunable detection window
and hardened with the aid of a dynamic short-path padding technique.
Opposite to ANT, in timing-compliance EAS approach, the maximum error value
is not deterministic, as it can be arbitrarily high.The accuracy loss is kept bounded
through a speculative mechanism based on probabilistic rules that guarantee the
longest paths,i.e., the ones more prone to run into miss-detection, are rarely acti-
vated keeping the long-term average accuracy loss limited.This aspect of adaptive
EAS is detailed at the end of this chapter.

The following sections discuss more in detail ANT and Razor-based adaptive solution,
analyzing their advantages/drawbacks and field of applications; but first, the next sec-
tion deals with Adaptive Voltage Over-Scaling (AVOS) an aggressive voltage scaling
strategy for error-resilient applications widely used in these techniques.
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3.4.1 Adaptive Voltage Over-scaling (AVOS)
As extensively explained in Section 3.3, Dynamic AES approaches complement volt-

age scaling with a concurrent adjustment of the accuracy. For example, in the case of
DVAS, voltage scaling is compensated by decreasing accuracy; in DVAFS case accuracy-
frequency values are scaled together. As a result, these EAS systems always run in a
“stable” voltage-accuracy, or voltage-accuracy-frequency, operating point, where the
critical-path delay always match the clock period. This conservative design imposes
that the circuits to always meet the timing constraints by taking into account safety
margins due to worst-case temperature/process variations. Even in DVOS design tech-
niques, where timing errors occurrence are allowed during voltage-accuracy scaling,
graceful timing constraint violations (few or small errors)must be ensured by a design-
time characterization, hence maintaining a significant degree of conservatism.

Such conservative EAS approach implies that the majority of circuits cannot exploit
the full potential of voltage scaling at the post-fabrication time, preventing significant
energy savings. In other words, even though Vdd could be further scaled without com-
promising the system’s compliance, it remains in worst-case operating condition since
the power management policy has no run-time feedback information on the circuit
health.

Adaptive Voltage Over-Scaling (AVOS) is an adaptive power management system
for error-resilient applications [76]. In AVOS the circuit operating voltage is scaled
adaptively depending on the circuit run-time behavior leaving frequency unchanged,
i.e., without system’s performance reduction. Voltage is selected dynamically among a
set of possible values by a power management unit driven by sensed on-chip compli-
ance information. Conservative assumptions adopted in Dynamic EAS techniques (i.e.,
worst-case process/temperature variations) are not necessary anymore; this enables an
aggressive voltage scaling with larger energy savings.

3.4.2 Algorithm Noise Tolerance (ANT)
Implementation

The basic principle underlying the ANT technique is to accept errors as long as
the output degradation due to Vdd scaling remains below a given noise threshold [57,
56]. As depicted in Figure 3.14, a typical ANT architecture consists of the main circuit
coupled with its own lightweight replica, known in the literature as Reduced Precision
Replica (RPR) [140][139].

Such replica is approximated through arithmetic precision scaling, namely dropping
some of the LSBs and it serves as a ground reference for the assessment of the output
quality of the circuit during the voltage scaling. When AVOS power management is
applied to this technique, timing faults do appear in themain circuit at first, whereas the
intrinsically faster replica runs fault-free for lower Vdd. The supply voltage is regulated
by monitoring the arithmetic error, which is given as the difference between the output
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Figure 3.14: RPR-ANT Block Diagram.

of the main circuit and that of the replica. The detection unit flags an event when the
difference overcomes a pre-defined threshold (ℰ𝑡ℎ). In such case, the replica’s output
is forwarded towards the main output of the circuit. An important aspect is that the
output error is bounded by the arithmetic precision of the replica.

Design and Area overhead

The design of the replica circuit and that of the control circuitry introduces some
overhead which should be carefully weighted against the actual savings brought by
AVOS. The main challenge is to limit the area and delay penalty while guaranteeing
the desired output quality. As a preliminary analysis, the design characterization for
two benchmarks is reported : FIR and IIR digital filters processing a sequence of three
different baseband audio signals. We implemented an entire set of RPR-ANT circuits by
changing the precision of the replica circuit, namely reducing the input bit-width from
1 to 𝐵 −1, where 𝐵 is the bit-width of the original circuit. For each implementation, the
error threshold (ℰ𝑡ℎ) of the decider unit over the experimental testbench input patterns
is computed by applying the formula explained in [140]:

ℰ𝑡ℎ = max
𝑖𝑛𝑝𝑢𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

∣ 𝑦𝑜[𝑛] − 𝑦𝑟[𝑛] ∣ (3.1)

with 𝑦𝑜 as the error-free output, and 𝑦𝑟 the output of the replica circuit. Fixing ℰ𝑡ℎ
in such a way ensures that the output of the circuit 𝑌 is equal to the main circuit output
𝑌𝑚 in the absence of timing errors.

Figure 3.15 shows the trend of ℰ𝑡ℎ normalized over the output range of 𝑦𝑜 (𝑦𝑟𝑎𝑛𝑔𝑒 =∣
𝑚𝑎𝑥(𝑦𝑜)−𝑚𝑖𝑛(𝑦𝑜) ∣) and the Area overhead of the architecture versus the number of the
Replica bits (𝐵𝑟). As expected, the decision threshold increases exponentially when 𝐵𝑟
drop, as shown in [140]. The area overhead w.r.t. the baseline circuit increases almost
linearly. For the FIR filter, the area ranges from 1.26× to 2.06×, respectively for 𝐵𝑟 equal
to 1 and 11. In the IIR filter case, even with 𝐵𝑟 = 1 the area is 1.98× larger than the
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Figure 3.15: Error Threshold and Area overhead vs. Replica circuit bit-width.

baseline filter, and peaks up to 2.61× for 𝐵𝑟 = 15. Such large area overhead is due to
the internal characteristics of the filters, i.e., the feedback branches of IIR in direct form
I. These results are in line with the conclusions achieved in[112], where for a set of
benchmarks {RM-CORDIC, FIR Filter, Square Root Unit} the area overhead reaches the
peak of {82%, 128%, 143%} w.r.t. the baseline circuit.

The RPR-ANT paradigm implies the availability of a quantitative measure of error,
which is straightforward for (stand-alone) arithmetic circuits, while it becomes difficult
for other kinds of circuits (embedded into more complex systems perhaps). Finally, the
area overhead due to the replica circuit is not negligible; despite the many works on
the field, the design of a faster and smaller circuit replica still remains an open issue,
especially for non-arithmetic circuits. Hereafter, for the sake of readability, the RPR-
ANT strategy is simply labeled as ANT.

3.4.3 Error Detection and Correction schemes for Adaptive EAS
As explained in Section 2.5, two main design strategies can be used for always-

correct applications. Top region of Figure 3.16 reports them. Worst-case margined de-
sign (top-left region), which add sufficient clock-time margin to compensate delay vari-
ations. Conventional Error Detection and Correction (EDC) methods (top-right region)
which sense, at run-time, the timing margin by detecting and recovering all local timing
errors (e.g., in-situ), such that the system can be tuned to operate at the margin edge,
i.e., at nearly-zero timing slack. In the class of those strategies that are employed for
error-resilient applications but do not integrate any error detection mechanism (Figure
3.16, bottom-left region), both static and dynamic EAS strategies can be reported by
way of example.

On the other hand, Adaptive EAS strategies based on EDC (bottom-right region) is a
speculative extension and generalization of conventional Energy scaling EDC methods
to error-resilient applications [1]. As EAS does not have to ensure full error coverage,
the traditionally large area/energy overhead of error detection and recovery in conven-
tional EDC (refer to section 2.5.1) may be reduced by using a simpler error management
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Figure 3.16: EDC for always-correct vs. error-resilient applications.

circuitry. Thus, these techniques are able to sense the timing errors but they may run
into miss-detected errors to deliver a more aggressive voltage scaling, thus, larger en-
ergy savings. The timing error rate is the statistical tool that drive the circuit to the
optimal energy-accuracy tradeoff, while the long-term average accuracy loss is kept
within a reasonable range by the probabilistic rule for which longest paths, the ones
that cause miss-detections activate rarely.

In the following sections a brief introduction to EAS methods based on Razor is
reviewed.

Implementation of Razor-based EAS

According to the literature EDC-basedAdaptive EAS ismostly implemented through
Razor-style in-situ timing sensorswhich enable aggressive powermanagement asAdap-
tive Voltage Over-Scaling. A lightweight Razor FF error detection circuitry has been
used in [76], to implement an energy-accuracy scalable FTC1/DXT1 decoder. Razor FFs
are labeled with error significance weights and bit-wise ORed to yield the overall error
degree which is compared to a pre-defined threshold to drive the voltage scaling. Most
importantly, no error recovery is performed. Also, no short-path races fixing measures
have been implemented. The detection window 𝐷𝑊, i.e., the clock delay to shadow FF,
has been chosen to match the minimum delay of the shortest path at the input of Razor
FF. Then, 𝐷𝑊 is changed dynamically with the supply voltage to detect as much timing
violations as possible.

Experiments on the FTC1/DXT1 decoder show that AVOS achieves significant en-
ergy reduction while the additional error is negligible compared to the quality loss due
to lossy compression (Figure 3.17). The major issue related to this work is that the error
detection mechanism cannot work under process variations; this makes this approach
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Figure 3.17: Energy vs. Error over 50 test images in [76] experimental setup.

hardly to be implemented at circuit-level. Indeed, the analysis reported in [76] are not
the results of a gate-level netlist functional simulation, but only a probabilistic estima-
tion. For these reason this technique is not employed for a comparative analysis with
the core of this dissertation, i.e., the Approximate Error Detection-Correction (AED-C).

Authors in [126], proposed Early Bird Sampling (EBS), a Razor variant that enables
AVOS for error-resilient low-power circuits. The EBS allows to solve the problem of
short-path races through a Tunable Delay Line at the Razor FF input bypassing tedious
hold-time fixing design stages. Also, EBS reduces design overhead exploiting a local
logic-masking mechanism for error correction. The simulation on a set realistic bench-
marks shows that EBS can implement a more efficient EAS mechanism compared to the
standard Razor hold-fixing through buffers. EBS is discussed more in detail in the next
chapter.

3.4.4 Adaptive EAS and errors characterization
As explained in the sections above, ANT architecture allows a direct control on the

error magnitude and is able to keep the output degradation under a specific threshold
fixed by the approximation mechanism. On the contrary, the timing-compliance spec-
ulation approach cannot impose any direct boundary to the magnitude of errors, as
the latter are the results of miss-detected timing violations. However, two mechanisms
based on probabilistic rules limit the average accuracy drop: (i) the voltage scaling is
kept to safe values, i.e., that ensure no dramatic accuracy degradation, by the timing
errors rate due to the most active path; (ii) the longest paths, i.e., the ones more prone
to run into miss-detection (thus leading to quality degradation), are rarely activated
guaranteeing limited long-term average accuracy loss.

Following a more formal definition given in [26, 109], the errors introduced by the
voltage scaling in ANT remain “small” in magnitude (as it is bounded by the precision
of the replica circuit) but quite frequent.Thus, ANT can be associated to the class of Fail
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Figure 3.18: Adaptive EAS and error characterization.

small applications ( bottom-right region in Figure 3.18). On the other hand errors, the
EAS based on timing compliance belongs to the class of Fail Rare. The error magnitude
due to miss-detection is arbitrarily high (the long timing paths that fall in violations
are commonly on the MSB of the output, especially in arithmetic circuits), but very
infrequent (long timing paths are activated rarely) guaranteeing an acceptable average
accuracy (top-left in Figure 3.18). This classification is extensively validated in the next
chapter.
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Chapter 4

Adaptive EAS via Approximate Error
Detection-Correction

As extensively discussed in Section 3.4.3, Adaptive Energy-Accuracy Scaling (EAS)
can be managed by an estimation of the output accuracy obtained by checking the cir-
cuit timing-compliance through conventional Error Detection and Correction (EDC)
schemes. As the timing errors rate drives the voltage scaling, reducing the error detec-
tion coverage of standard EDC monitors enables an aggressive voltage reduction, thus,
larger energy savings, as long as the average accuracy degradation is kept bounded by
the probabilistic assumption for which the longest paths, hence, miss-detected timing
errors, are rarely activated. Also, as EAS does not have to ensure full error coverage
(i.e., admit error miss-detections), the traditionally large area/energy overhead of er-
ror detection and recovery in standard EDC may be reduced by using a simpler error
management circuitry.

This chapter introduces Approximate Error Detection-Correction (AED-C), an error
management scheme suited to adaptive EAS for error-resilient applications. The AED-
C mechanism tackles standard EDC complexity in (i) the short-paths race management
and (ii) detection mechanism to introduce a more flexible and efficient energy-accuracy
scalability. As a result, AED-C is implemented by in-situ elastic timing monitors, i.e.,
Razor flip-flops augmented with two innovative features:

1. Dynamic short-path padding, obtained through a technique referred to as Early
Bird Sampling, which ensures low area overhead and efficient voltage scaling
by overcoming the limitations of the Razor static short-path padding based on
buffers insertion procedure;

2. Tunable Error Detection capability, i.e., timing sensors with a tunable Detection
Window mechanism to control the energy-quality scaling tradeoff.

Inspired by the working principle of Approximate Computing, AED-C enables EAS
using the error detection coverage as a knob: a low error coverage accelerates supply
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voltage scaling thus to achieve larger energy savings at the cost of Quality-of-Result
(QoR); a high error coverage lessens the voltage scaling leading to high QoR at the cost
of weaker energy savings.

This chapter firstly discuss the features of the proposed short-pah padding strategy,
the Early Bird Sampling, reporting its figures-of-merit compared to state-of-art Razor.
Specifically, it shows how the problem of short-path races can be solved bypassing se-
vere hold-time fixing stages based on buffer insertions and presents a low-overhead
local logic-masking mechanism for error correction. Then, a section is dedicated to the
Tunable Error Detection (TunED) technique which explains the implementation of tim-
ing sensors embedding Tunable DetectionWindowmechanism.Finally, AED-C strategy
is disclosed at architectural-/circuit-level alongwith the EDA tools used to implement it.
AED-C driving a dual-mode Adaptive Voltage Over-Scaling (AVOS) is simulated over
a representative set of circuits for image/audio processing (e.g., DCT, FIR/IIR digital
filters) providing a pros&cons analysis and a comparison with the state-of-art Razor.
The collected results show that AED-C substantially reduces the average energy-per-
operation (up to 44.7% savings w.r.t. Razor-driven AVOS) and the area overhead (3.3%
vs. 62.0%), still guaranteeing reasonable accuracy. As an example, when applied to a
real-life application, i.e., a DCT integrated into a JPEG compressor, AED-C shows 51.9%
energy savings (w.r.t. a baseline DCT implementation) ensuring a PSNR of 48.45 dB
(w.r.t. baseline JPEG images). The chapter is closed by a comparative analysis between
AED-C and another technique that belongs to the Adaptive EAS class, i.e., Algorithm
Noise Tolerance (ANT), giving final considerations on AED-C benefits and limitations.

4.1 Early Bird Sampling: a Short-Path Free Error De-
tection Strategy

Razor is a milestone in the field of Error Detection and Correction (EDC) strate-
gies for low-power operation. Despite the impressive level of maturity, its application
on circuits other than pipelined processors still remains an open issue. Firstly, the error
detectionmechanism relies on special flip-flops (FFs), the Razor-FFs, whose use imposes
heavy hold-time fixing and large circuit area/power overheads; secondly, the error cor-
rection is performed through instruction replay, a practice that is not available (or very
expensive to implement) in generic circuits.

Early Bird Sampling (EBS) is a Razor variant that applies to low-power sequential cir-
cuits.The EBS allows to (i) solve the problem of short-path races bypassing tedious hold-
time fixing design stages, (ii) reduce design overhead exploiting a local logic-masking
mechanism for error correction. As a key feature, EBS enables the Adaptive Voltage
Over-Scaling (AVOS), particularly suited for ultra-low power error-resilient applica-
tions.
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Figure 4.1: Razor-FF implementation (top-left); Short path race (top-right); area over-
head due to short-path padding (bottom), % w.r.t. baseline circuit [126].

4.1.1 On the Limitations of Razor Scheme
In its more general embodiment, an adaptive IC executes an EDC scheme where the

occurrence of timing errors (typically due to set-up time violations) is flagged to the
control management unit that eventually operates a recovery mechanism. If the circuit
is healthy, i.e., no errors, power consumption is optimized by means of some low-power
knob, e.g., voltage and frequency scaling, body-biasing, or a mix of them.

Among the many EDC solutions appeared in the recent literature, Razor [38][31]
still represents the state-if-the-art. The error detection is implemented by replacing
standard flip-flops (FFs) with special FFs, a.k.a. Razor-FFs (Figure 4.1 top-left), that sam-
ple logic signals at two different instants of time: first, at the rise edge of the clock,
then, after a predefined timing window, the so-called Detection-Window (DW). The two
time-skewed samples are stored by two different FFs, i.e., the main flip-flop and the
shadow flip-flop, and then compared through a XOR gate for parity check. A parity
match implies the absence of errors and the availability of some timing slack, whereas
amismatch implies a faulty computation that is then recovered through some correction
mechanism. To notice that Razor has been conceived for pipelined processors, hence,
error recovery is accomplished through instruction replay.

Although Razor is considered a milestone in the scientific community, it shows in-
trinsic limitations that prevent its use on sequential circuits other than pipelined pro-
cessors. The main reasons are two (described below in criticality order).
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1. Short-path races.
While processors show a relatively small number of end-point FFs (the stage registers of
the pipeline) most of which having a regular timing path distributions, generic sequen-
tial circuits have many FFs usually driven by logic cones with timing path distributions
that seriously complicate the timing closure during logic synthesis. To better under-
stand this critical aspect, one should consider Razor-FFs suffer the so-called short-path
race. As per their internal structure (Figure 4.1 top-left), Razor-FFs cannot make dis-
tinction between the activation of a short-path within the DW and the activation of a
long-path beyond the clock edge. This may cause “false” error detections. As depicted
in Figure 4.1 (top-right), the value sampled in the main FF at (𝑇𝑐𝑙𝑘) may differ from that
sampled in the shadow FF at (𝑇𝑐𝑙𝑘 + 𝐷𝑊) due to a short-path activation (p4); the error
flag is then raised even if there is no timing violation.

In order to avoid overlaps between short- and long-paths, a common design practice
is to apply a static short-path padding [38] [31]. It is a constrained hold-time fixing
procedure (short-path padding hereafter) where buffers are selectively inserted in the
logic cones such that the minimum arrival time of any logic path is shifted beyond
DW (usually 50% of the clock-period); short paths delaying is done while keeping the
longer timing paths untouched. The side effects are many. Firstly, long buffer chains
induce huge area penalties. As a preliminary result, Figure 4.1 (bottom) shows the area
overhead due to short-path padding for the set of circuits we used as benchmarks: the
worst case is 112%. Secondly, when the timing constraint on the long-paths is tight,
short-path padding tries to reach timing closure by means of Boolean transformations
and heavy circuit topology modifications that (𝑖) further increase area (𝑖𝑖) reshape the
path distribution with a negative impact on Vdd scaling efficiency (more details in the
experimental section). Finally, the insertion of long buffer chains exacerbates the timing
unpredictability due to PVT variations when the circuit works at ultra-low voltage,
e.g., near-threshold [70]. In this case, for a simple test-case made up of three 16-bits
multipliers, the area grows by 2.1x, while energy per operation increases up to 81%
w.r.t. the baseline circuit.

Even assuming the overhead of short-path passing could be brought below a rea-
sonable threshold, it still remains static, thereby preventing the implementation of any
tunable strategy as the target of this chapter, theApproximate Error Detection-Correction,
requires.

Some previous works, e.g., [31, 80], addressed some of the above issues by means
of a reduced DW obtained through a duty-cycled clock (duty-cycle < 50%). These so-
lutions have proven to be effective only in some specific case of study. The authors of
[165] substitute buffers with a fine-grained allocation of dummy loads (spare cells and
dummy metal). The integration of this methodology in commercial tools might result
too complex, or not compliant with design rules checking (DRC).

60



4.1 – Early Bird Sampling: a Short-Path Free Error Detection Strategy

A solution to avoid the insertion of hold-fixing buffers while keeping a 50% duty-
cycled clock is proposed in [29]. The authors introduce a short-path padding methodol-
ogy based on Latch-Insertion; for each pipeline stage, logic cones are split into two parts
using Negative-phase transparent latches; during the high phase of the clock, latches
prevent short-path transitions at the inputs of the Razors-FFs. A potential limitation is
that the arrival time of the latched block can be altered by process variations leading to
an increase of the error rate. Also, the area overhead of latches may run out of control
when dealing with random circuits.

Finally, Bubble Razor [42] was proposed to break the dependency of short-paths
from DW and hence to achieve a lower short-path padding overhead. This technique
requires flip-flops to be converted into two-phase timing latches, a solution that is not
fully supported by commercial design flows. Moreover, the control flow for generat-
ing/propagating the bubble might be complex, with large overhead that limits the ap-
plication of the technique.

For AED-C strategy implementation, none of the above solutions can address the
requirement of a dynamic short-path padding strategy.

2. Correction through functional redundancy.
While pipelined processors offer an easy path to error correction, i.e., instruction reply,
implementing the same mechanism on sequential circuits would require a too complex
FSM rewind. Hence, alternative circuit strategies are needed [158]. Unfortunately, the
design overhead of such correction circuitry might substantially affect the gain brought
by adaptive power management.

These two class of issues make Razor implementation very hard, often impractical,
to be adopted in low-power ICs. Also, most of the attempts made to generalize the
Razor technique have turned out to be too costly. Next sections deal with these issues
proposing a lightweight EDC strategy, called Early Bird Sampling (EBS), that addresses
the short-path races issue through the insertion of Tunable Delay Lines (TDLs) shared
among all the paths flowing onto the same end-point. The result is that of depleting the
DW from short-paths and avoid false error detections without incurring any significant
design overhead. To notice that the availability of tunable delays enables post-silicon
variability compensations.

Also, as shown below, EBS enables an efficient AVOS scheme as voltage scaling is
able to follow the actual activation of the longest path (rather than the worst-critical
path identified at design time). This leaves room to a more aggressive power manage-
ment well suited for error-resilient applications.

4.1.2 Dynamic Short-Path Padding through Early Bird Sampling
The Early Bird Sampling (EBS) technique has been conceived with a twofold objec-

tive in mind: (𝑖) reduce traditional design overhead imposed by Razor system, while (𝑖𝑖)
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Figure 4.2: Early Bird Sampling at a timing critical end-point: circuit implementation
(top); static (bottom-left) and dynamic (bottom-right) timing paths analysis. Plots are
illustrative and do not refer to a specific case, rather, they show typical distributions
observed on generic circuits.

maintaining those intrinsic characteristics of the circuit that enable an efficient imple-
mentation of AVOS.

A schematic representation of the EBS circuit is given in Figure 4.2 (top). Tunable
Delay Lines (TDLs) are inserted just before the critical end-points of the circuit. Those
end-point are equipped with a variant of the Razor-FF (more implementation details
provided later in the text). The propagation delay of the TDLs can be tuned at run-time
such that the arrival time of the shortest path (𝐴𝑇𝑚𝑖𝑛) is delayed beyond the detection
window (DW) of the Razor-FFs. Indeed, the delay of a TDL is given by:

𝑇 𝐷𝐿 = 𝐷𝑊 − 𝐴𝑇𝑚𝑖𝑛; (4.1)

This prevents the activation of short-paths within the detection window, and so, races
with long-path in setup time violation, i.e., “false” error detection. For the sake of clarity,
we assumed that a TDL is tuned during post-fabrication stage, when also the nominal
𝑇𝑐𝑙𝑘 can be properly set such that no paths can be delayed beyond the DW in nominal
operating conditions. Each critical end-point comes with its dedicated TDL. To be also
noticed that the tunable delays enable post-silicon compensation on the short-paths
(out of the scope of this work).

The EBS strategy can be seen as a “weak” short-path padding optimization proce-
dure where the set-up constraints are not taken into account. Indeed, a TDL does not
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delay short-paths only, actually, it evenly affects all the paths in its fan-in cone. The
longest paths may thereby suffer early sampling, hence the name Early Bird Sampling.
The relaxation of the timing constraints is the key for a lightweight implementation of
the error-detection mechanism.

To better understand the working principle of EBS, Figure 4.2 (bottom-left), provides
a comparison among the static path distributions at a critical end-point for three dif-
ferent circuits implementations: (𝑖) a generic circuit after synthesis, the Baseline (blue
dashed line), (𝑖𝑖) the circuit after standard short-path padding optimization, Razor (plain
red line) (𝑖𝑖𝑖) EBS (plain green line). Short-path padding reshapes the path distributions
guaranteeing that all paths are beyond the detection window, namely, outside the gray
area in Figure, while maintaining the longest path delay unchanged. By contrast, the
effect of EBS is to shift the whole timing distribution, hence, some paths move beyond
𝑇𝑐𝑙𝑘 (purple area).

At first glance, this issue may be seen as a potential impediment. However, a more
accurate analysis reveals that the problem is less relevant from a practical viewpoint.
EBS exploits the fact that for real-life workloads the activation probability of long-paths
is usually pretty low. This feature, shown by the majority of digital circuits, suggests
that latent faults on long-paths are rarely excited. Experimental results give evidence
of such empirical rule of thumb, which can be inferred by probing the arrival time of
timing end-points during workload execution, i.e., through a dynamic timing analysis.
Figure 4.2 (bottom-right) plots the dynamic path distribution for a typical workload run
on three different implementations of the circuits: baseline, Razor, EBS. As a matter of
fact, the number of violating paths is much lower than those estimated using a worst-
case static timing analysis (purple area in Figure 4.2 bottom-left).

The most interesting aspect is that EBS does not alter the shape of the distribution
(both static and dynamic); referring to the plots in Figure 4.2, the green line is a copy
of the dashed line, just shifted on the right. This allows to preserve the intrinsic charac-
teristics of the original circuit, thus enabling a more efficient voltage scaling. The same
is not for Razor, where a path compression resulting from short-path padding optimiza-
tion substantially increases the number of “quasi-critical” paths (i.e., more active paths
skewed towards 𝑇𝑐𝑙𝑘, red curve above the green one) as shown in Figure 4.2 (bottom-
right). As a side effect, even small voltage variationswould bring a large number of paths
beyond 𝑇𝑐𝑙𝑘, therefore triggering more timing errors. As a result, power-management
techniques, and AVOS in particular, might have fewer margins to operate; this impacts
the voltage scaling efficiency and the potential energy savings.

The intuition behind EBS is that a simple delay shift is less invasive and more suit-
able for aggressive voltage scaling. The truthfulness of this principle is proven by ex-
perimental tests, which reports the results achieved by an aggressive Adaptive power
management like AVOS.
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4.1.3 Implementation Details
Tunable Delay Line (TDL)

Different implementations of TDLs have been proposed in literature; as the model-
ing of a TDL is out of the scope of this dissertation, we opted for the solution presented
in [169]. It consists of a pair of inverters with a voltage-controlled variable load between
them; the load is a transmission gate whose ON-resistance is controlled by V𝑑𝑒𝑙𝑎𝑦, as
shown in Figure 4.3. Such solution allows to cover a wide range of delays with a limited
area overhead. The main drawback is that an extra power grid is needed for the distri-
bution of V𝑑𝑒𝑙𝑎𝑦. An alternative solution is to use tunable buffers adopted for on-line
clock-skew compensation [23].

IN

Delay	Control
(Vdelay)

OUT

Figure 4.3: Tunable Delay Line (TDL) implementation [169].

Error Detection-Correction

The EBS detection and correction mechanism is implemented using standard Razor-
FFs [39] augmented with a logic masking circuitry [158], Figure 4.4. Hereafter, we refer
to this architecture as Razor-Logic-Masking (Razor-LM). A polarity change at the input
of themain flip-flop after the rising edge of the clock implies some long-path is violating
the timing constraint, i.e., a timing error. This event is flagged through the XOR gate
that runs a parity check between the signals at pins 𝐷𝐹 𝐹 and 𝑄𝐹 𝐹. The error flag is
sampled in a shadow latch triggered on the fall edge of the clock.
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Figure 4.4: Error detection and logic masking circuitry in EBS.
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Figure 4.5: Error Management Unit in EBS.

This smart solution allows large detection windows (i.e., 𝐷𝑊 = 50%𝑇𝑐𝑙𝑘) w/o any
modification of the clock distribution network. Once detected, the error is locally cor-
rected through logic masking, that is, a MUX switches the output with the complement
of the wrong signal stored in the main FF.

In order to let the corrected value propagate toward the fanout logic, the whole
circuit has to be stopped for at least one clock cycle. Such an error-driven clock-gating
is managed by the Error Management Unit (EMU), Figure 4.5, that uses a superset of the
error flags (𝑂𝑅 among all the Razor-LM in the circuit) as a clock enable. The EMU is
also in charge of collecting the error statistics, i.e., the number of error occurrences 𝑁𝑒
within a predefined monitoring period of 𝑁 clock cycles. The Power Management Unit
(PMU) uses this feedback to implement the dynamic voltage scaling.

Design Flow

The EBS design flow encompasses three different stages we integrated into a com-
mercial design platform (the Synopsys R⃝ Galaxy) using wrappers written in TCL:

1. Logic Synthesis: a classical timing-driven, low-power logic synthesis run using
28 nm industrial technology libraries characterized at the nominal Vdd=1.10 V.

2. Identification of critical end-points: after the clock-tree synthesis, the end-
pointswhoseworst-case arrival time atminimumvoltage Vdd=0.60 V (lower bound
of the voltage scaling range) miss the clock-period 𝑇𝑐𝑙𝑘 are labeled as “critical”.

3. Razor-LM re-placement and TDL insertion: for each critical end-point, the
standard FF is replaced with a Razor-LM and the TDL properly inserted; the error
OR-tree is also synthesized.
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4.1.4 On the Efficiency of Early Bird Sampling
AVOS Policies

Adaptive Voltage Over-scaling (AVOS) belongs to the class of adaptive voltage scal-
ing [76][127] techniques. It implements a context-driven voltage lowering, that is, volt-
age gets regulated by the occurrence of timing errors on the actual sensitized critical
paths, i.e., those activated by the actual input patterns.

As already discussed, this may lead some of the longest paths beyond the clock
period.Those which fall within the detection window (DW) are detected and eventually
corrected; that is the basic principle of EBS. However, there might be specific sequences
of input patterns that push the supply voltage so down that some of the longest paths
could even exceed the DW; such off-side paths represent the primary source of error
miss-prediction. The latter case is graphically depicted in Figure 4.6. Paths in off-side run
out of control, and their activation is the main source of error propagation. Here is why
AVOS is particularly suited for error-resilient applications.

It is worth to emphasize that miss-detections mainly raise depending on the voltage
scaling policy adopted. We, therefore, provide a parametric analysis among different
AVOS parameters and different management policies (the latter being described in the
next subsection).

The main feedback provided by the error management unit (EMU) is the number of
errors 𝑁𝑒 within a predefined number of clock-cycles 𝑁, the monitoring period (please
refer to Section 4.1.3). The power management unit (PMU) makes use of such error-rate
𝐸𝑅 in order to implement some voltage scaling policy. More specifically, the 𝐸𝑅 is
compared against a given error-threshold 𝐸𝑅𝑡ℎ (or multiple error-thresholds) in order
to trigger the voltage scaling. In this section, we implemented three different policies
as follows.

1. Single-threshold (STh): as shown in Figure 4.7 (left), given 𝐸𝑅𝑡ℎ as a user-
defined error threshold, the policy works as follow:
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• as soon as 𝑁𝑒 gets larger than 𝐸𝑅𝑡ℎ, the supply voltage is increased w/o waiting
for the end of monitoring period.

• if 𝑁𝑒 ≤ 𝐸𝑅𝑡ℎ at the end of the monitoring period, i.e., after 𝑁 cycles, the supply
voltage is reduced for power minimization.

To notice that STh enables the control over the minimum Operation per Clock-cycle
(OPC), a measure of performance overhead due to error correction; indeed, 𝐸𝑅𝑡ℎ rep-
resents the maximum OPC loss.

2. Double-threshold (DTh): conceived to be more conservative, the DTh policy
exploits a “neutral” region defined by two thresholds 𝐸𝑅𝑡ℎ𝑚𝑖𝑛

and 𝐸𝑅𝑡ℎ𝑚𝑎𝑥
, Figure 4.7

(right); within this region, the supply voltage is kept untouched. This avoids excessive
Vdd ripples thus making the voltage scaling smoother. The policy works as follows:

• as soon as 𝑁𝑒 ≥ 𝐸𝑅𝑡ℎ𝑚𝑎𝑥
, Vdd is scaled up w/o waiting for the end of monitoring

period;

• if 𝑁𝑒 ≤ 𝐸𝑅𝑡ℎ𝑚𝑖𝑛
at the end of themonitoring period, Vdd is scaled down for power

minimization;

• if 𝐸𝑅𝑡ℎ𝑚𝑖𝑛
< 𝑁𝑒 < 𝐸𝑅𝑡ℎ𝑚𝑎𝑥

at the end of the monitoring period, Vdd is kept
unchanged in order to avoid excessive Vdd ripple.

ERTh

Ne

Vdd ↑

Vdd ↓ ERTh min

Ne

Vdd ↑

Vdd ↓

ERTh max

Vdd =

Figure 4.7: STh (left) vs. DTh (right) Vdd scaling policies.

3.Threshold-exceeding Saturation Counter (SC): this policy is more elaborated
as it takes into account how the supply voltage evolves over time. The working mecha-
nism, depicted in Figure 4.8 as a Mealy Finite State Machine (FSM), makes use of a 4-bit
saturation counter to decide whether the voltage has to be scaled up/down. It works as
follows:

• the policy starts reducing Vdd (Safe state);

• if 𝑁𝑒 exceeds the 𝐸𝑅𝑡ℎ a warning signal is raised (E=1) at the end of the monitor-
ing period and the FSM state evolves to Saturation Count. Vdd is not increased;
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• the Vdd is scaled up iif the number of consecutive warning signal 𝑐 is equal to
𝑐𝑚𝑎𝑥 (25-1). In this case, the FSM moves to the Unsafe state;

• If the current state isUnsafe and nowarning signal is raised (E=0), the FSM evolves
in Safe state and Vdd is scaled down;

• anytime FSM reaches the Saturation Count state, the warning count 𝑐 is set to
zero.

To notice that the SC policy has been thought to bemore aggressive than STh; indeed
it allows to increase the time spent at lower Vdd, even when the 𝑁𝑒 exceeds 𝐸𝑅𝑡ℎ. This
enables larger energy savings at the cost of some performance and quality-of-results
loss.
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(E = 1) | Vdd =

Start

Figure 4.8: Saturation Counter Vdd scaling policy.

Experimental Framework: Benchmarks and Testbenches

The proposed EBS technique has been tested on a set of open source benchmarks
over which we applied a AVOS scheme. The five circuits under analysis are:

• Adder: 32×32-bit + Carry-In Adder; f𝑐𝑙𝑘 = 750MHz.

• Multiplier: 32×32-bit Multiplier; f𝑐𝑙𝑘 = 500MHz.

• MAC: 16×16-bit Multiply Accum. Unit; f𝑐𝑙𝑘 = 650MHz.

• FIR Filter: Pipelined 16th-order low-pass FIR filter in direct form (12-bit in, 24-bit
out); f𝑐𝑙𝑘 = 650MHz.

• IIR Filter: Pipelined 8th-order low-pass IIR filter in direct form I, modeled after a
Bessel analog filter (16-bit in, 32-bit out); f𝑐𝑙𝑘 = 650MHz.
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For each benchmark, both the EBS and the Razor versions have been designed. The
difference between them is the method adopted to solve the short-path races, i.e., TDLs
for EBS and standard post-synthesis short-path padding for Razor; in both cases, the
number of monitored end-points is the same. The short-path padding procedure im-
plemented for the Razor circuits uses multi-𝑉𝑡ℎ clock buffers that minimize the area
overheads.

The AVOS is emulated using an in-house tool which runs functional simulations
(Mentor QuestaSim) with back-annotated sdf delay information. Propagation delays
are extracted using a Static Timing Analysis engine (Synopsys PrimeTime) loaded with
technology libraries characterized at different supply voltages; for those supply volt-
ages not available in the library set we used derating factors embedded into the STA.
The power dissipation is calculated using probabilistic models (Synopsys PrimePower)
with back-annotated signal statistics from saif format files. The energy consumption
is estimated considering the supply voltage profiles collected from simulations.

The emulated workload consists of realistic input stimuli made up of 5x106 patterns
customized for each benchmark. For arithmetic circuits (Adder, Multiplier and MAC)
we organized the patterns as sequence of Gaussian distributions each of them having
a variable mean; for Adder and Multiplier: 𝜇1 = 28, 𝜇2 = 216 𝜇3 = 228 with standard
deviation 𝜎 = 28; for MAC: 𝜇1 = 24, 𝜇2 = 28 𝜇3 = 212 with standard deviation 𝜎 = 24.
For FIR and IIR filters, stimulus consists of a set of baseband audio samples.

For the sake of clarity, plots and bar graphs of experimental results which refers to
Razor report the captionRZ-BF to indicate that conventional Razor short-path padding
has been implemented by buffers insertion.

Quality Metrics

1. Average Vdd: average of the Vdd measured over the testbench trace.

2. Energy per Operation (EPO): ratio between energy consumed and number of op-
erations.

3. Operation per Clock Cycle (OPC): ratio between the number of operation run and
total number of clock cycles.

4. Uncovered Errors (UE): the count of logic errors due to undetected timing faults
occurred during simulation. This metric is measured in ppm (parts per million).

5. Normalized Root Mean Squared Error (NRMSE):

𝑁𝑅𝑀𝑆𝐸 = √
∑𝑛

𝑖=0(𝑦[𝑖] − 𝑦𝑜[𝑖])2

𝑛
⋅ 1

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
(4.2)

with 𝑦 the value sampled at the output of the circuit, 𝑦𝑜 the right output value, n
is the total number of operations; 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the max and the min value of
𝑦𝑜, they define output dynamic. 𝑁𝑅𝑀𝑆𝐸 quantifies the QoR.
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To be noticed that our simulations do not consider process variations as they do not
affect the functionality of the proposed technique.

Area Overhead

Table 4.1 collects the statistics of the five benchmarks; column #FFs reports the total
number of flip-flops (FFs), while column #Critical-FFs the percentage of FFs replaced
with timing monitors, the Razor-LM.

Benchmark Area [𝜇𝑚2] #FFs #Critical-FFs DW [ps] TDL [ps]
Adder 339.45 98 22.4% 665 616
Mult 2954.01 128 42.2% 1000 898
MAC 1241.12 72 45.8% 750 656
FIR 1946.32 228 8.3% 750 634
IIR 3296.80 296 78.4% 750 692

Table 4.1: Benchmarks designed for EBS.

The DW is set to 50%⋅𝑇𝑐𝑙𝑘, while TDL is sized according to equation 4.1.The analysis
reported in [169] ensures that the circuit adopted to implement the delay lines (Section
4.1.3) allows to achieve the values reported in the Table 4.1.
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Figure 4.9: Area Overhead Comparison.

The bar-charts in Figure 4.9a and Figure 4.9b provide a more detailed area compari-
son between EBS and Razor; both the implementations show the same number of timing
monitors (Table 4.1). Figure 4.9a shows the overall area overhead normalized w.r.t. the
baseline circuit (i.e., w/o any EDC scheme). EBS is by far a more compact architecture;
average area overhead is 19.8% against 87.8% of Razor.That’s due to the efficiency of the
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proposed dynamic short-path padding. As shown in Figure 4.9b, TDLs requires much
less area(3.6% on average) than buffers insertion using short-path padding procedures
(71.6% on average). For instance, the IIR, which shows a large number of short-paths in
the feedback network, the area penalty of Razor is 112.2%, while it drastically reduces
to 6.9% with EBS.

AVOS Improvement with EBS

In order to quantify the improvements brought by EBS, Table 4.2 and Table 4.3 sum-
marize the results achieved during AVOS emulation on the five benchmarks under anal-
ysis. The two tables report a collection of the quality metrics presented in Section 4.1.4.
Collected results refer to the single-threshold policy (STh) described in Section 4.1.4 as-
suming (𝑖) a monitoring period 𝑁=103 clock cycles, (𝑖𝑖) a Vdd step 20mV, (𝑖𝑖𝑖) two
different values for the error-rate 𝐸𝑅𝑡ℎ: 2%, i.e., 20 errors in 103 cycles - Table 4.2), and
5%, i.e., 50 errors in 103 cycles - Table 4.3.

A large 𝐸𝑅𝑡ℎ accelerates the voltage scaling, hence, it may induce some perfor-
mance penalty (due to more errors to be corrected) and some QoR degradation (due to
a possible increase of miss-detected errors).

Except for the Mult benchmark, which we discuss later as a special testcase, the
results clearly show EBS outperforms Razor. The savings achieved with EBS are quanti-
fied by (𝑖) the average Vdd recorded during testbench simulations (column 𝑉 𝑑𝑑𝑎𝑣𝑔), and
(𝑖𝑖) the energy-per-operation savings w.r.t. the baseline circuit (column EPO𝑠𝑎𝑣𝑖𝑛𝑔𝑠). The
EBS implementation reaches lower 𝑉 𝑑𝑑𝑎𝑣𝑔 (and also minimum Vdd - column 𝑉 𝑑𝑑𝑚𝑖𝑛)
for both the 𝐸𝑅𝑡ℎ thresholds. This translates into larger 𝐸𝑃 𝑂 savings w.r.t. Razor. Best
cases have been measured for MAC (48.6% for EBS vs. 9.6% for Razor at 𝐸𝑅𝑡ℎ=5%) and
Adder (44.4% for EBS vs 20.7% for Razor at 𝐸𝑅𝑡ℎ=5%). It is worth to emphasize that in the
worst-case (FIR), 𝐸𝑃 𝑂 savings achieved with EBS are 2.2× larger than those obtained
by Razor: 28.2% vs. 12.8% for 𝐸𝑅𝑡ℎ=2%; 34.0% vs. 21.5% for 𝐸𝑅𝑡ℎ=5%.

The IIR filter is a kind of circuit for which Razor results quite inefficient; the 𝐸𝑃 𝑂
increases w.r.t. the baseline circuit leading to negative savings: -47.7% at 𝐸𝑅𝑡ℎ=2% and
-45.6% at 𝐸𝑅𝑡ℎ=5%. Such a huge design overhead is due to the fact that short-path
padding overwhelms the power savings of voltage scaling. By contrast, EBS still gets
remarkable 𝐸𝑃 𝑂 savings: 30.6% at 𝐸𝑅𝑡ℎ=2% and 37.6% at 𝐸𝑅𝑡ℎ=5%.

For what concerns performance degradations due to errors correction, Tables 4.2
and 4.3 clearly shows EBS guarantees a 𝑂𝑃 𝐶 close to that of the Razor strategy: 𝑂𝑃 𝐶 ≥
{0.98, 0.95} for both the thresholds 𝐸𝑅𝑡ℎ = {2%, 5%}. This confirms once again TDLs
insertion has a marginal effect on the error-rate.

Remarkable results have been also observed in terms of reliability. Although EBS
pushes Vdd to values below those achieved with Razor, the number of miss-detections
𝑈𝐸 is zero for all the benchmarks. The two exceptions are Adder (𝑈𝐸=6 ppm and
𝑈𝐸=15 ppm, with 𝐸𝑅𝑡ℎ equals to 2% and 5% respectively) and MAC (𝑈𝐸=6 ppm at
𝐸𝑅𝑡ℎ=5%). Nonetheless only marginal QoR degradation has been observed: 𝑁𝑅𝑀𝑆𝐸
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Benchmarks EBS
𝑉 𝑑𝑑𝑚𝑖𝑛 [V] 𝑉 𝑑𝑑𝑎𝑣𝑔 [V] EPO savings [%] OPC UE [ppm] NRMSE [%]

MAC 0.74 0.87 43.6 0.98 0 0
Adder 0.60 0.83 41.9 0.98 6 0.001
IIR 0.92 0.95 30.6 0.98 0 0
FIR 0.84 0.96 28.2 0.98 0 0
Mult 1.10 1.10 -5.5 0.98 0 0

Benchmarks Razor
𝑉 𝑑𝑑𝑚𝑖𝑛 [V] 𝑉 𝑑𝑑𝑎𝑣𝑔 [V] EPO savings [%] OPC UE [ppm] NRMSE [%]

MAC 0.94 1.00 9.0 0.98 0 0.0
Adder 0.66 0.87 18.6 0.99 35 0.001
IIR 1.00 1.02 -47.7 0.97 0 0
FIR 0.86 0.98 12.8 0.98 0 0
Mult 1.00 1.04 -23.7 0.98 0 0

Table 4.2: Results summary for AVOS set as 𝑁 = 103 (clock cycles) and 𝐸𝑅𝑡ℎ = 2%. Notes:
𝐸𝑃 𝑂 savings w.r.t. Baseline.

Benchmarks EBS
𝑉 𝑑𝑑𝑚𝑖𝑛 [V] 𝑉 𝑑𝑑𝑎𝑣𝑔 [V] EPO savings [%] OPC UE [ppm] NRMSE [%]

MAC 0.72 0.83 48.6 0.95 6 0.128
Adder 0.60 0.81 44.4 0.97 15 0.001
IIR 0.88 0.90 37.6 0.95 0 0
FIR 0.80 0.93 34.0 0.95 0 0
Mult 1.10 1.10 -8.5 0.95 0 0

Benchmarks Razor
𝑉 𝑑𝑑𝑚𝑖𝑛 [V] 𝑉 𝑑𝑑𝑎𝑣𝑔 [V] EPO savings [%] OPC UE [ppm] NRMSE [%]

MAC 0.94 0.99 9.6 0.95 0 0
Adder 0.66 0.86 20.7 0.97 91 0.002
IIR 0.98 1.01 -45.6 0.96 0 0
FIR 0.86 0.96 21.5 0.96 0 0
Mult 1.00 1.02 -19.5 0.96 0 0

Table 4.3: Results summary for AVOS set as 𝑁 = 103 (clock cycles) and 𝐸𝑅𝑡ℎ = 5%. Notes:
𝐸𝑃 𝑂 savings w.r.t. Baseline.

is a mere 0.128% at worst case. Such a low QoR degradation is achieved thanks to the
internal logic topology of the circuits which, in turn, reflects into a low activation of
the most critical paths.

As a counterexample, the Mult benchmark belongs to that class of circuits whose
internal characteristics are not particularly suited for aggressive voltage over-scaling.
Both EBS and Razor fail, suggesting AVOSmight not be a valuable low-power option. To
better understand the reasons behind such behavior, we resort to a comparison between
two benchmarks, the Mult (for which AVOS does not work) and the MAC (for which
AVOS gets substantial savings). Figure 4.10 recalls the qualitative analysis discussed in
Section 4.1.2. More specifically, it shows the dynamic path distribution of three different
implementations: baseline, EBS, and Razor. The bars represent the cumulative number
of timing path activations vs. their arrival time.

Some key comments are as follows. First. For both EBS and Razor the path distri-
bution is skewed such that none of the short-paths falls behind T𝑐𝑙𝑘/2 (the width of
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Figure 4.10: Dynamic Path Distribution analysis.

the detection window 𝐷𝑊). This avoids short-path races thus ensuring the right func-
tionality of the error detection mechanism. Second. EBS keeps the path distribution
unchanged (just a right shift of the baseline distribution) avoiding the growth of those
“quasi-critical” paths that, just standing behind 𝑇𝑐𝑙𝑘, may prevent voltage lowering. Usu-
ally, Razor works on the opposite direction instead, as the number of “quasi-critical”
increases due to timing-constrained buffer insertion. This behavior is quite evident for
MAC (4.10a), for which the red bars (Razor implementation) stand over the white ones
(EBS implementation). Since a larger number of activated “quasi-critical” paths reduce
the chance of Vdd lowering, EBS results to be more efficient. That is what makes EBS
outperforming Razor. However, there might be particular circuits for which this fea-
ture does not hold. Such circuits are those for which the basic principle under which
EBS is built, namely, the longer the path, the lower its activation, gets weaker. That is the
Mult. As reported in Figure 4.10b, the original dynamic path distribution (baseline im-
plementation) is pretty large, with very active paths that take the whole clock-period.
This negatively affects EBS, where the TDLs push many paths into the DW; as a result,
the supply voltage is stuck at high values and the 𝐸𝑃 𝑂 gets larger than the original cir-
cuit due to error corrections: 1.06× and 1.09× for 𝐸𝑅𝑡ℎ=2% and 𝐸𝑅𝑡ℎ=5% respectively.
Also Razor suffers from the same problem, as the number of active paths across 𝑇𝑐𝑙𝑘
is huge; 𝐸𝑃 𝑂 increases w.r.t. the baseline circuit: 1.24× and 1.20× for 𝐸𝑅𝑡ℎ=2% and
𝐸𝑅𝑡ℎ=5% respectively. However, the overhead of Razor gets larger than that of EBS.

As a final comment, one should consider that circuits on which AVOS does not
work properly, may radically change their behavior when integrated into more complex
architectures. That is the case of Mult integrated into MAC.

EBS Characterization Under Different AVOS Implementations

The main goal of this section is to quantify the figures of merit of EBS under dif-
ferent AVOS settings, and thus, to demonstrate EBS performs well under several power
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management scenarios. We therefore characterize the quality metrics according to: (i)
the Vdd step, namely, the ΔVdd used for voltage scaling; (ii) the monitoring period,
that is, the clock cycles 𝑁 used to measure the error-rate; (iii) the Vdd scaling policies
presented in Section 4.1.4. For the sake of space, we just report the analysis for MAC.
Similar results hold for the other benchmarks.

1. Vdd step
The collected results refer to three different values of ΔVdd: 20mV, 50mV, 100mV,
250mV. In order to make the analysis more realistic, we also take into consideration
different voltage steps may require different clock-cycles to be properly delivered; we
therefore assume a latency of {1, 2, 5, 12} clock cycles for {20mV, 50mV, 100mV,
250mV} respectively.

Simulations are conducted on EBS and Razor using the Single Threshold Vdd scaling
policy (STh) under two different values of error-threshold, 𝐸𝑅𝑡ℎ=2% and 5%.
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Figure 4.11: Energy efficiency vs. Vdd Step width (ΔVdd).

EBS outperforms Razor for any of the Vdd-steps values under analysis. As shown
in Figure 4.11a, EBS brings the circuit to a lower average Vdd; along the whole ΔVdd
range, the average improvement w.r.t. Razor reaches 140mV at 𝐸𝑅𝑡ℎ=2% and 180mV at
𝐸𝑅𝑡ℎ=5%. The same results hold for energy efficiency; average EPO savings are: 46.6%
and 38.8% at 𝐸𝑅𝑡ℎ=5% and 𝐸𝑅𝑡ℎ=2% for EBS vs. a mere 0.6% and 0.01% for Razor. More
in details, Figure 4.11 shows how savings drift with ΔVdd. 𝑉 𝑑𝑑𝑎𝑣𝑔 reaches lower val-
ues using a finer voltage resolution. For instance, considering the EBS at 𝐸𝑅𝑡ℎ=2%, it
reduces from 0.95 V at ΔVdd=250mV to 0.87mV at ΔVdd=20mV. As a result, the en-
ergy savings reported in Figure 4.11b show substantial improvements, from 27.8% at
ΔVdd=250mV to 43.6% at ΔVdd=20mV.

The voltage resolution does also impact the QoR. As shown in Figure 4.12a, the
lower the Vdd step, the better the QoR. Indeed, a larger ΔVdd makes harder to control
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Figure 4.12: QoR and perfomance vs. Vdd Step width (ΔVdd).

the occurrence of miss-detected errors. For 𝐸𝑅𝑡ℎ=5%, the 𝑁𝑅𝑀𝑆𝐸 measured for EBS
reduces from 1.2% at ΔVdd=250mV to 0.1% at ΔVdd=20mV. By contrast, the 𝑁𝑅𝑀𝑆𝐸
of the Razor implementation is less sensible (variation in the range [0.0% - 0.1%]); that
is mainly due to the fact that the Vdd scaling is slower than in EBS, therefore, fewer
miss-detections do occur.

Concerning the performance, the STh Vdd-scaling policy is conceived as a mecha-
nism to control the minimum 𝑂𝑃 𝐶 value; ideally, as introduced in Section 4.1.4, 𝐸𝑅𝑡ℎ
represents the max. 𝑂𝑃 𝐶 loss, thus the minimumOPC equals 1−𝐸𝑅𝑡ℎ. However, since
larger Vdd steps comewith larger latencies, the performance achieved by EBS and Razor
are substantially affected, and 𝑂𝑃 𝐶 may drop below that ideal minimum boundary if
OPC loss > 𝐸𝑅𝑡ℎ. Figure 4.12b shows this drawback through 𝑂𝑃 𝐶 vs. ΔVdd plot; both
EBS and Razor 𝑂𝑃 𝐶 losses are still kept lower than 𝐸𝑅𝑡ℎ only for ΔVdd=20mV (both
the 𝐸𝑅𝑡ℎs). In the worst case, i.e., 𝐸𝑅𝑡ℎ=5%, 𝑂𝑃 𝐶 loss raises from 5% (i.e., the ideal max.
loss value) to 8% for EBS and from 5% to 7% for Razor in the interval ΔVdd=[20mV -
250mV].

2. Monitoring Period
The plots reported in Figure 4.13 show 𝑉 𝑑𝑑𝑎𝑣𝑔 and 𝐸𝑃 𝑂 using different monitoring
period 𝑁. Simulations are conducted on EBS and Razor using the Single Threshold Vdd
(STh) scaling policy ΔVdd=20mV and two different values of error-threshold, 𝐸𝑅𝑡ℎ=2%
and 5%.

EBS performs more efficiently than Razor for all the operating conditions. Consid-
ering the case 𝐸𝑅𝑡ℎ=5% (the best case), EBS reaches lower 𝑉 𝑑𝑑𝑎𝑣𝑔, 0.91 V vs 1.02 V of
Razor (Figure 4.13a), and larger 𝐸𝑃 𝑂 savings, 36.4% vs. 5.4% of Razor ((Figure 4.13b),
average values on 𝑁 interval).

As a general rule, the larger the 𝑁, the slower the Vdd scaling. While this trend is
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less evident in Razor (𝑉 𝑑𝑑𝑎𝑣𝑔 increases by just 40mV), EBS amplifies the effect showing
an overall spread of 180mV (from 0.83mV to 1.01mV). The same consideration can be
inferred for 𝐸𝑃 𝑂, where savings gets smaller with 𝑁, from 48.6% (𝑁 = 103) to 19.3%
(𝑁 = 5⋅105).
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Figure 4.13: Energy efficiency vs. Monitoring Period (𝑁).

1K 10K 100K 250K 500K

Monitoring Period (N)

0

0.05

0.1

0.15

N
R

M
S

E
 [
%

]

0.95

0.96

0.97

0.98

0.99

1

O
p
e
ra

ti
o
n
/C

lo
c
k
-c

y
c
le

EBS NRMSE
EBS OPC

Figure 4.14: EBS with 𝐸𝑅𝑡ℎ=5%: QoR and performance vs. Monitoring Period (N).

Finally, the analysis reported in Figure 4.14 shows that a more aggressive voltage
scaling strategy, i.e., smaller 𝑁, affects output quality and performance due to an in-
creasing number of error corrections. Results for Razor are omitted as the 𝑁𝑅𝑀𝑆𝐸
always gets zero whatever the value of 𝑁. The 𝑁𝑅𝑀𝑆𝐸 of EBS increases, yet, only
marginally: from zero to 0.128%. Also the 𝑂𝑃 𝐶 drops: from 0.99 to 0.95 when 𝑁 re-
duces from =5⋅105 to 103 for both EBS and Razor. That’s the cost to be payed for a more
energy efficient AVOS.
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3. AVOS Policies
Simulations of the three Vdd scaling policies described in Section 4.1.4 have been run
fixing the AVOS parameters as follows:

• Vdd step, ΔVdd=20mV;

• monitoring period, 𝑁 = 103.

• error-threshold: 𝐸𝑅𝑡ℎ={2%, 5%} for STh and SC, 𝐸𝑅𝑡ℎ𝑚𝑎𝑥
=𝐸𝑅𝑡ℎ={2%, 5%} and

𝐸𝑅𝑡ℎ𝑚𝑖𝑛
=0.2⋅𝐸𝑅𝑡ℎ𝑚𝑎𝑥

for DTh.

Figure 4.15 plots the collected results, which show once again EBS improves the
figures of merit of AVOS, whatever the adopted policy.
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Figure 4.15: AVOS Policies energy efficiency comparison.

Benchmarks
Razor EBS

OPC NRMSE OPC NRMSE [%]
𝐸𝑅𝑡ℎ=2% 𝐸𝑅𝑡ℎ=5% 𝐸𝑅𝑡ℎ=2% 𝐸𝑅𝑡ℎ=5% 𝐸𝑅𝑡ℎ=2% 𝐸𝑅𝑡ℎ=5% 𝐸𝑅𝑡ℎ=2% 𝐸𝑅𝑡ℎ=5%

Double Th 0.99 0.97 0.000 0.000 0.99 0.97 0.000 0.000

Single Th 0.98 0.95 0.000 0.000 0.98 0.95 0.000 0.128
Saturation
Counter 0.87 0.86 0.000 0.000 0.95 0.90 0.158 0.185

Table 4.4: Results summary for AVOS Policies 𝑂𝑃 𝐶 and 𝑁𝑅𝑀𝑆𝐸.

The DTh is more conservative. In this case EBS reaches a lower 𝑉 𝑑𝑑𝑎𝑣𝑔 than that of
Razor: at 𝐸𝑅𝑡ℎ=5% (best case), 0.85 V vs. 0.99 V. With a lower Vdd, also 𝐸𝑃 𝑂 savings
improve: 45.8% vs 9.3%. At the opposite corner, the SC approach pushes a more aggres-
sive Vdd scaling. EBS reaches the lowest 𝑉 𝑑𝑑𝑎𝑣𝑔, hence, the largest 𝐸𝑃 𝑂 savings: 0.79 V
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with 53.8% energy savings, against 0.98 V and 10.1% of Razor. This comes at the cost of
some miss-detection. As shown in Table 4.4, the adoption of the SC policy induces a
𝑁𝑅𝑀𝑆𝐸 degradation, mainly due to miss-detected errors: 0.185% in the worst case
(𝐸𝑅𝑡ℎ=5%). By contrast DTh ensures zero miss-detected errors, both for EBS and Razor.

For what concerns performance, DTh affects 𝑂𝑃 𝐶 only marginally: 3% loss for both
EBS and Razor in the worst case (𝐸𝑅𝑡ℎ=5%); DTh reduces Vdd ripples thus bringing to
a lower number of error corrections. On the contrary, SC heavily impacts performance
with 𝑂𝑃 𝐶 loss in the order of 10% for EBS and 14% for Razor (at 𝐸𝑅𝑡ℎ=5%).
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4.2 Tunable Error Detection (TunED)
Early Bird Sampling (EBS) has provided the first improvement toward the design

of the Approximate Error Detection-Correction (AED-C) error management for Energy-
Accuracy scaling, i.e., a lightweightmethod to implement a dynamic Short-path padding.
In this section, the second key feature of AED-C is proposed: a Tunable Error Detection
(TunED) mechanism to efficiently drive energy-accuracy scaling [125].

The abstract view of the proposed TunED architecture is reported in Figure 4.16.The
standard design of a Razor-FF [39] is enhanced with the insertion of a Tunable Detection
Window (TDW), i.e., a tunable delay that introduces a variable clock skew between the
main FF and the shadow FF. Modifications on the TDW width alter the resolution of
the error detection mechanism, and hence the error coverage: the larger the width of the
TDW, the larger the number of errors Razor-FFs can detect, and hence correct. Variations on
the TDW impacts on the accuracy-energy tradeoff. While a higher number of detected
errors makes the the voltage scaling slower and the QoR higher, a smaller TDW gives
voltage scaling much smaller inertia allowing Vdd to reach lower values. The latter case
guarantees more energy savings at the cost of some QoR penalty. That is why TunED
is the key feature for implementing AED-C strategies for adaptive EAS. The benefits
of TunED mechanism against standard Razor timing sensors are clarified in the next
section, as the details of AED-C driving a dual-mode Adaptive Voltage Over-Scaling
(AVOS) power management are disclosed.

TDW

TunED

Logic Cone

Tunable Detection
Window

Figure 4.16: TunED implementation abstract view.

4.2.1 TunED Circuit Implementation
The TunED circuitry we propose consists of Razor-FFs [39] augmented with a TDW

and a logic masking circuitry for error correction [126], Figure 4.17. When the input of
the main FF switches after the rising edge of the clock, i.e., if a timing error occurs, the
XOR produces an error flag; the latter is sampled by the shadow latch once the detection
window elapses. The MUX locally corrects the error by switching the primary output
𝑄 to the complement of the main FF.

Concerning the design of TDW, we borrowed the solution proposed in Section 4.1.3
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as possible circuit implementation. It consists of a pair of inverters with a voltage-
controlled variable load in between them; the load is a transmission gate whose ON-
resistance is controlled by V𝑑𝑒𝑙𝑎𝑦. As discussed in [169], this solution allows a wide
range of delays at low area overhead; however, other solutions may work as well.
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Figure 4.17: TunED circuitry.

4.3 Approximate ErrorDetection-Correction (AED-C)
for Efficient EAS

As explained in Section 4.1, Early Bird Sampling exploits the opportunity Adaptive
EAS gives: the full error coverage does not need to be ensured. Thus, the large area/en-
ergy overhead of conventional EDC methods is reduced by implementing simpler error
detection circuitry, i.e., using Tunable Delay Lines instead of heavy chains of buffers
to solve short-path races, and reducing the complexity of error recovery mechanism
through logic masking circuitry. EBS also introduces a dynamic short-path padding
mechanism, a key element for enabling the TunED mechanism, as it is explained later
in the text. TunED plays a fundamental role as it relies upon an important principle:
the detection coverage capability, precisely the error Detection Window (DW), can be
used to drive an efficient energy-accuracy scaling.

Early Bird Sampling (EBS) and TunED are the two core ideas onwhich AED-C is built
on, as Figure 4.18 depicts. For the sake of clarity, the following sections first briefly re-
call all the steps that enable the conversion from Razor to AED-C. Then, the circuit
implementation details are explained. The experimental setup, over a set of image/au-
dio processing error-resilient applications, shows AED-C driving a dual-mode AVOS:
(i) Slow AVOS mode, where DW is taken as large as possible, 50% of the clock period
(𝑇𝑐𝑙𝑘), such that error detection is maximized; (ii) Aggressive AVOS mode, where DW
is reduced in order to relax the error detection accuracy and to give AVOS the oppor-
tunity to maximize energy savings at the cost of Quality-of-Results (QoR). The power
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management unit may select the proper mode depending on the requirements imposed
at the application level and/or other external variables, such as the remaining battery
lifetime. The choice of employing a dual-mode AVOS power management is crucial as
it helps to clarify AED-C pros and cons.

TunED

Logic Cone

EBS

AED-C

Figure 4.18: AED-C abstract view.

4.3.1 From Razor to AED-C for EAS
In conventional Razor-based error detection and correction strategy, the supply

voltage is regulated using the Error Rate (𝐸𝑅), that is the number of timing faults de-
tected during a monitoring period. The latter is an integer multiple of the clock-period,
while the number of timing faults is the number of clock-cycles during which at least
one Razor-FF detected a timing violation. It is worth noting that the error flags gener-
ated by each Razor-FFs are all OR-ed, thus generating a global error signal that repre-
sents the timing compliance of the whole circuit. If 𝐸𝑅 is smaller than a user-defined
threshold 𝐸𝑅𝑡ℎ, then the Vdd can be lowered, otherwise Vdd is raised. Different control
policies can be implemented that alter the voltage-scaling and 𝐸𝑅𝑡ℎ is the key param-
eter to play with: the larger is the 𝐸𝑅𝑡ℎ, the faster is the Vdd scaling. However, since
error correction is a costly procedure, an energy–performance tradeoff exists. A fast
voltage lowering may induce latency and power penalties due to the larger number of
corrections [38, 31], while a slow voltage lowering is more conservative but it reduces
the energy savings. Since there is no general rule, 𝐸𝑅𝑡ℎ is empirically chosen depend-
ing on the design specs. Razor has been conceived to cover the occurrence of all the
timing faults (Always-correct scaling), as shown in Figure 4.19a. This explains why the
DW is taken as large as possible (Figure 4.19c), usually 50% of the clock period [38]. To
notice that DW is statically defined at design-time and that its implementation hides
critical issues that are detailed in the next subsection. The AED-C elaborates on Razor
and introduces the concept of Tunable Error-Detection (TunED) [125]. TunED leverages
Razor-FF enhanced with a Tunable Detection Window (TDW), that is a tunable clock
skew between main FF and the shadow FF, Figure 4.19b. TunED can be understood as
an elastic Razor-FF. The TDW alters the resolution of the error detection and hence the
faults covered by the timing sensors. As graphically depicted in Figure 4.19d, the smaller
the TDW, the larger the number of uncovered latent faults (hence, Approximate Error De-
tection). The probability of miss-detected faults gets larger as the TDW reduces. This
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Figure 4.19: Razor (a) vs. AED-C (b) architecture abstract view. Always-correct (c) vs.
Approximate Error Detection (d) EAS.

is the enabling mechanism for AED-C. In fact, the TDW is the knob that regulates the
level of approximation in detecting errors. A small TDW implies more miss-detection
(lower error rate) and so a faster Vdd scaling which leads the circuit to low energy and
low quality, whereas large TDW guarantees high quality, but less energy savings as
more faults are properly detected and corrected (higher error rate). When TDW is set
as 50% of the clock-period, AED-C approaches the Razor behavior.

Understanding the Dynamic Short-path Padding in AED-C

As explained in Section 4.1, Razor suffers from the so-called short-path race which
manifests when a short-path and a long-path connected to the same end-point get se-
quentially activated at clock-cycle 𝑡𝑖 and 𝑡𝑖−1 respectively. Under such condition, the
skewing mechanism implemented within the timing sensors does fail. Razor-FFs, as
well as TunED, would not be able to make a distinction between the activation of the
short-path within the DW and the activation of the long-path beyond the clock edge.
As a result, “false” error detection may occur.

A common practice to address the short-path race is to apply a short-path padding
using a standard hold-fixing procedure. The latter consists of delaying all the short-
paths in a way that their arrival time gets larger than DW. The delay is implemented
by means of optimally placed dummy buffers (overview in Figure 4.19a). The resulting
effect is qualitatively shown with the left plot of Figure 4.20a, where the solid line is
the static path distribution of the original circuit while the dotted line is the same static
distribution after the short-path padding. Unfortunately, the short-path padding is a
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Figure 4.20: Static (a) vs. Dynamic (b) paths distribution: Razor (left) vs. AED-C (right).

static method which does contrast with the dynamic nature of the tunable detection
strategy. Early Birds Sampling (EBS) (section 4.1) suggests dynamic short-path padding
as an effective patch. A Tunable Delay Line (TDL) is inserted at end-points of the circuit
(overview in Figure 4.19b), where timing sensors are placed, then the TDL is adjusted
at run-time following the modulation of the detection window. More in detail, the TDL
is tuned such that the arrival time of the shortest path (𝐴𝑇𝑚𝑖𝑛) is delayed beyond the
DW. The rule is given as follows:

𝑇 𝐷𝐿 = 𝑇 𝐷𝑊 − 𝐴𝑇𝑚𝑖𝑛 (4.3)

The effect is qualitatively shown with the right plot of Figure 4.20a, where the solid line
is the static path distribution of the original circuit while the dotted line is after the TDL
insertion.

As explained in [12], the longest paths have a lower activation probability, and their
latent faults rarely get excited, that is the same concept of timing speculation. This is
graphically depicted in the right plot of Figure 4.20b, which shows only a very limited
subset of frequent paths enter the detection windowwith negligible effects on the error-
rate. Needless to say, much depends on the actual workload. The experiments collected
for EBS in Section 4.1 prove this strategy is much more efficient than static short-path
padding. Apart from area overhead due to buffers insertion [70] [126] [125], short-path
padding also affects the supply-voltage scaling. A compression of the timing paths to-
wards the clock edge (𝑇𝑐𝑙𝑘) implies a redistribution of the internal switching activities,
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that is, the most active get close to the clock-edge as shown in the left plot of Figure
4.20b. Also known as “wall-of-slack”, this issue represents a serious impediment: even
small reduction of the Vdd produce a huge number of timing faults as the entire “wall”
moves into the detection window of the timing sensors. By contrast, dynamic short-
path padding does not suffer from this issue, as the dynamic path distribution grows
smoother.

4.3.2 Circuit-level Implementation Details
The circuit architecture of the proposed AED-C consists of a TunED timing sensor

augmented with a Tunable Delay Line that enable the EBS dynamic short-path padding.
In brief TunED is a Razor-FFs [39] enhanced with a TDW and a logic masking circuitry
for error correction (Figure 4.21). A set-up time violation is sensed by a change of po-
larity at the input of the main flip-flop just after the rising edge of the clock. This event
is flagged through a XOR gate that runs a parity check between the signals at pins 𝐷𝐹 𝐹
and 𝑄𝐹 𝐹. The error flag is sampled in a shadow latch. Once detected, the error is lo-
cally corrected through logic masking: the MUX switches the output 𝑄 with the 1’s
complement of the value stored in the main FF.

Although locally computed, the error correction requires a more complex clock-
gating mechanism to guarantee a proper propagation of the new corrected output. This
is managed through a dedicated unit called Error Management Unit (EMU). The latter
implements an error-driven clock-gating where the clock-enable is generated by OR-
ing the flag of all the timing-monitors in the circuit. If the timing sensor detects a tim-
ing violation, the circuit is halted for one clock-cycle to allow the right propagation of
the corrected value (obtained through the logic masking described above). The voltage
scaling is operated using the timing error rate. The error flags generated by the tim-
ing sensors are OR-ed and the resulting events are counted. Specifically, The EMU is in
charge of collecting the error statistics, i.e., the number of error occurrences 𝑁𝑒 within
a pre-defined monitoring period of 𝑁 clock cycles. The Power Management Unit (PMU)
uses 𝑁𝑒 as a metric to drive the voltage scaling. As a remark of AED-C pros, 𝑁𝑒, i.e.,
the timing error rate, can be tuned by playing with the width of the TDW of the TunED
sensors.

Although different voltage scaling policies can be implemented depending on the
design specs (please refer to section 4.1.4), AED-C has been tested with a single thresh-
old policy which works as follows. Given 𝐸𝑅𝑡ℎ a user-defined error threshold:

• as soon as 𝑁𝑒 > 𝐸𝑅𝑡ℎ, the supply voltage is increased in order to avoid excessive
performance penalty due to error corrections;

• if 𝑁𝑒 ≤ 𝐸𝑅𝑡ℎ at the end of the monitoring period, i.e., after 𝑁 cycles, the supply
voltage is scaled down for power minimization.

As a recall of the concept explained in Section 3.4.4, 𝐸𝑅𝑡ℎ has a weak correlation
with the arithmetic meaning of the output error. In fact, 𝐸𝑅𝑡ℎ is a measure of the rate of
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Figure 4.21: AED-C architecture: TunED timing sensor, Error Management Unit (EMU)
and Power Management Unit (PMU).

error flags raised by timing sensors which all have the same weights (or ”importance”);
namely, in AED-C, the quality degradation is bounded by the paths activity. This repre-
sents an important distinction when compared to the AlgorithmNoise Tolerance (ANT)
strategy for example, where ℰ𝑡ℎ error threshold refers directly to the magnitude of the
output error.

4.3.3 Experimental Framework: EDA Methods and Tools
AED-C Design Flow

A customized design flow has been integrated into a commercial platform (Synopsys
Galaxy) by means of dedicated TCL scripts. As reported in Figure 4.22, the flow encom-
passes three main stages:
1. Logic Synthesis: a classical timing-driven, low-power logic synthesis run using
28 nm industrial technology libraries characterized at the nominal Vdd=1.10V.
2. Critical end-points identification: once the clock-tree has been synthesized, the
operating voltage is set to the minimum value Vdd = 0.6 V (lower bound of the voltage
scaling range) and the end-points which miss the clock-period T𝑐𝑙𝑘 are labeled as “crit-
ical”.
3. AED-C monitors re-placement and TDL insertion: for each critical end-point,
standard FFs are replaced with an AED-C monitor and the TDL is inserted; the error
OR-tree is also synthesized at this stage. In order to mitigate metastability, the FFs used
to implement the AED-C monitor are taken from a metastability-tolerant library.

Both TDW and TDL can be tuned at a post-silicon stage, once the nominal T𝑐𝑙𝑘
is properly adjusted to compensate process-variations. A possible off-line TDW/TDL
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Figure 4.22: AED-C Design Flow diagram.

calibration procedure may be implemented as follows:

(i) The operating voltage is set to Vdd𝑛𝑜𝑚 and T𝑐𝑙𝑘 is fixed to the nominal value.

(ii) TDW is fixed to the maximum value (i.e., DW = 50%⋅T𝑐𝑙𝑘 ).

(iii) The circuit is fed with inputs that excite short-paths and the error rate is measured.
As per the internal characteristic of the sensors, the error rate will start very high
due to short-path race. The TDL is then increased (by controlling the gate voltage
of the transmission gates in Figure 4.21) until error rate reaches zero.

(iv) The circuit is finally tested with a set of input patterns that excite critical paths. If
no errors are detected, the calibration procedure stops; otherwise, T𝑐𝑙𝑘 is increased
and the procedure iterates from (ii).

The same calibration procedure is run for both the Slow mode and the Aggressive mode.
As further remark, AED-C Design Flow could also support the integration of stan-

dard low-power design techniques [19].

Benchmarks

The proposed AED-C technique has been tested on a set of open source benchmarks
over which we applied a dual-mode AVOS scheme.The three circuits under analysis are:

• FIR Filter: pipelined 16th-order low-pass FIR filter in the direct form (12-bit in,
24-bit out); f𝑐𝑙𝑘 = 650MHz.

• IIR Filter: pipelined 8th-order low-pass IIR filter in direct form I, modeled after a
Bessel analog filter (16-bit in, 32-bit out); f𝑐𝑙𝑘 = 650MHz.
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Figure 4.23: In-house AVOS emulation tool diagram.

• MAC: 16×16-bit Multiply Accum. Unit; f𝑐𝑙𝑘 = 650MHz.

AED-C is benchmarked against a state-of-art RazorAVOS, Razor hereafter.The latter
is built with standard Razor-I FFs enhanced with a logic masking circuitry for error
correction as in Figure 4.4; the detection window is set to DW=50%⋅T𝑐𝑙𝑘, while the
short-path races are fixed through a static short-path padding implemented using a
short-path padding procedure that leverages multi-𝑉𝑡ℎ clock buffers. For both AED-C
and Razor, the number of monitored critical points is the same and the Vdd scaling
policy is the one described in section 4.3.2.

AVOS Emulation Tool

An in-house tool that emulates AVOS (Figure 4.23) has been integrated into Mentor
QuestaSim. It runs a functional simulation with back-annotated SDF delay information
extracted through a commercial Static Timing Analysis engine, Synopsys PrimeTime,
loaded with technology libraries characterized at different supply voltages; for those
supply voltages not available in the library set we used derating factors embedded into
PrimeTime. The supply voltage ranges from 0.60V to 1.10V with step of 20 mV.

The power dissipation is estimated using a probabilistic power models (Synopsys
PrimePower) with back-annotated signal statistics extracted from functional simulations
using saif format files. The energy consumption is estimated considering the supply
voltage profiles collected from AVOS emulations.

Quality Metrics

1. 𝑉 𝑑𝑑𝑎𝑣𝑔: average Vdd obtained during testbench simulation.
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2. 𝑉 𝑑𝑑𝑚𝑖𝑛: min Vdd measured over the testbench trace.

3. Energy per Operation (EPO): the ratio between energy consumed and number of
operations completed.

4. Operation per Clock Cycle (OPC): ratio between the number of executed opera-
tions and total number of clock cycles.

5. Uncovered Errors (UE): the count of logic errors due to undetected timing faults
occurred during simulation. This metric is measured in ppm (parts per million).

6. Normalized Root Mean Squared Error (NRMSE):

𝑁𝑅𝑀𝑆𝐸 = √
∑𝑛

𝑖=0(𝑦[𝑖] − 𝑦𝑜[𝑖])2

𝑛
⋅ 1

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
(4.4)

with 𝑦 the value sampled at the output of the circuit, 𝑦𝑜 the right output value, n
is the total number of operations; 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the max and the min value of
𝑦𝑜, they define output dynamics. 𝑁𝑅𝑀𝑆𝐸 quantifies the QoR.

To be noticed that our simulations do not consider process variations as the AED-C is
intrinsically “tunable”, hence resilient to variability.

4.3.4 Characterization and Figures-of-Merit
Area Overhead

Table 4.5 collects the statistics of the three benchmarks; column #FFs reports the
total number of sequential cells, while column #Critical-FFs the percentage of timing-
critical FFs replaced with timing monitors of Figure 4.21 (logic masking enabled for
both AED-C and Razor). The table also reports the value of the TDLs, characterized
according to equation 4.3, when the TDW is 50% the 𝑇𝑐𝑙𝑘 (750 ps). The analysis reported
in [169] ensures that the values of delay in columnTDL can be achieved with the circuit
described in Figure 4.3).

Benchmark Area [𝜇𝑚2] #FFs #Critical-FFs TDW [ps] TDL [ps]
MAC 1241.12 72 45.8% 750 656
FIR 1946.32 228 8.3% 750 634
IIR 3296.80 296 78.4% 750 692

Table 4.5: Benchmarks designed for AED-C.

The bar-charts in Figure 4.24a and Figure 4.24b provide a more detailed area com-
parison between AED-C and Razor; to note that both implementations have the same
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Figure 4.24: Area Overhead Comparison.

number of timing monitors. Figure 4.24a shows the overall area overhead normalized
w.r.t. the baseline circuit. As one can observe, AED-C is by far a more compact architec-
ture; average area overhead is 21.3% against 80.2% of Razor. That’s due to the efficiency
of the TDL insertion strategy that, as shown in Figure 4.24b, takes much less area (3.3%
on average w.r.t. Baseline) than standard buffers insertion procedures (62.0% on aver-
age w.r.t. Baseline). Taking as an example the IIR filter circuit, buffers induce a huge
area penalty of 112.2% (w.r.t. baseline), mainly due to the presence of a large number of
short-paths in the feedback network, while the TDL insertion cost is a mere 6.9%.

Dynamic short-path padding Validation

As discussed in Section 4.3.1, AED-C driven dual-mode AVOS is enabled by a Dy-
namic short-path padding solution. The main goal of this section is to demonstrate
how Dynamic short-path padding does not affect the responsiveness of error detection-
correction mechanism giving an experimental evidence of the rules of thumb over
which it has been implemented.

Figure 4.25 recalls the qualitative analysis explained in Section 4.3.1 showing the
dynamic path distribution of three different implementations of the benchmarks (MAC,
FIR and IIR Filter): Baseline, Razor and AED-C. For each histogram, the bars report the
cumulative number of timing path activations vs. their arrival time.The dynamic distri-
butions are sampled at nominal voltage (Vdd𝑛𝑜𝑚), i.e. Vdd scaling disabled. For the sake
of space, we report only the case in which the DW is fixed to T𝑐𝑙𝑘/2.

Firstly, both AED-C and Razor are preserved from the short-path races as the path
distribution is skewed such that none of the short-paths falls behind T𝑐𝑙𝑘/2 (the width of
the detection window 𝐷𝑊); this ensures the proper functionality of the error detection
mechanism.
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Figure 4.25: Dynamic short-path padding effects on dynamic Paths distribution.

Secondly, the worst-critical paths are so rarely activated that they are not even vis-
ible in the plot; any power management strategy that uses these paths as probe might
lead to sub-optimal results.

Thirdly, Dynamic short-path padding keeps the path distribution unchanged as it
applies a right shift on the baseline distribution. This avoids the growth of the “quasi-
critical” paths that stand just behind 𝑇𝑐𝑙𝑘 and that prevent voltage scaling. By contrast,
the insertion of buffers due to short-path padding induce the opposite effect in Razor
circuits: paths are skewed towards 𝑇𝑐𝑙𝑘 (red bars) forcing an early stop for Vdd scaling.

AED-C for MAC operations: a Characterization

Through AED-C the error detection resolution can be adjusted at run-time by ad-
justing the DW; this allows to accelerate or slow-down the voltage scaling depending
on the context requirements. The main goal of this section is to prove the validity of
this intuition.

The reported parametric analysis aims at showing the responsiveness of AVOS and
the resulting output quality when the DW width reduces from 50%⋅T𝑐𝑙𝑘 to 15%⋅T𝑐𝑙𝑘;
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simulations runs on theMAC benchmark.The testbench consist of realistic input stimuli
made up of 5x106 input patterns organized as a sequence of variable-mean Gaussian
distributions that model the change of context; we considered three different Gaussian
distributions: 𝜇1 = 24, 𝜇2 = 28 𝜇3 = 212, all with standard deviation 𝜎 = 24. The input
patterns are grouped to perform sequences of 1000 multiply-accumulate operations.
The Vdd-scaling policy is the one described in Section 4.3.2 with a monitoring period
𝑁=1000 clock cycles and 𝐸𝑅𝑡ℎ fixed to 2% of error rate.

Figure 4.26 show the collected results. For each value of DW, the testbench is run
collecting the average value of Vdd during AVOS simulation; output degradation is mea-
sured using the 𝑁𝑅𝑀𝑆𝐸. The 𝑉 𝑑𝑑𝑎𝑣𝑔 (𝑉 𝑑𝑑𝑚𝑖𝑛) decreases from 0.87 V (0.74 V) when
DW is maximum, up to 0.68 V (0.60 V) when DW = 15%⋅T𝑐𝑙𝑘. This trend demonstrates
that the smaller the DW, the more aggressive the AVOS. On the other hand, when spe-
cific sequences of input patterns push the supply voltage so low that some paths delay
could exceed the detection window DW, the quality of the output can be affected by
undetected errors. Figure 4.26 shows that the lower the 𝑉 𝑑𝑑𝑎𝑣𝑔, the larger the output
error: the 𝑁𝑅𝑀𝑆𝐸 for the min. value of DW raises to 1.59%. To be noticed that when
DW reaches its max. value, the 𝑁𝑅𝑀𝑆𝐸 drops to zero; that’s the proof AED-C ensures
the highest possible QoR when it works in Slow AVOS mode.
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Figure 4.26: TDW characterization.

Table 4.6 reports the 𝐸𝑃 𝑂 savings w.r.t. Baseline circuit (MAC w/o error detection-
correction). When AVOS is set to aggressive mode the energy savings increases quickly,
from 44.29% at DW= 50%⋅T𝑐𝑙𝑘 to 68.55% at DW = 15%⋅T𝑐𝑙𝑘.

Concerning performance degradations due to errors correction,𝑂𝑃 𝐶 does not change
show substantial changes w.r.t. DW.The reason lies behind the fact that 𝑂𝑃 𝐶 is mainly
affected by the Vdd-scaling policy and the ErrorThreshold (𝐸𝑅𝑡ℎ) adopted (analysis out
of the scope of this work).

As further remark, Figure 4.27 reports the Vdd scaling trend duringAVOS simulation
for the AED-C for max. and min. values of DW (i.e., 50% and 15% of T𝑐𝑙𝑘), and Razor
circuit with DW = 50%⋅T𝑐𝑙𝑘. Firstly, it shows that AED-C has a better AVOS profile than
Razor: while Razor achieves 𝑉 𝑑𝑑𝑎𝑣𝑔=1.0 V (𝐸𝑃 𝑂 savings of 10.1%) AED-C can push the
𝑉 𝑑𝑑𝑎𝑣𝑔 much lower, 0.87 V and 0.68 V for DW equals 50% and 15% of T𝑐𝑙𝑘, respectively.
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DW 𝑉 𝑑𝑑𝑚𝑖𝑛 𝑉 𝑑𝑑𝑎𝑣𝑔 EPO savings OPC NRMSE
[%⋅T𝑐𝑙𝑘] [V] [V] [%]* [%]

50 0.74 0.87 44.3 0.979 0.00
45 0.72 0.82 50.7 0.979 0.00
40 0.68 0.79 55.7 0.979 0.03
35 0.66 0.76 59.3 0.980 0.24
30 0.64 0.74 62.4 0.980 0.43
25 0.62 0.71 64.9 0.979 0.60
20 0.62 0.69 67.2 0.978 0.80
15 0.60 0.68 68.6 0.981 1.59

Table 4.6: TDW-driven AVOS charazerization on MAC
*Note: w.r.t. Baseline.

Secondly, the AED-C AVOS trends confirm once again the intuition behind this work:
smaller DWs (AED-C Aggressive mode) accelerate the Vdd scaling, while larger DWs
(AED-C Slow mode) slow down the Vdd scaling sacrificing energy savings in favor of
higher QoR.
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Figure 4.27: Vdd scaling trend vs. DW.

The same trend holds for the other benchmarks under analysis (omitted for the sake
of space). We therefore identified the following values as good tradeoff between ac-
curacy drop and energy savings: DW = 50%⋅T𝑐𝑙𝑘 for Slow AED-C; DW = 25%⋅T𝑐𝑙𝑘 for
Aggressive AED-C.

AED-C for Audio Filtering: a Characterization

In this section, a parametric characterization has been done on spectral audio sig-
nal filtering, i.e., FIR and IIR digital filter. They are intrinsically error-resilient and com-
monly adopted in error-resilient applications. As an additional piece of information,
one should consider that the architectures of FIR and IIR substantially differ. The IIR
circuit has backward connections which impact the way errors propagate, while the
FIR is a feed-forward architecture.

The benchmarks characteristics have been reported in Section 4.3.3: both synthe-
sized andmapped onto a commercial FD-SOI CMOS technology at 28nm at f𝑐𝑙𝑘 = 650MHz.
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The FIR is a pipelined 16𝑡ℎ-order low-pass filter, the IIR is a pipelined 8𝑡ℎ-order low-pass
filter.The benchmarkswere simulated using non-uniform input distributions and realis-
tic input patterns. The simulations aimed at emulating real-life applications where data
maintain a certain spatial/temporal correlation, which is the actual condition under
which adaptive strategies gain most of their advantage. For this reason, the sequence
of three different baseband audio signals was used as test bench. They covered different
context scenarios, i.e., different input-data distributions:

• 𝐴𝑢𝑑𝑖𝑜-1: Noiseless voice recording; the switching activity of the LSBs is very low
for a long portion of the stream.

• 𝐴𝑢𝑑𝑖𝑜-2: Taken from an office conversation recording; samples present low noise
and inputs have homogeneous switching activity.

• 𝐴𝑢𝑑𝑖𝑜-3: Outdoor conversation; the recording is noisy and the switching activity
of the inputs quite irregular, due to abrupt changes of input workload.

These three different input distributions are very likely to activate a large spectrum of
paths, from shorter to longer ones. Interested readers can refer to the work in [125],
where a detailed analysis shows how these different input distributions produce signif-
icantly different Energy–Accuracy tradeoff.

The proposed parametric analysis is performed against classical Razor to better
highlight pros&cons of AED-C. Razor is implemented using the following configura-
tion:

• Detection Window: 𝐷𝑊 = 50% ⋅ 𝑇𝑐𝑙𝑘,

• Monitoring period: 𝑁 = 103 clock cycles,

• Error Rate Threshold: 𝐸𝑅𝑡ℎ = 2%, in order to limit the performance loss due to
errors correction.

The AED-C is set with the same values, except for the detection window which is used
as parameter: 𝑇 𝐷𝑊 ∈ [15% ⋅ 𝑇𝑐𝑙𝑘 , 50% ⋅ 𝑇𝑐𝑙𝑘], regular intervals of 5% ⋅ 𝑇𝑐𝑙𝑘.

Figures 4.28a and 4.29a show the results of voltage scaling efficiency collected for
FIR and IIR respectively. While Razor has a fixed DW width, thus a single 𝑉 𝑑𝑑𝑎𝑣𝑔
value highlighted with a dashed line, AED-C enables different Energy-Quality oper-
ating points by tuning the DWwidth. As expected, reducing the DW a more aggressive
Vdd scaling can be obtained. In fact, 𝑉 𝑑𝑑𝑎𝑣𝑔 decreases quickly as the DW width be-
come smaller for both FIR and IIR filters. In Razor, the insertion of buffers for short-path
padding compress the active paths toward the clock edge inducing an increase of the
Error rate. That makes the voltage scaling slower: 𝑉 𝑑𝑑𝑎𝑣𝑔 does not go below 1.03 V (
1.02 V) for FIR (IIR). With AED-C the path distribution keeps the same shape (just right
shifted) ensuring a smoother increase of the error rate. This is an additional key advan-
tage of the AED-C strategy. The reduction of the error-coverage, namely the reduction
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Figure 4.28: Razor vs. AED-C characterization: FIR filter.
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Figure 4.29: Razor vs. AED-C characterization: IIR filter.

of TDW, implies a proportional reduction of the TDL. As the TDL gets smaller, the path
distribution shifts back to its original shape, leaving the most active paths behind the
detection window. When considering the FIR benchmark, the 𝑉 𝑑𝑑𝑎𝑣𝑔 reduction is sub-
stantial: from 0.99 V at 𝐷𝑊=50% ⋅ 𝑇𝑐𝑙𝑘, to 0.78 V at 𝐷𝑊=15% ⋅ 𝑇𝑐𝑙𝑘; for the IIR filter
case, the 𝑉 𝑑𝑑𝑎𝑣𝑔 reduction is in the range [0.96 V, 0.74 V].

Concerning the quality of the output, while Razor shows zero degradation for both
filters, for AED-C the quality of the output reduces as the as the detection mechanism
gets more approximated. This trend is clearly reported in Figures 4.28b and 4.29b. The
𝑁𝑅𝑀𝑆𝐸 increases from 0% at 𝐷𝑊=50% ⋅ 𝑇𝑐𝑙𝑘 to 0.84% for 𝐷𝑊=15% ⋅ 𝑇𝑐𝑙𝑘, while for
the IIR filter the 𝑁𝑅𝑀𝑆𝐸 rises from 0.2% at 𝐷𝑊=50%⋅𝑇𝑐𝑙𝑘 to 6.19% at 𝐷𝑊=15%⋅𝑇𝑐𝑙𝑘.
It is worth emphasizing the error shows bigger magnitude since miss-detected timing
error traps in the filter feedback network propagating back to the internal paths and
persisting until a sequence of input patterns mask it. To be noticed that the IIR filter
implemented with AED-C presents an average error greater than zero when 𝐷𝑊=50%⋅
𝑇𝑐𝑙𝑘; this result is a direct consequence of the smoother shape of the dynamic path
distribution induced by AED-C, as explained in Section 4.3.1. In fact, even with the
maximum value of the DW, the Vdd scales more aggressively than Razor (in average
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0.96 V against 1.02 V) leading to errors miss-detection, thus output quality degradation.
The throughput of both Razor and AED-C shows a strict relation with 𝐸𝑅𝑡ℎ as

demonstrated in [126]. Since 𝐸𝑅𝑡ℎ is the same (2%) the worst-case 𝑂𝑃 𝐶 is 0.98 (2%
throughput degradation).

These results confirm thatmoving fromRazor to AED-C enables an efficient Energy-
Accuracy tradeoff. One may argue that an approximate version of Razor could have
been obtained using the error-threshold 𝐸𝑅𝑡ℎ as a control knob instead of tuning the
detection window width 𝐷𝑊. It is, but energy savings would have been much lower
due to large performance penalties. The use of a larger 𝐸𝑅𝑡ℎ implies the raise of tim-
ing errors to correct. More timing errors means that the number of cycles wasted for
correction increases, hence the 𝑂𝑃 𝐶 decrease quickly with 𝐸𝑅𝑡ℎ. To give a proof, the
plots in Figure 4.30 show 𝑉 𝑑𝑑𝑎𝑣𝑔 and 𝑂𝑃 𝐶 as function of the error threshold 𝐸𝑅𝑡ℎ for
both FIR and IIR; 𝐸𝑅𝑡ℎ is in the range [2%, 50%]. The workload is the one described
above in this section. While 𝐸𝑅𝑡ℎ keeps larger, the 𝑉 𝑑𝑑𝑎𝑣𝑔 reduces as expected: from
1.03 V to 0.70 V for FIR; from 1.02 V to 0.87 V for IIR. However, the performance loss is
substantial as the 𝑂𝑃 𝐶 falls down: from 0.98 to 0.66 (almost two clock cycles for each
operation) for FIR; from 0.98 to 0.67 for IIR. With AED-C the 𝑂𝑃 𝐶 overhead is 2% at
worst.
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Figure 4.30: Tuning 𝐸𝑅𝑡ℎ for approximate Razor.

4.3.5 AED-C for Dual-Mode AVOS: a Pros&Cons Analysis
AED-C for Dual-Mode AVOS

The proposed AVOS leverages the AED-C to enable two operating modes: Slow and
Aggressive. The former forces the Vdd scaling to be slow as it ensures full detection of
all the timing violations within the first half of 𝑇𝑐𝑙𝑘 (TDW=50%⋅T𝑐𝑙𝑘); this mode mimics
a standard Razor AVOS scheme. The latter accelerates the Vdd scaling using a smaller
TDW and hence a weaker error detection; under this mode some timing faults are not
covered by the detection window and may result undetected with a negative impact on
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the quality of the outputs. The decision to switching from/to Slow to/from Aggressive is
demanded to the power-management unit (out of the scope of this work).
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Figure 4.31: AED-C in Slow AVOS mode.
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Figure 4.32: AED-C in Aggressive AVOS mode.

Figure 4.31 and 4.32 show an abstract dynamic path distribution (profile of the acti-
vated paths vs. their arrival time 𝐴𝑇), to pictorially explain the working principle of the
two modes. For both the figures dashed lines refer to a generic circuit after synthesis,
i.e. w/o AED-C, while the solid lines refer to the same circuit after the TDL insertion,
i.e. w/ AED-C.
Slow mode: Figure 4.31 left shows the dynamic path-distribution at nominal Vdd. Due
to the presence of the TDL, there exist sensitized paths beyond T𝑐𝑙𝑘 (yellow area) which
induce timing errors. However, for the rule of thumb introduces in the previous section,
these errors are small in number.The Vdd can be therefore lowered until also the shorter
and more active paths violate T𝑐𝑙𝑘; at this point, 𝑉 𝑑𝑑′ in Figure 4.31 (right), the Vdd
scaling stops, and circuit operates at minimum energy. Since TDW is taken pretty large,
any error beyond T𝑐𝑙𝑘 is properly detected and corrected (in Figure 4.31 right TDW cov-
ers all the paths); this ensures a slower, yet “safer” AVOS.
Aggressive mode: the width of TDW is reduced and so that of the TDL according to
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Equation 4.3). As for the Slow mode, the Vdd is let scaling down from its nominal value,
Figure 4.32 (left), till the minimum energy point, 𝑉 𝑑𝑑″ in Figure 4.32 (right). Since the
error detection capability is lower (yellow area considerably smaller than in the Slow
mode), a much lower number of errors get sampled; this allows the circuit settling to
a lower voltage (𝑉 𝑑𝑑″ < 𝑉 𝑑𝑑′). A direct consequence of such more aggressive Vdd
scaling is that the circuit may suffer from potential undetected errors. Indeed, specific
sequences of input patterns might push the supply voltage so down (𝑉 𝑑𝑑″) that some
paths may run in off-side, i.e. beyond TDW (red area in Figure 4.32 left). These errors
cannot be detected, not even corrected; that is why the technique is suited for error-
resilient applications.

Undetected errors represent a source of silent QoR degradation. However, this unde-
sired condition is statistically infrequent: overall, the Vdd scaling is kept to safe values by
the most active paths which serve as a flywheel that guarantees convergence. Indeed, the
proposed AED-C exploits the characteristics of circuits that operate real-life workloads
where data maintain a certain spatial/temporal correlation. It is unlikely that short-
paths (those behind the detection window) and the off-side paths (those beyond the de-
tection window, which show a very low switching probability) get active in sequence
w/o any activation of the covered paths (which are those with the highest switching
probability). As a matter of fact, there is a much higher probability that detectable er-
rors come out and bring the system to a safe region (higher Vdd, larger DW) where
undetected errors represent rare events. In other words, the convergence of the sys-
tems is ensured by those paths with higher activation probability; such paths always
switch within the detection window thereby moving the Vdd to a proper safe value.
Evidence of this principle are given in the next experimental section.

Experimental Results

The analysis reported in this section elaborates on two specific benchmarks, the
FIR and IIR filters, which represent two corners in the efficiency spectrum of AED-C,
as shown in the previous section. We used as testbenches the same three baseband
audio signals but taken independently with 5 ⋅ 106 samples each. The context scenarios
are the same: The 𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ 1 is a noiseless voice recording; the switching activity of
the LSBs is very low for a long portion of the stream. the 𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ 2 is taken from an
office conversation recording; samples present low noise and inputs have homogeneous
switching activity. 𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ 3 is an outdoor conversation; the recording is noisy and
the switching activity of the inputs irregular.

This analysis is conducted on the Razor implementation (DW = 50%⋅T𝑐𝑙𝑘) and the
AED-C implementation (DW = 50%⋅T𝑐𝑙𝑘 for Slow mode, 25%⋅T𝑐𝑙𝑘 for while for the Ag-
gressive mode, as per the study reported in the previous sub-section). The table in Fig-
ure 4.33a gives an overview of the quality metrics (section 4.4.1) collected for the FIR
Filter. When operating in Slow mode, AED-C shows similar Vdd scaling capability of
Razor (see 𝑉 𝑑𝑑𝑚𝑖𝑛 and 𝑉 𝑑𝑑𝑎𝑣𝑔 columns) ensuring error-free outputs (𝑈𝐸 = 0 for all
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ED-C 𝑉 𝑑𝑑𝑚𝑖𝑛 𝑉 𝑑𝑑𝑎𝑣𝑔 EPO OPC UE NRMSE
[V] [V] * [ppm] [%]

𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ 1
Razor (50%) 0.84 V 0.98 V 0.806 0.979 0 0

AED-C (Slow) 0.84 V 0.96 V 0.718 0.980 0 0
AED-C (Aggres.) 0.66 V 0.78 V 0.446 0.981 39 0.17

𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ 2
Razor 0.98 V 1.02 V 0.901 0.979 0 0

AED-C (Slow) 0.96 V 1.00 V 0.858 0.981 0 0
AED-C (Aggres.) 0.78 V 0.84 V 0.527 0.980 1 0.04

𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ 3
Razor 0.98 V 1.04 V 0.934 0.972 0 0

AED-C (Slow) 0.96 V 1.02 V 0.885 0.981 0 0
AED-C (Aggres.) 0.80 V 0.85 V 0.549 0.980 0.4 0.01

(a) AED-C vs Razor
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Figure 4.33: FIR Filter QoR/Savings summary.

the testbenches). This proves AED-C (Slow) does not affect the detection-correction re-
sponsiveness of the system. However, while Razor suffers power penalties due to static
short-path padding, AED-C (Slow) achieves a much lower 𝐸𝑃 𝑂. As shown in Figure
4.33b, the energy savings (w.r.t. Baseline) are above those of achieved with Razor: 28.2%
vs. 19.4% for the best case (𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ 1). Even more impressive results are obtained
when considering the AED-C Aggressive mode. While for Razor the 𝑉 𝑑𝑑𝑎𝑣𝑔 spans the
range [0.98 V - 1.04 V], for the AED-C implementation Vdd moves down in the range
[0.78 V - 0.85 V]. Figure 4.33b shows energy savings with AED-C increase from 28.2%
(Slow) up to 55.4% for best case (𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ 1), much larger than with Razor. Concerning
QoR degradation, the analysis reveals 𝑈𝐸 is in the range [0.4 - 39] ppm, with a mere
𝑁𝑅𝑀𝑆𝐸=0.17% (worst case over all the testbenches). Obviously different testbenches
bring to different 𝑈𝐸 rate and different output degradations. The results give emphasis
to the statistical nature of the proposedmethod and demonstrate the convergence of the
systems under different input data distribution: undetected errors are rare events and
𝑁𝑅𝑀𝑆𝐸 gets very small. The performance (𝑂𝑃 𝐶) degradation due to errors correc-
tion does not change much between Razor and AED-C (in both the operating modes);
𝑂𝑃 𝐶 is mainly affected by the Vdd-scaling policy, which is the same for both the tech-
niques.

On the opposite corner, the results of the IIR filter (Figure 4.34) highlight how the ef-
ficiency of the proposed AED-C is may sensible vary depending on the structure of the
circuit. The table of Figure 4.34a shows the short-path padding procedure is quite inef-
ficient: Razor 𝐸𝑃 𝑂 is 1.48× larger than baseline at best (𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ2). That’s the effect
of buffer insertion during short-path padding, which introduces huge power overhead
(area penalty is 112%w.r.t. baseline circuits as reported in Sec.4.3.4). By contrast, AED-C
shows remarkable 𝐸𝑃 𝑂 savings: 30.6% and 56.7% for Slow and Aggressive respectively
in the best case (𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ1). Nonetheless, 𝑁𝑅𝑀𝑆𝐸 suffers significant drops: 9.87%
at worst case (𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ3). As per our analysis, that’s due to the internal topology of
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ED-C 𝑉 𝑑𝑑𝑚𝑖𝑛 𝑉 𝑑𝑑𝑎𝑣𝑔 EPO OPC UE NRMSE
[V] [V] * [ppm] [%]

𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ 1
Razor 1.00 V 1.02 V 1.477 0.974 0 0

AED-C (Slow) 0.92 V 0.95 V 0.694 0.980 0 0
AED-C (Aggres.) 0.74 V 0.77 V 0.434 0.979 88.93k 0.39

𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ 2
Razor 0.98 V 1.02 V 1.476 0.980 0 0

AED-C (Slow) 0.88 V 0.97 V 0.730 0.980 0 0
AED-C (Aggres.) 0.72 V 0.78 V 0.445 0.979 138,65k 9.87

𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ 3
Razor 1.00 V 1.02 V 1.484 0.977 0 0

AED-C (Slow) 0.92 V 0.99 V 0.776 0.979 0 0
AED-C (Aggres.) 0.74 V 0.80 V 0.464 0.980 121.87k 6.68

(a) AED-C vs Razor
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Figure 4.34: IIR Filter QoR/Savings summary.

the circuit made up of feedback path: an undetected error may propagate back to the
internal paths and persist until a sequence of input patterns mask it. That’s why the
number of uncovered logic errors gets larger (138.65⋅103 ppm for 𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ3).

On the importance of Dynamic short-path padding

One might argue that a comparison between AED-C in Aggressive mode (DW=25%)
and Razor (DW=50%) is unfair. However, it must be considered that Razor is imple-
mented at design time, using special FFs with a fixed DW; the short-path padding
method that makes Razor-FFs working properly is a static method as well. Therefore,
the use of Razor with a smaller DW (e.g., DW=25%) is unpractical as it would imply a
circuit that rarely works at maximumQoR. Moreover, even assuming a DWfixed at 25%
could be acceptable, the reshaping of the path distribution posed by short-path padding
has very negative effects on AVOS capability. We report a cross comparison upon all the
benchmarks: Aggressive AED-C vs. Razor with fixed DW= 25%⋅T𝑐𝑙𝑘. The input patters
used for the digital filters belong to 𝑇 𝑒𝑠𝑡𝑏𝑒𝑛𝑐ℎ1 (the one which has shown maximum
𝐸𝑃 𝑂 for Razor).

The results, collected in Table 4.7, clearly show a Razor with smaller DW improves
the Vdd scaling getting closer to AED-C results. However, our AED-C strategy achieving
larger 𝐸𝑃 𝑂 savings at the cost of a very slight increase of the 𝑁𝑅𝑀𝑆𝐸. Do not forget
that 𝑁𝑅𝑀𝑆𝐸 can be recovered in AED-C by adjusting the DW; the same cannot using
Razor and its static DW.
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ED-C Area Overhead 𝑉 𝑑𝑑𝑎𝑣𝑔 EPO saving NRMSE
[%] [V] [%]* [%]

𝑀𝐴𝐶
Razor (25%) 30.5 0.79 53.1 0.21

AED-C (Aggres.) 16.9 0.71 64.9 0.60
𝐹 𝐼𝑅 𝐹 𝑖𝑙𝑡𝑒𝑟

Razor (25%) 18.8 0.82 44.0 0.10
AED-C (Aggres.) 2.1 0.78 55.4 0.17

𝐼𝐼𝑅 𝐹 𝑖𝑙𝑡𝑒𝑟
Razor (25%) 81.0 0.82 38.5 0.23

AED-C (Aggres.) 44.8 0.77 56.6 0.39

Table 4.7: Aggressive AED-C vs. Razor with DW= 25%⋅T𝑐𝑙𝑘.

4.3.6 Image Processing Case Study: DCT in JPEG Compression
Adaptive energy-accuracy scaling strategies work well on those applications that

show a certain degree of tolerance to errors. More specifically, on those applications
where output errors do not affect, or weakly affect, the quality of results perceived by
the end-users (usually humans). In this section, the proposed AED-C for Dual-mode
AVOS is tested on a realistic error-resilient application for image processing: a Forward
Discrete Cosine Transform (FDCT). This block is typically used for applications like lossy
compression of audio signals (e.g. MP3) and images (e.g. JPEG). It consists of a 8×8 fully
pipelined parallel DCT synthesized at f𝑐𝑙𝑘 = 600MHz. The AED-C timing monitors are
placed according to the design flow described in 4.3.3. The Vdd-scaling policy is the one
described in Section 4.3.2: monitoring period 𝑁=1000 clock cycles; 𝐸𝑅𝑡ℎ fixed to 2% of
the error rate.

Area Overhead

Table 5.2 collects the statistics of the AED-C implementation. Column #FFs reports
the total number of sequential cells, while column #R-FFs the percentage of timing-
critical FFs replaced with timing monitors of Figure 4.21.The last two columns show the

ED-C Area #FFs #R-FFs Total Area Dyn. SPP Area
Technique [𝜇𝑚2] Overhead Overhead

AED-C 64873 4885 50.4% 21.8% 4.9%

Table 4.8: AED-C based FDCT Area Overhead.

overall area overhead and the area overhead due to Dynamic short-path padding im-
plemented with the TDLs; both are normalized w.r.t. the baseline circuit (i.e. design w/o
any AED-C mechanism).The area overhead (21.8%) is mostly due to the high number of
AED-C monitors (16.9%), while the contribution due to the TDLs insertion is marginal
(4.9%).
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Simulation and QoR

In order to evaluate the energy/accuracy achievements brought byAED-C, the FDCT
is embedded in a standard JPEG compression/decompression architecture implemented
in Matlab-Simulink. The image resulting from the JPEG process is then compared with
a reference image, i.e., the image obtained using the baseline FDCT (w/o any ED-C
mechanism). The QoR is expressed using the Peak Signal-to-Noise Ratio (PNSR):

𝑃 𝑆𝑁𝑅 = 10 ⋅ log10 (
𝑝𝑒𝑎𝑘2

𝐼
𝐼𝑚𝑀𝑆𝐸)

(4.5)

The 𝑝𝑒𝑎𝑘𝐼 is the maximum possible pixel value of the image (i.e., 255 in our case). The
𝐼𝑚𝑀𝑆𝐸 is the Image Mean-Squared-Error:

𝐼𝑚𝑀𝑆𝐸 =
∑𝑛

𝑖=0(𝑦[𝑖] − 𝑦𝑜[𝑖])2

𝑛
(4.6)

where 𝑦 is the pixel of the image obtained with the FDCT implemented using the AED-
C, while 𝑦𝑜 refers to the same pixel returned by the baseline FDCT; n is the total number
of pixels. Subjective analysis reveal a 𝑃 𝑆𝑁𝑅 value of at least 35 dB is recognized by
users as of good quality.

TheTestbench consists of a set of 24 grayscale imagesHD-ready resolution (1024x768
pixels) taken from an open-source repository (pexels.com).

Fig 4.35 reports the histograms of 𝑉 𝑑𝑑𝑎𝑣𝑔 and 𝐸𝑃 𝑂 for all the 24 images processed
by the FDCT. As expected, AED-C shows limited Vdd-scaling (and energy savings) when
it operates on Slow mode. Table 4.9 collects average results collected from simulations;
the voltage gap between Slow and Aggressive mode is 200mV (220mV) for 𝑉 𝑑𝑑𝑚𝑖𝑛
(𝑉 𝑑𝑑𝑎𝑣𝑔). This leads different average 𝐸𝑃 𝑂 savings w.r.t. Baseline: 12.5% (Slow), 51.9%
(Aggressive). Concerning performance loss, the Table 4.9 shows 𝑂𝑃 𝐶 degradation is
below 1% for both the operating modes.

AED-C 𝑉 𝑑𝑑𝑚𝑖𝑛 [V] 𝑉 𝑑𝑑𝑎𝑣𝑔 [V] EPO * OPC
Slow mode 0.95 V 1.04 V 0.875 0.979

Aggressive mode 0.75 V 0.82 V 0.481 0.981

Table 4.9: AVOS efficiency over the set of pictures.
*Note: normalized w.r.t. Baseline

In terms of QoR, the Slow mode ensures zero undetected errors, and hence uncor-
rupted JPEG images, while Aggressive mode affects output quality only marginally. Fig-
ure 4.36 reports the 𝑃 𝑆𝑁𝑅 distribution for all the 24 images composing the test-set:
min-max range is [42.06 - 52.55],dB (best case), average 48.45 dB.The worst and the best
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Figure 4.35: 𝑉 𝑑𝑑𝑎𝑣𝑔 and EPO distrubutions
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Figure 4.36: PSNR distribution over the testbench set of images.

cases are reported in Figure 4.37 and Figure 4.38 respectively; both of them show tiny
imperfections, as only few 8×8 pixel blocks are corrupted. The 𝐸𝑃 𝑂-savings/𝑃 𝑆𝑁𝑅
ratio is 57.5% / 42.06 dB for Figure 4.37b, 49.2% / 52.55 dB for Figure 4.38b. The number
of 𝑈𝐸 is 27 ppm on average, 4 ppm for the best case and 328 ppm for the worst case.

It is worth emphasizing that the error-resilient nature of the JPEG application plays
an important role. As a matter of fact, several errors on the high-frequency compo-
nents of the DCT are covered by JPEG compression mechanism (e.g., zonal masking +
quantization). That’s a typical case for which the Aggressive mode is particularly suited.
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(a) Baseline (b) AED-C Aggressive

Figure 4.37: Worst Case JPEG image.

(a) Baseline (b) AED-C Aggressive

Figure 4.38: Best Case JPEG image

Battery Lifetime Gain Analysis

As a final remark, we also describe a practical use-case:A user is making an extensive
use of a multimedia app (e.g., video streaming, gaming, etc.) on his portable device. Since
the battery is running low, the power-management unit might decide to reduce the video
quality to gain battery lifetime. This context perfectly matches the case where a switch
from Slow to Aggressive mode might help to meet the requirements imposed by the
context.

The plot reported in Figure 4.39 shows the battery lifetime gain when the FDCT
is made switching from Slow to Aggressive mode at a given percentage of battery. The
bars are normalized w.r.t. Slow mode. When the switch threshold is set to 30%, the aver-
age lifetime extension is 24.6%, while for 70%, the lifetime extension will increase up to
73.7%. If the user wants to preserve battery since the very beginning (threshold 100%)
the overall lifetime increases up to 81.9% (lifetime almost doubled).
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Figure 4.39: Dual-mode AED-C for battery lifetime average gain.

4.4 Adaptive EAS strategies comparison: ANT Versus
AED-C

The broad objective of this section is to provide a fair comparison between AED-C
and ANT (please, refer to section 3.4.2). A parametric characterization conducted over
a set of realistic applications quantifies several figures-of-merit, like energy savings,
performance and area overhead. The benchmarks consist of two digital filters, a FIR
and a IIR, both synthesized and mapped onto a commercial FD-SOI CMOS technology
at 28nm. The FIR is a pipelined 16𝑡ℎ-order low-pass filter in the direct form (12-bit in,
24-bit out) synthesized to f𝑐𝑙𝑘 = 650MHz. The IIR is a pipelined 8𝑡ℎ-order low-pass filter
in direct form I (16-bit in, 32-bit out) synthesized to f𝑐𝑙𝑘 = 650MHz.The results collected
for a sequence of three different classes of baseband audio signals empirically disclose
the efficiency of ANT and AED-C, also providing an assessment of the resulting energy-
quality tradeoff [129]. The benchmarks have been simulated using a sequence of three
different baseband audio signals (5 ⋅ 106 samples in total) as in Section 4.3.4.

4.4.1 Parametric Analysis
Figures of Merit

The comparison between AED-C and ANT includes the following metrics:

104



4.4 – Adaptive EAS strategies comparison: ANT Versus AED-C

• 𝑉 𝑑𝑑𝑎𝑣𝑔: the average Vdd obtained during testbench Voltage over-scaling simu-
lation for AED-C based timing speculation. For RPR-ANT, the average voltage
corresponds to the Vdd employed during the testbench simulation.

• Energy per Operation (EPO): the ratio between energy consumed and number of
operations completed.

• Operation per Clock Cycle (OPC): the ratio between the number of executed op-
erations and total number of clock cycles, considering that in AED-C techniques
error corrections through logic masking need a cycle of clock gating. For RPR-
ANT the OPC will be always 1, since no performance loss are conceived.

• Normalized Root Mean Squared Error (NRMSE):

𝑁𝑅𝑀𝑆𝐸 = √
∑𝑛

𝑖=0(𝑦[𝑖] − 𝑦𝑜[𝑖])2

𝑛
⋅ 1

∣ 𝑚𝑎𝑥(𝑦𝑜) − 𝑚𝑖𝑛(𝑦𝑜) ∣
(4.7)

with 𝑦 the value sampled at the output of the circuit, 𝑦𝑜 the right output value, n
is the total number of operations; the absolute value of the the max. and the min.
value of 𝑦𝑜 difference defines the output dynamics range. 𝑁𝑅𝑀𝑆𝐸 quantifies
the quality of results.

• Maximum Absolute Error (MAE): expressed in log2 form,

𝑀𝐴𝐸 = log2 ⌊ max
𝑖𝑛𝑝𝑢𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

∣ 𝑦[𝑖] − 𝑦𝑜[𝑖] ∣⌋ − 1 (4.8)

with 𝑦 the value sampled at the output of the circuit, 𝑦𝑜 the right output value.
This metric representation collapses the maximum error on a single bit of the
output.

Qualitative analysis

As already explained in Section 3.4.4, under the accuracy point of view, ANT and
AED-C can be associated with two distinct class of approximate techniques: ANT be-
longs to the class of Fail small applications.The errors introduced by the voltage scaling
remain “small” in magnitude (as it is bounded by the precision of the replica circuit) but
quite frequent. AED-C belongs the class of Fail Rare. The error magnitude is usually
pretty large (the long timing paths of arithmetic circuits are commonly on the MSB of
the output) but very infrequent (long timing paths are activated rarely). This separation
reflects the difference between voltage scaling using output compliance and voltage scal-
ing using timing compliance. The quantitative analysis of the next section confirm this
trend through a more concrete comparison.
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Quantitative analysis

To perform a formal comparison between ANT and AED-C, figures of merit such as
quality of results, energy savings, performance and area overhead were assessed. Since
there are too many possible design variables and settings to show, this section provides
a more compact, yet complete Pareto analysis.

Let us first analyze the FIR filter. Figure 4.40a shows the Pareto points in the quality
vs. energy space (𝑁𝑅𝑀𝑆𝐸 vs. 𝐸𝑃 𝑂). The AED-C points (black dot) are labeled with
the caption (DW%, 𝑉 𝑑𝑑𝑎𝑣𝑔) and the ANT points (blue stars) are labeled with (B𝑟, Vdd),
with 𝐵𝑟 as the number of bits of the replica circuit and Vdd is the operating voltage.
It is worth noting that, in the ANT case, the valid Pareto points are only those whose
operating voltage ensures no timing violations in the replica circuit.

As a general trend, AED-C showed a better energy–quality tradeoff, except for the
rightmost points at 𝐷𝑊=50% of 𝑇𝑐𝑙𝑘, which was dominated by the ANT point (6, 0.82).
The results can be simply explained considering that the ANT architecture required a
more approximated replica circuit, i.e., lower 𝐵𝑟, to achieve the same energy savings of
AED-C; however, a too approximated replica induced a quick increase of error.

To better appreciate this trend, Table 4.10 gives a more detailed view. In the first
row (Min. EPO point), it shows the comparison between the points of ANT and AED-
C with the highest energy-efficiency: AED-C(15, 0.78) and ANT(4, 0.68). For almost the
same energy, AED-C gave results of a much higher quality (𝑁𝑅𝑀𝑆𝐸 = 0.84% for
AED-C vs. 3.37% for ANT). Evidence of the AED-C superiority is also given by looking
at the second row (NRMSE-EPO Knee point), which collects the metrics for ANT and
AED-C across the knee of their 𝑁𝑅𝑀𝑆𝐸 − 𝐸𝑃 𝑂 Pareto curves: AED-C(25, 0.82) and
ANT(5, 0.78). For almost the same quality of results, AED-C outperformed ANT in terms
of energy savings (𝐸𝑃 𝑂 = 0.52 for AED-C vs. 0.66 for ANT). Even though the ANT im-
plementation reached a lower Vdd, its energy savings was limited by the architectural
overhead. This aspect emerged clearly from the Area–Quality Pareto analysis of Figure
4.40b. For the sake of clarity, it should be noticed that at best accuracy Pareto points, as
reported in Table 4.10 third row (Min. NRMSE point), ANT presented slightly lower EPO
than AED-C, i.e. 0.78 vs. 0.81. When accuracy is the priority, the DW should be taken
larger. For such conservative case, ANT was more efficient than AED-C, in which the
activation of the longest paths limited the voltage scaling (hence, the energy savings).

To ensure a specific output quality, the replica circuits need more arithmetic preci-
sion and they take huge silicon area. For minimum output degradation, the area over-
head reached with ANT was more than 60%, too much for real-life circuits. It is worth
noting that AED-C showed a constant area overhead as the different configurations
were obtained only by tuning the TDW/TDL width, with no micro-architectural mod-
ifications. Not just area, also throughput (𝑂𝑃 𝐶) needs special care. Table 4.10 shows
that ANT did not suffer any performance penalty, while AED-C was 2% slower due to
error detection-corrections. It is worth highlighting how the distribution of the timing
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Figure 4.40: ANT vs. AED-C timing speculation: FIR filter.

Technique Vdd EPO OPC N. Errors NRMSE MAE Area
[V] [norm] [%] [norm] [norm]

Min. EPO point
AED-C (DW = 15%) 0.78 0.46 0.98 3226 0.84 21 1.06
ANT (B𝑟 = 4) 0.68 0.46 1.00 1,382,023 3.37 17 1.51

NRMSE-EPO Knee point
AED-C (DW = 25%) 0.82 0.52 0.98 114 0.13 20 1.06
ANT (B𝑟 = 5) 0.78 0.66 1.00 97,664 0.16 16 1.59

Min. NRMSE point
AED-C (DW = 50%) 0.99 0.81 0.98 16 0.01 17 1.06
ANT (B𝑟 = 6) 0.82 0.78 1.00 11,746 0.01 16 1.66

Table 4.10: Quantitative comparison summary: FIR filter.

errors for both techniques followed the classification made at the beginning of this sec-
tion. As reported in Table 4.10, AED-C was characterized by a lower number of errors
(col. N. Errors, over 5 × 106 input patterns) of high magnitude (col. MAE); the opposite
held for ANT, namely more errors of lower amplitude. Although the magnitude of the
errors in AED-C is higher than ANT, the effect on the overall quality of results remain
acceptable (col. NRMSE).

The comparative analysis performed on the IIR filter emphasized even more what
the FIR analysis showed. As reported in Figure 4.41a and Table 4.11, AED-C guaranteed
higher energy efficiency than ANT and all the ANT implementation were dominated by
AED-C. A similar consideration done for FIR still held. Although ANT pushed the sup-
ply voltage to lower value, it still could not achieve the same energy of AED-C. Shrink-
ing the ANT replica circuit to 𝐵𝑟 = 4 (point ANT(4, 0.68)), the 𝐸𝑃 𝑂 became close to that
reached with AED-C(45, 0.91), yet with an unacceptable output degradation (𝑁𝑅𝑀𝑆𝐸
13.15% vs. 0.27%). Conversely, for the same 𝑁𝑅𝑀𝑆𝐸, the area overhead became too
large for a realistic implementation (Figure 4.41b).
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Figure 4.41: ANT vs. AED-C timing speculation: IIR filter.

Technique Vdd EPO OPC N. Errors NRMSE MAE Area
[V] [norm] [%] [norm] [norm]

Min. EPO point
AED-C (DW = 15%) 0.74 0.41 0.98 93387 6.19 30 1.46
ANT (B𝑟 = 4) 0.68 0.67 1.00 4586948 13.15 26 2.12

NRMSE-EPO Knee point
AED-C (DW = 35%) 0.83 0.54 0.98 11759 0.80 30 1.46
ANT (B𝑟 = 5) 0.72 0.76 1.00 2316127 6.01 25 2.17

Min. NRMSE point
AED-C (DW = 50%) 0.96 0.76 0.98 1548 0.20 27 1.46
ANT (B𝑟 = 8) 0.80 0.96 1.00 99872 0.76 21 2.31

Table 4.11: Quantitative comparison summary: IIR filter.

4.4.2 Final Considerations
The proposed AED-C is based on the probabilistic assumption that an efficient volt-

age over-scaling can be achieved if long-paths are rarely activated. This is the same
consideration under which both Razor and ANT are built. However, for our AED-C,
there might be specific sequences of input patterns for which the Vdd is pushed so
low that some paths run beyond the detection window, thus leading to potential miss-
detected errors and output quality degradation. This is the main difference with respect
to Razor and ANT (which are bounded in terms of quality degradation instead). This
also reflects the limits of the AED-C technique: a too frequent activation of the longest
paths may limit the voltage scaling and hence the energy savings. There is a trade-off
between accuracy and savings. When accuracy is the priority, the Detection Window
(DW) should be taken larger. For such conservative cases, ANT may outperform AED-
C.This is shown in Figure 4.40a, where the FIR filter with DW = 45%(50%) ⋅ 𝑇𝑐𝑙𝑘 showed
lower energy savings compared to ANT.

The key of AED-C is that it can be implemented with low design overhead. By con-
trast, ANT requires a replica circuit that introduces severe area (and hence energy)
penalty.
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Chapter 5

Static EAS via Inferential Arithmetic
Circuits

The broad objective of this dissertation is to introduce advanced design solutions
that improve the approach the EAS paradigm is implemented. This chapter deals with
a new strategy for Static EAS. According to the formal definition given in Section 3.2,
an EAS solution is static if the energy-accuracy tradeoff is fixed at design-time by func-
tional speculation, i.e., a modification of the logic functionality through algorithmic or
circuit simplifications which induce energy savings for a worst-case accuracy loss. In
this thesis, the proposed solution involves the design of Inferential Logic Circuits whose
logic functions can be described as inference rules [150]. Inspired by cognitive functions
of the human brain, a machine learning-driven synthesis flows can map Boolean func-
tions as Classification Trees that work like statistical inference engines. As explained
in Section 3.2.2, circuits of this kind infer output values by evaluating the key features
of the function learned during the training stage. The result is the design of combina-
tional logic circuits that can mimic Boolean functions to a certain degree of accuracy.
These inferential logic circuits run quasi-exact computations trading energy efficiency
for accuracy in error-resilient applications.

The Inferential Logic principle has a positive impact on arithmetic applications [149]
[151] where inferential circuits design can lead to architectures more prone to support
aggressive adaptive power management. For this reason, this idea has been proposed
for arithmetic circuits and, more specifically, for the design of an inferential 8-by-8 bit
unsigned multiplier. Using as case-study an error-resilient image blending application,
we quantify the most representative figures of merit, also giving comparison against a
classical radix-4 multi-level implementation. Experimental results prove the inferential
multiplier simplifies the circuit complexity reducing the area by 22%. Also, the infer-
ential multiplier can exploit 2× latency reduction for power optimization guaranteeing
76% average accuracy.

This chapter firstly discusses the Multiplication by Inference concept under an ab-
stract point of view. Then, a brief recall of Classification Trees training algorithm on
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the Boolean domain is reported. The Machine Learning driven design flow for arith-
metic circuits, the core of this chapter, is disclosed along with the experimental results
on the Inferential Multiplier. The chapter is closed by a comparative analysis with a
multiplier obtained through a classical approximate computing technique, i.e., function
under-design, as explained in Section 3.2.1.

5.1 InferentialMultiplier:Theories,Methods andTools

5.1.1 Multiplication By Inference: an abstract viewpoint
The idea of solving problems through inductive reasoning has paved the way to a

remarkable revolution in the ICT ecosystem.That’s the rise of machine learning (ML), a
computing paradigm where machines replicate a few simple learning/reasoning mech-
anisms proper of the human brain [17].

In recent years ML attracted lot of interest in several industrial and scientific areas,
including the microelectronics field. While most of the VLSI research is focused on
mapping ML algorithms into efficient HW platforms, little effort has been spent on
investigating how brain-inspired learningmechanisms can help to solve EDA problems.
Although a few previous work account on the possibility of using ML for functional
verification and testing [164, 53], the idea of a design flow through which logic circuits
can be “accelerated” by means of ML tools is covered only marginally.

The human brain works like a statistical inference engine [24, 152] that generalizes
problems by means of experience-based induction. Such a generalization process en-
compasses two main stages: (𝑖) find out what are the most significant characteristics of
the problem; and (𝑖𝑖) define logic relationships among those characteristics in order to
infer the best solution, ideally the true solution. To better understand this concept, let us
consider how our mind works when solving a simple math question: what is the answer
to 𝑋 ⋅100, with 𝑋 ∈ ℕ?We know from previous experience, i.e., through inductive rea-
soning, that the result of any natural number multiplied by 100 (the key characteristic of
the problem) is simply X followed by a trailing “00” (the logical process). Therefore, the
yield, i.e., the true answer in this case, is obtained by skipping the arithmetic operation.
Indeed, such process can be regarded as an inference process rather than an arithmetic
one. Generalizing this simple, yet meaningful example, it is possible to assume that the
human brain accelerates, or skips, some simple operations by extrapolating significant
pieces of information from the complete picture of the problem.

In this chapter, we discuss the possibility to mimic such a computing paradigm by
leveraging ML techniques during the design stages of logic circuits. More specifically,
we raise the question: is it possible to design a multiplier that works like an inference
engine? To answer this question we thoroughly describe and analyze an 8-by-8 bit un-
signed multiplier obtained through a ML-driven synthesis flow plugged into a com-
mercial logic synthesis framework. Circuit description is derived by shifting the logic
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function of the multiplier towards a binary classification problem upon which a statis-
tical representation of the circuit is learned.

5.1.2 Logic Inference Through Classification Trees
Background on Classification Trees

Solving a classification problemmeans to find the best abstract representation of the
key characteristics, better known as features, over a given set of labeled observations. As
reported in Figure 5.1a, the observation data-set, or training-set, consists of 𝑛 different
samples 𝑠𝑘, with 1 ≤ 𝑘 ≤ 𝑛, where each sample is a tensor described by 𝑝 predictor
variables 𝑋 = {𝑥1,… , 𝑥𝑝} and one label corresponding to one of the 𝑚 available classes
𝑦𝑖 ∈ 𝑌 = {𝑦1,… , 𝑦𝑚}.

Figure 5.1: Classification problem: (a) analytical model, (b) abstract model representa-
tion using a Classification Tree.

A classification problem is typically represented using a compact abstract model
built through statistical evaluation of the labeled observations; this stage is called train-
ing. The obtained model is used to classify new never-occurred samples ⃗̂𝑠𝑘 described
through the same predictors 𝑋; this stage is the inference. Good abstract models are
those that achieve high quality-of-result (QoR), i.e., high classification accuracy, during
the inference stage.

Although several options for building abstract models are available, Classification
Trees (CTs) have proven to achieve high QoR with low level of complexity in many
application cases [15]. As depicted in Figure 5.1b, a CT is a rooted and directed acyclic
graph (DAG) defined as Γ = (Φ ∪ 𝐷 ∪ Θ ∪ 𝐸). The root node 𝜙 ∈ Φ with in-degree 0
represents the classification output. Terminal nodes 𝜃 ∈ Θ with out-degree 0 represent
the class 𝑦𝑖 ∈ 𝑌 = {𝑦1,… , 𝑦𝑚} to which the root is associated. A decision node 𝑑 ∈ 𝐷
implements a comparison between a predictor 𝑥𝑗 ∈ 𝑋 and a threshold value 𝑇ℎ. During
the traversing of the CT, each decision node activates one of the two outgoing edges
𝑒0, 𝑒1 ∈ 𝐸 in order to enable logic paths towards nodes at the lower levels. When a
predictor 𝑥𝑗 gets larger than its associated threshold 𝑇ℎ, the right branch 𝑒1 is activated;
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𝑒0 is activated otherwise. Both 𝑥𝑗 and 𝑇ℎ are defined during the training phase bymeans
of a recursive splitting of the observation data-set.

The building of the tree is driven by a statistical dispersion index, called Gini index,
used to decide the best splitting predictor over the many available. More in detail, the
Gini index is a parameter that measures how much a predictor is able to separate ob-
servations into different groups having the lowest level of impurity [47]. Since CTs are
obtained through recursion, a stopping criteria must be defined. Indeed, if the algorithm
is left free to evolve, the model eventually finds splits that are completely homogenous,
yet with a trivial sample size. In order to prevent this behavior, also known as overfitting,
the training algorithm stops when an a-priori minimum sample size is reached. As a re-
sult, only a subset of the available predictors are accounted in the final CT structure;
such predictors are the most significant ones, i.e., those that bring the most valuable
piece of information for the resolution of the classification problem.

Boolean Functions as Binary Classification

A classification problem where both predictors and labels belong to a Boolean do-
main is commonly referred to as a binary classification problem. To better understand
how binary classification can be exploited in the context of logic synthesis, let us con-
sider a generic Boolean function ℱ ∶ 𝔹𝑛 → 𝔹, with support-set 𝑆 = {𝑥1,… , 𝑥𝑛}.

The 𝑖-th permutation between primary inputs in 𝑆 represents the product term
𝒫𝑖 ∶ 𝔹𝑛 → 𝔹, where 𝒫𝑖 ⊆ ℱ; a collection of all product terms (𝒫1,… ,𝒫𝑘), with
𝑘 = 2𝑛, represents the truth table of ℱ. A truth table per sé is a binary data-set of ob-
servations upon which a CT structure representing important predictors (a subset of
primary inputs) and their logic relationship can be derived [149].

Since the Gini index is applied on binary attributes, a key simplification takes place:
threshold values selected during splits are the mean over the possible values assumed
by attributes (i.e., 0 or 1), namely, 𝑇ℎ=0.5. Hence, as the visual equivalence depicted in
Figure 5.2 suggests, the resulting decision nodes reduce to simple Boolean comparators,
just like decision nodes in Binary Decision Diagrams.
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Figure 5.2: CT decision node: node threshold equivalence.

To better understand these concepts, let us resort to a practical example. Consider
the Boolean function ℱ ∶ 𝔹3 → 𝔹 defined by the truth table in Table 5.1. From an EDA
perspective, if we consider the cube representation of a function ℱ, the classification
rule that partitions the input space can be easily identified: a vertical plane centered
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𝑥1 𝑥2 𝑥3 ℱ

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Table 5.1: Truth table of function ℱ.

in 𝑥1 = 0.5, as reported in Figure 5.3 (center). Therefore, the resulting Boolean func-
tion is ℱ̃ = 𝑥1, the cube notation of which is depicted in Figure 5.3. We refer to this
function as the quasi-exact representation of ℱ, since it covers six over eight minterms
of the original function (highlighted bullets in Figure 5.3 (left) represent misclassified
minterms).

Figure 5.3: Cube notation. Original Boolean function ℱ (left), input space partitioning
due to classification tree (center), and resulting quasi-exact function ℱ̃ (right) [151].

By learning the CT, it is therefore possible to derive a canonical representation of
the function ℱ̃, with ℱ̃ ⊆ ℱ, described over a reduced support-set 𝑆 ⊆ 𝒮. Indeed,
ℱ̃ is typically less complex than ℱ. Intuitively, ℱ̃ is not an exact representation of the
original ℱ, it just covers a subset of all possible patterns instead. This opens to some
circuit optimization for error-resilient applications, where accuracy is traded for speed
and/or power consumption.
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5.1.3 Machine Learning Driven Logic Synthesis Flow
The design automation of an inferential circuit based on CTs imposes some changes

in the standard synthesis flow [130]. As depicted in Figure 5.4, an additional stage for
CT building is inserted just before multi-level logic synthesis&optimization. This new
stage consists of two main tasks.

Truth

Table

Training

data-set

CT

CT.v

CT RTL

Logic Synthesis

&

Optimization

Gate-level 

netlist

RTL

Description

Technology

Mapping

Model

Extraction

S
ta

n
d

a
rd

D
e

si
g

n
 F

lo
w

M
L-

d
ri

v
e

n
 

D
e

si
g

n
 F

lo
w

Figure 5.4: Proposed flow plugged into a standard synthesis flow.

1. Generation of the observations data-set: the RTL description is processed by
means of a SAT solver that, for each permutation of the primary inputs, defines the
corresponding output. The obtained table serves as data-set to build the CT.

2. CT-based model extraction: this is the core of the ML-driven synthesis flow;
the function ℱ̃ ∶ 𝔹𝑘 → 𝔹, with 𝑘 ≤ 𝑛, is learned through the process described in
Section 5.1.2. The truth table is processed by a in-house Matlab script that leverages the
built-in fitctree function. Multiple output functions ℱ ∶ 𝔹𝑛 → 𝔹𝑚 are decomposed
into multiple logic cones, each of them modeled by a dedicated CT. The resulting ℱ̃ ∶
𝔹𝑘 → 𝔹𝑚, where 𝑘 ≤ 𝑛, consists of an an ensemble of independent CTs. The obtained
structure is then annotated in Verilog format and fed as input to the logic synthesis &
optimization engine that run standard area, power, and delay minimization.

It is worth to emphasize that integrating the ML-driven stage into commercial tools
is an easy task; we plugged the proposedML-based flow into Synopsys Design Compiler
through a dedicated wrapper consisting of Tcl and Matlab scripts.

5.1.4 Experimental Results
Benchmark and Experimental Setup

As test casewe introduce the design of an 8-by-8 bit unsignedmultiplier.This bench-
mark finds applications in many HW accelerators for image processing and classifica-
tion in the context of visual reasoning. To better appreciate the characteristics of the
CT-based circuit we provide a comparison between two possible implementations:
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Inferential multiplier (I-MULT): the benchmark is optimizedwith theML-driven
synthesis flow described in Section 5.1.3 (Figure 5.4) plugged into Synopsys Design
Compiler.

Radix-4 Booth multiplier (R4-MULT): obtained using a standard synthesis flow
implemented into SynopsysDesignCompiler and a standard-cell library, with lowpower
and area features enabled.

For both the implementations, the logic mapping is done with an industrial FDSOI
CMOS technology at 28nm. The frequency constraint is set to F𝑐𝑙𝑘 = 500MHz.

Inferential vs. Arithmetic Multiplier

Table 5.2 reports the post-synthesis results for the two implementations. The I-
MULT shows a simplified logic network (1.33× fewer devices) thus ensuring 22% less
area w.r.t. the R4-MULT. Concerning performance, the I-MULT shows a wort-case tim-
ing slack that is 56% of the clock period (𝑇𝑐𝑙𝑘). If compared against the slack obtained
with the R4-MULT, a mere 2.26% of 𝑇𝑐𝑙𝑘, we can clearly state that the inferential arith-
metic core is by far more efficient.

One may argue that the frequency constraint used for the synthesis is unfair as it
favors I-MULT. However, when themaximum frequency of the I-MULT is used as a con-
straint, i.e., 𝐹𝐼−𝑀𝑈𝐿𝑇 = 6.67GHz, the synthesis process of the R4-MULT does not con-
verge.The largest frequency forwhich R4-MULT reaches timing closure is 0.45×𝐹𝐼−𝑀𝑈𝐿𝑇;
under such constraint, the R4-MULT area is 52% larger than that of the I-MULT. Here’s
why the reported analysis is for F𝑐𝑙𝑘 = 500MHz, a common target for tightly coupled
parallel architectures which are typically memory bounded, e.g., accelerators for image
classification and visual reasoning [25].

Multiplier Gates Area [𝜇𝑚2] Slack [%T𝑐𝑙𝑘]
I-MULT 401 298.17 56.05
R4-MULT 535 383.85 2.26

Table 5.2: Synthesis results, with columnsGates,Area, and Slack representing the total
number of logic gates, the total area, and the worst slack respectively.

Figure 5.5 shows the accuracy 𝛾 for each primary output of the I-MULT. Accuracy is
defined as the ratio 𝐸𝑐

𝑇𝑝
, where 𝐸𝑐 is the number of input patterns that are successfully

classified, and 𝑇𝑝 is the cardinality of the input permutation set, i.e., the number of rows
in the truth table. Accuracy is measured through exhaustive functional simulation. The
two MSBs (𝑚15,… ,𝑚14) and the five LSBs (𝑚4,… ,𝑚0) show the highest accuracy,
𝛾 > 95% and 𝛾 = 100% respectively, while lower accuracy is recorded for intermediate
outputs (𝑚10,… ,𝑚5), for which 54.1% < 𝛾 < 61.5%. This trend is due to the distribu-
tion of the binary classes {𝑦0, 𝑦1} ∈ 𝑌 in the training population. More specifically, the
training set associated to MSBs and LSBs show a distribution highly skewed towards
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Figure 5.5: Output Accuracy of the I-MULT.

0 or 1. The learning algorithm is thereby prone to overfit the observation data-set [55].
While overfitting is an undesired effect in typical classification problems, it may repre-
sent a favorable condition to generalize Boolean logic functions. The overall accuracy
averaged over all the outputs is 76%, a reasonable value for error-resilient applications
as shown in the next subsection.

Image processing

We tested the efficiency of the proposed I-MULT on Image Blending, an image pro-
cessing task in which two images, the source and the mask, are mixed for artwork. The
computational kernel consists of a pixel-wise matrix multiplication. In our experiments,
the testbench consists of 7 source and 8 mask HD-ready pictures with a resolution of
1024x768 pixels; the output set is then composed of 56 blended images.

The adopted evaluation metrics are described as follows.
Normalized Root Mean Squared Error (NRMSE): difference between predicted values,

i.e., I-MULT results, and the expected results, i.e., those obtained with the R4-MULT
at nominal conditions. The analytical equation is given by (5.1), where 𝑦 is the value
sampled at the output of the circuit, 𝑦𝑜 is the right output value, 𝑛 represents the total
number of multiplications, and 𝑦𝑚𝑎𝑥 (𝑦𝑚𝑖𝑛) the max (min) value of 𝑦𝑜.

𝑁𝑅𝑀𝑆𝐸 = √
∑𝑛

𝑖=0(𝑦[𝑖] − 𝑦𝑜[𝑖])2

𝑛
⋅ 1

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
(5.1)

Peak Signal-to-Noise Ratio (PSNR): quality of a picture w.r.t. the expected one, i.e.,
those obtained with the R4-MULT at nominal conditions. PSNR is described in (5.2),
where 𝑝𝑒𝑎𝑘𝐼 is the maximum value assumed by each pixel, i.e., 255 when working with
grayscale images, as in our case. Subjective analyses reveal PSNR in the range 20 dB to
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35 dB are perceived as good results.

𝑃 𝑆𝑁𝑅 = 10 ⋅ log10 (
𝑝𝑒𝑎𝑘2

𝐼
𝑀𝑆𝐸)

(5.2)

Power consumption: the average power consumption of the circuit. As estimator we
adopted the probabilistic model embedded into a sign-off tool (Synopsys PrimeTime)
with signal statistics back-annotated from functional simulations by means of saif
files.

When dealing with optimal energy/performance-vs-accuracy trade-offs, a common
strategy is to trade power consumption for QoR using some power management tech-
nique, e.g., dynamic frequency scaling (DFS) and/or dynamic voltage scaling (DVS) [11].
Concerning DFS, Figure 5.6 gives a parametric analysis of power consumption (dotted
line) and NRMSE (solid line) from F𝑛𝑜𝑚 = 500MHz up to 2×F𝑛𝑜𝑚. Notice that power con-
sumption is normalized w.r.t. R4-MULT working at F𝑛𝑜𝑚. Power consumption increases
linearly with frequency. Within the whole frequency range, I-MULT results less power
hungry than R4-MULT, even at 2×F𝑛𝑜𝑚, where power savings is ∼7%. Concerning QoR,
the average NRMSE of I-MULT (solid line with square marker) is flat over the entire
range, i.e., 5.45%, as no timing faults do occur. Even though that’s a direct consequence
of the available timing slack, it demonstrates that the I-MULT effectively accelerates
the arithmetic computation with a small degradation of the result. The same cannot be
said for R4-MULT (solid line with cross marker) which shows a substantial degradation
(w.r.t. R4-MULT at nominal conditions) due to timing faults for operating frequencies
larger than 1.18×F𝑛𝑜𝑚; the worst case NRMSE = 20% at 1.82×F𝑛𝑜𝑚. The break-even point
is close to ∼1.33×F𝑛𝑜𝑚, at which the I-MULT still shows significant power savings w.r.t.
R4-MULT, i.e., 18%.
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Figure 5.6: I-MULT: Power𝑎𝑣𝑔 and NRMSE𝑎𝑣𝑔 vs. F𝑐𝑙𝑘

When playing with DVS, assuming as target frequency F𝑛𝑜𝑚 = 500MHz, the timing
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slack available with I-MULT can be consumed by reducing the supply voltage from
the nominal value of 1.1 V to 0.64 V. With such a low voltage, the power savings w.r.t.
R4-MULT (at F𝑛𝑜𝑚) reach 80%, still guaranteeing low accuracy loss, NRMSE = 5.45%.
It is worth to emphasize that for both DFS and DVS, the I-MULT implementation is
timing-fault free. This prevents metastability at the rise-edge of the clock, an undesired
effects of aggressive power management solutions typically adopted in approximate
computing [20].

Figure 5.7: PSNR of the I-MULT on the 56 images

For the sake of completeness, Figure 5.7 reports the PSNR histogram for all the 56
output blended images processed by the I-MULT working at max speed, 2×F𝑛𝑜𝑚 and
1.1V; the averaged PSNR is 30.74 dB, in the range of visually good results.

As a final remark, Figure 5.8 gives a visual representation of QoR degradation for
two samples of the testbench. The pictures in Figure 5.8a and Figure 5.8b are the source
andmask images respectively; the blended image is reported in Figure 5.8c.The pictures
in Figure 5.8d and Figure 5.8e are the output of I-MULT and R4-MULT working at same
frequency and voltage (2×F𝑛𝑜𝑚, 1.1V). While I-MULT achieves a good quality (PSNR =
31.24 dB), with the R4-MULT the output is clearly affected by errors (PSNR = 14.69 dB).
This is a remarkable results if one considers that I-MULT is also more power and energy
efficient.
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(a) (b)

(c) (d) (e)

Figure 5.8: Image blending. Source (a) and mask (b) images, (c) exact image blending,
(d) I-MULT result, (e) R4-MULT result.

5.2 Static EAS strategies comparison: Inferential vs.
Approximate Multiplier

As shown in the previous section, the Inferential Multiplier (I- MULT) shows re-
duced circuit complexity, w.r.t. classical multiplier architecture, which leads to a la-
tency compression exploited for power optimization. For the sake of completeness, a
comparative analysis, in terms of area and accuracy, should be performed against Ap-
proximate Computing techniques, also. Specifically, we considered as a benchmark a
representative Approximate Multiplier which we referred to as Kulkarni Multiplier (K-
MULT). This multiplier is obtained through function under-design, i.e., by truth table
simplification, as already discussed in Section 3.2.1.

In the following sections, we performed a parametric characterization in terms of
area comparing I-MULT and K-MULT at their maximum frequency. Then, a study on
the error distribution generated by both multipliers discloses how the nature of the
system accuracy differs when inferential vs. arithmetic functional-speculation rules are
applied.

5.2.1 Hardware Characterization
In this analysis, we synthesized 8-by-8 bit unsigned I-MULT and K-MULT. For both

the implementations, the logic mapping is done with an industrial FDSOI CMOS tech-
nology at 28nm. When the maximum frequency of the I-MULT is used as a constraint,
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i.e., 𝐹𝐼−𝑀𝑈𝐿𝑇 = 6.67GHz, the synthesis process of the K-MULT does not converge. The
highest frequency for which K-MULT reaches timing closure is 0.55×𝐹𝐼−𝑀𝑈𝐿𝑇; under
such constraint, the K-MULT area is 25% larger than that of the I-MULT.Thus, an infer-
ence engine is more area/latency efficient than both standard and simplifiedmultipliers.

5.2.2 Error Distribution Characterization
The distribution of the output relative error can disclose useful information about

the inferential multiplier behavior. In Figure 5.9 is reported the absolute value of the Rel-
ative Error (RE, normalized to the output dynamics) of both I-MULT and K-MULT com-
putations. It appears clear that the statistical rules which I-MULT leverages to mimic
the original logic function lead to more inaccurate computations w.r.t. K-MULT, both
in average, 4.23% vs. 1.39%, and maximum value, 50.89% vs. 22.22%.

(a) I-MULT (b) K-MULT

Figure 5.9: Abs value of Relative Error Distribution for I-MULT (a) and K-MULT (b).

Although at first glance the error distribution of I-MULT could seem a severe imped-
iment to its employment in error-resilient applications that requires a lower magnitude
of computation error, the statistical nature of I-MULT errors reveals a possible strength
point. Taking the relative error out of the absolute value, as reported in Figure 5.10,
K-MULT error distribution results biased as the function under-design makes the ap-
proximate multiplications always smaller in value than the correct one. In contrast, the
error distribution of I-MULT is almost specular around zero. This suggests that the ac-
curacy drop due to the inference rules can be compensated if I-MULT is employed in
Multiply-Accumulate (MAC) operations.

In order to prove that inferential multiplication enables statistical error compensa-
tion, I-MULT and K-MULT have been integrated into a MAC and simulated with two
testbenches: (i) operands uniformly distributed in the range [0 - 255] and (ii) operands
normally distributed [𝜇 = 127, 𝜎 = 32]. We took 100 sets of [10, 100, 1000, 10000] MAC
operations, and we collected the average RE and standard deviation (STD). The results
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(a) I-MULT (b) K-MULT

Figure 5.10: Relative Error Distribution for I-MULT (a) and K-MULT (b).

depicted in Figure 5.11 show that for the I-MULT the higher the number of MAC oper-
ations the lower is the average RE. Also, starting from 100 MAC operations, I-MULT is
always more accurate than K-MULT for both normal and uniform operand distribution.
Nevertheless, K-MULT presents a lower standard deviation thanks to the arithmetic na-
ture of its error. For the sake of clarity, it should be noticed that the statistical error
compensation is strictly affected by the input distribution, thus, specific input patterns
might be more favorable to K-MULT.

(a) Average Relative Error (b) Average Std Deviation

Figure 5.11: I-MULT and K-MULT average accuracy in MAC operations.

5.2.3 Final Considerations
Theexperimental results collected for the proposedmultiplication by inference shows

that such a method achieve reduced complexity, with area/latency large savings, at the
cost of non-negligible accuracy loss. Although I-MULT does not represent a radical so-
lution for efficient Energy-Accuracy scaling, it shows features that can be advantageous
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in particular error-resilient applications. For example, as shown in the previous section,
specific data-intensive application, e.g., Neural Networks, whose computation kernels
are built upon MAC operations, can take advantages of I-MULT statistical error com-
pensation. The demonstration of this hypothesis is out of the scope of this dissertation,
but further exploration will be conducted in future work.
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Chapter 6

Conclusions

The end of Moore’s law is the prelude of a design crisis that will soon require to re-
think the optimization and integration strategy of digital circuits and systems. Energy-
Accuracy Scaling (EAS) does not represents a radical solution to all these concerns,
however, is opening to new design paradigms that alleviate the pressure. This disser-
tation introduces new advanced design solutions that improve the approach the EAS
paradigm is implemented. The presented two new strategies aim at reducing the de-
sign overhead of classical approximate solutions; according to the revisited taxonomy
reported in this thesis, one of the proposed strategies belongs to the class of Adaptive
EAS, while the second falls under the label of Static EAS.

The contributions of this dissertation on the Adaptive solutions concern the en-
hancement of the conventional Error Detection-Correction techniques for data-driven
voltage scaling, i.e., Razor, in order to trade system accuracy for energy reduction. This
mechanism, called Approximate Error Detection-Correction (AED-C), is built upon in-
situ elastic timing monitors which enable an error management scheme suited to adap-
tive powermanagement (e.g., Adaptive Voltage Over-Scaling) on error-resilient applica-
tions. AED-C implements EAS using the error detection coverage as a knob: a low error
coverage encourage voltage over-scaling thus to achieve larger energy savings at the
cost of quality-of-result; a high error coverage mitigate the voltage scaling leading to
higher accuracy at the cost of lower energy savings. As EAS does not have to ensure full
error coverage, the traditionally significant area/energy overhead of the conventional
Razor may be reduced by using a simpler error management circuitry. Simulations over
a representative set of applications/circuits, e.g., Multiply-Accumulate (MAC) unit, Dis-
crete Cosine Transform (DCT), FIR and IIR filters, provide a comparative analysis with
the state-of-the-art Razor. The collected results show that AED-C substantially reduces
the average energy-per-operation (up to 44.7% savings w.r.t. Razor-driven Adaptive
Voltage Over-Scaling) and the area overhead (3.3% vs. 62.0%), still guaranteeing reason-
able accuracy. As a motivating example, when applied to a real-life image processing
application, i.e., Discrete Cosine Transform Unit (DCT) integrated into a JPEG compres-
sor, AED-C shows 51.9% energy savings (w.r.t. a baseline DCT implementation) and a
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PSNR of 48.45 dB (w.r.t. baseline JPEG images)
Within the scope of static EAS, a new strategy is developed exploiting Machine

Learning (ML) theorieswhich suggest alternative forms to represent relationships among
data.The proposed solution involves the design of Inferential Logic Circuits whose logic
functions can be described as inference rules. Inspired by cognitive functions of the hu-
man brain, a machine learning-driven synthesis flows can map Boolean functions as
Classification Trees that work like statistical inference engines. Circuits of this kind
infer output values by evaluating the key features of the function learned during the
training stage. The result is the design of combinational logic circuits that can mimic
Boolean functions to a certain degree of accuracy. These inferential logic circuits run
quasi-exact computations trading energy efficiency for accuracy in error-resilient ap-
plications.The Inferential Logic principle has been experimented on arithmetic circuits,
more prone to support aggressive adaptive power management. The figures-of-merit of
an Inferential Multiplier are quantified using representative image processing applica-
tions as a case study. A comparative analysis against a state-of-the-art Booth Multiplier
proves the inferential logic representation simplifies the circuit complexity reducing the
area by 22%. Also, the inferential multiplier can exploit 2× latency reduction for power
optimization guaranteeing 76% average accuracy.

As a final remark, the research achievements of the proposed strategies are reported
as follows:

• Approximate Error Detection-Correction (AED-C) for Adaptive Energy-
Accuracy Scaling (EAS):
porting of the Approximate Computing concept to Adaptive EAS techniques us-
ing the timing faults coverage as a knob to trade energy for quality-of-results.
AED-C offers across-level contributions in EDAmethodology/tools, architectural
solutions, and circuit implementation.

• Inferential Logic for Static Energy-Accuracy Scaling:
porting of Machine Learning (ML) theories into the Boolean domain to imple-
ment logic functions described as statistical inference rules. The inferential logic
circuits obtained through the proposed ML-based design flow present architec-
tures prone to support aggressive Voltage (Frequency) scaling in exchange for a
certain degree of accuracy.
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